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      Null   Distribution  Properties   Of   Some  Goodness   Of  Fit 

Statistics    For    Logistic     Regression 

by 

Z.  Al-Sarraf and D.H.   Young 

Summary 

The  null  distribution  moment  and  percentile  properties   of   several 

goodness  of   fi t    statistics   for  logistic  regression  models   are  considered. 

Small   sample  approximations to  the critical  values  of   the   statistics  are 

evaluated  for the case of  a  single  explanatory  variable   with   equally 

spaced  values. 
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1.     Introduction 

Let  Y1 ,   Y2   , . . . ,   Yg    represent  g  independent  binomial  random  variables 

where  Yt    is  the  number  of  successes  in  a  set  of  nt    independent  trials. 

For  the  t th   group,  we   let  Pt     denote   the  unknown  probabili ty  of  success 

in  each  trial .     This  probability  is  assumed  to  depend  on  the  values 

x t  1 , . . . .x t  k  ,   of  k  explanatory  variables  which  are  measured  for  each  group. 

A  commonly  used  model   for   the  above   situation  is  the  linear  logistic 

regression  model. 

log (Pt /Qt )   = 
t

x
~
'  β   , t  =  1,2 ,.......g (1.1) 

where  Qt  =  1   -   Pt   
t

x
~
'   =  (1 ,xt  1  , . . .  ,xt  k)   and  β '    =  (β0 ,β1  , .  . .  ,βk) .     A 

very  broad  area  of  application  of  this  model  is  described  by  Cox   (1970). 

The  parameters  in  β   are  usually  all   unknown  and  there  are  three 

commonly  used  methods  for  estimating  them,  namely maximum likelihood  (ML), 

minimum  chi-square   (MC)   and  weighted  least squares  (WLS).   The methods 

are  defined  here,   and  a  more  detailed  discussion  of   them  is  given  in 

section  2. 

The  ML  estimate 
1

^

~
β   is  the value of β  which  maximises  the kernel 

of  the  log-likelihood  given  by 

)2.1(
g

1t
.)~βt~

x'
e(1logtn

~
β'

t~
xty)

~
β(L ∑

= ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−=

The  MC  estimate  
2

^

~
β      is  the  value  of  β  which  minimises 

)3.1(
g

1t tQtPtn

2)tptnt(y
)

~
βR( ∑

=

−
=

where  from  (1.1), 

  (1.4) 

The  ML  and  MC  estimates  both  require  an  i terative method of solution. 

A  non-iterative  solution  can  be  found  by  weighted  least   squares,   this 

method  sometimes  being  referred  to  as  minimum  logit  chi-square  est- 

imation.     Defining   the  group   empirical   logits   by 

zt  =  log{yt / (nt - y t  ) }    , t   =   1,2,...,g (1.5) 

)}.
~
βt'~xexp()/{1

~
βt'~xexp(tp +=
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the  WLS  estimate 
3

^

~
β    is   the  value   

~
β   which  minimises 

(1.6) 
where  Pt  =  yt   /nt     and  q t     =   1   -  Pt   .     Because   zt     is  undefined  when  yt     =  0 

or  yt     -  nt ,  modified  empirical   logits  defined  by 

(1.7) 

are  often  used,   the  factor   ½   being   selected  to  minimise  the   large   sample 

bias  in estimating 
~
βt'~x  .  An  esimate  of   the  large   sample  variance  of   ∗

t~
z    is 

 

(Gart  and   Zweifel  (1967)),      The  modified  WLS  estimate   4β̂    is   therefore 

the  value  of  
~
β   which  minimises 

(1.8) 

The  ML,  MC  and  WLS  methods   of   estimation  for   the  logistic   regression 

model  were  first  considered  by  Berkson   (1955),   who  showed   that   the  WLS 

estimator  gave   smaller  mean  square   errors  of  estimation  for  a  number  of 

parameter  configurations  when  g  =  3  and  nt    =   10,   t    =  1,2,3.   In a fairly 

large   scale   simulation  investigation  covering  a  much  wider   range   of 

models  and   sample   sizes,   we  have  also found  that  the WLS estimator is 

often  more  efficient   than  the  ML  and  MC  estimators.    The  results of 

this   investigation  will   be  given   in  a   separate  report.  

In  applications,   i t    is   of   course   important  to assess the goodness 

of  fit   of  the  logistic  regression  model.     Two  well-known  statistics 

have  been  proposed  for  this  purpose.     The  first  statistic  is R(
~1
β̂ ),  

the sum of  squares of  the residuals Rt
( 1 )   obtained  from  a  ML  fit   where 

t  =   1,2,...,g (1.9) 

where (1)
tp̂  denotes   the  ML  estimate  of  Pt   .    The  second statistic  is  the 

likelihood  ratio   statistic  for   comparing   the  fit    of   the  logistic   regress- 

ion  model  with  that of  the  general  alternative  in  which  the {Pt } can 

∑
=

−=
g

1t
2)

~
βt'~xt(ztqtptn)

~
βS(

g1,2,...,t)},2
1

tyt)/(n2
1

tlog{(ytz =+−+=∗

)
tn

1
t)(q

tn
1

t(p3
tn

2)t1)(nt(n
tv

++

++
=  

2)
~
βt'~xt(z

g

1t 2)t1)(nt(n
)1

tnt)(q1
tnt(p3

tn
)

~
β(S −∗∑

= ++

−+−+
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}(1)
tQ̂(1)
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tp̂tnt(y(1)
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vary  freely  over  the  parameter  space  0 ≤  Pt   ≤   1, t = 1,2,...,g. 
Denoting  the  statistic  by  

1~
)β̂D(    we  have 

(1.10) 

Writing  
1~

)β̂D(  = ∑
=

g

1t
.2}(1)

t{D  individual  group  measures  of   fit  are  pro- 

vided  by 

(1.11 ) 

Following  Pregibon   (1980),   we   shall  refer  to  
1~

)β̂D(    as   the  deviance 

statistic  and  to  the   {Dt (1) }   as   the  deviance  components.     If   the  goodness 
of   fit   statistics   are   linked   to   the  estimation  procedures   for  fitting 
the  model,   it   is  natural   to  use  

1~
)β̂D( ,   but  more  natural   to  use  R(

~2
β̂  ) 

than  R(
~1
β̂ ). 

Other  goodness  of  fit   statistics   are  clearly  provided  by  S(
~3
β̂ )   and 

S*(
~4
β̂  ) .     An  alternative  class  of  goodness  of  fit   statistics  based  on  the 

sample  logits   is  obtained  by  replacing  the  sample  proportions  by  fitted 
probabilities   in  the  weights  and   is  defined  by 

 (1.12) 

where  we  use 
~
β̂   to  represent    a  general  estimate of  3.  The use of   unmod- 

ified    empirical    logits   is   not  considered   because    the  associated    statistic 
would   be   undefined  when  y   =  0  or   yt   =  nt   . 

All   the  goodness  of  fit  statistics mentioned previously  have  limiting 
chi-square  distributions   if   the  assumed logistic regression  model  is 
correct.     However,   little  work  appears   to  have  been  done  to   investigate 
the   small  sample  properties  of  the  statistics  and  in particular  to  deter- 
mine  how  rapidly  the  null   distribution  of  the  statistics approach their 
limiting  forms.    We have  therefore performed a fairly large scale  simula- 
tion   investigation  to  examine  the   small  sample   properties   of   the    statistics 

1~
)β̂D(  R(

~1
β̂ ).,   R(

~2
β̂  ),   S(

~3
β̂ ),  S*(

~4
β̂  ), T(

~1
β̂ )  and T(

~4
β̂ )  under  the logistic 

regression  model 

log(Pt /Qt )   =  β0   +  β1 ( t - 1 ),     t   =   1,2,.. .,g 
(1.13) 

∑
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⎜

⎝

⎛
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tp̂
tp

logty2
1~

)β̂D(

,
2
1

(1)
tQ̂
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)logtyt(n(1)
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logty2
1
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tD
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⎛
±=

∑ −∗
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~
2)β̂t'~xt(z

2)t1)(nt(n
)1

tntQ̂)(1
tntP̂(3

tn
)

~
β̂T(
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which  occurs  when  there  is  a  single  explanatory  variable  having  equally 
spaced  values-     The  results  of  the  investigation  are  given  in  section  4.  

The  model  given  by   (1.13)  might  arise  in  a  time-series  context 
with  binary  data  sets  collected  at   equally   spaced   t ime   points,     there 
being  a   trend  in  the  probability  of   success.     The  model  might  also  be 
appropriate  in   the  context  of  a   controlled  experiment   with   binary  responses, 
the  {x.}  representing  equally  spaced  levels  of  a   single    test   variable.  

In  section  3,  asymptotic  distribution   results   for   the   residuals 
and  deviances,   Rt

( 1 )   and  Dt
(1 )   respectively  based  on  an  ML  fit   are given 

for  a  general  class  of  models.     The  results  are  used  in  section  5  to 
derive   approximations  to  the  critical   values   of  goodness  of  fit    statistics 
based  on  the  extreme  values  of the {Rt ( 1 )} and {Dt

( 1 )  }. The approximations 
are   then evaluated under the model   given  by   (1.13). 
 

2.     Review  of  Estimation  Procedures  for  the  Linear  Logistic  Regression  Model 
In  this  section,  we  discuss  the  computational  procedures  that  may be 

used for determining the ML, MC and WLS estimates of
~
β . A  new  method  is 

presented  showing how the MC estimate can be calculated  using  GLIM. 

2.1     Maximum Likelihood Estimates 

From  (1.2),   the  first  derivatives   of   the  log-likelihood  are 

(2.1) 

Setting  ∂L(
~
β )/∂βj   =  0  for  j   =  0 ,1 , . . . ,k,   the  ML  estimate  β1   is  obtained 

as   the   solution  of   the  k + 1   equations 

(2.2) 

Setting  ),(1)
gy,...,(1)

2y,(1)
1y('

i~
yand)gy,...,2y,1(y'

~
y,(1)

tPtn(1)
ty ))))v) ===  

 the   set  of  equations   given  by   (2.2)   may  be  written  in matrix form  as 

0)
~
y'

~
y('~x =−              (2.3) 

The  likelihood  equations  are  nonlinear  in  
~1
β
)

  and  are  solved  by  an 

K.0,1,...,J,βt'~xe1

~βt'~xe
tntytjx

jβ

)
~
βL(

=∑
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

−=
∂

∂

∑
=

==−
g

1t
k.0,1,...,j0,)(1)

tP̂tnt(ytjx
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iterative method  based  on  a  Newton-Raphson  approach For  this  we  need 

the  negative   values  of  the   second  order  derivatives  of  the   log-likelihood 

which  are  given  by 

(2.4) 

for  j , j '   =  0,1,...,k.     Thus 
(2.5.) 

for  j , j'   =  0,1,...,k.   In  matrix form,  we may write the  (k+1)  x (k+1) 
terms  given  by   (2.5)   as 

          ~X~V~X'
'

~1
β̂

~1
β̂

~
β)L(2

=
∂∂

∂
−            (2.6) 

where 

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∂

∂
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

~
β̂
1~

ŷ
diag

(1)
gQ̂(1)

gP̂gn00
..

...

...
0...(1)

2Q̂(1)
2P̂1n0

0...0(1)
1Q̂(1)

1P̂1n

~V
 (2.7)

 
To  find  

~1
β̂  by  the Newton-Raphson  method,  if   we let  

~1
β̂ ( ℓ  )  denote 

the  approximation  to   
~1
β̂    at   the  ℓth  stage  of   iteration,  we  have 

(2.8) 

where  
l~v     and  

~1
ŷ    denote  ~v   and  

~1
ŷ     evaluated  at    

~1
β̂ (ℓ  )  , 

The  above  iterative  process  may  be  viewed  as  a  method  of   iter- 
atively  reweighted  least  squares.     Thus   if  we  let 

))(
1~

ŷ(y1
~v

)(
1~
β̂X~z

l
l

l

l
−−+=  

(2.9) 

denote  a   'pseudo '  observation  vector  at   the  ℓth   stage,   equation   (2.8) 

∑
=

+

=
∂∂

∂
−

g

1t 2)~ ~βtx'
e(1

~ ~βtx'
e,tjxtjxtn

'jβjβ

)
~
βL(2

∑
=

=

=
⎪
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⎪
⎬

⎫

⎪
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⎪
⎨

⎧
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∂
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g

1t
(1)
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'JβJβ

)
~
βL(2

))(
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ŷ
~
y('~X

1)~X~V'~X()(
1β̂

~
β̂

))(
1~

βL(
1

~

,)(
1~
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)(

1~
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))(
1~

βL(2
)(

1β̂
1)(

1β̂

l
l

l

l

l

ll

l
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−−+=

∂

∂
−

∂∂
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−+=+

⎪
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⎪
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⎧
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may  be  written  as 

llll ~Z~V
'

~X 
1-)~X~

V'~X(    1)(
~1
β̂ =+

(2.10) 

From   generalised   least  squares    theory,   this  formula  corresponds   to 
that   for   the   best   linear   unbiased   estimate  of   1)(

~1
β +l    in  the  linear 

model  
l~Z    =X 1)(

~1
β +l  + ~ε where ~ε  has zero mean and known covariance 

matrix  
l~V  . 

At  convergence  we  have  )
1~

ŷ(y1-
~v1~

β̂X~z −+= and  the  ML  estimate 

may  be  written  as   the  solution  of 

~Z~V'~X
1)~X~V'~X(~1

β̂ −=  (2.11) 

It  should  be  noted    that   this   does   not   provide   an   explicit  expression 
for 

~1
β̂  since ~V  = ~V   (

~1
β̂ )  and  

~
z  =  

~
z  (

~1
β̂ .)  are  both  functions  of  

~1
β̂    . 

2.2     Minimum  Chi-Square  Estimation 
The MC  estimate 

~2
β̂ is  the value  of  

~
β  which minimises  R(

~2
β̂ )  given 

by   (1.3).     We  have 

(2.12) 

where 

(2.13) 

Substitution  of   (2.13)   in   (2.12)   and   simplification  gives 

 

Hence the MC  estimates  are  given  by  the   solution  of   the  k +1   equations 

(2.14) 

j   =  0,1,...,k,  where 

⎪⎭

⎪
⎬
⎫
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⎪
⎨
⎧
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∂

∂
∑
=

−
=

∂

∂

t2n
tP

1

tQ
1)tPtnt(y

jβ
tPg

1t tQtPtn
)tPtnt(y

jβ

)
~
βR(

 

.tQtPtjx2)}
~
βt'~xexp({1

)
~
βt'~xexp(tjx

jβ
tP

=
+

=
∂

∂

∑
=

+−
−=

∂

∂ g

1t
.

tQtP
tqtPtpt(Qtjxt)ntPt(p

jβ

)
~
βR(

 

01)(2)
tQ̂(2)

tP̂)(tp(2)
tQ̂tq

g

1t
(2)
tP̂)((2)

tP̂t(ptxtn =−+∑
=

−  



(2.15) 

The  solution  of   (2.14)  must  be  found  by  iteration.   The  following  approach 
shows  how  GLIM  can  be  used  to  calculate 

~2
β̂  

We  may  write  

If  we  put 

(2.16) 

(2.17) 

then  minimisation  of  R(
~
β )   is  equivalent  to  minimisation  of 

(2.18) 

Now  consider  2g   independent   random  variables    (Yt  1 ,Yt  2   ) ,  t  = 1,2,. . . ,g 
where  Yt  j     .   has  an  exponential  distribution with  mean  µt  j  .     For  realised  
values  y  t  j    t   =  1,2,, . , ,g,   j    =   1,2,   the  log-likelihood  is 

(2.19) 
since  µt 1 µt 2   =1   from  (2.17).    Thus  minimisation  of  R*(

~
β )   is  equivalent 

to  maximisation  of  the  log-likelihood  treating  the  {yt j}  as  observ- 
ations  on  independent  exponentially  distributed  random  variables. 

To  use  GLIM,   the  data  are  entered  as  g  pairs  of  vectors  of  observ- 

ations,   the  vectors  being   (ytl,1,xt1,....xtk )  and   (y t 2 ,-1, -x t 1 ,.....x t k) 

for  the  tth  pair.    An  exponential  error  distribution  is  declared  and a 

logarithmic  link  function  is  used  since  logt 1    = x't
~
β  

2,3    Weighted  Least  Squares  Estimation 

The  justification  for  the  WLS  and  MWLS  estimation  procedures  using 

the   unmodified   and   modified   empirical   logits   is   as   follows.    If   we  let 

g.1,2,...,t
~

)2β̂
'
t~xexp(/{1

~
)2β̂t'~xexp((z)

tP̂ =+=

∑
= ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −

−
−

+
−

=
g
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(2.20) 

a     Taylor   series  expansion  about   the  value  P t    gives 
 

 

Using  the  results  E( pt )   =  P   ,   var ( pt  )   =  pt Qt /nt   we  obtain 

(2.21) 

showing  that  the  bias  of  estimation  of  ~
tx'

 
~
β    is  0(nt

-1 )   when  the  unmod- 

ified  empirical   logits   are  used   (a = 0)   but   is   o(nt-1)   when  the  modified 
empirical   logits   are  used   (a= 2

1 ). 

The  approximate  large   sample  variance  of z t   is   (nt Pt Qt  )-1  . A 

least   squares   approach  with  empirical  weights   given  by   the   reciprocals 

of   the   large   sample  variances  evaluated  at  p t        leads   to  the  criterion 
of  minimisation  of   S(

~
β )   as   defined  by   (1.6).The  normal   equations   for 

obtaining  the  WLS  estimate   
3~

β̂  are

                        0
g

1t
)

3~
β̂t'~xt(ztjxtqtptn =∑

=
−      J=0,1,…,K                                  (2.22) 

 
Similar  arguments  applied  to  the  {z*t }   lead  to   the  modified  WLS  esti- 

mation  procedure based  on  minimisation  of   S*
~
β     given  by   (1.8). 

3.        Asymptotic  Distribution  Theory  For  The   {Rt 
(1) }    and  {Dt (1)} 

The  residuals  Rt
(1)   and  the  deviance  components  Dt

(1)   from  a  maxi- 

mum  likelihood  fit  of   a  logistic   regression  model   are  often  used  as 

individual    group    measures   of   fit.    In  particular,    normal  probability 

plots  of   the  ordered  Rt
(1)  are  commonly  used  to  provide  an  informal 

graphical   assessment  of   goodness   of  fit. 
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In  this   section,   we  derive   the   asymptotic  joint   distribution  of 

the  {Rt
(1)} and {Dt

 (1)}  under a general  model  in  which  the  group  prob- 

abilities  of   success  are  assumed  to  depend  on  ℓ  unknown  parameters, 

say   θ, θ 2, .... , θ ℓ .       Putting  ~θ   =   (θ 1, θ 2, ..., θ ℓ) we  now   let Pt )~θ(
 

denote   the  probability  of   success   for   each   trial   in   the   tth   group, 

t   =   1,2,...,g.     We  denote   the   total   number   of   trials  by ∑
=

=
g

1t tnN  

and  let  λ t ,N  =  nt/N,   t  =  1,2,...,g. 

We   shall  now  denote  the  number  of  successes  in  the  tt h  group  by 

Yt ,N   and   the   sample  proportion  of   successes   in  the   tth   group  by 
P t, N        =  Y t ,N  /nt  .      The  notational  dependence   on  N   is  needed  as  we  
wish 
to  establish   limiting   distribution  results   for   the  case  when 

t   =   1,2,....,g (3.1) 

where   the   λ t     are  fixed  numbers   satisfying  0  <   λ t  <   1,   t   =   1,2,...,g. 

We   shall  make  use   of   the  following  theorem. 

Theorem   1      Let 
N

T
~

 =  (T1   N,T2 ,N   , ...,Tg,N   )  be  a  g-dimensional  random 

variable   such  that 

(3.2) 

has   a   limiting  multivariate  normal   (MN)   distribution  with  zero  mean 
vector  and  covariance  matrix  ~X ,   that   is 

(3.3) 
Let   h1  (x1 ,x2 , . . . ,xg  ),...,hℓ  (x1 ,x2,...,xg)   be   ℓ   functions   of   g  variables 

where   each   function   is   totally   differentiable.       Then   setting 

 
 
 
(3.4) 

we  have 
 
 
 
where 

(3.5) 

tλNt,λ
N

lim =
∞→

)}gμNg,(T2
1

N),...,1μN1,(T2
1

{N)
~
μN~T(

2
1

N −−=−

).~V,~0MN(
d

)
~
μN~T(

2
1

N →−

,

)N~T(~h

)N~T(2~h
)N~T(1~h

)N~T(~h

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

l

~
)H'~V~H,~0MN(

d
)}

~
μ(~h)N~T(~h{2

1
N →−
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H =   ((Hr s))   =  (∂hr/∂µs)) (3.6)

is an  ℓ× g matrix and 

.
~μ~x

}Sx)/gx,...,2x,1(xrh{μS/rh =∂∂=∂∂  (3.7) 

      We now apply theorem 1  taking ~T N = ~P N where ~P 'N  =   (P1 ,N, P2,N, 

…,pg , N)   is  the  vector    of  sample  proportions  of  successes.     We  have 

E(Pt,N )  =  Pt   ,       var(pt,N)   =  PtQt/ n t (3.8) 

and 

(3.9) 

Since  the  { NT,P }  are   independently  distributed,   we  have 

(3.10)

where  
~
p ’   =  (P1 ,P 2  ...., Pg)   and 

                                                                ~V  =  

diag(P1Q1/λ1...,PgQg/λg )   . 

 
 
 
 
 
(3.11) 

Using  theorem  1,   if  h1(
N~

p ),. .. ,hℓ   (
N~

p )   denote  ℓ  functions  of  the  g 

variables  pl,N ,......pg,N  whose  derivatives  exist  at  
N~

p   = 
~
p ,   then 

(3.12) 

where H = ((H r s  ))   is  ℓ ×g and 

r =  1,...... ,ℓ ,   s =  1,.......,g. (3.13) 

e  above   results   apply   to   arbitrary    functions   h (·)  which  are  diff- 
erentiable  at 

N~
p   =  ~P . We  now  examine  a  special  case which  arises from 

consideration  of  the   standardised  residuals  which  we  now  denote  by 

).t/λtQtPN(O,
d

)tpNt,(p2
1

N →−

)~V,~OMN(
d

)
~
p

N~
p(2

1
N →−

)~H'~V~H,~OMN(
d

)}
~
p(~h)

N~
p(~h{2

1
N →−

,

~PN~P
NS,p

)Ng,P,...,N1,(Prh
rsH

=⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂

∂
=  
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(3.14) 

Since  the  ML  estimate    ~θ̂ = ~θ̂  (pN)   is  a  function  of   the  sample proportions 

only,  we  write 

(3.15) 

where 

(3.16) 

We  have 
0

~pN~p
)

N~
p(th)

~
p(th =

=
= t  =   1,2,...,g (3.17) 

Putting  N'~R   =   (R1,N,R2,N...,Rg,N)   and  N~λ   =  diag(λ1 , N,λ2, N,.......λ g,N ) 

use  of   (3.12)   gives 

(3.18) 

where 
~
H  =  ((H t  u ))   is   g × g with 

u,t   =   1,2,...,g   . (3.19) 

Now 

)}~θ̂(tPNt,{p
Nu,P

2
1

)}~θ̂(t)Q~θ̂(t{P

2
1

)}~θ̂(t)Q~θ̂(t{P
uP

)}~θ̂(tPNt,{p
Nu,p

)N~P(th

−
∂

∂−
+

∂
∂

−=
∂

∂

 

so 

g.1,2,...,t,
2
1

)}~θ̂(t)Q~θ̂(t{P

)}~θ̂(tpNt,{P2
1

Nt,λ2
1

N

g1,2,...,t,
2
1

)}~θ̂(t)Q~θ̂(tPt{n

)~θ̂(tPt_ntY
t,nR

=
−

=

=
−

=

g1,2,...,t),
N~

p(th2
1

NNt,R2
1

t.Nλ ==
−

g.1,2,...,t,
2
1

)}~θ̂(t)Q~θ̂(t{P

)~θ̂(tPt.NP
)NP,...,2P1,(Pth =

−
=  

)'~H~V~H,~OMN(
d

N~R
2
1

N~λ →
−

,

~PN~P
Nu,P

)N~P(th
tuH

=⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂

∂
=
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~PN~P
1j Nu,P

jθ̂

jθ
tp

tuδ2
1

)tQt(P

~PN~P
)~θ̂(tPNt,P

Nu,P
2
1

)tQt(P

~PN~P
Nu,P

)N~P(th

=

∑
= ∂

∂

∂
∂

−
−

=

=
−

∂
∂−

=
=

∂

∂

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎭⎬
⎫

⎩⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

l
                              (3.20) 

for  u,t  =   1,2,...,g  where 

         
⎪⎩

⎪
⎨
⎧

≠

=
=

utif0

utif1
tuδ     . 

as(3.20)writemaywe'~PN~P
}Nt,P/jθ̂{

(t)
j~θ̂andjθ/tP(j)

tPsetweIf =∂∂=∂∂=

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−

=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

(g)θ̂...(2)θ̂(1)θ̂
.
.

(2)
2θ̂...(2)

2θ̂
(1)
1θ̂

(g)
1θ̂...(2)

1θ̂
(1)
1θ̂

)(
gp...(2)

gp(1)
gp
.
.

)(
2p...(1)

2p(1)
2p

)(
1p...(2)

1p(1)
1p

1
.

.
~
0

1

~
01

.

2
1

)gQg(P

.
.

.~O

2
1

)2Q2(P

~O

2
1

)1Q1(P

Ng,p
gh

...
N2,p

gh

N1,p
gh

.

.
Ng,p
2h

...
N2,p

2h

N1,p
2h

Ng,p
1h

...
N2,p

1h

N1,p
1h

lll
l

l

l

 
 

Putting  
~
λ    =  diag(λ1   ,λ2,...,λg ),   we  therefore  have 

)~θ
1

~P~I(2
1

)~v~λ(~H
∗∗−

−
=          (3.21) 

where 

                         

(3.22).
~PN~P

))Nu,P/jθ̂((*~θand))(j)
t((P

xg
*~P =∂∂==

l
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Noting  that  for  a  given  model  ∂Pt  /∂θj  will  be  known,   we   see  that  to   find 
~
H  

we  need  to  evaluate  the  matrix 
~
θ  *   which  consists  of   the  derivatives   ∂ jθ̂  /∂pu 

evaluated  at  '~PN~P =
.     To  do   this,   we  consider  the   likelihood  equations 

which  have  the  form 

  ∑
=

==
=

∂

∂−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧g

1t
.1,...,j0,

~θ̂~θ
jθ

)~θ(tP

)~θ̂(t)Q~θ̂(tp

)}~θ̂(tPNt,{P
tn l      (3.23)

Differentiating  the  likelihood  equations  with  respect  to  pu,N  we  get 

(3.24) 

for  j   =  1,2,...,  ℓ, u  =   1,2,...,g.     Evaluating   (3.24)   at ~PN~P =   gives 

(3.25) 

for  j   =   1,2,...,ℓ,   u  =   1,2,...,g,   or  equivalently ~PN~P =  

(3.26) 
for  j   =   1,2,...,ℓ,   u  =   1,2,...,g.     In  matrix  form  these  ℓ × g  equations 
may  be  written  as 
 

so 

(3.27) 

0
θ̂θjθ

)~θ(uP

)~θ̂(u)Q~θ̂(uP
un

1k Nu,P
kθ̂

kθ̂

)~θ(tP

~θ̂~θ
jθ

)~θ(tPg

1t )~θ̂(t)Q~θ̂(tP
1

tn

~θ̂~θ
jθ

)~θ(tP

)~θ̂(t)Q~θ̂(tP
1

Nu,P
g

1t
)}~θ̂(tPNt,{Ptn

=
=

∂

∂
+

∑
=

∂

∂

∂
−

=
∂

∂
∑
=

+

=
∂

∂

∂
∂

∑
=

−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

l

jθ
uP

)~θ(u)Q~θ(uP
un

~PN~P
Nu,P
)kθ̂(g

1t 1k kθ
)~θ(tP

jθ
)~θ(tP

)~θ(t)Q~θ(uP
un

∂
∂=

=
∂
∂

∑
=

∑
= ∂

∂

∂

∂

⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧l
 

∑
=

∑
=

=
l

1k

g

1t )~θ(u)Q~θ(uP
un(k)

tp(j)
tp

)~θ(t)Q~θ(uP
un(u)

kθ

1
~V*~P~*θ*'~P

1
~V*~P

−=−  

1
~V*~P

1)*'~P
1

~V*~P(*~θ
−−−=
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and  hence  from   (3.21), 

            .1
~V*~P

1)*'~P
1

~V*~P(*'~P~I(2
1

)~V~λ(~H
−−−−

−
=  

,1')'~*P1
~V~*P(1')'~*P1

~V~*P(and~V~λ)'~V~λthat(resultstheUsing −−=−−=  

We  have 

    

(3.28)2
1

)~V~λ(*~P
1)*'~P

1
~V*~P(*'~P

2
1

)~V~λ(
1

~λ

2
1

)~V~λ*}(~P
1)*'~P

1
~V*~P(*'~P'~

1V'~I{~V.

}1
~V*~P

1)*'~P
1

~V*~P~I{2
1

)~V~λ('~H~V~H

−−−−
−−=

−−−−−

−−−−
−

=

 

 
We  have   therefore  shown  that   the  joint  asymptotic  distribution  of  the 

scaled  standardised  residuals }Nt,R2
1-

N,t{ λ  is  multivariate  normal with 

zero  mean  and  covariance  matrix  given  by   (3.28). 

The  above  asymptotic  distribution  result  may  be  used  to  provide 

an  approximation  to  the   distribution   of   the   standardised   residuals 

{R t ,N}  for  'large'  samples.   Thus  if  we   let 
N

V
~

  =  diag((Pt  Qt / λ t,N)),   we 

have 

)
N~R~C,~OMN(

approx
~

N~R           (3.29) 

where  
N~R~C    denotes   the  approximate  covariance  matrix  of 

N~R
  and  from   (3.28) 

is  given  by 

(3.30) 

This   covariance   matrix   has   an   interesting   property   which   we   will   make 
use  of   later,   namely 

.g

)~Itr(g

}1)*'~P
1

N~V*~P(*'~P
2
1

N~V
2
1

N~V*~Ptr{g

}2
1

N~V*~P
1)*'~P

1
N~V*~P(*'~P

2
1

N~Vtr{)g~Itr()
N~R~Ctr(

l

l

−=

−=

−−−−
−=

−−−−
−=

 

(3.31) 

It   follows   that   the   sum   of   the   large   sample   variances   of   the   standardized  

.2
1

N~V*~P
1)*'~P

1
N~V*~P(*'~P

2
1

N~Vg~I

2
1

N~λ}2
1

)N~VN~λ(*~P
1)*'~P

1
N~V*~P(*'~P

2
1

)N~VN~λ(
1

N~λ{2
1

N~λN~R~C

−−−−
−=

−−−−
−−=
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residuals   is   equal   to  g - ℓ,   this   result   holding   quite   generally   for   any 
model  assumed  for   the   success  probabilities   {Pt}. 

To  utilise  (3.30),   the  matrix *
~
P      is  required  which  depends  on  the 

model   specification  for  the   {Pt }.     For   the   linear   logistic   regression 
model  we  have 

(3.32) 

giving 

and 

(3.33) 

(3.34) 

where 
Wt   =  λt,NP t Q t   ,  t  =  1,2,. .. ,g         (3.35) 

When   there   is   only   one  explanatory  variable,  we  may  write  xt1 =xt 

t  =  1,2,...,g  and  a  straightforward  calculation  gives 

(3.36) 
 

k0,1,...,j,tQtPtjx2)}
~
βt'~xexp({1

)
~
βt'~xexp(tjx

jβ
tP

==
+

=
∂

∂
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∑∑∑

∑∑∑

∑∑∑

=−

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

t
2
tkxtw...

t tkxt1xtw
t tkxtw

.

.
t tkxt1xtw...

t
2
t1xtw

t t1xtw
t tkxtw...

t t1xtw
t tw

*'~P
1

N~V*~P

gkxgQgP...2kx2Q2P1kx1Q1P
.
.

g1xgQgP...21x2Q2P11x1Q1P
gQgP...2Q2P1Q1P

*~P

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∑∑−

∑−∑

∑ −∑
=−−

t tw
t txtw

t txtw
t

2
txtw

2)wxt(xtw
t tw

11)*'~P
1

N~V*~P(  

2)wxt(x
t tw

t tw
t t t twjxixtxtw)jxi(x2

txtw2
1

)jwi(w

betofoundis

2
1

N~V*~P
1)*'~P

1
N~V*~P(*'~P

2
1

N~Vinelementj)th(i,
t

The.tw
t

/txtwwxwhere

−∑∑

∑ ∑ ∑++−

−−−−
∑∑=
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and  the  negative  value  of  this  element  gives   the  asymptotic  covariance 
between  Ri ,N  and  Rj ,N  .The  asymptotic  value  of   the  correlation  coefficient 
between  R.i ,N  and  R j ,N   is 

 

2
1

)jCi}/(C
t t twjxixtxtw)jxi(x

t
2
txtw{2

1
)jwi(wijρ ∑ ∑++−∑−=      (3.37)

where 

        ∑ ∑+−∑−−∑∑=
t

2
1

)}
t tw2

ixtxtwi2x
t

2
txtw(iw2)wxt(x

t tw
t tw{iC   (3.38)

The  asymptotic  correlation  structure  of  the  residuals  under  the  model 

given  by  (1.12)  has  been  examined  using  (3.37)  with  xt   =t-1,    t  =  1,2,...,g, 

with  g  =  3(1)10.     The  results  showed  that  the  correlations  were  negative 

for  most  pairs  of  observed  residuals  but  that  small  positive  correlations 

occurred  for  residuals  associated  with  groups  having  markedly  different 

indices.     These  findings  are  illustrated  in  Table   1   for  one  particular  para- 

meter  configuration. 

Table   1 

Correlation  coefficients  for  the  standardised  residuals  {Rt  }  for  the  case 

g  =  10,   t  =  1, .......,10,   β0   =  -2,   β1  -  0.2   (P1  =  0.119,   P2  =  0.142, 

P3   =  0.168,   P4  =  0.198,   P5  =  0.231,   P6   =  0.269,   P7  =  0.310,   P8   =  0.354, 

P9   =  0.401,   P10   =  0.450) 
 

 R2 R3 R4 R5 R6 R7 R8 R9 R10

R1 -0.320 -0.276 -0.226 -0.172 -0.112 -0.048 0.025 0.109 0.213
R2  -0.249 -0.207 -0.163 -0.114 -0.060 -0.001 0.068 0.153

R3   -0.189 -0.154 -0.116 -0.074 -0.028 0.025 0.089

R4    -0.144 -0.115 -0.089 -0.058 -0.023 0.018

R5     -0.119 -0.105 -0.091 -0.076 -0.056
R6      -0.122 -0.127 -0.132 -0.143

R7       -0.167 -0.196 -0.236

R8        -0.269 -0.343

R9         -0.471

Turning  to  the  deviance  components,  we  write 
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and  using  a  Taylor  series  expansion  for  the  logarithmic  terms  we  obtain 

after  some  simplification 

)tε(12
tR2

tD +=          (3.39) 

where 

(3.40) 

jointthehenceand0
p

tεhavewet,P
p

tP̂and0
p

tP̂tpSince →→→−  

distribution  of   the   {Dt}   is  asymptotically  the   same  as   that  of   the  joint 
distribution  of  the    {Rt}. 

4.       Small  Sample  Properties  Of  The  Goodness  Of  Fit  Statistics 

Under  The  Logistic  Regression  Model 

In  section  2,   we  defined  seven  test   statistics  R 
~

)1β̂(
,  R 

~
)2β̂(
,  D 

~
)1β̂( , 

S 
~

)3β̂(
,  S* 

~
)4β̂( ,  T 

~
)1β̂(
 and  T 

~
)4β̂(  which  may  be  used  for  testing  the  goodness 

of  fit  of  the  logistic  regression  model.     These  may  be  considered  as  general 
purpose  statistics  since  none  were  derived  by  considering  specific  altern- 
atives  to  the  logistic  model .     Each  of  the  seven  statistics  has  a  limiting 
chi-square  distribution  under  the  logistic  regression  model.     We  give  the 
proof  for  the  first  statistic  only,   this  following  straightforwardly  from 
the  results  established  in  the  previous  section. 

 

writemaywe
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~
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where  from  (3.18) 
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~
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~
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~
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~
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 (4.3) 

and  
~

'H
~
V

~
H    is  given  by   (3.28).     Now ~Z~λ'~Z   is  distributed  as  x2   iff 
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~
V

~
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A  simple  calculation  shows  that  A2   =  A  so  A  is   idempotent  and  hence  so 

is  λHVH  .      We also have 
 

Hence 

   (4.4) 

showing   that  2
g~x~~Z~λ'~Z l−

. Hence  R
~

)1β̂(
  converges   in   distribution   to 

2
g~x l−

,   this  result  holding  for   the  general   class  of  models   considered 

in  section  3. 
The  goodness  of  fit  statistics  under  consideration  have  the  desirable 

property  that  their  asymptotic  distributions do not depend on  the  unknown 

β and hence on the unknown {Pt} when the logistic model holds.   However 

for  finite  sample   sizes  this  will  not  be  the  case  and   it   is   therefore 

important  to  investigate  how  rapidly  the  sampling  distributions  of   the 

statistics  approach  the  x2
g-k-1   distribution.     We  have  therefore  performed 

a  fairly  large  scale   simulaton  investigation  for  the  case  when  the  logi- 

istic  regression  model  given  by   (1.13)   holds,   the  group probabilities of 

success  being 

Pt   =  exp{β0 +βl(t-1)}/[1  +exp{β0  + β1 (t-1)}] t   =   1,.....g  . (4.5) 

The   steps   in  the   simulation  consisted   of: 

(a) Specifying  the  model  by  fixing  the  values  of   β0 ,β1,   and  hence  {Pt }. 

(b) Generating  and  checking  the  binomial   observations   {yt}   obtained  by 
Monte  Carlo   sampling. 

(c) Determining  the  ML,  MC,  WLS  and  modified  WLS  estimates  of  β0 ,  β1. 

(d) Constructing  the  empirical   sampling  distributions  of  the  goodness 
          of   fit   statistics  and  examining  their  moment  and  percentile  properties. 
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Group  numbers  g  =  5, 10  and  samplesizes n  =  25,  50  and  100  were  used, 

A  simulation  run  size  of   1000  was  used  in  each  case.     Checks  on  the  gen- 
erated   binomial   observations   {yt}   were  made  by  applying  the  binomial  dis- 
persion   test   and   the   ordinary   chi-square   goodness   of   fit   test   to   them. 
Three   pairs   of   values    (β0 ,β1)   were  examined  for  each  value  of  g  to  give 
coverage   for   markedly   different   configurations   for   the   group   probabilities 
of  success.     The  configurations  used  are  shown  in  table  2. 

Table  2 

Parameter  values   (Β0 , Β1)   and  group  probabilities  of  success  {Pt }  used  in 
the  simulation  investigation. 

 

  g = 5    { P
t
 }   

(i) β0 = -2.0 β1 = 0.4 0.119 0.168 0.232 0.310 0.401 

(ii) β0 = H,0 β1 = 0.5 0.269 0.378 0.500 0.623 0.731 

(iii) β0 = 0.5 
 
 
         g  = 

β1 

 

 
10 

= 0.5 0.623 0.731 0.818 
 
 

{ Pt } 

0.881 0.924 

(iv) β0 = -2.0 β1 = 0,2 0 .119 0.142 0.168 0.198 0.231 

     0.269 0.310 0.354 0.401 0.450 

(v) β0 = -0,4 β1 = 0.2 0.401 0.450 0.500 0.550 0.591 

     0.646 0.690 0.731 0.769 0.802 

(vi) β0 =    0.5 β1 = 0.2 0.623 0.668 0.711 0.750 0.785 

     0.818 0.846 0.870 0.891 0.908 

In  tables  3  to  9,  values  of  the  mean,   variance,   skewness  and  kurtosis 

coefficients  for  the  empirical  distributions  of  the  seven  goodness  of  fit  

statistics  are  given  for  the  six  parameter  configurations  shown  in  table  2. 

The  statistics   asymptotically  have   a   chi-square   distribution   with   g-2  degrees 

of  freedom  under  the  logistic  regression  models  being  considered,   the  values 

of  the  mean,  variance,   skewness  and  kurtosis  coefficients  of  the  asymptotic 

distribution  being  g-2,   2(g-2),  8/(g-2)   and  12/(g-2)  respectively. 
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Table  3 

Moment  measures   for  the  empirical  distributions  of   the  R ~
)1β̂(

  statistic 

     under  six  logistic  regression  models 
 

Configuration Mean Variance Skewness Kurtosis 

(i) 3.001 5.838 2.65 3.86 

n=25             (ii) 3-232 8.288 3.06 2.86 

(iii) 3.009 5.487 2.66 4.24 

 
(i) 

 
3.115 

 
5.888 

 
1.69 

 
1 .95 

n=50             (ii) 3.011 5.426 1.67 2.04 

(iii) 2.951 5.877 2.92 4.27 

 
(i) 

 
2.884 

 
5.048 

 
1.55 

 
1 .56 

n=100           (ii) 3.045 6.065 3.50 6.31 

(iii) 2.958 5.926 2.57 3.78 

 
Asymptotic  Values 

 
3.000 

 
6.000 

 
2.67 

 
4.00 

 
(iv) 

 
7.992 

 
14.53 

 
0.76 

 
1.38 

n=25             (v) 8.103 16.11 0.93 1.11 

(vi) 8.065 15.65 0.84 1.20 

 
(iv) 

 
8.124 

 
16.29 

 
1.13 

 
1.70 

n=50             (v) 8.119 15.24 0.74 0.85 

(vi) 7.982 15.81 0.85 1.12 

(iv) 8.186 16.19 1.34 2.27 

n=100           (v) 7.696 14.86 0.96 1.20 

(vi) 8.099 15.46 0.63 0.47 

 
Asymptotic  Values 

 
8.000 

 
16.00 

 
1.00 

 
1.50 
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Table  4 

Moment  measures  of   the   empirical   distributions   of   the  D ~
)1β̂(
   statistic 

under   six  logistic   regression  models 
 

Conf iguration Mean Variance Skewness Kurtosis 

(i) 3.159 7.037 2.93 4.05 

n=25             (ii) 3.114 6.348 3.23 5.29 

(iii) 3.264 6.699 2.06 2.41 

 
(i) 

 
3.181

 
6.393

 
1.90 

 
2.38

m=50            (ii) 3.038 5.654 1.87 2.45 

(iii) 3.051 6.485 2.68 3.49 

 
(i) 

 
2.907 

 
5.185 

 
1.56 

 
1.54 

n=100           (ii) 3.058 6.159 3.57 6.43 

(iii) 3.000 6.253 2.90 4.61 

 
Asymptotic  Values 

 
3.000 

 
6.000 

 
2.67 

 
4.00 

 
(iv) 

 
8.351 

 
17.04 

 
0.80 

 
1 .11 

n=25              (v) 8.286 17.46 1 .00 1 .18 

(vi) 8.532 18.27 0.81 1 .21 

 
(iv) 

 
8.259 

 
16.90 

 
1 .07 

 
1 .51 

n=50              (v) 8.217 15.98 0.78 0.89 

(vi) 8. 183 17.78 1 . 18 1 .94 

 
(iv) 

 
8.266

 
16.88

 
1.37 

 
2.24

n=100            (v) 7.739 15.16 0.95 1.16 

(vi) 8.190 16.01 0.65 0.53 

 
Asymptotic   Values 

 
8.000 

 
16.00 

 
1.00 

 
1 .50 
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Table   5 

Moment  measures  of   the  empirical   distributions   of   the  R
~

)β̂( 2
   statistic 

under   six  logistic  regression  models 
 

Conf igurat ion Mean Variance Skewness Kurtosis 

 
(i) 

 
2.937

 
5.343

 
2.34 

 
3.62

n=25              (ii) 3.131 5.771 2.06 2.75 

 (iii) 2.940 4.990 2.49 3.99 
 

(i) 
 

2.188
 

5.108
 

1.51 
 

1.71
n=50             (ii) 2.845 5.420 2.84 4.04 

(iii) 2.922 5.257 1.80 2.30 

 
          (i) 

 
2.948 

 
5.187 

 
2.61 

 
3.97 

n=100          (ii) 3.034 6.047 2.23 2.89 

(iii) 2.931 5.120 2.29 3.56 

 
Asymptotic  Values 

 
3.000 

 
6.000 

 
2.67 

 
4.00 

 
(iv) 

 
8.081 

 
14.28 

 
0.70 

 
0.86 

n=25             (v) 8.054 15.05 1.05 1 .42 

(vi) 7.987 14.42 0.84 1.50 

(iv) 7.747 13.57 0.69 1.10 

n=50             (v) 8.245 15.81 0.91 1.14 

(vi) 7.963 14.82 0.99 1.46 

 
(iv) 

 
8.105

 
15.83

 
0.85 

 
1 .12

n=100          (v) 7.988 15.98 0.95 1.09 
(vi) 7.983 15.41 0.83 1 .00

 
Asymptotic  Values 

 
8.000 

 
16.00 

 
1.00 

 
1.50 
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                                                             Table  6 
Moment  measures  of  the  empirical  distribution  of  the  S

~
)β̂( 3    statistic  under 

six  logistic  regression  models 
 

Configuration Mean Variance Skewness Kurtosis 

 
(i) 

 
2.632 

 
4 .224  

 
2.20 

 
3.23 

n=25          (ii) 3.023 5.021 1.71 2.19 

                    (iii) 2.376 3.519 2.29 3.61 

 
 (i) 

 
2.898 

 
4 .611 

 
1.33 

 
1.33 

n-50            (ii) 2.801 5.053 2.48 3.34 

                     (iii) 2.753 4.349 1.51 1.83 

 
(i) 

 
2.913 

 
4 .922 

 
2.41 

 
3.69 

n=100           (ii) 3.012 5.878 2.15 2.75 

                (iii) 2,880 4,758 2.01 3.02 

 
Asymptotic  Values 

 
3.000 

 
6.000 

 
2.67 

 
4.00 

 
(iv) 

 
7.323 

 
11.02 

 
0.45 

 
0.51 

n=25             (v) 7.671 12.31 0.75 0.81 

(vi) 6.860 10.22 0.75 1.30 

 
(iv) 

 
7.519 

 
12.09 

 
0.61 

 
1.01 

n=50              (v) 8.071 14.50 0.81 0.99 

(vi) 7.588 12.75 0.93 1.33 

 
(iv) 

 
7.997 

 
15.05 

 
0.80 

 
1.05 

n=100          (v) 7.909 15.34 0.90 1.03 

                     (vi) 7.850 14,45 0.77 0.94 

 
Asymptotic  Values 

 
8.000 

 
16.00 

 
1.00 

 
1.50 
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Table  7 

Moment  measures  of   the  empirical  distributions  of   the  S*
~

)β̂( 4    statistic 

under  six  logistic   regression  models 
 

Configuration Mean Variance Skewness Kurtosis 

(i) 2.802 4.764 2.03 2.96 

n=25           (ii) 2.950 4.941 1.83 2.34 

                    (iii) 2.376 3.519 2.29  3.61 

 
(i) 

 
2.897 

 
4.696 

 
1 .39 

 
1.46 

n=50          (ii) 2.755 4.955 2,63 3.65 

(iii) 2.842 4.901 1.66 1.96 

 
(i) 

 
2.894 

 
4.916 

 
2.42 

 
3.69 

n=100        (ii) 2.985 5.778 2.15 2.75 

(iii) 2.879 4.862 2 .14  3.25 

 
Asymptotic  Values 

 
3.000 

 
6.000 

 
2 .67  

 
4.00 

 
(iv) 

 
7.643 

 
12.28 

 
0.45 

 
0.51 

n=25           (v) 7.556 12.62 0.91 1 .15 

(vi) 7.626 12.86 0.70 1 .10 

 
(iv) 

 
7.480 

 
12.30 

 
0.62 

 
0.97 

n=50          (v) 7.954 14.25 0.83 1 .01 

(vi) 7.695 13.45 0.88 1 .24 

(iv) 7.945 14.93 0.80 1 .05 

n=100       (v) 7.841 15.13 0.90 1.04 

(vi) 7.819 14.50 0.78 0.94 

 
Asymptotic  Values 

 
8.000 

 
16.00 

 
1 .00 

 
1.50 
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Table  8 

Moment   measures    of     the  empirical  distributions  of   the  T
~

)β̂( 1    statistic 
under  six  logistic   regression  models 
 

Configuration Mean Variance Skewness Kurtosis 

(i) 3.418 10.53 9.38 18.79 

n=25           (ii) 3.258 7.184 3.10 4.42 

                      (iii) 3.635 11 .18 7.05 11 .57 

 
(i) 

 
3.208 

 
7.269 

 
4.65 

 
8,82 

n=50           (ii) 2.909 6.342 4.42 7.31 

                     (iii) 3.365 10.67 12.92 26.91 

 
(i) 

 
3.059 

 
6.385 

 
4.93 

 
9.08 

n=100         (ii) 3.061 6 .297  2.32 2.95 

                     (iii) 3.159 7.455 7.98 18.95 

 
Asymptotic Values 

 
3.000 

 
6.000 

 
2,67 

 
4.00 

                       
                    (iv) 

 
9.434

 
32.21

 
4.16 

 
7.97

n=25         (v) 8.643 24.10  3.48 6.33 

                    (vi) 9.846 36.66 2.63 3.68 

                  
                    (iv) 

 
8.413 

 
21 .62 

 
3.05 

 
7.37 

n=50         (v) 8.529 19 .17  1 .47 2.39 

                    (vi)          
 9 . 1 1 4  31 .71 4.30 6.95 

                    (iv) 8.414 18,84 1.47 2.92 

n=100        (v) 8.148 17.83 1.15       1 .38 

                    (vi) 8.451 19.88 1.27 1.66 

Asymptotic Values 8.000 16.00 1.00 1.50 
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Table  9 

Moment  measures  of   the  empirical  distribution  of   the  T
~

)β̂( 4    statistic 

under  six  logistic  regression  models 
 

Configuration Mean Variance Skewness Kurtosis 

 (i) 3.872 17.61 11.92 21.04 

n=25          (ii) 3.374 8.384 3.61 5.18 

(iii) 4.323 21 ,44  8.70 14.27 

 
 (i) 

 
3.488 

 
10.67 

 
8.64 

 
16.60 

n=50           (ii) 2.967 7.148 6.26 11 .59 

(iii) 3.848 18.29 16.86 30.47 

 
(i) 

 
3.208 

 
8.287 

 
11 .18 

 
25.50 

n=100        (ii) 3.088 6.502 2.36 2.99 

(iii) 3.415 10.92 19.76 48.02 

 
Asymptotic  Values 

 
3.000 

 
6.000 

 
2.67 

 
4.00 

 
(iv) 

 
10.53 

 
48.84 

 
5.00 

 
8.61 

n=25           (v) 9.024 29.78 4.91 8.94 

(vi) 11 .49 61 .78 2.85 3.58 

 
(iv) 

 
8.993

 
28.56

 
4.53 

 
10.75

n=50           (v) 8.751 21.52 1 .97 3.88 

(vi) 10.12 49.02 6.44 10.16 

 
(iv) 

 
8.135

 
21 .85

 
2.13 

 
5.22

n=100         (v) 8.258 18.83 1.24 1.53 

(vi) 8.944 24.90 1.76 2.63 

Asymptotic  Values 8.000 16.00 1.00 1 .50 



 
When the moment properties  are compared with those of  the approximating 

chi-square  distribution, it   is  seen  that  the  statistics   fall    into   three 
groups,  namely,  

For  the  statistics  in group 1, the  agreement  between  the means  and  variances 
of   their   sampling  distributions  and  the  coresponding  moments   of   their 
asymptotic  distribution  is  good,  even  for  n  as   small  as  25.   The  agreement 
for  the   skewness  and  kurtosis   coefficients   is   less  good,   but   this  may  be 
partly   ascribed   to   the  fairly   large  sampling  errors   in   these   coefficients 
for  the  run-size  used   in  the  investigation. 

For   the  statistics   in  group  2,   the  agreement   is   less  good,   the  means 
and  variances  being  consistently  smaller  than  those  of   the  asymptotic 
distribution. 

The   sampling  distributions  of   the   statistics   in  group  3   clearly  approach 
the   asymptotic  chi-square   distribution  much   more  slowly   than   the   statistics 
in  the   other  two  groups.   The  means,   and  to  a  greater  degree,   the  variances 
are  larger  than  the  corresponding  moments  of  the  chi-square  distribution, 
but   there  is  a  marked   improvement  at  n = 100. 

Finally,   it    is   seen  that   the  chi-square  approximations   to  the  moments 
work  best  for  configuration   (ii)   when  g= 5  and  configuration   (v)   when 
g = 10. In  these configurations none of  the  {Pt} are close   to  zero  or  to one. 

 
Since  the  main  application  of   the  statistics  under  consideration  is 

to  test   the  goodness  of  fit   of   the  logistic  regression  model,   i t    is  useful 
to  assess   the  adequacy  of  approximations   to   their  critical  values  based 
on  the  l imiting  chi-square  distribution.   In  tables   10-14,   the  upper   10%, 
5%,   2½%  and   1%  critical  values  of  the  statistics  R 

~
)1β̂( ,   D 

~
)1β̂( ,   R 

~
)β̂( 2 ,  

S 
~

)3β̂(    and  T 
~

)1β̂(    are  shown  for   the   logistic   regression  models   specified  in 

table  2.  Estimates   of   the  actual   significance   levels  associated   with   the 
chi-square  approximating  critical  values  are  also  given.   The  results  for 
the  statistic  S* 

~
)β̂( 4    and  T 

~
)β̂( 4    are   similar  to   those   of   S 

~
)3β̂(    and  T 

~
)1β̂(  

respectively  and  so  are  not  presented  here. 

The   findings  are  in  agreement  with  those  already  noted  for  the  moments. 
For  the  statistics  R 

~
)1β̂( ,  D 

~
)1β̂(    and  R 

~
)β̂( 2 ,   the  agreement  between  the 

27

.
~

)4β̂T(,
~

)1β̂T(:group3

~
)4β̂(*S,

~
)3β̂S(:group2

~
)1β̂D(,

~
)2β̂R(,

~
)1β̂R(:group1
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estimated  actual   significance   levels   and  nominal   significance   levels   is 
generally  good   even  for   the   smallest   sample   size  n = 25.      Changes   in  the 
configurations  for  the  {Pt}  have  only  marginal  effects.     For   S

~
)β̂( 3    the 

actual   significance   levels   are  appreciably  less   than   the  nominal  levels 
for  the   smaller   sample   sizes,   particularly  for  the   configurations  with 
small  or  large  values   for   the   {Pt }. For T

~
)β̂( 1 ,  i t    is   seen  that   the  chi- 

square  approximating  critical  values   give  actual   significance   levels 
appreciably  higher   than   the nominal   values,   particularly  for   configur- 
ations   with   small  or   large  values   for   the   {Pt } .  

On  the   basis   of   these   results,   the  use   of   the   S   or  T  classes   of 
statistics   cannot  be  recommended  for   sample   sizes  n  ≤   100,   if    reasonable 
control   of   the   significance   level   of   the   test   is   required. 
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Table   10 

Upper  critical  values  of  the  R
~

)β̂( 1    statistic  under  the  logistic  regression 

model   (4.5).     Actual   significance  levels  associated  with  the  chi-square 
approximating  crit ical  values  are  shown  in  parentheses 
 

Configuration α = 0.10 a = 0.05 α  =  0.025 a = 0.01 

 (i) 5.96(0.090) 7.57(0.048) 9.58(0.026) 11.08(0.10) 

n=25 (ii) 6.16(0.097) 7.40(0.042) 9.25(0.025) 12.24(0.011) 

 (iii) 5.98(0.090) 7.67(0.049) 9.03(0.021) 10.83(0.007) 

  
(i) 

 
6.64(0.119) 

 
7.82(0.051) 

 
9.30(0.024) 

 
10.79(0.070) 

n=50 (ii) 6.21(0.095) 7.47(0.044) 8.74(0.019) 10.55(0.007) 

 (iii) 6.16(0.097) 7.40(0.042) 9.25(0.025) 12.24(0.011) 

  
(i) 

 
6.05(0.091) 

 
7.37(0.039) 

 
8.80(0.017) 

 
10.24(0.003) 

n=100 (ii) 5.93(0.091) 7.46(0.043) 8.92(0.022) 10,80(0.009) 

 (iii) 6.08(0.093) 7.58(0.047) 9.17(0.018) 11.43(0.001) 

 
Asymptotic 

 
6.25 

 
7.81 

 
9.25 

 
11.34 

  
(iv) 

 
12.94(0.086) 

 
15.13(0.042) 

 
16.54(0.016) 

 
18.03(0.006) 

n=25 (v) 13.43(0.101) 15.62(0.053) 17.87(0.029) 20.57(0.013) 

 (vi) 13.60(0.105) 15.36(0.045) 16,87(0.018) 19.93(0.009) 

  
(iv) 

 
13.80(0.112) 

 
15.57(0.053) 

 
17.64(0.027) 

 
20.47(0.012) 

n=50 (v) 13.22(0.094) 15.62(0.054) 17.39(0.025) 19.52(0.008) 

 (vi) 13.44(0.106) 15.35(0.047) 17.46(0.025) 19.41(0.007) 

  
(iv) 

 
13.28(0.100) 

 
15.67(0.034) 

 
17.72(0,027) 

 
19.93(0.010) 

n=100 (v) 12.88(0.094) 15.17(0.045) 17.00(0.020) 19.27(0.006) 

 (vi) 13.67(0.103) 15.83(0.059) 17.17(0.024) 19.00(0.007) 

 
Asymptotic 

 
13.36

 
15.51

 
17.53

 
20.09 
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Table  11 

Upper  critical  values  of  the  D
~

)β̂( 1 statistic  under  the  logistic  regression 

model   (4.5).Actual significance levels  associated  with  the  chi-square 
approximating critical values are shown in parentheses 

 

Configuration α = 0.10 α = 0.05 α=0.025 α = 0.01 

   
(i) 

 
6.64(0.111) 

 
8.26(0.063) 

 
9.82(0.032) 

 
13.13(0.016) 

n=25 (ii) 6.48(0.111) 8.12(0.055) 9.71(0.030) 11.86(0.014) 
 (iii) 6,59(0.118) 8.78(0.068)  10.38(0.038) 11.79(0.015)
  

(i) 
 
6.78(0.127) 

 
8.14(0.055) 

 
9.54(0.029) 

 
11.08(0.10) 

n=50 (ii) 6.17(0.098) 7.60(0.047) 8.85(0.023) 10.72(0.008) 

 (iii) 6.48(0.111) 8.12(0.055) 9.71(0.030) 11.86(0.010) 

  
(i) 

 
6.18(0.094) 

 
7.54(0.041) 

 
8.66(0.017) 

 
10.36(0.004) 

n=100 (ii) 5.95(0.091) 7.42(0.045) 8.83(0.022) 10.87(0.009) 
 (iii) 6.34(0.102) 7.70(0.048) 9.18(0.024) 11,07(0,010) 

 
Asymptotic 

 
6.25 
 

 
7.81 

 
9.35 

 
11.34 

 (iv) 13.99(0.123) 16.25(0.065) 18.48(0.034) 20.57(0.015 

n=25 (v) 13.64(0.111) 16.30(0.068) 18,10(0.037) 21.31(0.017) 

 (vi) 14.36(0.131) 17.44(0.076) 19.73(0.048) 23.01(0.024) 

  
(iv) 

 
13.40(0.103) 

 
15.82(0.059) 

 
18.15(0.030) 

 
20.95(0.011) 

n=50 (v) 13.61(0.108) 15.55(0.052) 17.30(0.023) 20.32(0.014) 

 (vi) 13.65(0.108) 15.87(0.060) 18.25(0.028) 20.91(0.014) 

  
(iv) 

 
13.03(0.092) 

 
15.16(0.045) 

 
17.92(0.029) 

 
20.14(0.011) 

n=100 (v) 13.30(0.100) 15.97(0.062) 17.87(0.029) 19.43(0.008) 

 (vi) 13.58(0.108) 15.92(0.060) 17.86(0.030) 21.33(0.017) 

 
Asymptotic 

 
13.36 

 
15.51

 
17.53

 
20.09 
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Table   12 

Upper  critical  values  of  the  R
~

)β̂( 2    statistic  under  the  logistic  regression 

model   (4.5),     Actual  significance  levels  associated  with  the  chi-square 
approximating  crit ical  values  are  shown  in  parentheses 

 

Configuration α =0.10 α = 0.05 α = 0.025 α = 0.01 

  
(i) 

 
6.17(0.099) 

 
7.38(0.040) 

 
8.47(0.016) 

 
9.76(0.004) 

n=25 (ii) 6.31(0.104) 7.49(0.041) 9.38(0.026) 11.60(0.011) 

 (iii) 5.59(0.076) 7.05(0.034) 8.51(0.021) 10.31(0.006) 

  
(i) 

 
6.23(0,100) 

 
7.45(0.037) 

 
8.41(0.014) 

 
9.65(0.003) 

n=50 (ii) 5.79(0.080) 7.41(0.044) 9.27(0.023) 10.67(0.006) 

 (iii) 6.20(0.096) 7.14(0.039) 8,36(0.014) 10.10(0.004) 

  
(i) 

 
5.75(0.084) 

 
7.18(0.040) 

 
8,58(0.017) 

 
11.25(0.010) 

n=100 (ii) 6.29(0.104) 7.75(0.048) 9.05(0.022) 11.47(0.011) 

 (iii) 5.92(0.082) 7.08(0.039) 8.40(0.015) 10.14(0.006) 

 
Asymptotic 

 
6.25 

 
7.81 

 
9.35 

 
11.34 

 (iv) 13.05(0.091) 15.05(0.043) 17.20(0,023) 19,79(0.010) 

n=25 (v) 12.93(0.091) 15.33(0.046) 17.90(0.027) 20.25(0.011) 

 (vi) 13.13(0.091) 14.80(0.033) 16.26(0.016) 18.46(0.006) 

  
(iv) 

 
12.47(0.073) 

 
14.48(0.032) 

 
16.28(0.018) 

 
19.36(0.005) 

n=50 (v) 13.37(0.102) 15.94(0.057) 17.33(0.025) 20.54(0.014) 
 (vi) 13.18(0.093) 15.07(0.042) 16.26(0.017) 19.34(0.010) 

  
(iv) 

 
13.41(0.105) 

 
15.84(0.054) 

 
17.59(0.028) 

 
19.69(0.006) 

n=100 (v) 13.34(0.100) 16.00(0.054) 17.96(0.031) 19.80(0.009) 

 (vi) 13.25(0.099) 15.43(0,048) 17.10(0,020) 20.19(0.011) 

Asymptotic 13.36 15.51 17.53 20.09 



32 

Table  13 

Upper  critical  values  of  the  S
~

)β̂( 3
   statistic  under  the  logistic  regression 

model   (4.5).     Actual  significance  levels  associated  with  chi-square  approx- 
imating  critical  values  are  shown  in  parentheses 

 

Configuration α =0.10 α = 0.05 a = 0.025 α = 0.01 

  
(i) 

 
5.52(0.066) 

 
6.67(0.022) 

 
7.47(0.008) 

 
9.15(0.004) 

n=25 (ii) 6.00(0.086) 7.10(0.039) 8.58(0.020)  11.05(0.009) 

 (iii) 4.87(0.041) 5.94(0.016) 7.14(0.007) 8.52(0,001) 

  
(i) 

 
6.02(0.087) 

 
7.19(0.028) 

 
7.97(0.011) 

 
9.39(0,002) 

n=50 (ii) 5.66(0.076) 7.20(0.041) 8.95(0.021)  10.41(0.005) 

 (iii) 5.85(0.068) 6.70(0.023) 7.77(0.009) 8.74(0.002) 

  
(i) 

 
5.71(0.083) 

 
7.07(0.038) 

 
8.30(0.015) 

 
10.77(0.009) 

n=100 (ii) 6.23(0.100) 7.69(0.047) 8.90(0.020) 11.30(0.010) 

 (iii) 5.81(0.069) 6.93(0.035) 8.25(0.012) 10.01(0.004) 

 
Asymptotic 

 
6.25 

 
7.81 

 
9.35 

 
11.34 

  
(iv) 

 
11.82(0.056) 

 
13.61(0.021) 

 
15.03(0.006) 

 
16.67(0.000) 

n=25 (v) 12.24(0.068) 14.30(0.032) 15.92(0.017) 18.19(0.003) 

 (vi) 11.09(0.031) 12.70(0.010) 13.63(0.005) 15.04(0.003) 

  
(iv) 

 
11.99(0.060) 

 
13.77(0.025) 

 
15.35(0.014) 

 
18.10(0.003) 

n=50 (v) 13.09(0.091) 15.42(0.049) 16.64(0.020) 19.62(0.009) 

 (vi) 12.51(0.072) 14.31(0.024) 15.45(0.013) 18.48(0.005) 

  
(iv) 

 
13.20(0.091) 

 
15.61(0.051) 

 
17.30(0.020) 

 
18.95(0.006) 

n=100 (v) 13.20(0.091) 15.84(0.052) 17.48(0.025) 19.47(0.008) 

 (vi) 12.90(0.089) 15.00(0.038) 16.40(0.019) 19.77(0.007) 

Asymptotic 13.36 15.51 17.53 20.09 
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Table  14 

Upper  critical  values  of  T
~

)β̂( 1    statistic  under  the  logistic  regression 

model   (4.5).     Actual   significance  levels  associated  with  the  chi-square 
approximating  crit ical  values  are  shown  in  parentheses 

 

Configuration α = 0.10 α = 0.05 α=0.025 α = 0.01 

  
(i) 

 
7.43(0.147) 

 
8.80(0.084) 

 
11.53(0.050) 

 
14.75(0.026) 

n=25 (ii) 6.71(0.115) 8.16(0.059) 10.52(0.035) 12.74(0.018) 

 (iii) 7.48(0.145) 9.84(0.089) 13.08(0.057) 17.06(0.037) 

  
(i) 

 
6.60(0.121) 

 
7.96(0.056) 

 
 9.59(0.027) 

 
12.13(0.015) 

n=50 (ii) 5.88(0.090) 7.74(0.050) 10.10(0.034) 11.38(0.011) 

 (iii) 6.99(0.139) 8.86(0.073) 10.77(0.043) 14.90(0.022) 

  
(i) 

 
5.97(0.092) 

 
7.66(0.045) 

 
9.24(0.024) 

 
12.56(0.013) 

n=100 (ii) 6.51(0.111) 7.92(0.054) 9.24(0.025) 11.59(0.011) 

 (iii) 6.57(0.116) 8.15(0.062) 9.48(0.028) 11.79(0.011) 

 
Asymptotic 

 
6.25 

 
7.81 

 
9.35 

 
11.34 

  
(iv) 

 
15.85(0.171) 

 
19.91(0.107) 

 
24.76(0.079) 

 
29.16(0.050) 

n=25 (v) 14.29(0.128) 17.72(0.078) 20.97(0.051) 25.91(0.033) 

 (vi) 17.29(0.207) 22.46(0.144) 25.84(0.096) 31.06(0.064) 

  
(iv) 

 
14.14(0.124) 

 
16.95(0,068) 

 
19.92(0.043) 

 
22.72(0.022) 

n=50 (v) 14.11(0.120) 16.99(0.073) 18.73(0.037) 23.04(0.020) 

 (vi) 15.71(0.166) 19.28(0.106) 22.93(0,067) 31.85(0.043) 

  
(iv) 

 
14.12(0.126) 

 
16.33(0.059) 

 
18.82(0.038) 

 
21.76(0.015) 

n=100 (v) 13.76(0.112) 16.07(0.061) 19.29(0.035) 21.38(0.017) 

 (vi) 14.35(0.134) 17.07(0.079) 19.30(0.043) 22.34(0.021) 
 
Asymptotic 

 
13.36 

 
15,51

 
17.53

 
20.09
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5.       The  Extreme  Standardised  Residuals  And  Deviance  Components 

In  a  preliminary  assessment  of   the  adequacy  of  fit   of  a  logistic 
regression  model,   the  ordered  values  of   the  standardised  residuals  are 
usually  computed  and  often  plotted  on  normal  probability  paper.     In 
particular,   the  extreme  values 

 

would  be  examined  to  see  if   any  outliers  are  present.      If   these  statis- 
tics   are   to  provide   alternatives   to   the  R  goodness   of   fit    statistic,  
approximations   to  at  least   the   tail   probabilities  of   their  null  dis- 
tributions  are  required-     The  following  non-rigorous  approach  which 
we   illustrate   for   the   statistic  Rma x  appears   to   give  useful   approx— 
imations.  

By  the  Bonferroni   inequality  we  have 

(5.2) 

For  the  six  logistic  model  configurations  given  in  table  2,   the  large 
majority   of  pairs   of  residuals   are  negatively  correlated  and   i t    seems 
reasonable  to  assume  that  this  property  will  hold  over  a  very  wide  range 
of   configurations.     We  shall   therefore  assume  that 

(5.3) 

This   inequality  may  be  replaced  by  the  weaker  inequality 

(5.4) 

For  r  large  and  hence  P(Rt  ≥ r)   small,  we  use  the  approximation 

(5.5) 
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From  (3.29),   the  residuals   {Rt}   are  approximately  distributed  as 
multivariate  normal   with  zero  means  and  covariance  matrix  given  by   (3.30). 
Since   the  elements   in  this  matrix  and  in  particular  the  variances  depend 
on  the  {Pt }  which  are  unknown,  we  standardise   the  residuals  using  their 
average  variance   1  -  ℓ/g  and  take 

(5.6) 

Hence  from  (5.5)  we  obtain 

(5.7) 

where  Φ( • ) is  the  c.d.f.    of   the  N(0,1)   distribution. If   r  ma x (α )   denotes 
the  upper100α  %  point  of the  distribution  of  R ma x we   therefore  have 
the  approximation 

(5.8) 

Similar  arguments  give  the  approximation 

(5.9) 

to  the  lower   100α %  point  of  distribution  of  R min  and 

(5.10) 

to   the  upper   100α  %  point  of   the  distribution  of  Rm , when  the  assumed 
logistic   model  is correct.  Tables   15   and   17   give   upper   critical 

values  of   the   statistics  Rma x   and  Rm     respectively  and   table   16   gives 
the   lower  critical  values   for  the   statistic  R mi n    for   the   logistic 
models  specified  in  table  2.     Estimates  of  the  actual   significance 
levels  associated  with  the  use  of  the  approximate  critical  values 
given  by   (5.8),   (5.10)   and   (5.9)   as  obtained  by  simulation  are   shown 
in  brackets.     The  results   indicate  that   the  use  of  these  simple 
approximations  based  on  the  use  of  average  asymptotic  variance  to 
standardise the  residuals  will   be  satisfactory.  
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Since   the   {Rt}  and  {Dt}  have   the  same  asymptotic  distribution,   the 
approximations given by  (5.8),    (5.10)   and  (5.9)   may  also  be  used   to  approx- 
imate  the  upper  critical  values  of   the  extremes  Dmax  and  Dm  and   the  lower 
critical  values   of  Dmi n   ,   respectively.     Tables   18,   19   and  20  give  the   exact 
and  approximate  crit ical  values  of   the  statistics   and   the  approximations 
again  appear   to  give   satisfactory  results.  
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Table   15 

Upper  critical  values  of  the  Rma x   statistic  under  the  logistic  regression 

model   (4.5).     Actual  significance  levels  associated  with  the  approximating 

critical  values   given  by   (5.8)   are  shown  in  parentheses. 

 

 

Configuration α=0.10 α =0.05    α = 0.025 α =0.01 

 (i) 1 .65(0.117) 1.95(0.073) 2.27(0.038) 2.45(0.030) 

n=25 (ii) 1.67(0.119) 1.91(0.066) 2.15(0.039) 2.26(0.014) 

 (iii) 1.52(0.073) 1.68(0.039) 1.86(0.013) 2.02(0.004) 

 (i) 1.65(0.111) 1.90(0.070) 2.07(0.033) 2.34(0.016) 

n=50 (ii) 1.61(0.110) 1.85(0.058) 2.05(0.033) 2.23(0.010)

 (iii) 1.58(0.095) 1.79(0.048) 1.96(0.021) 2.08(0.007) 

 (i) 1.63(0.115) 1.91(0.072) 2.07(0.035) 2.33(0.016) 

n=100 (ii) 1.61(0.111) 1.79(0.049) 2.02(0.026) 2.21(0.010) 

 
 
 
 
Approx 

(iii) 

.   (5.8) 

1 .57(0.092) 

1.60 

1.74(0.042) 

1.80 

1.90(0.016) 

2.00 

2.14(0.006) 

2.23 
 

 (iv) 2.11(0.108) 2.34(0.059) 2.63(0.030) 2.77(0.011) 

n=25 (v) 2.00(0.080) 2.20(0.032) 2.43(0.018) 2.59(0.070) 

 (vi) 1.90(0.045) 2.06(0.010) 2.19(0.001) 2.29(0.000) 

 (iv) 2.11(0.108) 2.34(0.058) 2.55(0.028) 2.87(0.014) 

n=50 (v) 2.02(0.087) 2.29(0.045) 2.47(0.023) 2.66(0.006) 

 (vi) 2.01(0.072) 2.19(0.031) 2.33(0.012) 2,52(0.004) 

 (iv) 2,13(0.116) 2.41(0.065) 2.69(0.040) 2.91(0.017) 

n=100  (v) 2.00(0.075) 2.19(0.036) 2.39(0.014) 2.64(0.009) 

 
 
Approx 

  (vi) 
  

 (5.8) 

2.01(0.080) 
 
2.08 

2.24(0.040) 
 
2.30 

2.41(0.015) 
 
2.51 

2.68(0.007) 
 
2.76 
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    Table  16 

Lower  critical values  of  the  Rm i  n   statxistic  under  the  logistic  regression 
model   (4.5).   Actual     significance  levels  associated  with  the  approximating 
critical  values  given  by   (5.9)   are  shown  in  parentheses. 

 
Configuration α =0.10 α=0.05 α =0.025 α = 0.01 

  
(i) 

 
-1.54(0.085) 

 
-1.73(0.035) 

 
-1.87(0.013) 

 
-2.16(0.007) 

n=25 (ii) -1.60(0.101) -1.82(0.053) -2.00(0.023) -2.33(0.012) 

 (iii) -1 .71(0.135) -1.94(0.080) -2.19(0.041) -2.50(0,020) 

  
(i) 

 
-1.65(0.111) 

 
-1.83(0.055) 

 
-2.09(0.029) 

 
-2.38(0.016) 

n=50 (ii) -1.54(0.081) -1.75(0.041) -1.96(0.021) -2.36(0.012) 

 (iii) -1.66(0.121) -1.94(0.071) -2.20(0.045) -2.61(0.024) 

  
(i) 

 
-1.61(0.108) 

 
-1.81(0.051) 

 
-2.00(0.023) 

 
-2.17(0.008) 

n=100 (ii) -1.61(0.109) -1.85(0.056) -2.01(0.026) -2.18(0.009) 

 (iii) -1 .64(0.110) -1.84(0.058) -1.99(0.023) -2.34(0.012) 

Approx. (5.9) -1.60 -1.80 -2.00 -2.23 

  
(iv) 

 
-1.97(0.055) 

 
-2.1(0.027) 

 
-2.33(0.009) 

 
-2.5(0.001) 

n=25 (v) -2.10(0.104) -2.33(0.054) -2.51(0.025) -2.80(0.011) 

 (vi) -2.28(0.146) -2.52(0.095) -2,84(0.051) -3.10(0.030) 

  
(iv) 

 
-2.03(0.08) 

 
-2.20(0.032) 

 
-2.36(0.012) 

 
-2.59(0.007) 

n=50 (v) -2.14(0.119) -2.35(0.058) -2.57(0.031) -2.70(0.009) 

 (vi) -2,22(0,133) -2.46(0.077) -2.61(0,039) -2.87(0.015) 

  
(iv) 

 
-2.00(0.078) 

 
-2.22(0.033) 

 
-2.36(0.009) 

 
-2.51(0.002) 

n=100 (v) -2.13(0.110) -2.41(0.061) -2.66(0.039) -2.90(0.015) 

 (vi) -2.13(0.111) -2.36(0.059) -2.59(0.031) -2.93(0.013) 

Approx. (5.9) -2.08 -2.31 -2.51 -2.77 
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Table   17 

Upper  critical  values  of  the  Rm    statistic  under  the  logistic  regression 

model   (4.5).     Actual   significance  levels  associated  with  the  approximating 

critical  values  given  by   (5.10)   are   shown  in  parentheses. 
 

Configuration α = 0.10 α =0,05 α = 0.025 α =0.01 

 (i) 1.79(0.100) 1.99(0.048) 2.33(0.036) 2.45(0.017) 

n=25 (ii) 1.83(0.105) 2.04(0.058) 2.23(0.033) 2.39(0.010) 

 (iii) 1.82(0.108) 2.00(0.051) 2.21(0.030) 2.55(0.018) 

 (i) 1.83(0.105) 2.01(0.055) 2.27(0.037) 2.61(0.015) 

n=50 (ii) 1.73(0.085) 1.97(0.047) 2.14(0.025) 2.44(0.012) 

 (iii) 1.82(0.103) 2.04(0.062) 2.29(0.032) 2.58(0.015) 

 (i) 1.81(0.107) 2.02(0.055) 2.18(0.026) 2.43(0.012) 

n=100 (ii) 1.79(0.096) 1.99(0.048) 2.11(0.020) 2.32(0.008) 

 (iii) 1.78(0.093) 1.95(0.033) 2.17(0.022.) 2.49(0.011) 

 
Approx.   (5.10)                  1.80 

 
2.00 

 
2.18 

    
2.40 

 

n=25 

n=50 

n=100 

 

(iv) 2.23(0.082) 2.43(0.038) 2.63(0.023) 2.83(0.010) 

(v) 2.29(0.092) 2.51(0.051) 2.72(0.027) 2.93(0.010) 

(vi) 2.27(0.088) 2.42(0.039) 2.65(0.023) 2.90(0.008) 

 
(iv) 

 
2.24(0.088) 

 
2.44(0.044) 

 
2.65(0.022) 

 
2.88(0.008) 

(v) 2.27(0.086) 2,47(0.047) 2.66(0.023) 2,87(0,009) 

(vi) 2.27(0.094) 2,53(0.055) 2.7(0.026) 3.04(0.013) 

 
(iv) 

 
2.29(0.097) 

 
2.52(0.057) 

 
2.73(0.032) 

 
2.97(0.012) 

(v) 2.26(0.087) 2.46(0.044) 2.72(0.030) 2.91(0.008) 

(vi) 2.33(0.110) 2.52(0.054) 2.73(0.032) 2.93(0.01) 

 

Approx.   (5.10)                2.30    2.51    2.69    2.94 
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Table  18 

Upper  critical  values  of   the  Dma x  statistic  under  the  logistic  regression 

model   (4.5).       Actual   significance  levels  associated  with  the  approximating 

critical  values  given  by   (5.8)   are  shown  in  parentheses. 

 

Configuration  α = 0.10 α=0.05 α =0.025 α =0.01 

 (i) 1.58(0.098) 1.77(0.046) 1 .99(0.024) 2.24(0.011) 

n=25 (ii) 1.56(0.086) 1.78(0.046) 1.97(0.023) 2.22(0.009) 

 (iii) 1.84(0.177) 2.09(0.112) 2.37(0.061) 2.63(0.035) 

 (i) 1.55(0.092) 1,81(0.051) 2.03(0.027) 2.30(0.012) 

n=50 (ii) 1.60(0.103) 1.81(0,053) 2.10(0.031) 2.46(0.018) 

 (iii) 1.76(0.144) 2.13(0.089) 2.34(0.063) 2.72(0.038) 

 (i) 1.55(0.084) 1.77(0.044) 1 .94(0.019) 2.16(0.008) 

n=100 (ii) 1.60(0.101) 1.85(0.059) 2.05(0.033) 2.25(0.012) 

 (iii) 1.67(0.125) 1 .90(0.068) 2.15(0,039) 2.47(0.021) 
 
Approx.     

  
 1.60 

 
 1.80 

   
 2.00 

    
 2.23 

 

n=25 

n=50 

n=100 

 

(iv) 1.98(0.072) 2.19(0.034) 2.43(1.017) 2.62(0.01) 

(v) 2.12(0.118) 2.46(0.073) 2.78(0.041) 3.04(0.28) 

(vi) 2.07(0.099) 2.29(0.049) 2.55(0.026) 2.74(0.10) 

 
(iv) 

 
2.11(0.111) 

 
2,32(0.053) 

 
2.51(0.027) 

 
2.82(0.014) 

(v) 2.09(0.104) 2.36(0.056) 2.64(0.036) 2.98(0.018) 

(vi) 2.04(0.090) 2.34(0.056) 2.54(0.029) 2.68(0.008) 

 
(iv) 

 
2.07(0.10) 

 
2.34(0.056) 

 
2.52(0.030) 

 
2.67(0.000) 

(v) 2.12(0.113) 2.35(0.058) 2.56(0.035) 2.77(0.011) 

(vi) 2.14(0.130) 2.41(0.069) 2.55(0.030) 2.78(0.012) 

 

Approx.         2.08    2.30    2.51  2.76 
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Table   19 

Lower  critical  values  of   the  Dmin  statistic  under  the   logistic  regression 
model  (4.5).    Actual  significance  levels  associated  with  the  approximating 
critical  values  given  by   (5.9)   are  shown  in  parentheses. 

 

Configuration α = 0.10 α = 0.05 α =0.025 α = 0.0l 

 (i) -1.84(0.166) -2.10(0.110) -2.42(0.071) -2.68(0.030) 

n=25 (ii) -1.57(0.096) -1.90(0.057) -2.14(0.036) -2.45(0.019) 

 (iii) -1.54(0.096) -1.79(0.047) -1.96(0.020) -2.20(0.009) 

 (i) -1.63(0.11) -1.90(0.067) -2.13(0,035) -2.40(0.02) 

n=50 (ii) -1.67(0.121) -1.90(0.070) -2.18(0.037) -2.51(0.023) 

 (iii) -1.53(0.083) -1.76(0.045) -2,05(0,030) -2.30(0.012) 

 (i) -1.62(0.109) -1.83(0.052) -2.08(0.031) -2.36(0.014) 

n=100 (ii) -1.57(0.087) -1.78(0.044) -2.04(0.025) -2.29(0.012) 

 (iii) -1 .55(0.098) -1.78(0.044) -2.03(0.029) -2.31(0.012) 

 
Approx. 

 
-1.60 

 
-1 .80 

 
-2.00 

 
-2.23 

 

 (iv) -2.28(0.168) -2.52(0.092) -2,72(0.051) -2.98(0.020) 

n=25 (v) -2.09(0.10) -2.32(0.051) -2.48(0.023) -2.65(0.006) 

 (vi) -1.90(0.064) -2.19(0.033) -2.45(0.020) -2.69(0.008) 

 (iv) -2.12(0.108) -2.39(0.06) -2.65(0.033) -3.12(0.021) 

n=50 (v) -2.08(0.097) -2.25(0.044) -2.49(0.023) -2.73(0.006) 

 (vi) -1 .94(0.059) -2.12(0.028) -2,37(0.015) -2.55(0.004) 

 (iv) -2.07(0.097) -2.27(0.041) -2.48(0.021) -2.87(0.011) 

n=100 (v) -2.11(0.104) -2.31(0.050) -2.53(0.027) -2.83(0.011) 

 (vi) -2.05(0.091) -2.28(0.045) -2.55(0.027) -2.95(0.012) 
 
Approx. 

 
-2.08 

 
-2.31 

 
-2.51 

 
-2.77 
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   Table  20 
 
Upper  critical  values  of   the  Dm  statistic  under  the  logistic  regression 
model   (4.5).     Actual   significance  levels  associated  with  the  approximating 
critical  values  given  by   (5.10)   are  shown  in  parentheses. 
 
 

Configuration α = 0,10 α =0,05 α =0.025 α =0.01 

  
(i) 

 
2.00(0.139) 

 
2.22(0.090) 

 
2.52(0.055) 

 
2.75(0.030) 

n=25 (ii) 1.78(0.092) 2.01(0.053) 2.34(0.032) 2.55(0.014) 

 (iii) 1.93(0.142) 2.16(0.075) 2.41(0.048) 2.63(0.020) 

  
(i) 

 
1.82(0.105) 

 
2.06(0.058) 

 
2.29(0.035) 

 
2.55(0.017) 

n=50 (ii) 1.81(0.106) 2.11(0.062) 2.32(0.039) 2.55(0.022) 

 (iii) 1.91(0.118) 2.22(0.085) 2.48(0.056) 2.73(0.031) 

  
(i) 

 
1.79(0.089) 

 
1.99(0.048) 

 
2.16(0.025) 

 
2.51(0.013) 

n=100 (ii) 1.77(0.091) 2.01(0.051) 2.18(0.026) 2.41(0.012) 

 (iii) 1.80(0.097) 2.05(0.060) 2.32(0.037) 2.55(0.015) 
 
Approx.      

 
1.80 

 
2.00 

 
2.18 

 
2.40 

 

n=25 

n=50 

n=100 

 

(iv) 2.40(0.124) 2.59(0.066) 2.80(0.037) 3.00(0.013) 

(v) 2.36(0.114) 2.55(0.061) 2.84(0.038) 3.14(0.019) 

(vi) 2.23(0.079) 2.47(0.044) 2.67(0.023) 2.86(0.007) 

 
(iv) 

 
2.32(0.105) 

 
2.57(0.059) 

 
2.90(0.038) 

 
3.17(0.023) 

(v) 2.27(0.096) 2.54(0.058) 2.75(0.031) 3.07(0.016) 

(vi) 2.22(0.084) 2.48(0.044) 2.62(0.016) 2.77(0.003) 

 
(iv) 

 
2.28(0.095) 

 
2.51(0.051) 

 
2.67(0.025) 

 
2.87(0.009) 

(v) 2.31(0.104) 2.56(0.062) 2.74(0.031) 3.00(0.012) 

(vi) 2.31(0.104) 2.53(0.053) 2.74(0.029) 3.11(0.016) 

 

Approx.            2.30    2.51      2.69    2.93 
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