
MEAN REVERSION  
IN THE NIKKEI, STANDARD & POOR AND DOW JONES   

STOCK MARKET INDICES 
 
 

Guglielmo Maria Caporalea 

Luis A. Gil-Alanab 

 
a Brunel University, London 

b University of Navarra 
 
 
 

February 2007 
 

ABSTRACT 

Three stock market indices (the Nikkei 225, the Standard and Poor’s 500 and the Dow Jones 

EURO STOXX 50) are analysed in this paper using a parametric procedure for fractional 

integration. We find that the orders of integration of these three series range between 0.75 and 

1.25. A model selection criterion suggests that they can be specified as fractional processes of 

order 0.75, with AR(1) disturbances. This indicates that the three series exhibit mean 

reversion. 
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1. Introduction 

The univariate behaviour of three major stock market indices is analysed in this paper by 

means of fractionally integrated techniques. In the existing literature, it is generally assumed 

that financial series are integrated of order 1, i.e. I(1), following either a random walk, in 

which case they are completely unpredictable, or an ARIMA model, therefore incorporating  

weakly autocorrelated disturbances. Most empirical applications are based on tests for unit 

roots which are embedded in autoregressive (AR) alternatives (e.g., Dickey and Fuller, 1979; 

Phillips and Perron, 1988; Kwiatkowski et al., 1992, or, for more recent developments, Elliot 

et al., 1996; Ng and Perron, 2001; etc.). Several studies, however, have shown that these tests 

have very low power not only when the alternatives are close to the unit root case (see, e.g. 

Christiano and Eichenbaum, 1990; Stock, 1991; DeJong et al., 1992; Rudebusch, 1992), but 

also if they are of a fractional form (Diebold and Rudebusch, 1991; Hassler and Wolters, 

1994; Lee and Schmidt, 1996; etc.). 

In this paper, we use instead the tests of Robinson (1994a), which allow us to consider 

the unit root hypothesis as a particular case within a fractionally integrated structure. These 

tests have a standard null limit distribution and are efficient against different fractional 

alternatives. Fractional models in the stock market were discussed first in Lo and MacKinlay 

(1988) and Lo (1991). The paper by Lee and Robinson (1996) contains a detailed review of 

these and other studies on fractional integration in the stock market. The layout of the present 

study is as follows: Section 2 briefly describes Robinson’s (1994a) testing procedure. Section 

3 applies the tests to three stock market indexes: the Nikkei 225; the Standard & Poor’s 500; 

and the Dow Jones Euro Stoxx 50. In Section 4 a model selection criterion is applied to 

determine the best specification for each series. Section 5 contains some concluding 

comments. 
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2. Testing unit roots and other hypotheses 

A simple way of testing a unit root is to consider the null hypothesis 

    Ho:  ρ = 1        (1) 

in a model given by 

...,2,1,)1( ==− tuxL ttρ      (2) 

where L is the lag operator, (Lxt = xt-1) and ut is an unobservable covariance stationary 

sequence that may include stationary AR and MA components. However, the AR class (2) is 

merely one of a number of mathematical forms that can be used for testing the unit root 

hypothesis.  One of them allows for a “fractional” degree of integration. An I(0) process ut, t = 

1,2,…, is in this case defined as a covariance stationary process with spectral density which is 

positive and finite at zero frequency. Then, an I(d) process, xt, t = 1,2,…, is given by: 

...,2,1,)1( ==− tuxL tt
d      (3) 

where (1 – L)d  can be expressed for all real d in terms of the expansion 
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If d > 0 in (3), xt is said to be long memory because of the strong association between 

observations widely separated in time, and, if d is not an integer, xt is fractionally integrated. 

Granger (1980) and Robinson (1978) showed that fractional models can arise from 

aggregation of ARMA series with randomly varying coefficients. Thus, it makes sense to 

consider I(d) processes when analysing aggregate data. A unit root test can be specified then 

by testing the null: 

    Ho:  d = 1       (4) 
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in (3). However, fractional and AR departures from (4) and (1) have very different long-run 

implications. In (3), xt is nonstationary but non-explosive for all d ≥ 0.5, unlike in case of (2) 

around (1), where xt becomes explosive for all ρ > 1. On the other hand, ρ = 0 in (2) or d = 0 

in (3) implies that a weakly autocorrelated I(0) xt is allowed for. Following the work of 

Bhargava (1986), and Schmidt and Phillips (1992) on the parameterisation of unit root 

models, we can consider xt in (3) as the regression errors in the model 

    ...,2,1,' =+= txzy ttt β      (5) 

where zt is a (q x 1) vector of regressors, for example zt ≡ 1 or zt = (1, t)’ and β is a (q x 1) 

vector of unknown parameters. Robinson (1994a) proposes LM tests for testing unit roots and 

other fractionally integrated hypotheses in a model given by (3) and (5).  

The testing procedure is the following. We observe {(yt, zt), t = 1, 2, …T}, and it is 

assumed that the I(0) ut in (3) has parametric autocorrelation, such that ut has spectral density 

f, which is a given function of frequency and of unknown parameters, specifically, 

,),;(
2

);;(
2

2 πλπτλ
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στσλ ≤<−= gf  

where the scalar σ2 and the (kx1) vector τ are unknown but g is of known form. Thus, if ut is 

white noise, g ≡ 1, and if ut is AR, we have 

,
)(

1);( 2λφ
τλ

ie
g =  

where φ corresponds to the AR polynomial and therefore the AR coefficients are function of 

τ. In general, we are interested in testing the null hypothesis 

    Ho:  d = do       (6) 

for a given real number do. The test statistic takes the form: 
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  In general, we have to estimate the nuisance parameter τ,  

for example by where T
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  Robinson (1994a) showed that under regularity conditions: 

.)1,0(ˆ ∞→→ TasNs d      (8) 

Thus, a one-sided 100α%-level test of (6) against the alternative 

H1: d   >   do      (9) 

is given by the rule: 

      “Reject  Ho  if    >  zŝ α” ,    (10) 

where the probability that a standard normal variate exceeds zα is α, and, conversely, an 

approximate one-sided 100α%-level test of (6) against the alternative 

H1: d   <   do     (11) 

is given by the rule: 

      “Reject  Ho  if    <  - zŝ α”.    (12) 

Furthermore, he shows that the above tests are efficient in the Pitman sense, i.e. that against 

local alternatives of form: Ha: θ = δ T-1/2, for δ ≠ 0, the limit distribution is normal with 

variance 1 and mean which cannot (when ut is Gaussian) be exceeded in absolute value by 

that of any rival regular statistic. The tests of Robinson (1994a) based on (7) were applied to 
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several U.S. historical annual macroeconomic data in Gil-Alana and Robinson (1997), and 

other versions of his tests based on quarterly and monthly data can be found respectively in 

Gil-Alana and Robinson (1998) and Gil-Alana (1999a). Baillie (1996) provides a survey of 

fractional models for economic time series, and Willinger et al. (1999) discuss other recent 

empirical application of long-memory processes to the stock market. In the following section, 

we carry out the tests of Robinson (1994a) for three major stock market indices. 

 

3. Empirical analysis 

The three stock market indices analysed here are the Nikkei 225, the Standard & Poor’S 500 

and the Dow Jones EURO STOXX 50 for the time period 1994.1 – 1999.12 monthly. Plots of 

the three series are shown in the upper panel of Figure 1. Visual inspection suggests that all of 

them might be nonstationarity, especially the S&P 500 and the Dow Jones indices. The first 

25 sample autocorrelation values are also plotted in Figure 1. These are significant even at 

lags far away from zero, with some apparent decay and/or oscillation, which could be 

indicative of a fractional integration parameter greater than or less than unity. We also 

computed the periodogram of each series: although this is not a consistent estimate of the 

spectral density function, it can give us an indication about the possible monthly structure of 

the data. In all cases, the largest values are those around the zero frequency, suggesting that 

the monthly component is not important when modelling these series. 

 

INSERT FIGURE 1 ABOUT HERE 

 

 Denoting each of the series in turn yt, we employ throughout the model (3) and (5) 

with zt = (1,t)’, t ≥1, zt = (0, 0)’ otherwise, so 

...,2,1,21 =++= txty tt ββ     (13)            

 6



...,2,1,)1( ==− tuxL tt
d ,     (14) 

treating separately the cases β1 = β2 = 0 a priori; β1 unknown and β2 = 0 a priori, and (β1, β2) 

unknown, i.e., we consider respectively the cases of no regressors in the undifferenced 

regression model (13); an intercept; and an intercept and a time trend, and model the I(0) 

disturbances ut as white noise and weakly autocorrelated processes in turn. 

 We start with the assumption that ut in (14) is white noise. In this case, when d = 1, for 

example, the differences (1 – L) yt behave, for t > 1, like a random walk when β2 = 0, and a 

random walk with a drift when β2 ≠ 0. However, we report tests statistics not merely for d = 1 

in (14) but also for d = 0, 0.25, …(0.25), …, 1.75 and 2, hence including also a test for 

stationarity (d = 0.50) as well as allowing for other possibilities. 

 The test statistic reported in Tables 1 – 3 is the one-sided one given by  in (7), which 

means that significantly positive values are consistent with d > d

ŝ

o, implying a higher order of 

integration, whereas significant negative ones imply smaller values of do. Thus, we should 

expect a monotonic decrease in the value of  as dŝ o increases, because, for example, if (6) is 

rejected against (9) when do = 0.75, an even more significant result in this direction should be 

expected when do = 0.50 or 0.25 are tested. Starting with white noise disturbances, in Table 1, 

one can see that  is always monotonic with dŝ o. The null (6) is not rejected when d = 1 for the 

Nikkei 225, this being the only non-rejection value for this series whether or not we include 

deterministic regressors in zt. Considering now the S&P 500, the unit root null cannot be 

rejected along with d = 1.25, while d = 0.75 and 1 are the non-rejection values for the Dow 

Jones. Therefore, the unit root null hypothesis cannot be rejected for any series whether or not 

an intercept and/or a time trend are included in the regression model (13). Finally, the null Ho 

(6) is always rejected for values of d smaller than 0.75 and higher than 1.25, suggesting that 

the optimal power properties of Robinson’s (1994a) tests hold, not only against local but also 

against non-local departures from the null. 
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INSERT TABLE 1 ABOUT HERE 

 

 Tables 2 and 3 report values of the same statistic as in Table 1 but imposing 

respectively AR(1) and AR(2) disturbances. Higher order autoregressions were also 

considered, obtaining results very similar to those reported here. A notable feature of our 

findings is the lack of monotonicity in  with respect to dŝ o, particularly when do takes small 

values. This might suggest that these models are misspecified. Note that in the event of 

misspecification, monotonicity is not necessarily to be expected: frequently misspecification 

inflates both numerator and denominator of , to varying degrees, and thus affects  in a 

complicated way. However, this lack of monotonicity can also be due to the fact that the AR 

parameters have been obtained using the Yule-Walker method, implying roots that are 

automatically less than one in absolute value, though they can be arbitrarily close to one. 

Thus, it might be the case, for example, that for an I(1) process the tests of Robinson (1994a) 

with AR(1) u

ŝ ŝ

t do not reject Ho (6), neither with do = 1 and an estimate of the AR parameter 

close to 0, nor with do = 0 and an AR estimate close to 1, but reject it instead for values of do 

between 0 and 1. Tables 2 and 3 also report the estimated values of the AR parameters, along 

with the results of the Dickey-Fuller procedure for testing the I(1) null on the estimated 

residuals . In those cases where the unit root cannot be rejected, we do not consider the 

values of the test statistics, since the I(0) assumption for u

tû

t is then violated. 

 The results for  based on AR(1) disturbances are given in Table 2. Starting with the 

Nikkei 225, it can be seen that, if we do not include regressors, H

ŝ

o (6) cannot be rejected 

when d = 1, 1.25 and 1.50. However, when including an intercept and a linear time trend, the 

orders of integration seem to be slightly smaller, and the non-rejection values correspond now 

to d = 0.75 and 1. Looking at the results for the S&P 500, one can see that the non-rejection 

values of d also range between 1 and 1.50 with no regressors, while d = 0.75 appears as the 
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only non-rejection value when an intercept and a linear trend are included. Similarly, for the 

Dow Jones, if we do not include regressors, Ho (6) cannot be rejected if d = 1, 1.25 and 1.50; 

the null is always rejected if we include an intercept; and d = 0.75 is the only non-rejection 

value with a linear time trend.  

 

INSERT TABLES 2 AND 3 ABOUT HERE 

 

On the whole, the results for the three series are very similar. To summarise them by 

looking at the lowest statistics for the different do’s, when we do not include regressors in (5), 

the lowest statistics correspond in all cases to d = 1.25. However, when including an intercept 

or a linear time trend, the lowest values occur at d = 0.75. 

 Table 3 reports the values of  when imposing AR(2) disturbances. Comparing the 

results here with those in Table 2, one can see a greater proportion of non-rejection values, 

and a slightly higher degree of integration in some cases. Specifically, if z

ŝ

t = 0, the non-

rejection values occur at d = 1.25, 1.50 and 1.75 for the three series, i.e., they are greater by 

about 0.25 than those in Table 2; when including an intercept and a linear time trend, again 

the results are similar for the three series, the null not being rejected when d = 0.75 and 1 in 

the former model , and when d = 0.50, 0.75 and 1 in the latter. 

 Tables 1 – 3 report a great variety of potential model specifications for each of the 

series of interest. Most of these models exhibit orders of integration ranging between 0.75 and 

1.25. In the following section, we are concerned with selecting the best model specification 

for each series, and also with its economic implications in each case. 

 

4. Selecting a model specification and economic implications 

From an economic point of view, it is crucial to determine the correct order of integration of a 

given time series. This is because, if a series is I(d) with d ∈ [0,5, 1), it will be nonstationary 
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but mean-reverting, since shocks will have only transitory effects, and therefore the series will 

return to its original path some time in the future. On the other hand, if a series is I(d) with d ≥ 

1, it will be nonstationary and non-mean-reverting, with shocks having a permanent effect on 

its level. This also has implications for the predictability of the series: if it is I(d) with d 

smaller than one, it will be predictable, while if d is equal to or greater than one it will be 

unpredictable except for the autocorrelated structure that can be imposed on the disturbances. 

 In the previous section we have considered several models which may be suitable for 

modelling the three stock market indices. We are now concerned with selecting the best 

model specification for each series. We proceed as follows. First, we choose in each case the 

model specification with the value of do producing the lowest statistic . In other words, for 

each set of regressors for z

ŝ

t in (5) and for each parametric specification for ut in (3), we 

choose the value of do with the lowest ŝ . The intuition here is that, given a parametric 

specification, the lowest ŝ  will correspond to the ‘do’ with the estimated residuals closest to 

a white noise process, and therefore it should be preferred to another ‘do’ with higher ŝ . 

Table 4 summarises the best nine model specifications for the different cases of no regressors, 

an intercept, and a linear time trend, combined with white noise, AR(1) and AR(2) 

disturbances. 

 

INSERT TABLE 4 ABOUT HERE 

 

 It can be seen in Table 4 (4th column) that, if ut is white noise, the unit root hypothesis 

(do = 1) appears to be the best specification for the three types of regressors for the three 

series. However, when imposing autoregressive disturbances, if zt = 0, the orders of 

integration are higher than 1 for all series, and when including an intercept and/or a linear 

time trend they are equal to 0.75 or 1. In order to choose next the best specification across the 

 10



different models for each series, we report, in the last column of Table 4, several diagnostic 

tests carried out on the residuals of the estimated models. Note that all them are based on the 

differenced regression, and therefore have short memory under the null hypothesis (6). In 

particular, we perform tests of homocedasticity, no serial correlation, functional form and 

normality. 

 Starting with the Nikkei 225, one can see that five models pass all the diagnostic tests 

on the residuals. They are models 3, 5, 6, 8 and 9, corresponding to zt = (1, t)’ with white 

noise ut (model 3); with AR(1) ut (model 6); and with AR(2) ut (model 9), and zt ≡ 1 with 

AR(1) and AR(2) disturbances (models 5 and 8). All the remaining models fail to pass at least 

one of the diagnostic tests, and therefore we do not consider them. Looking at models 3, 6 and 

9 (when a linear time trend is included in the regression model), one can see that the 

coefficients of t are not significantly different from zero, and consequently these models can 

also be discarded. Finally, the second AR coefficient in model 8 is insignificant. Therefore, 

model 5 appears as the best specification for this series, implying an order of integration of 

0.75. The resulting model is: 

)11.0(
.33.0;)1(

)45.888(
23.19965

1
75.0

ttttt

tt

uuuxL

xy

ε+==−

+=

−

   (15) 

 Next we look at the S&P’s 500. The results from the last column in Table 4 indicate 

that only two models (5 and 8) pass all the diagnostic tests. They are the ones with an 

intercept and AR(1) (model 5) and AR(2) (model 8) disturbances, and in both cases the order 

of integration is 0.75. In the latter model, the second AR coefficient appears to be 

insignificant, and therefore we model this series as: 
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)09.0(
.40.0;)1(

)60.43(
29.508
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−

   (16) 

 Finally, looking at the Dow Jones, again we find that only two models pass all the 

diagnostic tests at the 5% significance level. They are models 6 and 9, including a linear time 

trend, and AR(1) and AR(2) disturbances. When imposing an AR(2) structure on ut, the 

second AR coefficient is once more insignificant. Therefore, we can conclude that the best 

specification for this series is 

)11.0(
.36.0;)1(

)94.6()53.143(
69.4091.1316

1
75.0

ttttt

tt

uuuxL

xty

ε+==−

++=

−

   (17) 

 Overall, all three series can be modelled as I(d) processes with AR disturbances. This 

fractional structure results in greater flexibility in modelling the dynamics of the series 

compared with the restrictiveness of ARIMA specifications. The order of integration of the 

three series is around 0.75, i.e., they exhibit mean reversion. Furthermore, the fact that the 

models incorporate an autocorrelated structure enables us to separate the short-run 

components (which are determined by the AR parameters) from the long-run ones (which are 

determined by the fractional differencing parameter).1 Also, predictions can be evaluated 

according to these estimated models using the AR(∞) representation of the fractional 

polynomial (see equation below (3) and the short-run structure). 

 

                                                 
1 Note that the results reported in Tables 1 – 3  were also recomputed using the finite sample critical values 
obtained in Gil-Alana (1999b), where samples of approximately the same size are used. The findings did not 
differ much from those reported here, the non-rejection values essentially corresponding to the same (zt, do) 
combinations as when the asymptotic values are used. 
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5. Conclusions 

Three stock market series (the Nikkei 225, the Standard and Poor’s 500 and the Dow Jones 

EURO STOXX 50) have been analysed in this paper by means of fractionally integrated 

techniques. Specifically, we have used the tests of Robinson (1994a), which are efficient 

against fractional alternatives, and have a standard null asymptotic distribution. The results 

indicate that the orders of integration of the three series range in all cases between 0.75 and 

1.25. A model selection criterion was adopted to determine the best model specification for 

each series – this suggests that all of them can be specified as fractional processes of order 

0.75, with AR(1) disturbances. Therefore, they exhibit mean reversion. 

 Note that the approach used in this paper generates simply diagnostics for departures 

from any real d. It is not at all surprising then that, when fractional hypotheses are considered, 

some evidence supporting them is found, because this can happen even when the unit root 

model is highly appropriate. Therefore, it would be of interest to obtain point estimates of d. 

This can be done either with parametric approaches (e.g., Sowell’s (1992) procedure of 

estimating by maximum likelihood), or with semi-parametric ones (e.g., Robinson, 1994b; 

1995a and 1995b), the latter methods being more appropriate if the focus is on the long run 

properties of the series. 
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FIGURE 1 

Plots of the original series with their corresponding correlograms and periodograms 
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TABLE 1 

Testing (6) in (3) and (5) with white noise disturbances 

Series zt / do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

zt = 0 13.84 11.29 7.26 2.93 -0.29’ -2.14 -3.12 -3.67 -4.00 
zt ≡ 1 13.84 10.90 6.85 2.99  0.13’ -1.69 -2.74 -3.36 -3.74 

 
Nikkei 225 

zt = (1, t)’ 11.50 9.34 6.33 2.94  0.13’ -1.69 -2.75 3.36 -3.75 
zt = 0 15.75 14.95 8.29 3.44  0.80’ -0.96’ -2.23 -3.12 -3.73 
zt ≡ 1 15.75 13.60 9.26 3.21 -0.01’ -1.34’ -2.18 -2.88 -3.46 

 
S & P 500 

zt = (1, t)’ 14.36 10.51 6.21 2.43  0.06’ -1.29’ -2.19 -2.86 -3.43 

zt = 0 15.96 14.29 6.85 1.40’ -0.78’ -2.13 -3.01 -3.59 -3.99 
zt ≡ 1 15.96 14.37 11.32 4.15 -0.90’ -2.28 -2.91 -3.37 -3.72 

Dow Jones 
EURO 

STOXX 50 
zt = (1, t)’ 14.00 9.59 5.22 1.48’ -0.93’ -2.20 -2.91 -3.37 -3.73 
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TABLE 2 

Testing (6) in (3) and (5) with AR(1) disturbances 

Series zt / do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

1.16 -3.57 -6.31 16.26 -0.61’ 0.05’ -1.24’ -2.20 -2.85 
(0.92) (0.92) (0.84) (0.59) (0.003) (-0.43) (-0.57) (-0.61) (-0.63) 

zt = 0 
)ˆ(τ  

Ho: α = 1 NR NR NR R R R R R R 

1.16 -1.01 -1.68 -0.44’ -0.92’ -1.84 -2.64 -3.19 -3.54 
(0.92) (0.80) (0.59) (0.33) (0.08) (-0.11) (-0.24) (-0.34) (-0.41) 

zt ≡ 1 
)ˆ(τ  

Ho: α = 1 NR NR R R R R R R R 

1.12 -0.88 --2.08 -0.55’ -0.93’ -1.84 -2.64 -3.19 -3.55 
(0.89) (0.77) (0.58) (0.32) (0.08) (-0.11) (-0.24) (-0.34) (-0.41) 

 
 
 
 

Nikkei 225 

zt = (1, t)’ 
)ˆ(τ  

Ho: α = 1 NR NR R R R R R R R 

 -0.40 0.58 -5.80 -3.08 0.49’ -0.45’ -1.20’ -1.99 -2.64 
(0.99) (0.92) (0.61) (0.29) (-0.07) (-0.35) (-0.49) (-0.56) (-0.60) 

zt = 0 
)ˆ(τ  

Ho: α = 1 NR NR NR R R R R R R 

-0.40 -2.01 -4.15 -0.73’ -2.14 -2.89 -3.08 -3.25 -3.45 
(0.99) (0.97) (0.86) (0.40) (0.03) (-0.13) (-0.24) (-0.34) (-0.41) 

zt ≡ 1 
)ˆ(τ  

Ho: α = 1 NR NR NR R R R R R R 

0.01 0.23 1.94 -0.64’ -2.11 -2.80 -3.09 -3.23 -3.44 
(0.86) (0.68) (0.45) (0.22) (0.03) (-0.12) (-0.24) (-0.34) (-0.42) 

 
 
 
 

S & P 500 

zt = (1, t)’ 
)ˆ(τ  

Ho: α = 1 NR NR R R R R R R R 

-1.23 0.17 3.36 1.97 0.96’ 0.56’ -0.23’ -1.90 -1.91 
(0.98) (0.90) (0.63) (0.34) (0.04) (-0.21) (-0.39) (-0.50) (-0.57) 

zt = 0 
)ˆ(τ  

Ho: α = 1 NR NR R R R R R R R 

-1.23 -2.84 -5.01 -3.92 -2.60 -2.46 -2.29 -2.28 -2.47 
(0.98) (0.95) (0.81) (0.45) (0.18) (-0.002) (-0.15) (-0.29) (-0.41) 

zt ≡ 1 
)ˆ(τ  

Ho: α = 1 NR NR NR R R R R R R 

1.52 2.40 2.20 -1.39’ -2.37 -2.46 -2.33 -2.21 -2.36 
(0.88) (0.74) (0.55) (0.36) (0.17) (0.004) (-0.15) (-0.29) (-0.41) 

 
 
 
 

Dow Jones 
EURO 

STOXX 50 

zt = (1, t)’ 
)ˆ(τ  

Ho: α = 1 NR NR R R R R R R R 
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TABLE 3 

Testing (6) in (3) and (5) with AR(2) disturbances 

Series zt / do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

-0.21 -3.40 -4.21 -3.78 3.19 1.60’ 1.29’ 0.22’ -2.53 
(0.91) (0.92) (0.84) (0.58) (-0.12) (-1.36) (-2.14) (-2.36) (-2.27) 

zt = 0 

)ˆˆ( 21 ττ +  

Ho:  Unit root NR NR NR R R R R R R 

-0.21 -0.53 -0.40 -0.21’ -0.23’ -1.68 -1.71 -1.74 -2.12 
(0.91) (0.80) (0.60) (0.33) (0.007) (-0.31) (-0.58) (-0.79) (-0.96) 

zt ≡ 1 

)ˆˆ( 21 ττ +  

Ho: Unit root NR NR NR R R R R R R 

-0.45 -0.46 -0.47 0.25’ -0.23’ -1.66 -1.68 -1.71 -2.12 
(0.87) (0.77) (0.60) (0.33) (0.007) (-0.31) (-0.58) (-0.79) (-0.96) 

 
 
 
 

Nikkei 225 

zt = (1, t)’ 

)ˆˆ( 21 ττ +  

Ho: Unit root NR NR NR R R R R R R 

-0.80 0.69 -1.46 2.30 2.31 1.20’ 0.90’ 0.26’ -0.39 
(0.99) (0.93) (0.58) (0.21) (-0.29) (-0.95) (-1.47) (-1.74) (-1.83) 

zt = 0 

)ˆˆ( 21 ττ +  

Ho: Unit root NR NR NR R R R R R R 

-0.80 -1.25 -2.04 -0.34’ -0.99’ -1.68 -1.84 -1.93 -2.06 
(0.99) (0.97) (0.88) (0.73) (-0.11) (-0.38) (-0.58) (-0.76) (-0.94) 

zt ≡ 1 

)ˆˆ( 21 ττ +  

Ho: Unit root NR NR NR R R R R R R 

-0.73 -0.02 0.60’ -0.01’ -0.97’ -1.78 -1.85 -1.89 -2.01 
(0.84) (0.66) (0.41) (0.14) (-0.12) (-0.36) (-0.57) (-0.76) (-0.94) 

 
 
 
 

S & P 500 

zt = (1, t)’ 

)ˆˆ( 21 ττ +  

Ho: Unit root NR NR R R R R R R R 

-2.59 -0.18 2.78 2.48 2.83 1.10’ 0.95’ 0.57’ -2.16 
(0.98) (0.89) (0.60) (0.31) (-0.02) (-0.42) (-0.82) (-1.13) (-1.34) 

zt = 0 

)ˆˆ( 21 ττ +  

Ho: Unit root NR NR NR R R R R R R 

-2.59 -2.83 -2.66 -1.17’ -1.39’ -1.66 -1.68 -1.73 1-.85 
(0.98) (0.95) (0.81) (0.44) (0.13) (-0.05) (-0.22) (-0.39) (-0.58) 

zt ≡ 1 

)ˆˆ( 21 ττ +  

Ho: Unit root NR NR NR R R R R R R 

-0.12 1.66 0.52’ -0.50’ -1.27’ -1.69 -1.72 -1.77 -1.82 
(0.87) (0.70) (0.50) (0.31) (0.12) (-0.04) (-0.21) (-0.39) (-0.58) 
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)ˆˆ( 21 ττ +  

Ho: Unit root NR R R R R R R R R 
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TABLE 4 

Best model specifications according to Tables 1 – 3 
 

Model:         tttttt
d

tt uuuuxLxty εττββ ++==−++= −− 221121 ;)1(;

Series Model ŝ  d β1 β2 τ1 τ2 Diagnostic 

1 zt = 0;   WN ut -0.29 1.00 --- --- --- --- A;  B 

2 zt ≡ 1;  WN ut   0.13 1.00 20229.12   (910.06) --- --- --- A;  C;  D 

3 zt = (1,t);  WN ut   0.13 1.00 20254.45  (922.61) -25.33   (108.73) --- --- A;  B;  C;  D 

4 zt = 0;   AR1 ut   0.05 1.25 --- --- -0.43   (0.07) --- A;  C;  D 

5 zt ≡ 1;  AR1 ut -0.44 0.75 19965.23   (888.45) --- 0.33   (0.11) --- A;  B;  C;  D 

6 zt = (1,t);  AR1 ut -0.55 0.75 20148.31  (916.82) -36.91   (44.33) 0.32   (0.11) --- A;  B;  C;  D 

7 zt = 0;   AR2 ut   0.22 1.75 --- --- -1.28   (0.07) -1.08   (0.05) C 

8 zt ≡ 1;  AR2 ut -0.21 0.75 19965.23   (888.45) --- 0.32   (0.12) 0.006  ( 0.12) A;  B;  C;  D 

 
 
 
 
 
 
 
   
Nikkei  
 
  225 

9 zt = (1,t);  AR2 ut -0.23 1.00 20254.45   (922.61) -25.33   (108.73) 0.087  (0.12) -0.080  (0.12) A;  B;  C;  D 

1 zt = 0;   WN ut  0.80 1.00 --- --- --- --- A 

2 zt ≡ 1;  WN ut -0.01 1.00 481.61   (34.14) --- --- --- A;  C;  D 

3 zt = (1,t);  WN ut  0.06 1.00 468.26   (31.87) 13.34   (3.75) --- --- A;  C;  D 

4 zt = 0;   AR1 ut -0.45 1.25 --- --- -0.35    (0.06) --- A;  C;  D 

5 zt ≡ 1;  AR1 ut -0.73 0.75 508.29   (43.60) ---  0.40   (0.09) --- A;  B;  C;  D 

6 zt = (1,t);  AR1 ut -0.64 0.75 442.06   (30.69) 13.43   (1.48) 0.22   (0.11) --- A;  B;  C 

7 zt = 0;   AR2 ut 0.26 1.75 --- --- -0.99   (0.09) -0.75  (0.06) D 

8 zt ≡ 1;  AR2 ut -0.34 0.75 508.29  (43.60) --- 0.53   (0.11)  0.20  (0.12) A;  B;  C;  D 

 
 
 
 
 
 
 
 
  
S&P’s  
 
  500 

9 zt = (1,t);  AR2 ut -0.01 0.75 442.06   (30.69) 13.43   (1.48) 0.25   (0.12) -0.09  (0.12) A;  B;  C 

1 zt = 0;   WN ut -0.78 1.00 --- --- --- --- A;  B 

2 zt ≡ 1;  WN ut -0.90 1.00 1456.91   (148.28) --- --- --- D 

3 zt = (1,t);  WN ut -0.93 1.00 1412.80   (143.57) 44.13   (16.92) --- --- A;  D 

4 zt = 0;   AR1 ut -0.23 1.50 --- --- -0.39   (0.07) --- --- 

5 zt ≡ 1;  AR1 ut --- --- --- --- --- --- --- 

6 zt = (1,t);  AR1 ut -1.39 0.75 1316.91   (143.53) 40.69   (6.94) 0.36   (0.11) --- A;  B;  C;   D 

7 zt = 0;   AR2 ut   0.57 1.75 --- --- -0.71   (0.10) -0.41  (0.08) A;  B;  D 

8 zt ≡ 1;  AR2 ut -1.17 0.75 1517.63   (169.02) --- 0.57   (0.12) -0.12  (0.13) A;  B 

 
 
 
 
 
 
 
 
Dow 
Jones 

 
 

EURO  
ST.50 

9 zt = (1,t);  AR2 ut -0.50 0.75 1316.91   (143.53) 40.69   (6.94) 0.41   (0.12) -0.09  (0.13) A;   B;   C;   D

 

 

 21


	ABSTRACT
	Three stock market indices (the Nikkei 225, the Standard and
	5. Conclusions
	Three stock market series (the Nikkei 225, the Standard and 
	References
	FIGURE 1
	Plots of the original series with their corresponding correl
	TABLE 2
	TABLE 3
	TABLE 4
	Best model specifications according to Tables 1 – 3

