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Abstract 

This paper examines a version of the tests of Robinson (1994) that enables one to test models of 
the form (1-Lk)dxt = ut, where k is an integer value, d may be any real number, and ut is I(0). 
The most common cases are those with k = 1 (unit or fractional roots) and k = 4 and 12 
(seasonal unit or fractional models). However, we extend the analysis to cover situations such 
as (1-L5)d xt = ut, which might be relevant, for example, in the context of financial time series 
data. We apply these techniques to the daily Eurodollar rate and the Dow Jones index, and find 
that for the former series the most adequate specifications are either a pure random walk or a 
model of the form xt = xt-5 + εt, implying in both cases that the returns are completely 
unpredictable. In the case of the Dow Jones index, a model of the form (1-L5)d xt = ut is 
selected, with d constrained between 0.50 and 1, implying nonstationarity and mean-reverting 
behaviour. 
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1. Introduction 

Nonstationarity is a characteristic of many economic and financial time series. The unit root 

polynomial is the most natural way of modelling this behaviour: once a time series is first-

differenced, it is assumed to be stationary, or, more precisely, integrated of order 0 (denoted by 

I(0)). For the purpose of the present paper, we define an I(0) process in its most general form, 

i.e., as a covariance stationary process with a spectral density function that is positive and finite 

not only at zero but at any frequency on the spectrum. 

 Following the work of Box and Jenkins (1970), the unit root model became very 

popular, especially after the seminal paper of Nelson and Plosser (1982). Using the tests of 

Fuller (1976) and Dickey and Fuller (1979), these authors were unable to reject the presence of 

a unit root in fourteen US macroeconomic series. Such tests and others that have been proposed 

later (Phillips, 1987; Phillips and Perron, 1988; Kwiatkowski et al., KPSS, 1992)1 are based on 

autoregressive (AR) alternatives, in the sense that they are nested in a model of the form: 

...,,2,1t,ux)L1( tt ==α−             (1) 

where L is the lag operator (i.e., Lxt = xt-1), and where the unit root corresponds to the null α = 

1. However, a problem with these procedures is that their limit distributions are non-standard, 

and therefore the critical values have to be obtained numerically by performing simulations. 

This is a consequence of the abrupt change in the asymptotic behaviour of the distributions 

around the unit root. Note that xt in (1) is stationary for ⎢α ⎜< 1; it is nonstationary but non-

explosive for ⎢α ⎜= 1; and it becomes explosive for ⎢α ⎜> 1. This has motivated the use of other 

models for testing unit roots. In particular, fractional processes have been considered as an 

alternative to AR models. In this context, the unit root hypothesis is tested within the model: 

...,,2,1,)1( ==− tuxL tt
d            (2) 

                                                 
1 Note that, strictly speaking, KPSS is not a unit root test, since the null hypothesis is stationarity (around either a 
level or a linear trend) while the alternative is a unit root. 
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where d may be any real number, and the unit root case corresponds to d = 1. Here, the limit 

behaviour is smooth around the unit root null, and d = 0.5 becomes the crucial parameter to 

distinguish between stationarity and nonstationarity. Examples of testing procedures using the 

fractional model (2) are, amongst others, Sowell (1992), Robinson (1994, 1995a,b), Tanaka 

(1999) and Dolado et al. (2001). 

 Many series also contain seasonal fluctuations, and stochastic models based on seasonal 

unit roots have been proposed in recent years. As in the previous case, most of the available 

procedures (Dickey, Hasza and Fuller, DHF, 1984; Hylleberg, Engle, Granger and Yoo, 

HEGY, 1990; etc.) are based on AR alternatives, and therefore face the same problem 

concerning the limit behaviour of the distribution. New approaches based on fractional 

integration have been proposed by Porter-Hudak (1990) and Robinson (1994). They consider 

processes of the form: 

...,,2,1,)1( ==− tuxL tt
dk              (3) 

where k is the number of time periods within the year, and Lk is the seasonal lag-operator (Lkxt 

= xt-k). Note that the polynomial on the left-hand-side of (3) can be expressed in terms of its 

Binomial expansion, such that, for all real d, 
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Clearly, if d = 0 in (3), xt = ut, and a weakly autocorrelated xt is allowed for. If d > 0, the 

process is said to be a long memory one, so named because of the strong association between 

observations far apart in time, and the higher is d, the stronger will be the association. 

 The literature on seasonal processes has usually concentrated on the cases of k = 4 

(quarterly) or k = 12 (monthly observations). In this paper, we examine different versions of 

the tests of Robinson (1994) that enable us to test models like (3) for any integer k and any real 

value d. Thus, we consider unit (and fractional) roots at the zero and at the seasonal frequency, 
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but also at other frequencies in the interval (0, π]. Specifically, we analyse the following 

processes: 

i) I(1) processes: when k = d = 1. (see Dickey and Fuller, 1979; Phillips and Perron, 

1988; KPSS, 1992). 

ii) I(d) processes: when k = 1 and d is a real value. (see Diebold and Rudebusch, 1989; 

Baillie, 1996; Gil-Alana and Robinson, 1997). 

iii) Seasonal unit roots: when k = 4 and d = 1. (see DHF, 1984; HEGY, 1992; Beaulieu 

and Miron, 1992, for k = 12). 

iv) Seasonal fractional models: when k = 4, 12 and d is a real value. (see Porter-Hudak, 

1990; Ray, 1993; Sutcliffe, 1994), 

but also processes of the form (1-L3)dxt = ut, or (1-L5)dxt = ut.  

Let us focus on the last type of model. If d = 1, this implies that the present value of the 

series (xt) depends exclusively on its value five periods before (xt-5), and if d is real, it will 

depend not only on xt-5 but on all past observations which are backwards multiples of 5, i.e., xt-

10, xt-15, … This type of model is relevant, for example, in the context of daily financial data, 

where the value of an asset on a given day of the week may be strongly influenced by its value 

on the same day of the previous week. There is in fact an extensive literature documenting the 

presence of calendar anomalies (such as the weekend effect, the day of the week effect, and the 

January effect) in financial series, both in the US and in other developed markets, dating back 

to Osborne (1962). Negative Monday returns were found, inter alia, by Cross (1973), French 

(1980), and Gibbons and Hess (1981), the former two analysing the S&P 500 index, the latter 

the Dow Jones Industrial Index. Similar findings have been reported for other US financial 

markets, such as the futures, bond and Treasury bill markets (Cornell, 1985, Dyl and Maberly, 

1986), foreign exchange markets (Hsieh, 1988), and for Australian, Canadian, Japanese and 

UK financial markets (e.g., Jaffe and Westerfield, 1985, Jaffe, Westerfield and Ma, 1989, 
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Agrawal and Tandon, 1994). Effects on stock market volatility have also been documented 

(Kiymaz and Berument, 2003). 

Various explanations have been offered for the observed patterns. Some focus on delays 

between trading and settlement in stocks (Gibbons and Hess, 1981): buying on Fridays creates 

a two-day interest-free loan until settlement; hence, there are higher transaction volumes on 

Fridays, resulting in higher prices, which decline over the weekend as this incentive disappears. 

Others emphasise a shift in the broker-investor balance in buying-selling decisions which 

occurs on weekends, when investors have more time to study the market themselves (rather 

than rely on brokers); this typically results in net sales on Mondays, when liquidity is low in the 

absence of institutional trading (Miller, 1988). It has also been suggested that the Monday 

effect largely reflects the fact that, when daily returns are calculated, the clustering of dividend 

payments around Mondays is normally ignored; alternatively, it could be a consequence of 

positive news typically being released during the week, and negative ones over the weekend 

(Fortune, 1998). Additional factors which could be relevant are serial correlation, with Monday 

prices being affected by Friday ones, and a negative stock performance on Fridays being given 

more weight (Abraham and Ikenberry, 1994); measurement errors (Keim and Stambaugh, 

1984); size (Fama and French, 1992); volume (Lakonishok and Mayberly, 1990).  

Further empirical evidence on weekday effects is provided in the present study using 

fractional integration techniques. In particular, we use a methodology that allows us to consider 

fractional processes where the dependence between the observations is a function of a specific 

day of the week, not only Monday as in earlier studies, but any day of the week. Of particular 

interest is the order of (fractional) integration of the series. If it is smaller than 1, shocks 

affecting the weekly structure will be mean reverting, and their effects will disappear in the 

long run. On the other hand, if it is 1 or higher, shocks will persist forever, and strong measures 

will be required to bring the variable back to its original level. 
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The outline of the paper is as follows: Section 2 describes the different versions of the 

tests of Robinson (1994) we employ. Section 3 presents a Monte Carlo simulation study, 

examining the size and power properties of these tests in finite samples. Section 4 discusses 

two empirical applications based on financial data, while Section 5 offers some concluding 

remarks. 

 

2. Testing of nonstationarities in the unit circle 

Following Bhargava (1986), Schmidt and Phillips (1992) and other studies in the 

parameterisation of unit roots, Robinson (1994) considers the regression model: 

...,2,1,' =+= txzy ttt β           (4) 

where yt is the time series we observe; β is a (kx1) vector of unknown parameters; zt is a (kx1) 

vector of regressors, and xt are the regression errors, taking the form: 

       ,...,2,1,);( == tuxL ttθρ            (5) 

where ρ is a scalar function that depends on L and the unknown parameter θ that will adopt 

different forms as below, and ut is I(0). The function ρ is specified in such a way that all its 

roots should be on the unit circle in the complex plane, and therefore it includes polynomials of 

the form (1-Lk)d+θ, where k is an integer and d may be a real value. Thus, in what follows, we 

assume that  

.             (6) )1();( θθρ +−= dkLL

Robinson (1994) proposed a Lagrange Multiplier (LM) test of the null hypothesis: 

    ,0: =θoH .            (7) 

in a model given by (4) - (6). Based on Ho (7), the estimated β and residuals are: 
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The functional form of the test statistic is given by: 

 5



    aATr ˆˆ
ˆ

ˆ 2/1
2

2/1
−=

σ
                         (8) 

where T is the sample size and 

               ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑ ∑ ∑×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∑×−=

= = =

−

=

*

1

*

1

1*

1

1
*

1

2 )()(ˆ)'(ˆ)(ˆ)'(ˆ)()(2ˆ
j j j

jj
j

jjjjjT
A λψλελελελελψλψ          (9) 

∑ ∑==
−

=
=

−

=

−−*

1

1

1

1221 );()ˆ;(2)ˆ(ˆ);()ˆ;()(2ˆ
j

T

j
jjjjj Ig

T
Ig

T
a λτλπτσσλτλλψπ  

).(argˆ;2);ˆ;(log)(ˆ 2
* τστπλτλ

τ
λε

τ Tjjj min
T

jg
∈

==
∂
∂

=  

and the sums over * in the above expressions are over λ ∈ M where M = {λ: -π < λ < π, λ ∉ (ρl 

- λ1, ρl + λ1), l = 1, 2, …, s} such that ρl, l = 1, 2, …, s < ∞ are the distinct poles of ψ(λ) on (-π, 

π]. Also, 
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and I(λj) is the periodogram of ut evaluated under the null. The function g above is a known 

function coming from the spectral density of ut, 
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Note that these tests are purely parametric, and, therefore, they require specific modelling 

assumptions about the short memory specification of ut. Thus, if ut is a white noise, g ≡ 1, (and 

thus, ), and if it is an AR process of the form φ(L)u0)(ˆ =jλε t = εt, g = |φ(eiλ)|-2, with σ2 = V(εt), 

so that the AR coefficients are a function of τ. 

 Based on Ho (7), Robinson (1994) showed that under certain very mild regularity 

conditions:2

            .)1,0(ˆ ∞→→ TasNr d          (11) 

                                                 
2  These conditions are technical and refer to the functional form of ψ(λj) in the specification of the test statistic. 
They are satisfied by the model given by (4) - (6). 
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Hence, we are in a classical large sample-testing situation: an approximate one-sided 100α% 

level test of Ho (7) against the alternative: Ha: d > do (d < do) will be given by the rule: “Reject 

Ho if  r̂  > zα ( r̂  < - zα)”, where the probability that a standard normal variate exceeds zα is α. 

 Note that given the functional form of ρ in (6), 
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In some simple cases, the above formula simplifies. Thus, for example, if k = 1, 
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A common feature of all these expressions is that they have a finite number (k) of poles across 

the spectrum, but they are all squared integrable. Figure 1 displays plots of the ψ(λ)-functions 

for k = 1, 2, 3, 4, 5 and 6. The poles are clearly identified in the plots.  

(Insert Figure 1 about here) 

 

3. A Monte Carlo simulation study 

We start by examining the size of the above versions of the tests of Robinson (1994). We 

consider six null models of the form: 

...,,2,1,)1( ==− tuxL tt
k  
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with k = 1, 2, 3, 4, 5 and 6, with white noise ut. We generate Gaussian series using the routines 

GASDEV and RAN3 of Press, Flannery, Teukolsky and Vetterling (1986), with 10,000 

replications in each case. The sample size is T = 50, 100, 300, 500 and 1000 observations, and 

the nominal size is 10% in Table 1, and 5% in Table 2. 

(Insert Tables 1 and 2 about here) 

We can see from these two tables that if the sample size is small (e.g., T = 50), there is a 

significant positive bias, especially for the cases of k = 3, 4 and 6. However, as the sample size 

increases, the empirical sizes approximate the nominal ones. Thus, for example, if T = 1000, 

the sizes range between 10.6% and 11.8% in Table 1, and between 5.3% and 6.8% in Table 2. 

 Tables 3 – 5 display the rejection probabilities of the above versions of the tests when 

looking at alternatives of the form given in (6) with d = 1 and θ = -1, -0.75, -0.50, -025, 0.25, 

0.50, 0.75 and 1, assuming that k is correctly specified, that is, it is the same under both the null 

and the alternative hypotheses. 

(Insert Tables 3 – 5 about here) 

 Table 3 reports the results for T = 100, while Tables 4 and 5 refer to T = 300 and 500 

respectively. We observe that even for the smallest sample size (T = 100, in Table 3), the 

rejection probabilities are high even for small departures from the null. The lowest values are 

obtained for the cases of k = 3 and 5 (with θ > 0) and k = 6 (with θ < 0). However, if θ ≤ -0.50 

or θ ≥ 0.50, the values are higher than 0.90 in all cases. If T = 300 (Table 4), the rejection 

probabilities exceed 0.90 even for θ = ±0.25, and they are all 1 with θ  > 0.50. Finally, if T = 

500 (Table 5), the values are equal to 1 in all cases. 

 In brief, the versions of the tests of Robinson (1994) considered in this paper appear to 

perform extremely well in finite samples, especially if the sample size is relatively large (i.e., T 

≥ 300). 
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4.  Two empirical applications 

Two financial time series are analysed in this section. The first is the Eurodollar rate, daily 

(from Monday to Friday), for the time period January 9, 1995 - April 23, 2004.3 The second is 

the Dow Jones stock price index, daily from January 7th, 2002 to May 7th, 2004. In both cases, 

if there is no value for a given day, the arithmetic mean using the previous and the following 

observation was computed. 

 The analysis is carried out with the original data, though identical results were obtained 

when using the log-transformations. Note, however, that these are of interest only in the case of 

integer-differentiation, which gives a returns series. Deterministic components such as an 

intercept or an intercept and a linear time trend were also included in the models specified 

below, but these coefficients were found to be insignificantly different from zero in all cases. 

Thus, the analysis was carried out on the basis of equation (5) for different ρ-functions and 

different types of I(0) disturbances. 

 

4.1 The Eurodollar rate 

The Eurodollar rate is the bid side of the Eurodollar quote in London. It is collected between 7 

and 9 a.m. Eastern time (approximately late morning London time), and it has been obtained 

from the Federal Reserve Bank of St. Louis database. 

(Insert Figure 2 about here) 

 Figure 2 contains plots of the original series, its first and 5-period differences along 

with their corresponding correlograms and periodograms. We see that the original series seems 

to be stationary for the first part of the sample, up to approximately December 2000. Then, it 

starts decreasing sharply and becomes relatively stable towards the end of 2003 and the 

beginning of 2004. Both the correlogram and the periodogram indicate nonstationarity, with the 

autocorrelation values decaying very slowly and with a large peak in the periodogram at the 
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smallest frequency. The plots corresponding to the first differences suggest that the differenced 

series may be stationary, though there are significant values in the correlogram at some lags far 

away from zero, and the same happens with the 5-period differences. Finally, the periodogram 

of the 5-period differences has values close to 0 at some frequencies, indicating that the series 

may be overdifferenced with respect to them. 

Denoting the series by xt, we start by estimating the model given by (5) and (6) with k = 

5, i.e., under Ho (7), we test: 

,...,2,1,)1( 5 ==− tuxL tt
d  

with d = 0, (0.10), 2, and modelling ut first as a white noise process, and then allowing for I(0) 

autocorrelation. In the latter case, we first assumed AR(1) and AR(2) processes, and the null 

hypothesis was rejected in all cases except when d = 0, thus implying short memory. However, 

in these cases the coefficients corresponding to the AR parameters were extremely close to the 

unit root circle, suggesting that these parameters are competing with the fractional differencing 

one in describing the nonstationarity of the series. Thus, we tried other less conventional forms 

for the I(0) disturbances, which are very convenient in the context of the present tests. In 

particular, we used a model due to Bloomfield (1973), where the short-run components are 

defined exclusively in terms of the spectral density function, which is given by: 

.)(cos2exp
2

);(
1

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

m

r
r rf λτ

π
στλ                   (12) 

The intuition behind this model is the following. Suppose that ut is an ARMA process of the 
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3   The week corresponding to the September 11 attacks in 2001 was removed from the analysis. 
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where εt is a white noise process and all zeros of φ(L) = (1 – φ1L - … – φpLp) lie outside the 

unit circle and all zeros of θ(L) = (1 - θ1L - … - θqLq) lie outside or on the unit circle. Clearly, 

the spectral density function of this process is then: 
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where τ now corresponds to all the AR and MA coefficients, and σ2 is the variance of εt. 

Bloomfield (1973) showed that the logarithm of an estimated spectral density function is often 

a fairly well-behaved function, and therefore can be approximated by a truncated Fourier series. 

He showed that (12) approximates (13) well, with p and q being small values, which usually 

happens in economics. Like the stationary AR(p) model, the Bloomfield (1973) model has 

exponentially decaying autocorrelations, and thus can be used for ut in (5). Formulae for 

Newton-type iterations for estimating the τr are very simple (involving no matrix inversion), 

updating formulae when m is increased are also simple, and we can replace  in (9) by the 

population quantity: 

Â
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which indeed is constant with respect to the τr (in contrast to the AR case). The Bloomfield 

(1973) model, combined with fractional integration, has not been used very much in previous 

econometric models (though the model itself is well-known in other disciplines – see, e.g., 

Beran, 1993). Our analysis shows that it is a credible alternative to the fractional ARIMA 

specifications, which have become conventional in the parametric modelling of long memory.4  

 The test statistic reported in Table 6 is the one-sided statistic given by r̂  in (8) for the 

three types of disturbances. A noteworthy feature emerging from this table is that it decreases 

                                                 
4 Empirical applications using the model of Bloomfield (1973) with I(d) processes can be found in Velasco and 
Robinson (2000) and Gil-Alana (2001b). 
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monotonically with d. This is to be expected, given the fact that it is a one-sided statistic. Thus, 

for example, it is desirable that if Ho (7) is rejected with d = 0.75 in favour of alternatives of 

form d > 0.75, an even more significant rejection should occur when d = 0.50 or 0.25 are 

tested. It can be seen that the only value of d for which the null hypothesis cannot be rejected 

corresponds to d = 1, in all three cases of white noise and Bloomfield (with m = 1 and 2) 

disturbances. 

 (Insert Tables 6 and 7 about here) 

 Table 7 displays the 95% confidence intervals of the values of d for which Ho cannot be 

rejected.  These intervals were constructed as follows: We re-computed the tests sequentially 

for do-values = 0, (0.01), 2, choosing the values of do for which Ho cannot be rejected at the 5% 

significance level. Thus, the value corresponding to the lowest statistic in absolute value 

(which is reported in the table in parenthesis within the square brackets) will be an 

approximation to the maximum likelihood estimator. We see that the intervals are very narrow, 

and the lowest statistic in absolute value corresponds to d = 1 or 1.01. 

Next, we performed the test assuming that the process contains only one root at the 

long- run or zero frequency. In other words, we tested for the presence of unit (or fractional) 

roots in a model given by: 

,...,2,1,)1( ==− tuyL tt
d  

for the same values of d and the same type of disturbances as in the previous case. The results 

are reported in Tables 8 and 9. Starting with the case of a white noise ut, we see that the unit 

root cannot be rejected, implying that a simple random walk model may be a plausible 

alternative for this series, and similar results are obtained when autocorrelated disturbances are 

employed. Again, the values here are centred around the unit root, and the coefficients for the 

autocorrelation case were significantly close to 0 in all cases. 

(Insert Tables 8 and 9 about here) 
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 The results presented so far suggest that the daily Eurodollar rate can be described 

either as a pure random walk process, i.e., 

...,2,1,1 =+= − tyy ttt ε                    (14) 

or as 5-period differences, such that: 

...,2,1,5 =+= − tyy ttt ε ,         (15) 

both models implying that the data are completely unpredictable.5 Note that the similarities for 

the cases of white noise and autocorrelated (Bloomfield) disturbances may be explained by the 

fact that the short-run dynamics are not important when modelling this series. In fact, the 

coefficients corresponding to the Bloomfield model (for the unit root case – not reported) were 

very close to 0, indicating that ut can be specified as a white noise process. Finally, the plot of 

the series in Figure 2 also indicates the possible presence of a structural break in the data. An 

appealing feature of Robinson's (1994) testing procedure described in Section 2 is that it allows 

one to include deterministic components to take into account the break with no effect on its 

standard limit distribution. On the other hand, a drawback of this procedure is that the type and 

the time of the break have to be specified. Visual inspection of Figure 2 suggests that the break 

is likely to have occurred in December 2000, and we choose as the breakpoint November 29, 

2000, which corresponds to the highest value of the series, which then decreases sharply.6 We 

experimented with different types of break, including slope and shift breaks. In all cases the 

results were very similar to those reported, providing evidence of unit roots of the form given 

in (14) or (15).  

Therefore, it appears that the daily structure of the Eurodollar rate is completely 

unpredictable, supporting the efficiency market hypothesis, according to which, because of 

arbitrage, it should not be possible, using publicly available information, to make systematic 

profits over and above transaction costs and risk premia. Thus, evidence of mean reversion 

                                                 
5    Similar conclusions were obtained with the log-transformed data implying that the returns are also 
unpredictable. 
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would be inconsistent with equilibrium asset pricing models. The fact that both a random walk 

and a 5-period difference model appear to be equally suitable to capture the stochastic 

behaviour of the series can be interpreted as indicating that weekday effects do not play a 

crucial role in this series. 

In order to determine which of the two specifications better describe the data we carry 

out a bootstrap simulation. Instead of standard normal increments, we consider the changes in 

the Eurodollar rate. For both the random walk (14) and the 5-period random walk (15) we 

simulate 500 times the future paths for t = 250 … 2425, drawing each time uniformly from the 

original changes. In Figure 3 we can see the Eurodollar rate and the averages of the simulated 

paths. 

(Insert Figure 3 about here) 

One can see that approximately up to observation 1645 the Eurodollar rate can be better 

modelled as a 5-period random walk, while for the whole sample a random walk specification 

seems preferable. It also appears that there is a structural break around t = 1645 (a big drop on 

19/04/2001 from 4.97 to 4.44).    

 

4.2 The Dow Jones index 

The second empirical application is based on the Dow Jones (5) index. This is a market index 

constructed as a subset of the Dow Jones Industrial average. Of the 30 stocks in the Industrial 

Average the five with the highest dividend yield during the 12-month period ending in 

December are selected as the Dow Jones (5). The source of the data is http:// 

www.djindexes.com. 

(Insert Figure 4 about here) 

                                                                                                                                                           
6  Other breakpoints were also considered, obtaining very similar results. 
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 Figure 4 is similar to Figure 2 but refers to the new series. This is also clearly 

nonstationary. Its first differences may be stationary, while the 5-period differences suggest 

overdifferencing with respect to some of the frequencies. 

(Insert Tables 10 and 11 about here) 

 We proceed as in the previous case. Thus, we start by performing the tests for the case 

of (5) and (6) with k = 5, with the same values of d as in the other cases (see Table 10). An 

interesting result we find is that the unit root null (i.e., d = 1) is rejected for the three types of 

disturbances in favour of smaller orders of integration. If ut is white noise, Ho cannot be 

rejected at d = 0.9, and, assuming autocorrelation in the case of Bloomfield (1973) 

disturbances, the non-rejection values occur at d = 0.60 with m = 1, and at d = 0.50 with m = 2. 

Thus, in the three cases, we find evidence of mean reversion. Table 11 displays the 95%-

confidence intervals. If ut is white noise, the values of d where Ho cannot be rejected range 

between 0.89 and 0.98, and in the case of Bloomfield (1973) disturbances, they range between 

0.57 and 0.68 (with m = 1) and between 0.44 and 0.56 (with m = 2). 

(Insert Tables 12 and 13 about here) 

In Table 12 we assume that the correct model is given by (5) and (6) with k = 1, and the 

non-rejection values now occur at d = 1 (white noise ut) along with d = 0.9 with autocorrelated 

disturbances. Thus, assuming a single pole (or singularity) at the zero frequency, the values of 

d for which the null cannot be rejected are much higher than in the previous case. However, 

these values may be biased. Several studies in a hydrological context (Montanari, Rosso and 

Taqqu, 1995, 1996, 1997) showed that the presence of periodicities might influence the 

reliability of the estimators of the long memory parameter. Analysing the series of the monthly 

flows of the Nile River at Aswan, these authors found that many heuristic estimators gave a 

positive value for d, indicating long memory where none was present.7  

                                                 
7   In another recent paper, Montanari, Taqqu and Teverowsky (1999) performed an extensive Monte Carlo 
investigation in order to find out how reliable the estimators of long memory are in the presence of periodicities, 
and they concluded that the best results are those obtained using likelihood-type methods. 
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(Insert Table 14 about here) 

 As a final step, we investigated whether the day of the week has any influence on the 

order of integration of the series. Therefore, we separated the data according to the day of the 

week, and performed again the tests of Robinson (1994) based on the model given by (5) and 

(6) with k = 1, testing the degree of dependence at the long run or zero frequency. We find that 

the unit root null hypothesis cannot be rejected for any series and any type of disturbances, 

though the lowest statistics are in all cases smaller than 1 (Table 14). Another interesting 

feature emerging from Table 14 is that the degree of dependence increases with the day of the 

week. On Mondays, d is around 0.92. It is slightly higher on Tuesdays and Wednesdays, and a 

bit higher on Thursdays and Fridays. These differences, though small, give further support to 

the model given in (5) and (6) with k = 5 as an adequate specification for this series, and, given 

the fact that d is smaller than 1, future values of the series are predictable to some extent. 

In the case of the Dow Jones index, therefore, we find evidence of nonstationarity, but 

also of shocks dying away in the long run, which would imply a degree of predictability 

apparently inconsistent with market efficiency. We also show that this is a function of the day 

of the week being considered: it appears that there are significant weekday effects, resulting in 

predictable values throughout the past history of the series. 

 

5. Conclusions 

This paper has considered a version of the tests of Robinson (1994) that enables one to test 

models of the form (1-Lk)dxt = ut, where k is an integer value, d can be any real number, and ut 

is I(0). The most common cases are those with k = 1 (unit or fractional roots) and k = 4 and 12 

(seasonal unit or fractional models). However, we extend the analysis to cover situations such 

as (1-L5)dxt = ut, which might be relevant, for example, in the context of daily financial data. 

Our Monte Carlo experiments show that these tests perform well against fractional alternatives 

if the sample size is relatively large (e.g., T ≥ 300). 
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Two empirical applications were carried out to shed light on day of the week effects in 

financial series. This is an important issue, as the existence of such predictable patterns might 

enable investors to devise trading strategies which result in excess returns, thereby violating 

market efficiency.8  First, we examined the Eurodollar rate, and found no evidence of fractional 

integration either at the long run or zero frequency, or in the more elaborated version based on 

(1-L5)d.  In fact, the most adequate specifications for this series were a pure random walk 

model (xt = xt-1 + εt) or its 5-period difference (xt = xt-5 + εt), implying that the series is 

unpredictable. 

The second application focused on the Dow Jones (5) daily index. Here, using a model 

with a single pole at the zero frequency, the unit root cannot be rejected. However, using the 

version based on (1-L5)d, the hypothesis of a unit root (i.e., d = 1) was decisively rejected in 

favour of smaller degrees of integration, implying mean-reverting behaviour. The value of d is 

found to range between 0.50 and 1, indicating nonstationarity but with shocks disappearing in 

the long run. Finally, it was also found that the degree of dependence between the observations 

is higher at the end of the week. In the presence of such mean-reverting behaviour, i.e. if asset 

prices over time move back to some “fundamental” value, their changes are highly predictable, 

implying that there are unexploited profit opportunities, which might indicate that investors are 

not fully rational, and the market is not efficient. 

 For further research, it may be of interest to develop procedures to estimate the 

fractional differencing parameter in the context of the models presented here. In the seasonal 

case (k = 4 or 12) some attempts have been made by some authors. Ooms (1995) proposes 

Wald tests based on the same model as in Robinson (1994), but requiring efficient estimates of 

the fractional differencing parameters (he uses a modified periodogram regression estimation 

procedure due to Hassler, 1994). Also, Hosoya (1997) establishes the limit theory for long 

memory processes with the singularities not restricted at the zero frequency and proposes a set 

                                                 
8  Note, however, that, because of transaction costs, profits might still not be gained. Furthermore, in addition to 
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of quasi log-likelihood statistics to be applied in raw time series. Arteche and Robinson (2000) 

and Arteche (2002) to model the cyclical component. Specifically, they estimate d at any 

frequency in the spectrum, thereby including seasonal or cyclical structures. Unlike previous 

methods, Robinson’s (1994) tests do not require estimation of the long memory parameter, 

since the differenced series have short memory under the null. More recently, Giraitis, Hidalgo 

and Robinson (2001) extend the estimation to the frequency parameter, i.e. assuming that the 

pole occurs at an unknown frequency. The robustness of our results to using such methods will 

be the object of future research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                           
returns, stock price volatility and the risk profile of investors will also determine their buying-selling decisions. 
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FIGURE 1 

Ψ(λ)-functions for different values of k and T = 100 

k = 1 k = 2 

-20

-16

-12

-8

-4

0

4

T
-20

-16

-12

-8

-4

0

4

T/2 T

k = 3 k = 4 

-16

-12

-8

-4

0

4

TT/3 2T/3
-20

-16

-12

-8

-4

0

4

T/4 T/2 3T/4 T

   
k = 5 k = 6 

-20

-16

-12

-8

-4

0

4

T/5 2T/5 3T/5 4T/5 T
-16

-12

-8

-4

0

4

T/6 2T/6 T/2 4T/6 5T/6 T

   

 23



 

 

TABLE 1 

Sizes of the different versions of the tests with a nominal size of 10% 

k  /  T 50 100 300 500 1000 

1 0.153 0.132 0.110 0.104 0.106 

2 0.299 0.214 0.143 0.128 0.113 

3 0.377 0.233 0.191 0.168 0.116 

4 0.367 0.261 0.152 0.156 0.114 

5 0.251 0.204 0.139 0.132 0.110 

6 0.328 0.230 0.143 0.124 0.118 
The nominal size is 10% and 10,000 replications were used in each case. 

 

TABLE 2 

Sizes of the different versions of the tests with a nominal size of 5% 

k  /  T 50 100 300 500 1000 

1 0.073 0.063 0.056 0.053 0.053 

2 0.102 0.097 0.074 0.065 0.057 

3 0.145 0.111 0.069 0.094 0.066 

4 0.135 0.105 0.098 0.094 0.068 

5 0.131 0.111 0.091 0.077 0.056 

6 0.161 0.112 0.089 0.078 0.055 
The nominal size is 5% and 10,000 replications were used in each case. 
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TABLE 3 

Rejection frequencies of the different versions of the tests of Robinson (1994), with T = 100 

k / θ  -1.00 -0.75 -0.50 -0.25 0.25 0.50 0.75 1.00 

1 1.000 1.000 0.997 0.795 0.898 0.999 1.000 1.000 

2 0.995 0.994 0.979 0.619 0.943 0.999 1.000 1.000 

3 1.000 1.000 0.991 0.726 0.515 0.816 0.932 0.998 

4 0.917 0.893 0.741 0.649 0.950 0.999 1.000 1.000 

5 0.982 0.973 0.903 0.526 0.541 0.878 0.959 0.998 

6 0.828 0.731 0.511 0.443 0.992 1.000 1.000 1.000 
10,000 replications were used in each case. 

 

TABLE 4 

Rejection frequencies of the different versions of the tests of Robinson (1994), with T = 300 

k / θ -1.00 -0.75 -0.50 -0.25 0.25 0.50 0.75 1.00 

1 1.000 1.000 1.000 0.998 0.999 1.000 1.000 1.000 

2 1.000 1.000 1.000 0.997 0.999 1.000 1.000 1.000 

3 1.000 1.000 1.000 0.996 0.994 1.000 1.000 1.000 

4 1.000 1.000 1.000 0.962 0.998 1.000 1.000 1.000 

5 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 

6 1.000 1.000 1.000 0.998 1.000 1.000 1.000 1.000 
10,000 replications were used in each case. 

 

TABLE 5 

Rejection frequencies of the different versions of the tests of Robinson (1994), with T = 500 

k / θ -1.00 -0.75 -0.50 -0.25 0.25 0.50 0.75 1.00 

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
10,000 replications were used in each case. 
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FIGURE 2 

Eurodollar rate and its differences with their corresponding correlograms and 
periodograms 
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The large sample standard errors under the null hypothesis of no autocorrelation is 1/√T or roughly 0.02. 
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TABLE 6 

Testing the order of integration in (1-L5)d  xt = ut, in the Eurodollar rate 

d White noise Bloomfield (m=1) Bloomfield (m=2) 
0.00 154.26 65.04 41.09 

0.10 146.90 64.23 38.37 

0.20 138.16 63.91 34.56 

0.30 126.42 61.05 34.63 

0.40 110.07 53.70 33.05 

0.50 88.65 43.72 29.39 

0.60 64.27 32.66 23.63 

0.70 41.14 23.48 22.48 

0.80 22.68 15.70 14.23 

0.90 9.59 8.35 9.09 

1.00 0.79* 0.91* 1.02* 

1.10 -5.10 -4.67 -3.35 

1.20 -9.17 -8.63 -6.78 

1.30 -12.07 -11.49 -9.04 

1.40 -14.23 -13.66 -11.22 

1.50 -15.88 -15.32 -13.42 

1.60 -17.18 -16.67 -14.98 

1.70 -18.22 -17.26 -16.67 

1.80 -19.09 -18.65 -16.98 

1.90 -19.81 -19.41 -17.09 

2.00 -20.42 -20.07 -17.99 
*: Non-rejection values at the 5% significance level. 
 
 
 
 

TABLE 7 

95% confidence intervals in the Eurodollar rate 

Disturbances Confidence intervals 

White noise [0.99   (1.01)   1.03] 

Bloomfield (m = 1) [0.99   (1.01)   1.04] 

Bloomfield (m = 2) [0.97  (1.00)   1.03] 
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TABLE 8 

Testing the order of integration in (1-L)d  xt = ut, in the Eurodollar rate 

d White noise Bloomfield (m=1) Bloomfield (m=2) 
0.00 211.50 135.90 101.62 

0.10 203.87 128.47 94.80 

0.20 193.97 116.85 79.30 

0.30 178.86 103.78 68.84 

0.40 154.69 87.18 58.28 

0.50 119.71 65.13 50.96 

0.60 79.70 45.06 31.30 

0.70 45.58 27.32 19.78 

0.80 22.52 14.72 10.73 

0.90 8.53 5.97 5.07 

1.00 0.05* 0.74* 0.12* 

1.10 -5.35 -3.22 -2.50 

1.20 -9.04 -5.63 -3.81 

1.30 -11.69 -7.15 -5.59 

1.40 -13.69 -8.54 -8.19 

1.50 -15.24 -9.91 -8.34 

1.60 -16.48 -10.58 -9.05 

1.70 -17.44 -11.41 -12.12 

1.80 -18.33 -12.05 -13.37 

1.90 -19.04 -12.56 -13.87 

2.00 -19.64 -13.27 -15.03 
*: Non-rejection values at the 5% significance level. 
 
 
 
 

TABLE 9 

95% confidence intervals in the Eurodollar rate 

Disturbances Confidence intervals 

White noise [0.98   (1.00)   1.02] 

Bloomfield (m=1) [0.99   (1.02)   1.06] 

Bloomfield (m=2) [0.96  (1.00)   1.04] 
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FIGURE 3 

Eurodollar rate and the averages of its simulated paths for t = 251 … 2425  

The upper line represents the average of 500 5-period random walks 
The bottom line is the average of 500 random walks  
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FIGURE 4 

Dow Jones index and its differences with their corresponding correlograms and 
periodograms
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TABLE 10 

Testing the order of integration in (1-L5)d  xt = ut, in the Dow Jones index 

d White noise Bloomfield (m=1) Bloomfield (m=2) 
0.00 55.54 24.51 8.30 

0.10 49.74 19.00 6.94 

0.20 41.38 13.89 5.01 

0.30 34.55 10.13 3.24 

0.40 28.13 6.89 1.90 

0.50 21.73 3.74 0.20* 

0.60 15.51 0.73* -1.57 

0.70 9.80 -1.98 -2.83 

0.80 4.90 -4.27 -4.09 

0.90 0.96* -6.13 -4.60 

1.00 -2.07 -7.51 -4.78 

1.10 -4.36 -8.60 -4.83 

1.20 -6.06 -9.41 -5.06 

1.30 -7.35 -10.07 -5.76 

1.40 -8.34 -10.58 -6.04 

1.50 -9.12 -10.99 -7.11 

1.60 -9.74 -11.33 -8.06 

1.70 -10.25 -11.62 -8.87 

1.80 -10.76 -11.86 -9.21 

1.90 -11.03 -12.08 -9.56 

2.00 -11.33 -12.26 -10.04 
*: Non-rejection values at the 5% significance level. 
 
 
 

TABLE 11 

95% confidence intervals in the Dow Jones index 

Disturbances Confidence intervals 

White noise [0.89   (0.93)   0.98] 

Bloomfield (m=1) [0.57   (0.62)   0.68] 

Bloomfield (m=2) [0.44   (0.50)   0.56] 
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TABLE 12 

Testing the order of integration in (1-L)d  xt = ut, in the Dow Jones index 

d White noise Bloomfield (m=1) Bloomfield (m=2) 
0.00 82.73 49.67 32.69 

0.10 75.28 42.02 28.12 

0.20 64.63 33.77 22.14 

0.30 54.84 28.46 16.80 

0.40 44.50 21.99 16.30 

0.50 33.59 17.16 9.63 

0.60 23.08 11.85 9.51 

0.70 14.12 7.32 4.83 

0.80 7.28 3.75 2.51 

0.90 2.42 1.06* 1.55* 

1.00 -0.95* -0.63* 0.002* 

1.10 -3.30 -2.22 -2.89 

1.20 -4.99 -3.25 -3.27 

1.30 -6.25 -4.16 -3.36 

1.40 -7.21 -4.79 -3.80 

1.50 -7.96 -5.44 -5.20 

1.60 -8.57 -5.75 -5.87 

1.70 -9.07 -5.13 -6.34 

1.80 -9.48 -5.43 -7.09 

1.90 -9.83 -6.82 -7.88 

2.00 -10.13 -6.99 -9.11 
*: Non-rejection values at the 5% significance level. 
 
 
 
 

TABLE 13 

95% confidence intervals in the Dow Jones index 

Disturbances Confidence intervals 

White noise [0.92   (0.97)   1.02] 

Bloomfield (m=1) [0.88   (0.96)   1.04] 

Bloomfield (m=2) [0.90   (1.00)   1.04] 
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TABLE 14 

95% confidence intervals for the values of d, at the zero frequency, for each day 
of the week 

 White noise Bloomfield (m = 1) Bloomfield (m = 2) 

Monday [0.82   (0.92)   1.05] [0.74   (0.90)   1.15] [0.71   (0.92)   1.16] 

Tuesday [0.83   (0.92)   1.06] [0.74   (0.92)   1.17] [0.72   (0.92)   1.16] 

Wednesday [0.84   (0.93)   1.06] [0.77   (0.96)   1.20] [0.76   (0.95)   1.22] 

Thursday [0.84   (0.93)   1.07] [0.78   (0.95)   1.22] [0.77   (0.97)   1.24] 

Friday [0.84   (0.94)   1.07] [0.77   (0.96)   1.21] [0.77   (0.97)   1.24] 
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