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Abstract. Stream X-machines have been used in order to specify a range of
systems. One of the strengths of this approach is that, under certain well defined
conditions, it is possible to produce a finite test that is guaranteed to determine
the correctness of the implementation under test (IUT). Initially only determin-
istic stream X-machines were considered in the literature. This is largely because
the standard test algorithm relies on the stream X-machine being deterministic.

More recently the problem of testing to determine whether the IUT is equiva-
lent to a nondeterministic stream X-machine specification has been tackled ([17]).
Since nondeterminism can be important for specifications, this is an extremely
useful extension. In many cases, however, we wish to test for a weaker notion of
correctness called conformance. This paper considers a particular form of nonde-
terminism, within stream X-machines, that shall be called quasi-nondeterminism.
It then investigates the generation of tests that are guaranteed to determine
whether the IUT conforms to a quasi-nondeterministic stream X-machine speci-
fication. The test generation algorithm given is a generalization of that used for
testing from a deterministic stream X-machine.

keywords: Stream X-machine, nondeterminism, quasi-nondeterminism, test-
ing, design for test conditions, conformance.

1. Introduction

Formal specifications and models can help in the production of high quality
software. They eliminate the opportunity for ambiguity and allow the application
of, possibly automated, formal analysis. Even where a formal specification or
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model is used it is, however, important to test the implementation ([6]). Where
there is a formal specification or model, this may be used as the basis of test
automation (see, for example, [5, 8, 11, 10, 12]).

One approach, to formally specifying a system, is to use a form of extended
finite state machine called a stream X-machine ([13, 14, 3, 18, 2, 15, 16, 1]).
A stream X-machine describes a system as a finite set of logical states, each
with an internal store or memory, with transitions between the logical states.
A transition is triggered by an input value, produces an output value and may
alter the internal store and logical state. A stream X-machine may be modelled
by a finite automaton in which the arcs are labelled by function names. Stream
X-machines will be described in Section 3.

Where complex systems are being developed testing is often expensive and
sometimes ineffective. While the presence of a formal model or specification, of
the required behaviour, may allow test generation to be automated it is still often
difficult to deduce much from the implementation under test (IUT) behaving
correctly on the test set produced. Thus we have the following problems.

1. How can we produce test sets that are capable of providing a high degree of
confidence in the correctness of the IUT?

2. How can we simplify the problem of test generation to allow automation?

It is possible to approach both problems by developing testable specifications
and designs. Thus, testing is considered throughout the development lifecycle,
not just at the end. The reduction in the cost of testing and the increase in test
effectiveness often justifies any extra expense created by introducing testability.
This approach, in which testability is designed into a system, is particularly
prevalent in the design and test of hardware components (see, for example, [21])
but has been proposed in other areas (see, for example, [23]).

The standard (automated) test generation algorithm used with stream X-
machines assumes that certain conditions, called design for test conditions, hold.
Where the design for test conditions hold the test generated by this method is
guaranteed to determine the correctness of the IUT ([18]). This integration of
specification and test generation is one of the most significant benefits of using
deterministic stream X-machines in software development.

The use of nondeterminism can aid abstraction and thus is highly appropriate
for specifications. In Section 4 quasi-nondeterministic stream X-machines will be
described. Essentially these are stream X-machines that allow nondeterminism
to be introduced in certain ways. Recently the test generation algorithm, for
testing against a deterministic stream X-machine, has been adapted to testing
against a nondeterministic stream X-machine ([17]). This paper gives an algo-
rithm for generating a test that determines whether the IUT is equivalent to a
nondeterministic stream X-machine specification.

In many situations the notion of correctness used in [17] is too strong. Instead
it is sufficient for the IUT to be defined on all input upon which the specifica-
tion is defined and for the behaviour contained in the IUT to be a subset of
the behaviour contained in the specification. This notion of correctness is often
called conformance. Naturally, equivalence and conformance coincide when the
specification is deterministic. One important special case in which conformance,
rather than equivalence, is required is where the IUT is deterministic but the
specification is nondeterministic. This special case is quite common as, while



Testing conformance to a quasi-nondeterministic stream X-machine 3

specifications are often nondeterministic, actual implementations are usually de-
terministic

This paper considers the case in which an IUT [ is tested, for conformance,
against a quasi-nondeterministic stream X-machine M that specifies the required
behaviour. In Section 6 the design for test conditions, expected of determinis-
tic stream X-machines, are generalized to form design for test conditions for a
quasi-nondeterministic stream X-machine. Section 7 then gives a test generation
algorithm that produces a test that determines the correctness of the IUT I as
long as M and I satisfy the design for test conditions. The test generation algo-
rithm is more general than, and as powerful as, those given for testing against
a deterministic stream X-machine. The test generation algorithm and notion of
correctness used is also different from that used in [17]. A proof of correctness of
the test algorithm is given in Section 8. This is followed by a discussion of future
work and finally conclusions are drawn.

2. Finite Automata and Finite State Machines

A finite automaton (FA) M is defined by a tuple (S, s1,h, X, T) in which S is
the finite set of states, s; is the initial state, h is the transition function, ¥ is the
finite input alphabet and T is the set of final states. The function h gives the set
of states that M may move to given a current state and input. Thus if M is in
state s and receives input z it moves to some state from the set h(s,z) C S. The
function A may be extended, to take input sequences, to give h*. If € denotes the
empty sequence then h* is defined by:

Vs e S.h*(s,e) ={s}

Vs €S, TeX,z' € B.h7(5,72) = Ugepe (5.7 M8 2)

Throughout the paper any variable name with a bar over it represents a
sequence.

FA M accepts T € ¥£* if and only if T can take M from the initial state to
some final state: h*(s;,Z) N T # &. The set of strings accepted by M defines a
language L(M) = {Z € ¥* | h*(s1,7) N T # @}. Similarly, the set of sequences
that can reach a final state from state s of M form the language Ly (s) = {T €
S| h*(s,T)N T # @}. Thus, L(M) = Ly (s1).

Consider, for example, the FA M; given in Figure 1 in which the final state
sz is denoted by a double circle. Here, S = {s1, $2,s3}, £ = {@a, b} and T = {s3}.
If M; receives input a while in state s; it may either move to state s or stay
in state s;. Thus, h(s;,a) = {s1,s2}. My defines the language L(M;) of strings
composed of elements of ¥ that end in ab.

FA M is said to be initially connected if, for every state s; € S there is
some input sequence T that can reach s;: s; € h*(s1,T). M is said to be strongly
connected if for every ordered pair of states (s;, s;), s;, s; € S, there is some input
sequence T that can move M from s; to s;: s; € h*(s;,T). It is easy to check that
M; is initially connected but not strongly connected.

Input sequence T distinguishes states s; and s; of M if and only if 7 is
contained in one and only one of Ly (s;) and Las(s;). Given sets A and B let
AAB = (A\ B)U (B\ A). Thus 7 distinguishes s; and s; if and only if
T € Ly(si) A La(sj). In My, for example, b distinguishes s; and s,. If there is
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Fig. 1. The Finite Automaton M;

some T that distinguishes s; and s; then s; and s; are said to be distinguishable.
If s; and s; are not distinguishable they are said to be equivalent. Two FA are
equivalent if their initial states are equivalent.

FA M is deterministic if for every state s and input z there is at most one
transition that leaves s and is labelled with z: Vs € S,z € X.(s,z) € dom
h =| h(s,z) |=1. FA M is said to be nondeterministic if it is not deterministic.
A deterministic FA M is said to be minimal if there is no equivalent deterministic
FA with fewer states than M. A deterministic FA M is minimal if it is initially
connected and no two states of M are equivalent.

Given a nondeterministic FA M, it is possible to derive an equivalent de-
terministic FA M’ ([22]). Given a deterministic FA M it is possible to produce
some equivalent minimal deterministic FA M’ ([20]). Thus, given any FA M it
is possible to produce a minimal deterministic FA M’ that is equivalent to M.
The nondeterministic FA M; given in Figure 1 is, for example, equivalent to the
minimal deterministic FA M, given in Figure 2. In contrast, it will transpire that
given a quasi-nondeterministic stream X-machine, there may be no equivalent
deterministic stream X-machine. This is because a quasi-nondeterministic stream
X-machine may allow more than one output sequence in response to an input
sequence and no deterministic stream X-machine may describe such behaviour.

Suppose M is a deterministic FA. A set W of input sequences is said to
be a characterizing set for M if for every pair (s;,s;) of states of M, there is
some w € W that distinguishes s; and s;. Every minimal deterministic FA has
a characterizing set ([9]). Ma, for example, has characterizing set {e, b}.

A finite state machine (FSM) M is a FA in which every state is a final state
and each transition has an associated output value. An FSM may be represented
by an associated FA in which the arcs are labelled by input/output pairs.

3. Stream X-machines

X-machines are essentially FA in which the arcs represent relations and there is
a basic set on which the relations are defined. The allowed behaviours are given
by the sequences of arcs defined by walks from initial states to final states. A
stream X-machine M is an X-machine in which the basic set X is composed of
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a

Fig. 2. The Finite Automaton M

an internal memory, an input stream and an output stream and the functions of
M act on X. Suppose Mem denotes the set of memory values, In denotes the
set of input values and Out denotes the set of output values. Given set A let A*
denote the set of sequences of elements of A. Then X is In* x Mem x QOut*.

At the beginning of computation the output stream is empty and the input
stream contains the full input of the execution instance being considered. If
M reaches the situation in which it is in a final state and the input stream
is empty then the computation has succeeded and the output stream contains
the values output by M. Otherwise the computation has not completed and the
input sequence is not part of the input domain of M. In this case the system
halts and the string 7, contained in the output stream the last time a final state
was reached, is followed by failure (L), producing output y L. If no final state
has been reached, the output is L. The failure L represents halting and possibly
the production of an error message and is not explicitly contained in the output
domain of M.

Definition 1. A stream X-machine is defined by a tuple (In, Out, S, Mem, ®,
F, s, mp, T) in which ([15])

1. In is the finite input alphabet.

Out is the output alphabet.

S is the finite set of states.

Mem is the memory. Mem need not be finite.

® is the set of processing functions. Each function has type Mem x In —
Out x Mem.

F is the partial next state function with type S x & — P(S).
s1 is the initial state.

CU N

N
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8. my is the initial memory value.
9. T is the set of final states.

When considering the problem of testing from a stream X-machine it is nor-
mal to assume that all states are final states: T' = S ([15]). This is not a major
limitation when modelling an interactive system, which responds to each input
value separately. _ 3

Given a sequence f of functions from ®, an associated function || f|| may
be produced by combining the functions in f. Then ||]_‘|| takes a memory value

and an input string of length | f | and returns a memory value and an output
sequence of length | f |. If f € ® and f € ®* then

Definition 2.
llell = {((m,€),(e,m)) | m € Mem}

I££]| = {((m,z2"), (gy', m")) | Im".((m,7), (7, m")) € |[F]| A ((m",2"), (y',m")) € f}.

It is worth noting that this definition of ||]7|| holds for relations, as well as
functions. _ _
The sequence f defines the input/output relation (f) defined by

<]_c> ={(z,7) | Im € Mem.(my,T), (g, m)) € ”J_t”}

Abusing this notation, given a walk w = ay, ..., a, from M, a; having asso-
ciated function f;, (w) shall denote (fi,...,f)-

Let W (s;, s;) denote the set of walks from s; to s; and W7 = Us]-eT W(s1, ;).
The behaviour of M is defined by the functions given by the set of walks from
initial states to final states. M describes the relation defined by the following.

Definition 3.
M| =Ugewr ().

Then it is possible to say that M has an input domain; that of | M |. Thus
dom M = dom | M |. Given stream X-machine M and input sequence T € In*,
M relates T to the output sequences in

[M] () ={y € Out” | (7,9) € [M])}.

Given T ¢ dom M, T = T,To for some maximal T; € dom M, let T; be
denoted preps (Z). Where no substring of 7 is in dom M, prey(T) = e. It is
possible to complete | M | by adding the pair (Z,7 L) for each T € In*\ dom M,
(prem (T),y) € | M]. This gives the relation [ M|, of type In* <> (OutU {L})*,
defined by the following.

Definition 4.
|M]|, = |M]Ju{(Z,yL)|T€In*\dom MA (prey(%),y) € | M]}

It is worth noting that the semantics give | M | to be defined in terms of the
set of walks from the initial state to final states. Thus, any rewrite of M that
preserves the set of sequences of functions on walks from the initial state to final
states preserves the meaning of M. Thus, for example, the X-machines shown
in Figure 3 are equivalent. Those interested in label transition systems will note
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Fig. 3. Two Label Transition System

that if these denoted label transition systems they would not, in general, be
equivalent. This is because:

1. in the first having performed a the system moves to a state in which it is
capable of performing either b or ¢;

2. in the second having performed @ the system must either be incapable of
performing b or be incapable of performing c.

The form of equivalence used with finite automata, finite state machines and
X-machines is often called trace equivalence.

4. Quasi-nondeterministic stream X-machines

Since nondeterminism can aid abstraction, it is highly appropriate for specifica-
tions. Therefore, allowing the use of nondeterminism should extend the applica-
bility of the stream X-machine development method. In this paper two sources of
nondeterminism shall be allowed. These two forms of nondeterminism shall now
be described. This shall be followed by a definition of a quasi-nondeterministic
stream X-machine.

The definition of a stream X-machine allows more than one next state for
some state s and function f with (s,f) € dom F. Here, the execution of f in
state s may lead to any state from F(s,f). This form of nondeterminism, in
which there is more than one possible next state for some (s, f), shall be called
state nondeterminism.

Definition 5. M has state nondeterminism if there exist s € S, f € ® with
(s,f) € dom F and | F(s,f) |> 1.

As noted earlier, any rewrite of an X-machine or stream X-machine M that
preserves L(M) preserves the meaning of M. Thus, this form of nondeterminism
may be removed by rewriting the stream X-machine using standard algorithms
that take a nondeterministic finite automaton and produce an equivalent de-
terministic finite automaton. Allowing F' to return a set of next states may,
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however, be used to produce a more compact and understandable model. Con-
sider, for example, the two equivalent finite automata given earlier in Figures 1
and 2.

It is possible to generalize the definition of a stream X-machine by allowing
operators from ® to be relations rather than functions. This form of nondeter-
minism shall be called operator nondeterminism.

Definition 6. M has operator nondeterminism if some element of @ is a relation
but not a function.

There seems no good reason to outlaw operator nondeterminism and, as shall
be seen later, it can be useful. Thus, operator nondeterminism shall be allowed
for quasi-nondeterministic stream X-machines. Unlike state nondeterminism, op-
erator nondeterminism cannot be removed by rewriting the stream X-machine.

Allowing state nondeterminism and operator nondeterminism gives the fol-
lowing definition of a quasi-nondeterministic stream X-machine.

Definition 7. A quasi-nondeterministic stream X-machine is defined by a tuple
(In, Out, S, Mem,®, F, s, mp, T) in which

1. In is the finite input alphabet.

Out is the output alphabet.

S is the finite set of states.

Mem is the memory. Mem need not be finite.

® is the set of processing relations. Each relation has type Mem X In +
Out x Mem.

F is the partial next state function with type S x ® — P(S).
$1 is the initial state.

my is the initial memory value.

T is the set of final states.

and forall s € Sand f,f' € ® such that (s,f),(s,f") € dom F, f # f' = dom
fndom f' ={}.

The last condition says that any two different operators that may be applied
in some state s must have disjoint domains. Where necessary, this final condition
may be guaranteed by adding a special (unique) value to the input domain for
each operator. These special inputs may be kept (but hidden from the user) or
removed before the system is deployed. It is worth noting that the definitions
of a nondeterministic stream X-machine given in ([17]) allow operator but not
state nondeterminism. The definitions are otherwise equivalent.

Throughout this paper it will be assumed that the specification is a quasi-
nondeterministic stream X-machine M and that the implementation I behaves
like some unknown quasi-nondeterministic stream X-machine M;.

Consider the Vending Stream X-Machine pictured in Figure 4. The vending
machine has BUTTONS, SrLoTs and Lights. Buttons are input devices used
to select a particular behaviour. The M button, is a manager button, which is
key operated. The V button requests the vending of a chocolate. This happens
if sufficient payment has been received (the chocolate costs 20). The C button
requests change to be returned to the user (subject to the amount of credit in the
machine). The £ button is used to empty the machine of change. The U/ button
is used to leave management mode and return to user mode.

U N

© N>
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Vend

Change

SwitchU

Insert Collect

Fig. 4. The Vending Stream X-Machine

Four lights, Choc, NoVend, ManageOn, ManageOff indicate machine re-
sponses. Choc indicates that a chocolate has been dispensed. NoVend indicates
that a chocolate was requested but cannot be delivered. ManageOn, indicates
that the machine is switching over to management mode and ManageOff indi-
cates that the machine is switching from management mode to user mode. These
lights illuminate for a period of two seconds.

The machine has four slots, USERIN, USEROUT, MANAGERIN, MANAGER-
Ovur, through which money is inserted and returned to the user and manager
respectively.

The machine also has an LCD display which illuminates for up to four sec-
onds, displaying the amount of credit the machine possesses when the user inserts
coins.

The slots into which the manager inserts change and from which change is
returned to the manager are not normally exposed. When the manage button,
M, is pressed (using the key), a panel opens at the back of the machine, making
these two additional slots available. In addition there is an LCD display behind
the panel which indicates the value of the money stored in the machine (for up
to four seconds) each time a coin is inserted into the manager slot.

This is formalised in Z below:

Coins ::=10 20| 50

BUTTONS ==V |C| M| €U

Lights ::= Choc | NoVend | ManageOn | ManageOff

SLOTS ::= USERIN | USEROUT | MANAGERIN | MANAGEROUT

TopUp
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__ State
Bank : Coins — N
Credit : N

The initial state is defined by the Schema below:

___InitialState
AState

Credit' =0
Bank' = {(z,0) | z € Coins}

A function Value is defined, which determines the value of a coin-bag;:

‘ Value : (Coins — N) — N
| Value(b) = 10 % b(10) + 20 * b(20) + 50  b(50)

Two other operations on bags of coins are required, which extend the associ-
ated set operators to coin bag operators:

_C_:(Coins = N) x (Coins — IN) — bool
a CbeVee Coins.a(c) < b(c)

_—_:(Coins = N) x (Coins — IN) — (Coins — IN)

aCb=>a—b={c— a(c)—b(c) | c € Coins}

The User functions Insert, Vend and Change are defined as follows:

__Insert
i? : (Coins x Slots)
AState
rl:IN

i? = (¢, USERIN)
Credit’ = Credit + ¢

Bank' = Bank & {c — Bank(c) + 1}
rl = Credit’

The function Vend allows the customer to obtain a chocolate if sufficient
money has been put in the machine (the credit is sufficient) and the machine is
capable of providing change after this purchase.
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_ Vend
i?7 : BUTTONS
AState
r!: Lights

iT=VY
(3b C Bank e Value(b) = Credit — 20)

=
Credit’ = Credit — 20 A r! = choc A\ Bank' = Bank
=(3 b C Bank e Value(b) = Credit — 20)

=
Credit’ = Credit A Bank' = Bank A r! = novend

_ Change
i?: BUTTONS
AState
chg! : Coins — N
rl: ((Coins — N) x SLOTS)

i7=C

Credit' =0

Bank' = Bank — chg!
chg! C Bank

Value(chg') = Credit
r! = (chg!, USEROUT)

The Manager Functions SwitchM, SwitchU, TopUp and Collect are de-
fined as follows:

— SwitchM
i?: BUTTONS
r!: Lights
it =M
r! = ManageOn

__ SwitchU
i? : BUTTONS
r!: Lights

it=U
r! = ManageOff
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— TopUp
i? : Coins X SLOTS
AState

rl:IN

i? = (¢, MANAGERIN)

Credit’ = Credit

Bank' = Bank @ {c — Bank(c) + 1}
r! = Value(Bank)

— Collect
i?: BUTTONS

AState

rl: ((Coins — N) x slots)

i7=¢&

Credit' = Credit

Bank' = {(z,0) | z € Coins}
r! = (Bank, MANAGEROUT)

It is worth noting that the operation Change is nondeterministic : any choice
of coins, from Bank, of total value equal to Credit will suffice. The actual imple-
mentation of Change is, however, likely to be deterministic. Thus, in this case it
is desirable to allow the specification to be quasi-nondeterministic but we should
test for some weaker form of correctness than equivalence. This weaker form of
correctness, that shall be called conformance, will be defined in the next section.

The input alphabet is the union of the input spaces of the operations. Simi-
larly, the output alphabet is the union of the output spaces of the operations.

4.1. Conformance

When defining a formal specification language it is essential to state what it
means for an implementation to be correct. Where a stream X-machine M is
deterministic, an IUT I conforms to M if and only if it describes the same
input/output function as M. Similarly, it is possible to define correctness to
be equivalence when considering quasi-nondeterministic specifications. In this
section we shall, however, define a weaker notion of conformance that shall be
used throughout this paper.
It is quite normal, when defining conformance, to insist that:

e the implementation is defined where the specification is defined;

e for any input on which the specification is defined, any possible behaviour of
the implementation is consistent with the specification.

The semantics defined earlier mean that M is completely specified. This be-
haviour is defined by |M|,. Thus, |M ]|, and |M;], are defined on the same
set on input strings and for M; to conform to M we need | M | and | M7 | to have
the same input domains.

IUT I conforms to quasi-nondeterministic stream X-machine M on input
domain D if for every input sequence T € D, any output sequence § that I may
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produce when it receives input Z satisfies (Z,7) € [ M ], . This shall be denoted
I <p M. The following provides a more formal definition.

Definition 8. Given quasi-nondeterministic stream X-machine M, if the IUT [
behaves like some quasi-nondeterministic stream X-machine M; then I <p M
if and only if V7 € D.(z,7) € | Mr], = (7,7) € [M] .

It is now possible to formally define what it means for I to conform to M.

Definition 9. Given quasi-nondeterministic stream X-machine M, the IUT [
conforms to M if and only if I <p,« M.

Assuming I behaves like a quasi-nondeterministic stream X-machine My,
this is equivalent to |M;|, C [M],. In contrast, the approache given in ([17])
considers I to conform to M if and only if |M;], = |M].. Throughout this
paper I < M shall denote I <p,- M and I A M shall denote - (I < M).

5. Testing against a deterministic stream X-machine

One of the great advantages of using deterministic stream X-machines in software
development is the power of the associated test generation algorithm. The es-
sential philosophy behind the stream X-machine testing (SXMT) method is that
the implementation is built from a number of, possibly small, components that
are believed to be correct. Testing then reduces to determining whether these
components have been combined in the correct way. Associated with this philos-
ophy is a notion of refinement under which these components may, themselves,
have been tested using this method (see, for example, [16]).

The SXMT method is based on an FSM algorithm due to Chow ([4]) and
is guaranteed to determine correctness as long as the specification and the IUT
satisfy certain design for test conditions. These conditions shall now be described.
The test generation algorithm will then be given.

5.1. Design for test conditions

Given a stream X-machine M, it is possible to abstract M to form a finite
automaton, called the associated automaton, A(M) by keeping the logical state
structure, representing each function from ® by a symbol and labelling each arc
by the corresponding symbol ([15]). Tests are generated from A(M) using the
W-method.

Before the design for test conditions are stated two definitions from [15] will
be given. The first of these uses the projection function 7; that takes a tuple and
returns the i** element of the tuple.

Definition 10. ® is output distinguishable it Vf,f' € ®, m € Mem,z € In such
that (m, ) € dom f (\dom f', f # f' = mi(f(m, 7)) # m (f (m,2)).

This property means that two functions from ® cannot produce the same
output given input z and memory m. Output distinguishability allows tests to
distinguish between different functions. The following condition says that given
any memory value m and function f there is some input z that allows f to be
triggered when the memory is m. This simplifies the problem of finding an input
sequence to trigger a sequence of functions.
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Definition 11. @ is complete, with respect to Mem, ifVm € Mem, f € ®.3dz €
In.(m,z) € dom f.

The following assumptions, called design for test conditions, are made in the
SXMT method ([15])

Definition 12. Suppose implementation [ is to be tested against stream X-
machine M that has set ® of processing functions. M and [ satisfy the design
for test conditions for the SXMT method if the following hold.

1. M is deterministic.

2. ® is output distinguishable.

3. ® is complete with respect to Mem.
4

. I behaves like some deterministic minimal stream X-machine M; that has
the same input alphabet, output alphabet and set of processing functions as
M.

5. There is a known integer n’ such that M; has at most n’ states.

Where necessary, the design for test conditions for ® may be satisfied by
adding extra input symbols, that trigger the functions, and extra output symbols
that allow the functions to be distinguished. These additional inputs and outputs
might be removed after the test set generated by the SXMT method has been
applied. Naturally, the TUT might then be retested in order to check that no
new faults have been introduced. While the addition of these extra values may
slightly increase the software development cost, this will often be justified by the
assistance provided to testing.

It is possible to distinguish between conditions placed on ® and conditions
placed on I. The first condition given above simply limits the approach to deter-
ministic specifications. The second and third conditions are properties of ® only
and thus may be achieved by the development of an appropriate specification.
They shall thus be called specify for test conditions. The remaining two condi-
tions are conditions on the IUT and will be called test hypotheses ([8]). Thus
the set of design for test conditions is the union of the set of specify for test
conditions, the set of test hypotheses and the determinism condition.

The fourth condition holds if the system is built from a number of components
that are known to be correct. This property may be achieved by refining the
system down to relatively small components in which there is a high degree of
confidence or by building I from a set of trusted reused components ([16]). The
fourth condition is an example of a type of hypothesis often used when deriving
tests from a formal specification or model: that the IUT is contained within some
set of models described in a particular formalism (see, for example, [19]).

The fifth condition requires the tester to apply expert knowledge. In some
situations the choice of n' will be clear. Alternatively, the choice of n’ may be
based upon pragmatic factors ([4]).

5.2. Test generation

As noted above, it is normal to assume that, for some predefined n’, I behaves
like some unknown deterministic steam X-machine M7 that has at most n’ states.
As M and M; are deterministic, I conforms to M if and only if M and M; are
equivalent. Assuming the specify for test conditions and test hypotheses hold, it
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is possible to adapt the W-method, that was originally introduced by Chow, for
testing against a deterministic FSM ([4]).

Given a deterministic stream X-machine M let A(M) denote the associated
minimal automaton. Thus A(M) has input alphabet ®. A state cover V of A(M)
is a set of input sequences (from ®*) that, between them, reach every state of
A(M) exactly once. Thus, for each state s; of A(M) there is some unique sequence
7; € V that takes A(M) from its initial state to s;. As A(M) is minimal, it is
initially connected and thus has a state cover. ¥V may represent a spanning tree
of A(M) that is rooted at s;.

Let n denote the number of states of M and n' denote an upper bound on
the number of states of M;. Further, let V be a state cover for A(M) and W a
characterizing set for A(M). Then the following provides a set of sequences from
A(M) ([16)).

Tr=V({UdUd>U...ud™ "W

Recall that (]_‘> denotes the set of input/output sequences that correspond to

the execution of f from initial memory value mgy. The design for test condition
that ® is complete with respect to Mem guarantees that given f € ®* there is
some input sequence in dom <f>

It is sufficient to take each f € T, and generate a corresponding input
sequence. This will be achieved by the application of a test function ¢, ,, that

takes a sequence f of functions and derives an input sequence that corresponds
to executing f from state s and memory m. The sequence s, (f) will be used

to determine whether f can be executed from s.
Definition 13. The test function ts ,, is defined by the following ([18]).

1. tsm(e) =€

2. If f € Lacny(s)

)
then t5 m (ff)
3. If? o4 LA(M) 3), ts,m(.?f) = ts,m(.?)

ts,m(?) = fl: ?” (mafl) = (ylvml) and (mlvx) € dom f
1T

’
=7

In the second and third rules, f € ® and f € ®*.

Given some f € Tp, there is no guarantee that f € L(A(M)). Suppose
f € Tr\L(A(M)), and f = f,fof ; for some f, € & and maximal f, € L(A(M)).
In M, the triggering of f, should generate output and then f, should lead to
L. Thus, it is only necessary to input a string to demonstrate that f, can be
executed from the initial state of M; and that f; cannot be executed from the
state reached by this.

The set of input sequences, produced from Tr by t5, m,, is guaranteed to de-
termine correctness if ® satisfies the design for test conditions and I satisfies the
test hypotheses ([16]). We shall see later that, while the W-method was originally
produced for completely specified finite automata and finite state machines, it
can be applied to stream X-machines that are not completely specified.
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6. Testing against a quasi-nondeterministic stream
X-machine: design for test conditions

In this section the design for test conditions, used when testing against a de-
terministic stream X-machine, will be generalized to the case where tests are
being derived from a quasi-nondeterministic stream X-machine. The section also
contains results that prove that these new conditions are a generalization of the
design for test conditions assumed when testing from a deterministic stream
X-machine.

With quasi-nondeterministic stream X-machines it is necessary to generalize
the notion of output distinguishability, to nd-output distinguishability. Rather
than require that any two functions defined on some (m,z) generate different
output when executed with (m, z), it is necessary to require that the two sets of
possible outputs are disjoint.

Definition 14. ® is nd-output distinguishable if for all fi, fo € ® with fi # f»
(m,z) € dom i 1 dom fy = {mi(a) | a € fi(m,2)} N {my(a) | 0 € fo(m,2)} =

Where M is deterministic, one of the test hypotheses is that the function
sets for M and M; are the same. Here, instead, it is sufficient to assume that
the relations from the relation set ®' of M; all conform to relations in ®, where
f' € ® conforming to f € ® is defined by the following and is denoted f’ < f.

Definition 15. Given f' € ®' and f € @, f' < f if and only if dom f' = dom f
and f' C f.

Test generation may be complicated if, because of nondeterminism, after
M7 has processed an input sequence, the expected memory is not known. This
may make it difficult to find an input sequence that should trigger a particular
sequence of transitions; at each stage the input chosen depends upon the memory.
In order to eliminate this difficulty it will be assumed that given f € ®, m € Mem
and z € In, if (y1,m1), (y2, m2) € f(m,z) then my; and me may differ only if
the outputs y; and y» also differ. This reduces the uncertainty associated with
nondeterminism; by observing the output at each stage the expected memory
may be determined. If ® satisfies this condition it is said to be observable.

Definition 16. ® is observable if and only if Vf € ®,m € Mem,z € In.
(y1,m1), (Y2, ma2) € f(m,z) = ((my # m2) = (Y1 # y2)).

The specify for test conditions can now be given.

Definition 17. If ® is the relation set of a quasi-nondeterministic stream X-
machine with memory Mem then the specify for test conditions are

1. @ is nd-output distinguishable;
2. ® is complete with respect to Mem;
3. ® is observable.

It is worth noting that, under the specify for test conditions, given (Z,y) €
| M|, there is exactly one f € L(A(M)) with (z,7) € (f).

The following result shows that the specify for test conditions are a general-
ization of those used for deterministic stream X-machines.
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Lemma 1. Suppose M is a deterministic stream X-machine with function set ®.
® satisfies the specify for test conditions for a deterministic stream X-machine if
and only if ® satisfies the specify for test conditions for a quasi-nondeterministic
stream X-machine.

Proof

By definition, as all the elements of ® are functions, ® is observ-
able. Clearly the definitions of complete with respect to Mem for
deterministic and quasi-nondeterministic stream X-machines are
equivalent when M is deterministic. Thus it is sufficient to prove
that ® is nd-output distinguishable if and only if ® is output dis-
tinguishable.

Suppose fi,fo € ®, m € Mem, = € In, fi # f» and (m,z) € dom
findom f5. As M is deterministic fi and f are both functions. Let
film,z) = (y1,m1) and fo(m,z) = (y2, ma). Thus

L {y|3m'".((m,z),(y,m')) € i} ={w}
2. {y | 3m((m,2), (y, m")) € fo} = {4}

There are now two cases to consider

Case 1: ® is output distinguishable. Thus y; # y» and so {y |
Im'(m, ), (y,m") € A} N {y | Im"((m, ), (y,m")) € S} = 2.
Thus @ is nd-output distinguishable as required.

Case 2: @ is nd-output distinguishable. Thus {y |
Im'((m, ), (y,m") € A} N {y | Im"-((m, ), (y,m")) € f} = 2.
From this, y1 # y» and thus ® is output distinguishable as
required.

As in the deterministic case, it is possible to adapt ® so that it satisfies the
specify for test conditions. Where necessary, this may be achieved by extending
the input and output domains. While this may increase the development cost
these conditions lead to an automated test method that is as powerful as the
SXMT. In many situations, the improved power and reduced cost of testing
justifies any extra development costs.

The following extends the test hypotheses to the case where tests are being
generated from a quasi-nondeterministic stream X-machine.

Definition 18. If M is a quasi-nondeterministic stream X-machine with set ®
of processing relations and I is the implementation to be tested against M then
the test hypotheses are

1. I behaves like some (unknown) minimal quasi-nondeterministic stream X-
machine M; that does not have state nondeterminism, has the same input
and output alphabets as M, and has a set ®' of processing relations with the
property that: for each f' € ®' there is some f € ® such that f' < f.

2. There is some known n’ such that M; has at most n’ states.
Any quasi-nondeterministic stream X-machine can be rewritten to a min-

imal quasi-nondeterministic stream X-machine that does not have state non-
determinism and thus, if I behaves like a quasi-nondeterministic stream X-
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machines with set ®' of processing relations it also behaves like a minimal quasi-
nondeterministic stream X-machine that does not have state nondeterminism
and has set ®' of processing relations.

Implicit in the test hypotheses is the assumption that, in M7, if two processing
relations f and f’ from ®' can be executed from the same state of My then their
input domains do not overlap. Naturally, this is always the case in the important
case that I is deterministic.

The following result, which is an immediate consequence of the definitions
of the test hypotheses, states that the test hypotheses given above are a gener-
alization of the test hypotheses used when testing from a deterministic stream
X-machine.

Lemma 2. Suppose M is a deterministic stream X-machine and [ is an im-
plementation being tested against M. I satisfies the test hypotheses used for
deterministic stream X-machines if and only if I satisfies the test hypotheses
used for quasi-nondeterministic stream X-machines.

By Lemmas 1 and 2, the design for test conditions used when testing from
a quasi-nondeterministic stream X-machine are a generalization of those used
when testing from a deterministic stream X-machine. The design for test con-
ditions for quasi-nondeterministic stream X-machines also fit the philosophy of
software development used with deterministic stream X-machines, in which the
implementation is built from components that are believed to conform to com-
ponents of the specification.

In order to illustrate the specify for test conditions for a quasi-nondeterministic
stream X-machine we shall now show that the Vending Machine example satisfies
these conditions.

6.1. Specify for test conditions and the Vending Machine
6.1.1. nd-Output Distinguishable

The functions are trivially nd-output distinguishable, because their ranges are
distinct.

6.1.2. Completeness

To be complete, for every possible memory, a relation must have at least one
input which triggers the function.

For Insert every input triggers the relation in every input state. For Vend,
there is only one possible input V. This clearly triggers Vend in every possible
memory state because the antecedents of the two implications which define it
are mutually exhaustive. For Change, there is also only one input possible: C.
This always triggers the relation, since the change returned can be ‘empty’.
For SwitchM there is only one input, M, which always triggers the relation.
For SwitchU there is only one input, U, which always triggers the relation. For
TopUp, as for Insert, every input triggers the relation in every state. Finally, for
Collect, there is only one input, £, which triggers the relation in every state.
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6.1.3. Observability

All relations except change are deterministic and are therefore observable. The
relation change is observable because all cases where change returns a different
memory state (i.e. a different value for the ‘bank’ component of the state), it
must also produce a different set of change.

7. Testing against a quasi-nondeterministic stream
X-machine

In this section the W-method shall be applied to the problem of testing against
a quasi-nondeterministic stream X-machine M. As is normal, it will be assumed
that all states are final states.

In common with the deterministic case, the first step involves generating
the associated automaton A(M). As A(M) may be nondeterministic and the
W-method is applied to deterministic systems, the next step it to generate the
minimal deterministic automaton D (M) that is equivalent to A(M). Tests shall
be derived from D(M).

Test generation may thus be divided into the following steps.

A(M) is produced.

D(M) is generated from A(M).

State cover V and characterizing set W are derived for D(M).

Chow’s method is used to generate a set of sequences Tr = V({e} UP U

$2U...Ud™ 1) where n is the number of states of D(M) and n' is an
upper bound on the number of states of M.

5. I is tested with test sequences that correspond to the elements of Tp.

- WD

The set of input sequences generated by this process is the test set T'x.

Due to nondeterminism, the process that produces tests must be adaptive;
each input is chosen once the output, in response to the previous input, is re-
ceived. Thus, we shall call it a test process. While there may be more than one
possible memory after the processing of a value, due to ® being observable the
expected memory is known once the output has been observed. Thus, given f it
is possible to develop a test associated with f. This test has an input sequence =
and an output sequence § observed in the generation of Z. The adaptive nature
of test generation means that the input and output sequences should not be
separated: the test process returns a pair.

The following defines the test process for quasi-nondeterministic stream X-
machines.

Definition 19. The test process "¢ for a quasi-nondeterministic stream X-
machine M that satisfies the specify for test conditions is defined by the following.
1. t"(e) = (e, ¢).

2. Suppose f € L(D(M)) and t"(f) = (z1,9,). If ((mo,71), (7;,m")) € [|F]],
(m',z) € dom f and I produces output y in response to the execution of z
after 7, then t"*(ff) = (12,7, y).

3. If f ¢ L(D(M)), t"*(ff) = t"*(f)
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Where f is not in L(D(M)) the last output, when the test function is applied,
should be L.

Interestingly, while the W-method was designed to test from completely spec-
ified finite automata and finite state machines, it may be applied to a quasi-
nondetereministic stream X-machine M that is not completely specified. In order
to see this, it is sufficient to consider what happens if we completed M, to form
M’, by adding an error state. The test set generated might be extended for the
following two reasons.

e Adding one element to V to reach the error state.
e Possibly extending W to distinguish this new state from the states of M.

Suppose T denotes the set of sequences of operations generated, using the W-
method, from M and T’ denotes the corresponding set generated from M’ and
that the state cover and characterizing sets for M’ are developed by extending
those of M. Clearly, T is strictly contained in T’. We shall see, however, that it
is sufficient to choose T = T'.

Consider, initially, the extension of V to form V'. It is important to recall
that an error, generated by the input of a value for which there is no defined
behaviour, leads to termination. Thus, it is never necessary to consider input
beyond one that should lead to an error. Suppose V is extended by some sequence
err € T that reaches the error state. Consider some test ¢ € T’ such that ¢ is
err followed by ¢’ (for some ¢'). Then the test process will produce the same test
sequence for  as for err. In fact, all extensions of err in T' will, in effect, be
reduced to err (which is in T') by the test process. Thus, as ¢ is in T, it is not
necessary to extend V.

Now, consider the extension to W. Since an error leads to immediate termi-
nation of the IUT, non-termination of the system indicates that we are not in
the error state. Thus, it is not necessary to extend W in order to distinguish the
error state from other states of the IUT.

To conclude, the test T generated from a quasi-nondeterministic stream X-
machine M that is not completely specified is one that can be produced by ap-
plying the W-method to the quasi-nondeterministic stream X-machine produced
by completing M.

7.1. Test generation for the Vending Machine

It will be assumed that the IUT has no more states than the specification of the
vending machine and thus that n' = n.

The state cover, V needs to reach two states, and therefore contains two
sequences. The empty sequence takes the system to the initial state and the
sequence (switchM) takes it from the initial state to the Managing state.

V ={e, (switchM)}

The characterizing set must contain a sequence of inputs which distinguishes
every pair of states. As there are only two states in the Vending Machine, there
need be only a single sequence in the characterizing set:

W = {(switchM)}

The set ®, contains the edge labellings for each transition in the associated
deterministic finite automaton.
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® = {Change, Vend, Insert, switchM, switchU, Collect, TopUp}

The sequences of functions which the test cases must execute, T are thus:

TF = V({E} U ‘I>) W
= VWuUVew
= VW U®{(switchM)} U {(switchM)}P{(switchM)}
= {(switchM), (switchM, switchM)}U
{(change, switchM), (vend, switchM), (insert, switchM),

switchM, switchM), (switchU, switchM), (collect, switchM), (TopUp, switchM)}U

sw1tchM> (switchM)
(switchM), (change, switchM), (vend, switchM), (insert, switchM),

switchlM, change, switchM), (switchM, vend, switchM), (switchl, insert, switchM),

switchM, switchM, switchM), (switchM, switchU, switchM),

(

(

{

(switchM, switchM), (switchU, switchM), (collect, switchM), (TopUp, switchM),
(

(

(sw1tchM collect, switchM), (switchM, TopUp, switchM)}

In order to determine the input and output associated with a the test process
t"® is applied. To illustrate, suppose t"¢({switchM)) is to be calculated:

t"?((switchM)) = ¢"¢(e(switchM))
= (Z17,719)
where  (71,7,) = 7€) = (e,)
and ((mo,T1), (31, m")) € ||e]
and (m',z) € dom switchM
= m' = my Az = M Ay = ManageOn
So t"?((switchM)) = (M, ManageOn)

Where the sequence to be triggered is of the form ff for some f that is not
in the language of the associated automaton the test process employs the third
clause of the definition of t"? to reduce the length of the sequence to be triggered.
For instance,

t"?({switchM, change, switchM))

t"?((switchM, change))

Thus, the input sequence (M,C) is produced and the expected output is
(ManageOn, L).

Using the test process, "¢, the test input required to trigger (change, switchM)
can be calculated to be (C, M). The output sequence which must be observed for
this input sequence is calculated (using t"?) to be ((0, USEROUT), ManageOn).
That is, no change should appear at the user output slot and the ‘Manage on’
light should illuminate for 2 seconds.

8. Proof that the test determines correctness

Throughout this section it will be assumed that M = (In, Out, S, Mem, ®, F, sy,
mp, T') is a quasi-nondeterministic stream X-machine with n states that satisfies
the specify for test conditions, for quasi-nondeterministic stream X-machines,
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and in which every state is a final state. It shall also be assumed that I is an IUT
that satisfies the test hypotheses for quasi-nondeterministic stream X-machines
with M;, ®" and n’ as defined earlier.

This section contains a proof that, under the specify for test conditions and
test hypotheses, the test generated by the algorithm given in Section 7 is guar-
anteed to determine correctness.

The relation < can be extended to <* by applying the following rules.

o e <"e.
e Vied fed fled fredff' < ff e f <FAf<T

Testing may be seen as a process of comparing D(M) and A(M;). This com-
parison is complicated by these automata having different alphabets, ® and ®'.
In order to simplify this comparison an abstraction Abs(M;) of A(M;) will be
defined. Abs(Mj) is the FA produced by replacing each label f' of A(M;) by
the corresponding f € ® which satisfies f' < f. Abs(M;) shall be called the
®-abstraction of M;. Similarly, given f' € ®, abs(f') shall denote the element f
of @' that satisfies f' < f. The first two results in this section demonstrate that
Abs(My) and abs(f') are uniquely defined.

It will transpire that M; conforms to M if and only if Abs(M;) and D(M) are
equivalent. In order to prove this, two results that relate sequences of functions
executed in D(M) and A(Mjy), are given. We then prove that I < M if and only
if L(Abs(M;)) = L(D(M)). These are followed by a proof that, given f € ®*,
if (z,7) = t"(f) and (%,y) € |M], then either f is in both L(D(M)) and
L(Abs(My)) or it is in neither of these languages. The section concludes with a
proof that the test generated from Ty by t"? determines whether D(M) and
Abs(Mjy) are equivalent and thus whether I conforms to M.

The following results demonstrate that, for each f' there is exactly one f € ®
with f/ < f and thus that abs(f’) and Abs(M;) are uniquely defined.

Lemma 3. Suppose f,§ are non-empty sequences from ®* and (f) N (7) # @.
Then f = 7.

Proof

Proof by induction on f. Since ® is nd-output distinguishable, the
result clearly holds for the base case where f has length 1.
Suppose that f has length greater than 1. Clearly as (f) N (g) # &,
f and g the same length. Then f = f,f and § = G, ¢ for some
f2, g2 € . _ _
By the inductive hypothesis, f; = §,. Suppose (T122,7,42) € (f)N
@ = (F1f) N {fig2) (m2 € In, yo € Out). Since @ is observable
there is some unique memory m with (g,, m) € ||f;||- Then, both
f> and g¢» can produce output y» in response to input z» when in
memory m. Thus, since ® is nd-output distinguishable, o = g¢»
and so f =7 as required.

Lemma 4. Suppose f' € ®*. Then there is exactly one sequence f in ®* with

F<F.
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Proof

By the definition of ®*, there must always be some f € ®* with
f' <* f. It is now sufficient to consider uniqueness. The case where
f"is empty clearly holds and the case where f’ is non-empty follows
directly from Lemma 3.

The following result relates f to the sequence triggered in My by t"?(f) if
t(f) € [M].

Lemma 5. Suppose ¢"¢ is the test process, f € L(D(M)) and (Z,7) = t"(f).
If (z,y) € [M] then the sequence f’ € ®"™ triggered when M; produces 7 in

response to T satisfies f/ <* f.

Proof

The result clearly holds when f' is of length 0. Suppose now that
[ has length greater than 0. By Lemma 4 there is some unique
f1 € ®* with f' <* f,. Thus, by the definition of <*, f, is capable
of producing output ¥ in response to input z. Further, by the
definition of t"?, (z,7) € (f). Thus (f) N (f,) # @ and by Lemma
3 f =f,. Thus, f’ <* f as required.

The following result shows that if I conforms to M then the sequences from
L(A(M7)) correspond to sequences from L(D(M)).

Lemma 6. Suppose that I < M and f" € L(A(My)). Then there is some se-
quence f € L(D(M)) with f <* f.

Proof

The result clearly holds when f' is of length 0. Consider now the
cases where f’ is of length greater than 0. Suppose (Z,7) € (f).
By Lemma 4, there is some unique f, € ®* with f’ <* f,.

As f' € L(A(My)), (7,9) € | M;]. Further, since I < M, (Z,7) €

| M] and thus there is some f € L(D(M)) with (z,7) € (f). Thus,
as (T,7) € (7) and (Z,7) € (71>, so by Lemma 3, f = f,. Therefore
f'<*f,and f, = f € L(D(M)) and thus the result follows.

The following results demonstrate that I conforms to M if and only if Abs(M7)
is equivalent to D(M). They thus reduce the problem of deciding whether I con-
forms to M to determining whether Abs(M;) and D(M) are equivalent.
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Lemma 7. If L(Abs(M;)) = L(D(M)) then I < M.

Proof

Proof by contradiction will be used, assuming that L(Abs(M;)) =
L(D(M)) but that I £ M.

AsT A M, M|, € |M],. Thus there is some minimal length T
such that there is some ¥ with (z,y) € [M], \ | M],. Clearly T
has length at least 1. There are two cases to consider: (Z,7) € | M;|
and (7,7) & | M; B

Case 1: (Z,y) € | M;]. Then there is some f’ € L(M;) such that
(Z,y) € (f'). Thus, as L(Abs(M;)) = L(D(M)), there is some
f € L(D(M)) with f’ <* f. Thus, (Z,7) € (f) C | M| providing a
contradiction as required.

Case 2: (Z,7) ¢ |M;]|. Let T = T2z and § = 7,y2, some
2 € In and y» € Out U {L}. By the minimality of Z, (Z1,7;) €
|[Mr]L N [M].. Here we may note that since L denotes halting,
if 7, included L, the response of M; and M to further input
would be the same (null). Thus 7; does not contain L and so
(71,7,) € LMy] N | M].

Since (Z,7Y) € | M1, y2 =L. Since (71,7,) € | M| and (T122,7;, L
) € | M|, there must be some y3 € Out and some f € L(D(M))
such that (Z,7,y3) € (f). As L(D(M)) = L(Abs(M;)) there is
some f' € L(Abs(M;p)) such that f/ <* f. Then, by the definition
of <* f’ and f have the same input domains, contradicting y =L
as required.

Lemma 8. If I < M then L(Abs(M;)) = L(D(M)).
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Proof

Proof by contradiction will again be used, assuming that I < M
but L(Abs(M;)) # L(D(M)). There are thus two cases: there exists
some fo € L(Abs(Mr))\ L(D(M)) or there is some f, € L(D(M))\
L(Abs(M;)).

Case 1: Af, € L(Abs(M;))\L(D(M)). As f, € L(Abs(M)) there is
some sequence f' € L(M;) with f, = abs(f’). Choose (%, 7) € (f_’>
By Lemma 6, there is some f € L(D(M)) with f' <* f. As f' < f,,
f’ <* f, by Lemma 4 f, = f’. Thus, f, € L(D(M)), providing a
contradiction as required.

Case 2: Af € L(D(M)) \ L(Abs(My)). Let (7,7) = t"(f). As [ <
M, by the definition of "¢ we know that (Z,7) € | M| and (%,7) €
| M;]. Thus there is some f' € L(A(M;)) such that (Z,9) € (f').
By Lemma 5, f’ < f and thus abs(f') = f. Thus f € L(Abs(Mj)),
contradicting the choice of f as required.

Theorem 9. I < M if and only if Abs(M7) is equivalent to D(M).

Proof

This follows directly from Lemmas 7 and 8.

Thus, in order to determine whether I conforms to M, it is sufficient to
determine whether Abs(M;) and D(M) are equivalent. In order to prove that
the test process applied to Ty establishes the equivalence of Abs(M;) and D(M)
it is sufficient to initially prove that if f € ®* and (Z,¥) = t"?(f). From (Z,%) €

| M;], it is then possible to deduce that Abs(M;) and D(M) agree on f: either
both automata accept f or neither does.

Theorem 10. Suppose f € ®* and t"(f) = (7,7). If (z,9) € |[M], then
either f is in both L(Abs(M;)) and L(D(M)) or f is in neither L(Abs(Mj)) nor
L(D(M)).
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Proof

There are two cases: f € L(D(M)) and f ¢ L(D(M)).

Case 1: f € L(D(M)). Then (z,9) € {f) and (z,y) € (f') for some
f" from L(A(Mj)). By Lemma 5, f' <* f. Thus, as abs(f') = f,
f € L(Abs(M7)) as required.

Case 2: f ¢ L(D(M)). Proof by contradiction shall be used, as-
suming that f € L(Abs(Mj)). Since f € L(Abs(M;)) there is some
unique f’ € L(My) such that f’ <* f. Then, by the construction
applied in t"?, (Z,7) € (f') and thus 7 does not contain L. Thus
(Z,7) € | M| and so there is some f, € L(D(M)) with (Z,7) € (f,).

But f' <~ f and so (Z,7) € (f) and thus, by Lemma 3, f, = f and
so f € L(D(M)). This provides a contradiction as required.

The above result can easily be generalized to sets of sequences from ®*, as
shown below.

Theorem 11. Suppose P is a set of sequences from ® and P; = {t"*(f) | f €
P}. If P, C | M|, then for each f € P either f is in both L(Abs(M;)) and
L(D(M)) or f is not in either L(Abs(M;)) or L(D(M)).

Proof

Proof by induction on | P |. The result clearly holds for the base
case P = {}.

Suppose f € P and P’ = P\ {f}. Then, by the inductive hy-
pothesis, Abs(M;) and D(M) agree on P'. But, by Theorem 10,
as t"(f) € |[M],, Abs(M;) and D(M) agree on f. Thus Abs(M;)
and D(M) agree on P' U {f} = P as required.

The following demonstrates that it is sufficient to apply the W-method to
generate a test set from D(M).

Theorem 12. Suppose M is a complete, nd-output distinguishable, observable
quasi-nondeterministic stream X-machine with n states and relation set ®. Sup-
pose also that IUT I behaves like some unknown minimal quasi-nondeterministic
stream X-machine M; without state nondeterminism that has at most n’ states
and relation set ®' that satisfies: Vf' € & 3f € ®.f' < f. Let t" denote the
test process and Tr denote the set of sequences of relations from ®* generated
using the W-method. Let T% = {t"¢(f) | f € Tr}. Then I < M if and only if
Ty C M.



Testing conformance to a quasi-nondeterministic stream X-machine 27

Proof

From Theorem 9, I < M if and only if Abs(M;) is equivalent to
D(M). By [4], Abs(My) is equivalent to D(M) if and only if they
agree on Tr. By Theorem 11, Abs(M) and D(M) agree on Ty if
and only if T% C |M], . The result thus follows.

9. Future work

A number of algorithms, for testing against a deterministic finite state machine,
have been introduced (see, for example, [7, 24, 25]). Under certain conditions,
these are guaranteed to produce shorter test sequences that the W-method. One
piece of future work is to investigate whether any of these alternative algorithms
may be used when testing from a quasi-nondeterministic stream X-machine.

Two types on nondeterminism have been considered in this paper: state non-
determinism and operator nondeterminism. A third form of nondeterminism may
be obtained by allowing operations that may be applied at a state s to have over-
lapping input domains. This involves removing the restriction that for all s € §
and f,f" € ® such that (s,f),(s,f') € dom F, f #f' = dom fNndom f' = {}. Tt
would be interesting to extend the test generation algorithm given in this paper
to allow this form of nondeterminism.

10. Conclusions

Deterministic stream X-machines have been used to specify software systems.
One of the great benefits of using deterministic stream X-machines is the exis-
tence of a test method that, under certain well defined conditions, is guaranteed
to determine correctness. Nondeterminism aids abstraction and is thus an at-
tractive tool in the formulation of specifications. The restriction to deterministic
specifications is therefore unhelpful and prohibits the application of the powerful
stream X-machine method in cases where the specification is nondeterministic.
Some implementations may also be nondeterministic or appear to be nondeter-
ministic at the level of abstraction being considered.

Two ways of introducing nondeterminism into stream X-machines have been
described: allowing more than one possible next state after an operation f has
been performed from a state s and allowing the operations to be relations rather
than functions. Interestingly operations are not allowed to be relations under
the traditional definition of a stream X-machine. For this reason, this paper
generalized the definition of a stream X-machine. A stream X-machine with
these forms of nondeterminism has been called a quasi-nondeterministic stream
X-machine.

This paper considered the problem of testing an implementation for con-
formance to a quasi-nondeterministic stream X-machine. The design for test
conditions, used when testing from a deterministic stream X-machine, have been
generalized to allow nondeterminism. An adaptive test generation algorithm has
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been given. As with the deterministic paradigm, the test generated by this algo-
rithm is guaranteed to determine correctness under the design for test conditions.

Other authors have recently considered the problem of generating tests from
a nondeterministic stream X-machine ([17]). However, they test for equivalence
rather than conformance. In some cases conformance will be sufficient and will
then be a more appropriate definition of correctness. The notion of correctness
used would, naturally, depend upon the problem domain.
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