
Effect of current velocity on diatom colonization on

glass slides in unpolluted headwater creek

Abstract

Background and Purpose: The goal of this study was to determine the
effect of current velocity on diatom colonization rate during the first 30
days of artificial substrate (glass slides) exposure.

Materials and Methods: From autumn 1990 to summer 1993 artificial
substrates were submerged in an unpolluted mountain stream. The parallel
oriented glass slides (against the surface) were placed 10 cm beneath the wa-
ter surface (protected from debris) and exposed to different current velocities
(10–30 cm s–1, 40–60 cm s–1 and 80–100 cm s–1). The samples were col-
lected seasonally. To define diatom colonization, a nonlinear regressive
analysis of empirical data was performed.

Results: A total of 71 diatom species were found. Species Cocconeis
placentula, Surirella ovata, Gomphonema olivaceum, and Navicula
gracilis were the most abundant, depending on different current velocity.

Conclusions: The time needed for reaching the equilibrium progres-
sively increased with the current velocity (F= 16.7; P< 0.01). In the sum-
mer and autumn, the time needed for the stabilization of diatom flora was
longer than in spring and winter. Concerning species abundance, Cocco-
neis placentula, and Navicula gracilis were independent of the current ve-
locity, while Surirella ovata was abundant at lower (£30 cm s–1) and
Gomphonema olivaceum at higher (£60 cm s–1) current velocities.

INTRODUCTION

Periphyton, with phytoplankton and marcophytic vegetation, is im-
portant as energy base in lotic ecosystems (1, 2, 3). Some studies on

microdistribution of freshwater periphyton were primarily concerned
with the epiphytic algae growing on macrophytes (4, 5, 6), but some
also examined local distribution on rocks and artificial substrates (7, 8,
9, 10).

Algal flora is an important component of the lotic ecosystem and is
essential for the understanding of stream ecology. The studies of Gess-
ner (11), Blum (12) and Backhaus (13) imply that water movements
are responsible for microdistribution of epilithic algae in streams but
they do not explain how current acts to create the observed preferences.
Theoretical fluid mechanics can explain the way current influences
periphytic algal communities. Horizontal surfaces are under the influ-
ence of rather stable, laminar flow while a thin layer of water was sta-
tionary in contact with surface, with a relatively small area exposed to
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the turbulent flow, all depending on current velocity (14).
The greater the current velocity, the thinner the station-
ary layer and the larger the area exposed to the turbulent
flow. Some studies, especially those conducted in lakes,
employed vertical orientation to restrict colonization to
true periphytic species due to reduction of detritus and
settled plankton species accumulation (10, 15).

According to Zimmermann (16), the most important
ecological factors for the development of periphyton com-
munities in running waters are organic load and current
velocity. Butcher (17) found reduced periphytic densities
on slides in faster currents and Blum (18) observed that
different diatoms showed different responses to current
and concluded that current acted as a distribution gov-
erning factor. Mc Intire (19) found that faster currents
apparently retarded the initial attachment of algal cells to
glass slides but, after a prolonged period, faster currents
produced greater biomass. Some studies have shown that
early phases of colonization are characterized by rela-
tively large araphid and biraphid diatoms (geni Cocco-
neis, Fragilaria, Achnanthidium), later phases with small
mono and biraphid diatoms (Achnanthidium, Navicula)
while medium-sized mono and biraphid species domi-
nate towards the end (20). Some studies also report Cocco-
neis and Achnanthidium species as first colonizers, fol-
lowed by genera with mucilaginous pads or stalks (21) or
attachment of horizontally positioned species as Gompho-
nema, Nitzschia and Cymbella (22). Ghosh & Gaur (23)
have shown that the number of cells decreases with in-
crease in current velocity. There are also certain species
that prefer lower (e.g. Navicula cryptocephala Kütz.), some
medium (e.g. Pinnularia gibba Ehr., Gomphonema oli-
vaceum Kütz.) and some tolerate high current velocities
(e.g. Rossithidium linearis (W.Sm.) Round & Bukhtiyarova,
Gomphonema lanceolatum Ehr., Gomphonema parvulum
(Kütz.) Kütz.) (23).

The goal of the present paper was to determine the in-
teraction between algal colonization rate and current ve-
locity in an unpolluted headwater stream.

MATERIALS AND METHODS

Experiment was carried out from November 1990 to
August 1993 on a small mountain stream Veliki potok at
Zagreb, Croatia. Observations were done at shaded spring
area. Three different microhabitats were defined with re-
gard to the current velocity. Artificial substrates (glass
slides) were horizontally placed and oriented parallel to
the current, 10 cm beneath the water surface. The micro-
habitats were made of seven glass slides which were fixed
on the upper side of a brick. Diatoms were identified (24,

25, 26) with a Standard 20 light microscope. The abun-
dance of species was obtained by counting specimens in
170 microscope fields, the counting was carried out after
2, 5, 10, 15, 20, 25 and 30 days of exposure on 3 repetitive
slides. Microscopic examinations were performed on an
exposed glass slide as long as the periphyton density al-
lowed it and periphyton was afterwards scarped off and
suspended in a determined volume. A total number of

species and cells were calculated per cm2. Current was
measured directly above the brick, with a Rost’s hydro-
metric wing.

To define diatom colonization in a nonlinear regres-
sive analysis of empirical data, the following function
(27) was used: S(t)= S0 /1–e–k (t–to) / (S(t)= number of spe-
cies at time t; S0= number of species in asymptote; t=
time; t0= beginning time of colonization; k= coefficient
of colonization current). Stabilization time of diatom
colonization (tS) on artificial substrates, expressed in
days, is the moment when regressive straight line align
with values of S0–0,1. According to Kvalseth (28), em-
piric F-ratio yields validity of regression (95%) like as the
representation by the coefficient of determination (r2).

The variables calculated from nonlinear regressive
analysis and the measured velocities were analyzed by
main effects ANOVA with post-hoc Bonferroni tests us-
ing the program Statistica, version 6.0.

RESULTS

During the research period water velocity was signifi-
cantly different among three microhabitats (Anova, p<
0.01) (Table 1).

A total of 71 diatom species was found on glass slides.
The 12 most abundant species (exceeding 5%) include:
Cocconeis placentula Ehr., Cocconeis disculus (Schum.)
Cleve, Achnanthidium minutissimum (Kütz.) Czarnecki,
Meridion circulare (Grev.) Agardh, Diatoma vulgare Bory,
Navicula gracilis Ehr., Sellaphora pupula (Kutz.) Me-
reschkowsky, Navicula radiosa Kütz., Eolimna minima
(Grun) Lange-Bertalot, Gomphonema olivaceum Kütz.,
Gomphonema parvulum (Kütz.) Kütz., and Surirrela ovata
Kütz. Of these 12, four species (Cocconeis placentula Ehr,
Navicula radiosa Kütz., Gomphonema olivaceum Kütz.
and Surirella ovata Kütz.) were dominant at different
current velocities. The pioneer colonization species on glass
slides, depending on current velocity, were: Cocconeis
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TABLE 1

The mean values, standard deviations, variance and co-

efficient of variance of current velocity in cms–1 during the

investigated period (avg.= average, STD= standard de-

viation, var= variance, V(%)= coefficient of variance).

Microhabitat 1 Microhabitat 2 Microhabitat 3

Spring 25.00 60.00 90.00

Summer 10.00 40.00 60.00

Autumn 18.00 52.00 92.00

Winter 20.00 45.00 90.00

avg. 18.25 49.25 83.00

STD 5.40 7.53 13.30

var. 29.19 56.69 177.00

V (%) 29.60 15.00 16.00



placentula at velocities from 10 to 90 cms–1, Achnanthidium
minutissimum and Surirella ovata from 10 to 30 cms–1,
and Navicula gracilis at 40 to 100 cms–1.

The highest number of diatom species at all current
velocities was noted after 15 days of exposure. Concern-
ing current velocity, the highest number of species was at
medium current velocity (40–60 cms–1) and the lowest at
high current velocity (80–100 cms–1) (Figure 1a). Species
abundance showed a different pattern, with the highest
number of cells per cm2 at about the middle of exposure
period (15 days) at low and medium current velocities
(10–30 and 40–60 cms–1, respectively). At high current
velocity, species abundance peaked at the end of exposure
period (30 days) (Figure 1b).

The values calculated with nonlinear regressive anal-
ysis indicate that the time needed for beginning of colo-
nization, as well as the time needed for periphytic com-
munity stabilization increase in with increase in current
velocity (Table 2). Likewise, colonization velocity coeffi-
cient decreases with increase in current velocity. ANOVA
on those values indicated statistically significant differ-
ences dependant on current velocity. The time needed for
the beginning of colonization process (t0) did not show

any statistically significant differences whereas differ-
ence in colonization velocity coefficient and colonization
stabilization time (p<0.05) existed only between low
and high current velocities (Table 3). There was also statis-
tically significant negative correlation (p<0.05, r=–0.66)
between current velocity and colonization velocity coef-
ficient.

DISCUSSION

The type and strength of water flow as well as the shape
of surface influence the composition and size of periphytic
community (15, 29). The colonization time of periphytic
algae also depends on the abundance of algae in the water
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Figure 1. Total number of species (a) and total number of cells (b) in
three microhabitats with different current regimes at the beginning,
at the middle and at the end of colonization period.

TABLE 2

Regression values of diatom colonization dynamics dur-

ing the investigated period (t0=time for beginning of colo-

nization, k=colonization velocity coefficient, S0=number

of species in asymptote, ts=time of stabilization, r=coeffi-

cient of determination, avg=average value).

Current

velocity Season t0 k S0 ts r2 F-ratio

cms–1 days days

10–30 Spring 1.30 0.41 4.90 10.70 0.94 259.40

Summer 1.40 0.46 5.40 10.60 0.75 39.55

Autumn 1.30 0.30 5.20 14.60 0.75 36.27

Winter 1.40 0.47 5.00 9.80 0.86 94.70

avg 1.35 0.41 5.13 11.42

40–60 Spring 1.30 0.37 4.90 11.80 0.82 66.90

Summer 2.10 0.24 4.90 17.80 0.67 14.40

Autumn 1.30 0.32 6.00 14.90 0.81 58.43

Winter 1.40 0.39 5.20 11.60 0.84 74.60

avg 1.52 0.33 5.25 14.00

80–100 Spring 2.20 0.31 3.50 13.40 0.66 15.98

Summer 2.40 0.18 4.80 24.30 0.81 25.10

Autumn 1.70 0.22 6.99 18.90 0.88 119.60

Winter 1.40 0.23 6.40 18.20 0.95 235.60

avg 2.00 0.24 5.00 18.70

TABLE 3

One-way ANOVAs on t0, k and ts values calculated with

nonlinear regression analysis (ns denotes p>0.05).

1–2 2–3 1–3

t0 ns ns ns

k ns ns p<0.05

ts ns ns p<0.05



column, making substrata under the influence of lower
velocity flow more exposed to potential colonizers than
those under the influence of higher velocities.

The species like Cocconeis placentula and Achnanthi-
dium microcephalum have been previously reported as pi-
oneering species on artificial substrata (7, 23, 30, 31), as
well as some Navicula species. Those species have adopted
different strategies for adhering to substrate, for instance,
Cocconeis placentula and Achnanthidium microcephalum
are relatively small with shallow valves and girdle and
adhere tightly to the substrate with their raphid valve.
Also, Achnanthidium species are bent about the median
transapical plane, which enables them to adhere more
tightly to curved substrate. Some species, like Diatoma
vulgare attach to sticky substance excreted from a pore
field (32). Other species, like, Gomphonema produce lon-
ger or shorter stalks, depending on the flow and coloni-
zation time (in time they start to produce longer stalks).
High abundance and frequency of Cocconeis placentula
and Achnanthidium microcephalum can be explained by
their ability to respond well to disturbance and to repro-
duce at relatively high growth rates, which enables them
to populate the surface before their competitors (33). An-
other reason for their high abundance after short exposi-
tion periods is the fact that those species prefer artificial
substrates (7). Those species also prefer medium to high
over low current velocities, mostly due to their small cell
size and ability for strong attachment to the surface (32).
On the other hand, relatively big species, Surirella ovata
was on several other occasions noted as the species toler-
ating low and medium velocities (7, 23). This species is a
poor immigrant, unable to colonize habitats under the
influence of current (34), but it seems that higher current
velocity promotes its reproduction.

Two of the dominant species from this study, Achnan-
thidium minutissima and Gomphonema olivaceum, were
also noted as the most frequent and quite abundant spe-
cies in a shallow lake (5), which emphasizes their com-
petitive over strong attachment ability since later it is not
essential for colonization in a shallow lake. Other domi-
nant species, Cocconeis placentula, was reported as late
colonist and a slow immigrant in a large river (35, 36) but
other studies (7) report it as early colonist with good ad-
aptation.

This study showed typical colonization sequence re-
ported for streams (37) and rivers (38) with small mono-
raphid and araphid pennate diatoms (Achnanthidium,
Cocconeis, and apical pad adhering Diatoma and Meri-
dion) as dominant at the beginning of colonization and
with more stalk producing species at later stages (e.g.
Gomphonema), but without any significant contribution
from planktonic diatoms since current velocity in the
creek was too high to allow phytoplankton development.

This study shows inverse relationship between current
velocity and periphyton abundance, especially during
initial stages of colonization, as reported in some studies
(32, 39). This was not the case in later stages of coloniza-
tion, where medium current velocities showed the great-

est diatom accumulation. Abundance and composition
of diatoms in this research depended on intraspecific
competition which was, since all sampling sites were un-
der influence of similar physical and chemical factors,
mostly driven by current velocity conditions. High cur-
rent velocity usually causes, besides washing effect, high
inflow of suspended matter which can have shading ef-
fect on algae, and of floating sediment that can cause
much physical damage to periphytic community (20).
The maximum abundance noted in medium flow veloc-
ity conditions is in concordance with some studies (32,
39) but it was opposite to other studies, clearly showing
negative correlation of periphytic accumulation and cur-
rent velocity (23). This can be explained by the fact that
periphytic community, especially at later stages when pe-
riphytic mat is thick and quite impermeable to nutrients
from the water column, can benefit from stronger current
which can enhance diffusion of nutrients from the water
column but is not strong enough to cause sloughing.
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