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Extinction time for some nonlinear heat equations

Louis A. AssaLE? THEODORE K. BoNIT AND DIABATE NABONGO?

Abstract. This paper concerns the study of the extinction time of
the solution of the following initial-boundary value problem

ug = eLu(z,t) — f(u) in Q xRy,
u(z,t) =0 on 00 xRy,

u(z,0) =uo(z) >0 in Q,

where ) is a bounded domain in RN with smooth boundary 0, € is a
positive parameter, f(s) is a positive, increasing, concave function for
positive values of s, f(0) =0, fo % < 400, L is an elliptic operator.
We show that the solution of the above problem extincts in a finite time
and its extinction time goes to that of the solution a(t) of the following
differential equation

a(t) = —f(alt), t>0, a0)=M,

as € goes to zero, where M = sup,cq uo(x). We also extend the above
result to other classes of nonlinear parabolic equations. Finally, we give
some numerical results to illustrate our analysis.
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1. Introduction

Let Q be a bounded domain in RY with smooth boundary 9. Consider the fol-
lowing initial-boundary value problem

ug=ceLu— f(u) in QxR (1)
u(z,t) =0 on 00 x Ry, (2)
u(z,0) =up(z) >0 in Q, (3)
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where € is a positive parameter, f(s) is a positive, increasing, concave function for
S

the positive values of s, f(0) = 0, fo % < 4o00. The operator L is defined as

follows ~
0 ou
Lu= Y —(a(#)5—),
u = al’z (a’](x)am])

where a;; : Q@ — R, a;; € CY(Q), a;; = aji, 1 < i, j < N and there exists a constant
C > 0 such that

N
> a()68 = Cl &P VzeQ VE=(&,...én) €RY,
ij=1
where || . | stands for the Euclidean norm of R™. The initial data ug € C'(Q),

uo(x) = 0 on 99, ug(x) is positive in .

We need the following definition.

Definition 1.1. We say that the solution u of (1)-(3) extincts in a finite time if
there exists a finite time T such that ||u(-,t)||e > 0 for t € [0,T) but [|u(-,t)||cc =0
fort > T, where ||u(-,t)||oc = sup,eq |u(x,t)|. The time T is called the extinction
time of the solution u.

Solutions of nonlinear heat equations which extinct in a finite time have been the
subject of investigation of many authors (see [3], [4], [8], [10], [11] and the references
cited therein). The existence and uniqueness for the solution u of (1)—(3) have been
proved. It is also shown that the solution u of (1)—(3) extincts in a finite time (see
[3], [4]). In [6], some semidiscrete and discrete schemes have been used to study the
phenomenon of extinction in the case where N = 1. Also in [5], one may find some
results on extinction for elliptic equations in cylindrical domains. In this paper, we
are interested in the asymptotic behavior as € goes to zero of the extinction time.
Our work was motived by the paper of Friedman and Lacey in [7] where they have
considered the following initial-boundary value problem

ug =eAu+g(u) in Qx(0,7), (4)
u(z,t) =0 on 902 x (0,T), (5)
w(z,0) =up(x) >0 in €, (6)

where ¢(s) is a positive, increasing, convex function for the nonnegative values of
0+°° g‘zz) < +00, the initial data ug is a continuous function in Q. Under some
additional conditions on the initial data, they have proved that if ¢ is small enough,
then the solution u of (4)—(6) blows up in a finite time and its blow-up time tends

to that of the solution «(t) of the differential equation defined as follows

S,

a (t) = g(a(t), a(0) = sup ug(x),
z€Q

as € goes to zero (we say that a solution blows up in a finite time if it reaches
the value infinity in a finite time). The proof developed in [7] is based on the
construction of upper and lower solutions and it is difficult to extend the above



EXTINCTION TIME FOR SOME NONLINEAR HEAT EQUATIONS 243

method to the problem described in (1)-(3). Nabongo and Boni have obtained in
[13] an analogous result in the case of the phenomenon of extinction for stochastic
differential equations. One may also consult the paper of Nabongo and Boni in
[14] where a comparable result has been found in the context of the phenomenon
of quenching (we say that a solution quenches in a finite time if it reaches a finite
singular value in a finite time). In this paper, using a modification of Kaplan’s
method (see [9]) and a method based on the construction of upper solutions, we
prove a similar result. Our paper is written in the following manner. In the next
section, we show that when ¢ is small enough, then the solution u of (1)—(3) extincts
in a finite time and its extinction time goes to that of the solution of a certain
differential equation. We also extend the above result to other classes of parabolic
problems in the third section. Finally, in the last section, we give some numerical
results to illustrate our analysis.

2. Extinction times

In this section, we show that the solution u of (1)—(3) extincts in a finite time and
its extinction time goes to that of the solution of a certain differential equation as ¢
tends to zero. In order to facilitate our discussion, let us recall some results about
the differential equations. Consider the solution 3(¢) of the following differential
equation
{6'(15) ==pr@t), t>0,
B(0) =Q >0,

with p = const € (0,1). The solution [(t) is given explicitly by

1

B =@ -(1-pt);7, t=0

where ()4 = max{x,0}. Thus, one sees that 5(t) > 0 for t € [0, ?::) but 5(t) =0

for t > Ql:p. In this case, we say that §(t) extincts at the time Ty = l:p. More
1-p 1-p
generally, let a(t) be the solution of the differential equation defined below

{aﬁ)ﬂa@% t>0,

where M = sup,c uo(z) > 0. It is not difficult to see that a(t) > 0 for ¢t € [0, Tp)
but «(t) = 0 for t > Ty, where Ty = OM fcéz).
at the time Tj.

Let us also recall an old result (see [2]). Let a € Q2 be such that ug(a) = M and
consider the following eigenvalue problem

Hence, we discover that «(t) extincts

— Ly =\ in Bla,d), (7)
=0 on 0B(a,d), (8)
>0 in B(a,d), 9)

where § > 0, such that B(a,6) = {z € RV ; ||z —al| < d} C Q.
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It is well known that the above problem admits a solution (¢, As) such that
0 < A < 522 where D is a positive constant which depends only on the upper
bound of the coefficients of the operator L and the dimension N. We can normalize
W so that [p, 5 ¥(x)dr = 1.

Now, let us give our result on the extinction time.

Theorem 2.1. Let u be the solution of (1)-(3). If

e < min {(M/2), (Kdist(a,0))*}

then u extincts in a finite time and its extinction time T satisfies the following
estimates
Ty — AToe'/? + 0(e/?) < T < Ty,

OM f‘gz) is the extinction time of the solution a(t) of the differential

equation defined below

where Ty =

’

a(t) = —f(a(t), t>0, a(0)=M,

with M = sup,cq uo(x), A= Dfl((z\?;l and K is an upper bound of the first derivatives

of ugp.

Proof. Since the initial data ug(x) is nonnegative in 2, owing to the maximum
principle (see [15]), u is also nonnegative in  x Ry . Introduce the function z(x,t)
defined as follows

z(x,t) =alt) in QxRy.

A straightforward computation reveals that
Zt(x,t)ZLZ(x,t)—f(Z(.ﬁ,t)) in QXR-H]]
z(xz,t) >0 on 00 xRy,

z(x,0) > u(z,0) in £

According to the maximum principle, we have

0 <u(z,t) <z(x,t)=ca(t) in QxRy.

Since a(t) extincts at the time Ty, we deduce that u also extincts in a finite time
at the time T which obeys the following estimate
M- ds

r<th= | Ol (10)

Since ug € C'(Q), from the mean value theorem and the triangle inequality, we

have
uo(z) > M —'/® for z e B(a,d) C Q,

c1/3
K

where § = Let w be the solution of the following initial-boundary value

problem

we(x,t) = eLw(x,t) — f(w(x,t)) in B(a,d) x Ry,
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w(z,t) =0 on 0B(a,0) x Ry,
w(x,0) =up(z) in Bl(a,d).

Owing to the maximum principle, w is nonnegative in B(a,d) x R4 because the
initial data is nonnegative in B(a, d). Introduce the function v(¢) defined as follows

v(t) :/ wipdr for teR,.
B(a,d)

Take the derivative of v in ¢ and use the definition of v(¢) given above to obtain

’

= Lwdx — dx.
v=c [ v /| o Jwws

Applying Green’s formula, we arrive at

/

= Lpdz — dx.
v (t) E/B(a,zi)w Wdx /B(aﬁé)f(w)w x

It follows from (7) that

/

v (t) = —eXsv(t) — /B( ; fw)ypde. (11)

Use Jensen’s inequality to obtain

’

v (t) = —edso(t) — f(v(t)),

which implies that

' s DK?/3y(t)
()= =) (14 25 551,
DK?

because 0 < A\s < & = =275 Since f(0) = 0 and f(s) is a concave function for the
positive values of s, we see that @ is a decreasing function for the positive values

of s. From (11), we find that the function v(t) is nonincreasing for ¢ > 0, which

implies that v(t) < v(0) < M for t > 0. We deduce that % > % Therefore,
<

we have % %, which implies that
: DK?2e'\/3M
v(t)>—flv(t))l+ ——————) for teR,.
(t) (w(®)( ﬂM)) +

We deduce that
V() > —(1+ePA) f(u(t)) for teR,.
Let 3(t) be the solution of the following differential equation

{H(t) = —(1+BA)f(u(t), t>0,
B(t) = v(0).
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It is well known that 3(t) extincts at the time

U /U(O) ds
L+elBA Jo  f(s)

By the maximum principle (see [16]), we have v(t) > 3(t) for t € Ry. We deduce
that sup,ep(q,6) lw(w,t)] > v(t) > B(t) for t € Ry. On the other hand, since u is
nonnegative in 2 x R, we deduce that

ug(x,t) = eLu(x,t) — f(u(z,t)) in Bl(a,d) x Ry,
u(z,t) >0 on 0B(a,d) x Ry,
u(z,0) = up(z) in B(a,?).

It follows from the maximum principle that u(z,t) > w(z,t) in B(a,0) x Ry. It is
not difficult to see that

lu(-,t)]|oo = sup Ju(z,t)] > sup |w(z,t)] > 0(t) for teR,.
z€B(a,d) z€B(a,d)

Since B(t) > 0 for t € [0,T%), we see that

1 v(0) g
T>T, = - . 12
- 1+¢el/34 /0 f(s) (12)

Indeed, suppose that T < T,. This implies that ||u(-,T)|lcc > ||w(:,T)|lec > 0,
3

which contradicts the fact that u extincts at the time 7. Obviously v(0) > M —¢!/
Therefore, we have

/”‘0> s /M‘E“ b
o f(s) " Jo Fs) o f(s) Juaus fs)

On the other hand

M ds - 51/3 - E1/3
/M751/3 f(s) = f(M —=e'/3) = f(5)

because f(s) is an increasing function for the positive values of s. We deduce that

SR (13)

w0 gs Mg gl/3
— >
/0 fs) = Jo ) f(AD)

Apply Taylor’s expansion to obtain

1

4 _1/3 1/3
ey i P A+ o(e')

Use (10), (12), (13) and the above relation to complete the rest of the proof. O
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3. Other extinction times

In this section, we extend the result of the previous section considering the following
initial-boundary value problem

up =eLp(u) — f(u) in Q xRy, (14)
u(z,t) =0 on IN xRy, (15)
u(z,0) =up(z) in L, (16)

where (s) is a positive, increasing, concave function for the positive values of s.
In addition % is an increasing function for the positive values of s. Using the

methods developed in the proof of the above theorem, we prove the following.
Theorem 3.1. Let u be the solution of (14)-(16). If

e < min {(M/2)3, (Kdist(a,00))},

then u extincts in a finite time T and its extinction time T obeys the following

estimates
To — ATpe'/? + o(e'/3) < T < T,

where Ty = fOM % is the extinction time of the solution B(t) of the differential
equation defined below

B(t)=—f(B1), t>0, B(0)=M,
with M = sup,cquo(z), A = % and K is an upper bound of the first deriv-
atives of ug.

4. Numerical results

In this section, we give some computational results to confirm the theory developed
in the previous section. We consider the radial symmetric solution of the following
initial-boundary value problem

up=eAu—uP in B xRy,
u(z,t) =0 on S xRy,
u(z,0) =uo(z) in B,

where B = {x € RY ; ||lz|| < 1}, S = {z € RY ; ||z|| = 1}. The above problem may
be rewritten in the following form

N -1

ug = €(Upp + - uy) —uf, re(0,1), teRy, (17)
ur(0,) =0, wu(l,t)=0, teRy, (18)
u(r,0) = ¢(r), re€(0,1). (19)

Here, we take ¢(r) = asin(7r) with a > 0.
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We start by the construction of some adaptive schemes as follows. Let I be a
positive integer and let h = 1/I. Define the grid z; = ih, 0 < ¢ < I and approximate
the solution u of (17)—(19) by the solution U,(Ln) =W, .., UI("))T of the following
explicit scheme

n+1 n n n
Uty _ g sNQUl)_QM))—aﬁMV_V%MM

At,, h?
D g E(Ug; —2u" + Ul PREEE) Ul - Ufﬁ)
At,, h? ih 2h

—@My gt 1 <i<r -1,
U™ =0,

n > 0. We also approximate the solution u of (17)—(19) by the solution U,(ln) of the
implicit scheme below

n+1 n n+1 n+1
Ut — g 2U ™Y — 2u§™ Y

n — n+1
— =N = — Oyp-tudY,
n n n+1 n+1 n+1 n+1 n+1
Uz’( +1) _ Ui( ) _ E(Ui(+1 ) _ 2Ui( ) + Uz’(fl ) . (N—1) Ui(+1 ) _ Ui(—l ))
At, h? ih 2h
7(Ui(n))p71Ui(n+1)’ 1<i<I-—1,
U = o,

n > 0. We take At,, = min{ n h2||U}(Ln)||’£‘1)} for the explicit scheme and At,, =

2Neg’
h2|\U,§")|\g;r1 for the implicit scheme where ||U,(Ln)||oo = SUPg< <t |Ui(n)|.
We remark that limrﬁow = u,(0,t). Hence, if t = 0, then we have

ut(0,t) = eNuppr(0,t) — uP(0,¢). This remark has been used in the construction
of our schemes when i = 0.

Let us notice that in the explicit scheme, the restriction on the time step ensures
the nonnegativity of the discrete solution. For the implicit scheme, existence and
nonnegativity are also guaranteed by standard methods (see, for instance [6]).

We need the following definition.
Definition 4.1. We say that the discrete solution U,(ln) of the explicit scheme or
the implicit scheme extincts in a finite time if lim,_ 4 o HU,(l")HO<> = 0 and the series
:;i% At, converges. The quantity Z:i% At, is called the numerical extinction
time of the solution Uf(bn).
In the following tables, in rows, we present the numerical extinction times,

the number of iterations, CPU times and the orders of the approximations corre-
sponding to meshes of 16, 32, 64, 128. We take for the numerical extinction time
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" = 23:01 At; which is computed at the first time when |77 — T < 10716,
The order(s) of the method is computed from

< — log((Tan — Ton)/(T2n — Th)).

log(2)
Numerical experiments for a = %, N=2p= %
First case: ¢ = ﬁ.
I Tm n CPU time | s

16 1.408928 | 8774 20 -
32 1.405652 | 32185 140 -
64 | 1.404822 | 117263 | 1020 1.99
128 | 1.401235 | 457035 | 9840 2.11

Table 1. Numerical extinction times, number of iterations, CPU times (seconds),
and orders of the approximations obtained with the explicit Fuler method

I Tm n CPU time | s
16 1.408929 | 8774 25 -
32 1.405653 | 32185 128 -
64 | 1.404822 | 117263 | 1025 1.99
128 | 1.401207 | 437665 | 9785 2.12

Table 2. Numerical extinction times, number of iterations, CPU times (seconds)
and orders of the approximations obtained with the implicit Fuler method

1

Second case: ¢ = 1000

I Tm n CPU time | s
16 1.415965 | 8786 19 -
32 1.412814 | 32246 154 -
64 | 1.411936 | 117547 | 1069 1.84
128 | 1.412156 | 447615 | 9825 2.00

Table 3. Numerical extinction times, number of iterations, CPU times (seconds),
and orders of the approximations obtained with the explicit Fuler method

I Tm n CPU time | s
16 1.415966 | 8786 23 -
32 1.412815 | 32246 147 -
64 | 1.411936 | 117547 | 1079 1.84
128 | 1.412157 | 447615 | 998 2.00

Table 4. Numerical extinction times, number of iterations, CPU times (seconds)
and orders of the approrimations obtained with the implicit Euler method

Numerical experiments for a = %, N=3p= %

. . _ 1
First case: ¢ = 5060 *
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1 " n CPU time | s
16 1.413593 | 8782 20 -
32 1.410395 | 32225 140 -
64 1.409607 | 117459 | 1071 2.03
128 | 1.406313 | 449620 | 9839 2.07

Table 5. Numerical extinction times, number of iterations, CPU times (seconds),
and orders of the approximations obtained with the explicit Euler method

I Tm n CPU time | s
16 1.413592 | 8782 22 -
32 1.410397 | 32225 71 -
64 | 1.409592 | 117459 | 1075 2.00
128 | 1.406309 | 449620 | 9981 2.03

Table 6. Numerical extinction times, number of iterations, CPU times (seconds)
and orders of the approximations obtained with the implicit Fuler method

Third case: € = g5+

1 " n CPU time | s
16 1.416759 | 8788 21 -

32 1.414623 | 32253 124 -

64 1.414129 | 117583 | 1102 2.12
128 | 1.414006 | 450367 | 10125 2.01

Table 7. Numerical extinction times, number of iterations, CPU times (seconds),
and orders of the approximations obtained with the explicit Euler method

I Tm n CPU time | s
16 1.416762 | 8788 23 -
32 1.414625 | 32225 151 -
64 | 1.414133 | 127633 | 1187 2.13
128 | 1.414008 | 509093 | 11815 1.98

Table 8. Numerical extinction times, number of iterations, CPU times (seconds)
and orders of the approximations obtained with the implicit Fuler method

Remark 4.1. If we consider the problem (17)-(19) in the case where the initial
data ¢(r) = $sin(rm) and f(u) = \/u, then we see that the extinction time of
the solution 3(t) of the differential equation defined in Theorem 2.1 is equal /2 ~
1.4142. We observe from the above tables that when € diminishes, the extinction
time increases to 1.4142. This result does mot surprise us because of the result
established in Theorem 2.1.
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