GLASNIK MATEMATIČKI Vol. 43(63)(2008), 337 – 362

THE STRUCTURES OF STANDARD (\mathfrak{g}, K) -MODULES OF $SL(3, \mathbb{R})$

TADASHI MIYAZAKI University of Tokyo, Japan

ABSTRACT. We describe explicitly the structures of standard (\mathfrak{g}, K) -modules of $SL(3, \mathbf{R})$.

1. INTRODUCTION

For an admissible representation of a real reductive Lie group, the (\mathfrak{g}, K) module structure is a fundamental data of those. As far as we know, for some 'small' reductive Lie groups G, the (\mathfrak{g}, K) -module structures of standard representations are completely described. For example, the description of them for $SL(2, \mathbf{R})$ is found in standard textbooks, and there are rather complete results for some groups of real rank 1, e.g. SU(n, 1) by Kraljević [5] and Spin(1, 2n) by Thieleker [12]. Moreover, in recent years, many authors give the explicit description of degenerate principal series representations of several groups, e.g. Fujimura [2], Howe and Tan [4], Lee [6], Lee and Loke [7]. However, for standard representations of Lie groups of higher rank, there are few references as far as the author knows. It seems to be difficult to describe the whole (\mathfrak{g}, K) -module structures of those representations, since their K-types are not multiplicity free. In the paper [11], the (\mathfrak{g}, K) -module structures of principal series representations of $Sp(2, \mathbf{R})$ are described by Oda. In a former paper [10], we extend the result for principal series representations of $Sp(3, \mathbf{R})$. The method in these papers is applicable to study of standard representations of other groups. In this paper, we use this method to study standard (\mathfrak{g}, K) -modules of $SL(3, \mathbf{R})$.

Key words and phrases. Semisimple Lie group, principal series representation, generalized principal series representation.

²⁰⁰⁰ Mathematics Subject Classification. 22E46, 11F70.

Before describing the case of $SL(3, \mathbf{R})$, let us explain the problem in a more precise form for a general real semisimple Lie group G with its Lie algebra \mathfrak{g} . Fix a maximal compact subgroup K of G. Since standard (\mathfrak{g}, K) modules are realized as subspaces of $L^2(K)$ as a K-module, we can investigate those K-module structure by Peter-Weyl's theorem. In order to describe the action of \mathfrak{g} or $\mathfrak{g}_{\mathbf{C}} = \mathfrak{g} \otimes_{\mathbf{R}} \mathbf{C}$, it suffices to investigate the action of \mathfrak{p} or $\mathfrak{p}_{\mathbf{C}}$, because of the Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$. To study the action of $\mathfrak{p}_{\mathbf{C}}$, we compute the linear map $\Gamma_{\tau,i}$ defined as follows.

Let (π, H_{π}) be a standard representation of G with its subspace $H_{\pi,K}$ of K-finite vectors. For a K-type (τ, V_{τ}) of π and a K-homomorphism $\eta: V_{\tau} \to H_{\pi,K}$, we define a linear map $\tilde{\eta}: \mathfrak{p}_{\mathbf{C}} \otimes_{\mathbf{C}} V_{\tau} \to H_{\pi,K}$ by $X \otimes v \mapsto X \cdot \eta(v)$. Then $\tilde{\eta}$ is a K-homomorphism with $\mathfrak{p}_{\mathbf{C}}$ endowed with the adjoint action Ad of K. Let $V_{\tau} \otimes_{\mathbf{C}} \mathfrak{p}_{\mathbf{C}} \simeq \bigoplus_{i \in I} V_{\tau_i}$ be the decomposition into a direct sum of irreducible K-modules and fix ι_i an injective K-homomorphism from V_{τ_i} to $V_{\tau} \otimes_{\mathbf{C}} \mathfrak{p}_{\mathbf{C}}$ for each i. We define a linear map $\Gamma_{\tau,i} \colon \operatorname{Hom}_K(V_{\tau}, H_{\pi,K}) \to \operatorname{Hom}_K(V_{\tau_i}, H_{\pi,K})$ by $\eta \mapsto \tilde{\eta} \circ \iota_i$. These linear maps $\Gamma_{\tau,i}$ ($i \in I$) characterize the action of $\mathfrak{p}_{\mathbf{C}}$. The goal of this paper is to give explicit expressions of ι_i and $\Gamma_{\tau,i}$ for any standard representation π of $G = SL(3, \mathbf{R})$. As a result, we obtain infinite number of 'contiguous relations', a kind of system of differential-difference relations among vectors in $H_{\pi}[\tau]$ and $H_{\pi}[\tau_i]$. Here $H_{\pi}[\tau]$ is τ -isotypic component of H_{π} . These are described in Proposition 3.2, Theorem 4.5 and 5.5. We remark that R. Howe give another description of $\Gamma_{\tau,i}$ in [3] when π is a principal series representation of $GL(3, \mathbf{R})$.

As an application, we can utilize the contiguous relations to obtain the explicit formulae of some spherical functions. In the paper [8], Manabe, Ishii and Oda give the explicit formulae of Whittaker functions for principal series representations of $SL(3, \mathbf{R})$ to solve the holonomic system of differential equations characterizing those functions, which is derived from the Capelli elements and the contiguous relations around minimal K-type. We can obtain the holonomic systems characterizing Whittaker functions for standard representations of $SL(3, \mathbf{R})$ induced from the maximal parabolic subgroup by using the result of this paper. We give the explicit formulae of Whittaker functions by solving this system in [9]. On the other hand, if we have the explicit formula of Whittaker function with a certain K-type, then we can give those with another K-type by using contiguous relations.

We give the contents of this paper. In Section 2, we recall the structure of $SL(3, \mathbf{R})$ and define standard representations. In Section 3, we introduce the standard basis of a finite dimensional irreducible representation of K and give explicit expressions of $\iota_i \colon V_{\tau_i} \to V_{\tau} \otimes_{\mathbf{C}} \mathfrak{p}_{\mathbf{C}}$. In Section 4, we introduce the general setting of this paper and give matrix representations of $\Gamma_{\tau,i}$ for principal series representations in Theorem 4.5. In Section 5, we give the matrix representations of $\Gamma_{\tau,i}$ for standard representations of $SL(3, \mathbf{R})$ induced from the maximal parabolic subgroup in Theorem 5.5. In Section 6, we give explicit expressions of the action of $\mathfrak{p}_{\mathbf{C}}$ in Proposition 6.2.

2. Preliminaries

2.1. Groups and algebras. We denote by \mathbf{Z} , \mathbf{R} and \mathbf{C} the ring of rational integers, the real number field and the complex number field, respectively. Let $\mathbf{Z}_{\geq 0}$ be the set of non-negative integers, $\mathbf{1}_n$ the unit matrix of size n and $O_{m,n}$ the zero matrix of size $m \times n$ and E_{ij} the matrix of size 3 with 1 at (i, j)-th entry and 0 at other entries. We denote by δ_{ij} the Kronecker delta, i.e.

$$\delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & \text{otherwise} \end{cases}$$

For a Lie algebra \mathfrak{l} , we denote by $\mathfrak{l}_{\mathbf{C}} = \mathfrak{l} \otimes_{\mathbf{R}} \mathbf{C}$ the complexification of \mathfrak{l} .

Let G be the special linear group $SL(3, \mathbf{R})$ of degree three and \mathfrak{g} its Lie algebra. We define a Cartan involution θ of G by $G \ni g \mapsto {}^tg^{-1} \in G$. Here tg and g^{-1} means the transpose and the inverse of g, respectively. Then the maximal compact subgroup of G is given by

$$K = \{g \in G \mid \theta(g) = g\} = SO(3).$$

If we denote the differential of θ again by θ , then we have $\theta(X) = -^{t}X$ for $X \in \mathfrak{g}$. Let \mathfrak{k} and \mathfrak{p} be the +1 and the -1 eigenspaces of θ in \mathfrak{g} , respectively, that is,

$$\mathfrak{k} = \{ X \in \mathfrak{g} \mid {}^{t}X = -X \} = \mathfrak{so}(3), \qquad \mathfrak{p} = \{ X \in \mathfrak{g} \mid {}^{t}X = X \}.$$

Then \mathfrak{k} is the Lie algebra of K and \mathfrak{g} has the Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$.

Put $\mathfrak{a}_0 = \{ \operatorname{diag}(t_1, t_2, t_3) \mid t_i \in \mathbf{R} \ (1 \leq i \leq 3), \ t_1 + t_2 + t_3 = 0 \}$. Then \mathfrak{a}_0 is a maximal abelian subalgebra of \mathfrak{p} . For each $1 \leq i \leq 3$, we define a linear form e_i on \mathfrak{a}_0 by $\mathfrak{a}_0 \ni \operatorname{diag}(t_1, t_2, t_3) \mapsto t_i \in \mathbf{C}$. The set Σ of the roots for $(\mathfrak{a}_0, \mathfrak{g})$ is given by $\Sigma = \Sigma(\mathfrak{a}_0, \mathfrak{g}) = \{e_i - e_j \mid 1 \leq i \neq j \leq 3\}$, and the subset $\Sigma^+ = \{e_i - e_j \mid 1 \leq i < j \leq 3\}$ forms a positive root system. For each $\alpha \in \Sigma$, we denote the root space by \mathfrak{g}_α and choose a root vector E_α in \mathfrak{g}_α by $E_{e_i - e_j} = E_{ij} \ (1 \leq i \neq j \leq 3).$

If we put $\mathfrak{n}_0 = \bigoplus_{\alpha \in \Sigma^+} \mathfrak{g}_{\alpha}$, then \mathfrak{g} has an Iwasawa decomposition $\mathfrak{g} = \mathfrak{n}_0 \oplus \mathfrak{a}_0 \oplus \mathfrak{k}$. Also we have $G = N_0 A_0 K$, where $N_0 = \exp(\mathfrak{n}_0)$ and $A_0 = \exp(\mathfrak{a}_0)$.

Let \mathfrak{n}_1 , \mathfrak{n}_2 be subalgebras of \mathfrak{n}_0 defined by $\mathfrak{n}_1 = \mathfrak{g}_{e_1-e_2} \oplus \mathfrak{g}_{e_1-e_3}$, $\mathfrak{n}_2 = \mathfrak{g}_{e_1-e_3} \oplus \mathfrak{g}_{e_2-e_3}$. We take a basis $\{H_1, H_2\}$ of \mathfrak{a}_0 by

$$H_1 = \operatorname{diag}(1, 0, -1), \qquad H_2 = \operatorname{diag}(0, 1, -1),$$

and set $H^{(1)} = 2H_1 - H_2$, $H^{(2)} = H_1 + H_2$. we define subalgebras \mathfrak{a}_1 , \mathfrak{a}_2 of \mathfrak{a}_0 by $\mathfrak{a}_1 = \mathbf{R} \cdot H^{(1)}$, $\mathfrak{a}_2 = \mathbf{R} \cdot H^{(2)}$. The group *G* has three non-trivial standard parabolic subgroups P_0 , P_1 , P_2 with Langland decompositions $P_i = N_i A_i M_i$ ($0 \le i \le 2$) where

$$M_0 = \{ \operatorname{diag}(\varepsilon_1, \varepsilon_2, \varepsilon_1 \varepsilon_2) \mid \varepsilon_i \in \{\pm 1\} \ (1 \le i \le 2) \},\$$

T. MIYAZAKI

$$M_1 = \left\{ \begin{pmatrix} \det(h)^{-1} & O_{1,2} \\ O_{2,1} & h \end{pmatrix} \middle| h \in SL^{\pm}(2, \mathbf{R}) \right\},$$
$$M_2 = \left\{ \begin{pmatrix} h & O_{2,1} \\ O_{1,2} & \det(h)^{-1} \end{pmatrix} \middle| h \in SL^{\pm}(2, \mathbf{R}) \right\},$$
$$A_i = \exp(\mathfrak{a}_i) \quad N_i = \exp(\mathfrak{n}_i) \quad (i = 1, 2).$$

Here $SL^{\pm}(2, \mathbf{R}) = \{g \in GL(2, \mathbf{R}) \mid \det(g) = \pm 1\}$. For i = 1, 2, let \mathfrak{m}_i be a Lie algebra of M_i .

2.2. Definition of the P_i -principal series representations of G. For $0 \le i \le 2$, in order to define the P_i -principal series representation of G, we prepare the data (ν_i, σ_i) as follows.

For $\nu_0 \in \text{Hom}_{\mathbf{R}}(\mathfrak{a}_0, \mathbf{C})$, we define a coordinate $(\nu_{0,1}, \nu_{0,2}) \in \mathbf{C}^2$ by $\nu_{0,i} = \nu_0(H_i)$ (i = 1, 2). Then the half sum $\rho_0 = e_1 - e_3$ of the positive roots has coordinate $(\rho_{0,1}, \rho_{0,2}) = (2, 1)$. We define a quasicharacter $e^{\nu_0} \colon A_0 \to \mathbf{C}^{\times}$ by

$$e^{\nu_0}(a) = a_1^{\nu_{0,1}} a_2^{\nu_{0,2}}, \quad a = \text{diag}(a_1, a_2, a_3) \in A_0.$$

We fix a character σ_0 of M_0 . σ_0 is realized by $(\sigma_{0,1}, \sigma_{0,2}) \in \{0,1\}^{\oplus 2}$ such that

$$\sigma_0(\operatorname{diag}(\varepsilon_1, \varepsilon_2, \varepsilon_1\varepsilon_2)) = \varepsilon_1^{\sigma_{0,1}} \varepsilon_2^{\sigma_{0,2}}, \quad \varepsilon_1, \varepsilon_2 \in \{\pm 1\}.$$

For each i = 1, 2, we identify $\nu_i \in \operatorname{Hom}_{\mathbf{R}}(\mathfrak{a}_i, \mathbf{C})$ with a complex number $\nu_i(H^{(i)}) \in \mathbf{C}$. Let ρ_i (i = 1, 2) be the half sums of positive roots whose root spaces are contained in \mathfrak{n}_i , i.e. $\rho_1 = \frac{1}{2}(2e_1 - e_2 - e_3)$, $\rho_2 = \frac{1}{2}(e_1 + e_2 - 2e_3)$. Then both ρ_1 and ρ_2 are identified with 3. We fix a discrete series representation σ_i of $M_i \simeq SL^{\pm}(2, \mathbf{R})$ for i = 1, 2.

DEFINITION 2.1. For $0 \le i \le 2$, we define the P_i -principal series representation $\pi_{(\nu_i,\sigma_i)}$ of G by

$$\pi_{(\nu_i,\sigma_i)} = \operatorname{Ind}_{P_i}^G (1_{N_i} \otimes e^{\nu_i + \rho_i} \otimes \sigma_i),$$

i.e. $\pi_{(\nu_i,\sigma_i)}$ is the right regular representation of G on the space $H_{(\nu_i,\sigma_i)}$ which is the completion of

$$H^{\infty}_{(\nu_i,\sigma_i)} = \left\{ f \colon G \to V_{\sigma_i} \ smooth \ \left| \begin{array}{c} f(namx) = e^{\nu_i + \rho_i}(a)\sigma_i(m)f(x) \\ for \ n \in N_i, \ a \in A_i, \ m \in M_i, \ x \in G \end{array} \right\} \right.$$

with respect to the norm

$$||f||^2 = \int_K ||f(k)||^2_{\sigma_i} dk.$$

Here V_{σ_i} is a representation space of σ_i and $\|\cdot\|_{\sigma_i}$ is its norm.

REMARK 2.2. The P_i -principal series representations are also called standard representations or generalized principal representations.

3. Representations of K = SO(3)

3.1. The spinor covering. To describe the finite dimensional representations of SO(3), the simplest way seems to be the one utilizing the double covering $\varphi: SU(2) = Spin(3) \rightarrow SO(3)$. We use the following realization introduced in [8].

We define $\varphi \colon SU(2) \to SO(3)$ by

$$\varphi(x) = \begin{pmatrix} p^2 + q^2 - r^2 - s^2 & -2(ps - qr) & 2(pr + qs) \\ 2(ps + qr) & p^2 - q^2 + r^2 - s^2 & -2(pq - rs) \\ -2(pr - qs) & 2(pq + rs) & p^2 - q^2 - r^2 + s^2 \end{pmatrix}$$

for $x = \begin{pmatrix} p + \sqrt{-1}q & r + \sqrt{-1}s \\ -r + \sqrt{-1}s & p - \sqrt{-1}q \end{pmatrix} \in SU(2) \ (p,q,r,s \in \mathbf{R}).$ Then φ is surjective homomorphism whose kernel is given by $\{\pm 1_2\}$.

The differential $d\varphi \colon \mathfrak{su}(2) \to \mathfrak{so}(3)$ of φ is an isomorphism and it maps the basis

$$u_1 = \begin{pmatrix} \sqrt{-1} & 0 \\ 0 & -\sqrt{-1} \end{pmatrix}, \quad u_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad u_3 = \begin{pmatrix} 0 & \sqrt{-1} \\ \sqrt{-1} & 0 \end{pmatrix}$$
to $-2K_{23}, \ 2K_{13}, -2K_{12}.$ Here $K_{ij} = E_{ij} - E_{ji} \ (1 \le i < j \le 3).$

3.2. Representations of SU(2). The set of equivalence classes of the finite dimensional continuous representations of SU(2) is exhausted by the symmetric tensor product τ_l $(l \in \mathbb{Z}_{\geq 0})$ of the representation $SU(2) \ni g \mapsto (v \mapsto g \cdot v) \in$ $GL(\mathbb{C}^2)$. We use the following realizations of those which are introduced in [8].

Let V_l be the subspace consisting of degree l homogeneous polynomials of two variables x, y in the polynomial ring $\mathbf{C}[x, y]$. For $g \in SU(2)$ with $g^{-1} = \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix}$ and $f(x, y) \in V_l$ we set

$$\tau_l(g)f(x,y) = f(ax + by, -\bar{b}x + \bar{a}y).$$

Passing to the Lie algebra $\mathfrak{su}(2)$, the derivation of τ_l , denoted by same symbol, is described as follows by using the standard basis $\{v_k = x^k y^{l-k} \mid 0 \le k \le l\}$ of V_l and the basis $\{u_1, u_2, u_3\}$ of $\mathfrak{su}(2)$. Namely, we have

$$\tau_l(H)v_k = (l-2k)v_k, \quad \tau_l(E)v_k = -kv_{k-1}, \quad \tau_l(F)v_k = (k-l)v_{k+1}$$

Here $\{E, H, F\}$ is \mathfrak{sl}_2 -triple defined by

$$H = -\sqrt{-1}u_1, \ E = \frac{1}{2}(u_2 - \sqrt{-1}u_3), \ F = -\frac{1}{2}(u_2 + \sqrt{-1}u_3) \in \mathfrak{su}(2)_{\mathbf{C}}.$$

The condition that τ_l defines a representation of SO(3) by passing to the quotient with respect to $\varphi: SU(2) \to SO(3)$ is that $\tau_l(-1_2) = (-1)^l = 1$, i.e. l is even. For $l \in \mathbb{Z}_{\geq 0}$, we denote the irreducible representation of SO(3) induced from (τ_{2l}, V_{2l}) again by (τ_{2l}, V_{2l}) .

3.3. The adjoint representation of K on $\mathfrak{p}_{\mathbf{C}}$. It is known that $\mathfrak{p}_{\mathbf{C}}$ becomes a K-module via the adjoint action of K. Concerning this, we have the following lemma.

LEMMA 3.1. Let $\{w_j \mid 0 \leq j \leq 4\}$ be the standard basis of (τ_4, V_4) and $\{X_j \mid 0 \leq j \leq 4\}$ be a basis of $\mathfrak{p}_{\mathbf{C}}$ defined as follows:

$$X_{0} = H_{2} - \sqrt{-1}(E_{23} + E_{32}), \quad X_{1} = -\frac{1}{2} \{ \sqrt{-1}(E_{12} + E_{21}) + (E_{13} + E_{31}) \},$$

$$X_{2} = -\frac{1}{3}(2H_{1} - H_{2}), \qquad X_{3} = -\frac{1}{2} \{ \sqrt{-1}(E_{12} + E_{21}) - (E_{13} + E_{31}) \},$$

$$X_{4} = H_{2} + \sqrt{-1}(E_{23} + E_{32}).$$

Then via the isomorphism between V_4 and $\mathfrak{p}_{\mathbf{C}}$ as K-modules we have the identification $w_j = X_j \ (0 \le j \le 4)$.

PROOF. By direct computation, we have Table. 1 of the adjoint actions of the basis $\{d\varphi(E), d\varphi(H), d\varphi(F)\}$ of $\mathfrak{k}_{\mathbb{C}}$ on the basis $\{X_j \mid 0 \leq j \leq 4\}$ of $\mathfrak{p}_{\mathbb{C}}$. Comparing the actions in the above with the actions in Subsection 3.2, we obtain the assertion.

TABLE 1. The adjoint actions of $\mathfrak{k}_{\mathbf{C}}$ on $\mathfrak{p}_{\mathbf{C}}$.

	X_0	X_1	X_2	X_3	X_4
$d\varphi(H)$	$4X_0$	$2X_1$	0	$-2X_{3}$	$-4X_{4}$
$d\varphi(E)$	0	$-X_0$	$-2X_1$	$-3X_{2}$	$-4X_{3}$
$d\varphi(F)$	$-4X_{1}$	$-3X_{2}$	$-2X_{3}$	$-1X_{4}$	0

3.4. Clebsch-Gordan coefficients for the representations of $\mathfrak{sl}(2, \mathbb{C})$ with respect to standard basis. For later use, we consider the irreducible decomposition of $V_l \otimes_{\mathbb{C}} V_4$ as $\mathfrak{sl}(2, \mathbb{C}) = \mathfrak{su}(2)_{\mathbb{C}}$ -modules for arbitrary non-negative integer l.

Generically, the tensor product $V_l \otimes_{\mathbf{C}} V_4$ has five irreducible components $V_{l+4}, V_{l+2}, V_l, V_{l-2}$ and V_{l-4} . Here some components may vanish. We give an explicit expression of a nonzero $\mathfrak{sl}(2, \mathbf{C})$ -homomorphism from each irreducible component to $V_l \otimes_{\mathbf{C}} V_4$ as follows.

PROPOSITION 3.2. Let $\{v_k^{(l)} \mid 0 \le k \le l\}$ be the standard basis of V_l for $l \in \mathbb{Z}_{\ge 0}$. We put $v_k^{(l)} = 0$ when k < 0 or k > l.

If V_{l+2m} -component of $V_l \otimes_{\mathbf{C}} V_4$ does not vanish, then we define linear maps $I_{2m}^l: V_{l+2m} \to V_l \otimes_{\mathbf{C}} V_4$ $(-2 \leq m \leq 2)$ by

$$I_{2m}^{l}(v_{k}^{(l+2m)}) = \sum_{i=0}^{4} A_{[l,2m;k,i]} \cdot v_{k+2-m-i}^{(l)} \otimes w_{i}$$

Here the coefficients $A_{[l,2m;k,i]} = a(l,2m;k,i)/d(l,2m)$ are defined by following formulae. FORMULA 1: The coefficients of $I_4^l: V_{l+4} \to V_l \otimes_{\mathbf{C}} V_4$ are given as follows: a(l,4;k,0) = (l+4-k)(l+3-k)(l+2-k)(l+1-k), a(l,4;k,1) = 4(l+4-k)(l+3-k)(l+2-k)k, a(l,4;k,2) = 6(l+4-k)(l+3-k)k(k-1), a(l,4;k,3) = 4(l+4-k)k(k-1)(k-2), a(l,4;k,4) = k(k-1)(k-2)(k-3), d(l,4) = (l+4)(l+3)(l+2)(l+1).FORMULA 2: The coefficients of $I_2^l: V_{l+2} \to V_l \otimes_{\mathbf{C}} V_4$ are given as follows: a(l,2;k,0) = (l+2-k)(l+1-k)(l-k),a(l,2;k,1) = -(l+2-k)(l+1-k)(l-4k),

$$\begin{aligned} a(l,2;k,2) &= -3(l+2-k)(l+1-k)(l-1k), \\ a(l,2;k,3) &= -(3l-4k+8)k(k-1), \\ a(l,2;k,4) &= -k(k-1)(k-2), \quad d(l,2) = (l+2)(l+1)l. \end{aligned}$$

FORMULA 3: The coefficients of $I_0^l: V_l \to V_l \otimes_{\mathbf{C}} V_4$ are given as follows:

$$\begin{split} &a(l,0;k,0)=&(l-k)(l-1-k), \qquad a(l,0;k,1)=-2(l-k)(l-2k-1), \\ &a(l,0;k,2)=&(l^2-6kl+6k^2-l), \quad a(l,0;k,3)=&2(l-2k+1)k, \\ &a(l,0;k,4)=&k(k-1), \qquad \qquad d(l,0)=&l(l-1). \end{split}$$

FORMULA 4: The coefficients of $I_{-2}^l: V_{l-2} \to V_l \otimes_{\mathbf{C}} V_4$ are given as follows:

 $\begin{aligned} a(l,-2;k,0) &= (l-k-2), & a(l,-2;k,1) = -(3l-4k-6), \\ a(l,-2;k,2) &= 3(l-2k-2), & a(l,-2;k,3) = -(l-4k-2), \\ a(l,-2;k,4) &= -k, & d(l,-2) = l-2. \end{aligned}$

FORMULA 5: The coefficients of $I_{-4}^l: V_{l-4} \to V_l \otimes_{\mathbf{C}} V_4$ are given as follows: a(l, -4; k, 0) = 1, a(l, -4; k, 1) = -4, a(l, -4; k, 2) = 6,a(l, -4; k, 3) = -4, a(l, -4; k, 4) = 1, d(l, -4) = 1.

Then I_{2m}^l is a generator of $\operatorname{Hom}_{\mathfrak{sl}(2,\mathbf{C})}(V_{l+2m}, V_l \otimes_{\mathbf{C}} V_4)$, which is unique up to scalar multiple.

PROOF. We have

$$(\tau_l \otimes \tau_4)(E) \circ I_{2m}^l(v_0^{(l+2m)}) = \sum_{i=0}^4 A_{[l,2m;0,i]} \cdot (\tau_l(E)v_{2-m-i}^{(l)}) \otimes w_i + \sum_{i=0}^4 A_{[l,2m;0,i]} \cdot v_{2-m-i}^{(l)} \otimes (\tau_4(E)w_i)$$

T. MIYAZAKI

$$= -\sum_{i=0}^{4} ((2-m-i)A_{[l,2m;0,i]} + (i+1)A_{[l,2m;0,i+1]}) \cdot v_{1-m-i}^{(l)} \otimes w_i.$$

Here we put $A_{[l,2m;0,5]} = 0$. By direct computation, we confirm

$$(2 - m - i)A_{[l,2m;0,i]} + (i+1)A_{[l,2m;0,i+1]} = 0$$

for $-2 \le m \le 2$ and $0 \le i \le 4$. Hence

$$(\tau_l \otimes \tau_4)(E) \circ I^l_{2m}(v_0^{(l+2m)}) = 0.$$

Moreover, we have

$$(\tau_l \otimes \tau_4)(H) \circ I_{2m}^l(v_0^{(l+2m)}) = (l+2m)I_{2m}^l(v_0^{(l+2m)}),$$

since

$$(\tau_l \otimes \tau_4)(H)(v_i^{(l)} \otimes w_j) = (\tau_l(H)v_i^{(l)}) \otimes w_j + v_i^{(l)} \otimes (\tau_4(H)w_j)$$
$$= (l+4-2i-2j)v_i^{(l)} \otimes w_j.$$

This means $I_{2m}^{l}(v_0^{(l+2m)})$ is the highest weight vector of the V_{l+2m} -component of $V_l \otimes_{\mathbf{C}} V_4$ with respect to a Borel subalgebra $(\mathbf{C} \cdot H) \oplus (\mathbf{C} \cdot E)$ of $\mathfrak{sl}(2, \mathbf{C})$.

Therefore, in order to complete the proof, it suffices to confirm

$$(\tau_l \otimes \tau_4)(F) \circ I_{2m}^l(v_k^{(l+2m)}) = I_{2m}^l \circ \tau_{l+2m}(F)(v_k^{(l+2m)})$$

for each $0 \le k \le l + 2m$.

We confirm these equations by direct computation.

The coefficients $A_{\left[l,2m;k,i\right]}$ in the above proposition satisfy the following relations.

LEMMA 3.3. The coefficients $A_{[l,2m;k,i]}$ in Proposition 3.2 satisfy following relations:

$$\begin{aligned} A_{[l,2m;l+2m-k,0]} &= (-1)^m A_{[l,2m;k,4]}, \quad A_{[l,2m;l+2m-k,2]} = (-1)^m A_{[l,2m;k,2]}, \\ 3\{(k-m+1)A_{[l,2m;k,1]} + (l-k+m+1)A_{[l,2m;k,3]}\} \\ &= (ml+m^2+m-6)A_{[l,2m;k,2]}. \end{aligned}$$

for $-2 \le m \le 2$ and $0 \le k \le l + 2m$.

PROOF. These are obtained by direct computation.

3.5. The contragradient representation of (τ_l, V_l) . We denote by (τ^*, V^*) the contragradient representation of (τ, V) . Here we note that V_l^* is equivalent to V_l as SU(2)-modules, since the irreducible l + 1-dimensional representation of SU(2) is unique up to isomorphism.

LEMMA 3.4. Let $\{v_k^{(l)*} \mid 0 \le k \le l\}$ be the dual basis of the standard basis $\{v_k^{(l)} \mid 0 \le k \le l\}$. Via the isomorphism between V_l and V_l^* as K-modules we have the identification

$$v_k^{(l)} = (-1)^k \frac{(l-k)!k!}{l!} v_{l-k}^{(l)*}$$

for $0 \leq k \leq l$.

PROOF. We denote by \langle,\rangle the canonical pairing on $V_l^*\otimes_{\bf C} V_l.$ Since

$$\langle \tau_l^*(H)v_k^{(l)*}, v_m^{(l)} \rangle = -\langle v_k^{(l)*}, \tau_l(H)v_m^{(l)} \rangle = (2m-l)\delta_{km} = (2k-l)\delta_{km},$$

we have $\tau_l^*(H)v_k^{(l)*} = (2k-l)v_k^{(l)*}$. Similarly, we obtain

$$\tau_l^*(E)v_k^{(l)*} = (k+1)v_{k+1}^{(l)*}, \qquad \tau_l^*(F)v_k^{(l)*} = (l-k+1)v_{k-1}^{(l)*}.$$

From these equations, the identification $v_0^{(l)} = v_l^{(l)*}$ determines the isomorphism in the statement.

4. The (\mathfrak{g}, K) -module structures of the P_0 -principal series representations

4.1. The irreducible decomposition of $\pi_{(\nu_0,\sigma_0)}|_K$ as a K-module. We set

$$L^{2}_{(M_{0},\sigma_{0})}(K) = \{ f \in L^{2}(K) \mid f(mx) = \sigma_{0}(m)f(x) \text{ for a.e. } m \in M, x \in K \}$$

and give a K-module structure by the right regular action of K. Then the restriction map $r_K \colon H_{(\nu_0,\sigma_0)} \ni f \mapsto f|_K \in L^2_{(M_0,\sigma_0)}(K)$ is an isomorphism of K-modules.

 $L^{2}(K)$ has a $K \times K$ -bimodule structure by the two sided regular action:

$$((k_1, k_2)f)(x) = f(k_1^{-1}xk_2), \quad x \in K, \ f \in L^2(K), \ (k_1, k_2) \in K \times K.$$

Then we define a homomorphism $\Phi_l \colon V_{2l}^* \otimes_{\mathbf{C}} V_{2l} \to L^2(K)$ of $K \times K$ -bimodules by

$$w \otimes v \mapsto (x \mapsto \langle w, \tau_{2l}(x)v \rangle).$$

Then Peter-Weyl's theorem tells that

$$\bigoplus_{l \in \mathbf{Z}_{\geq 0}} \Phi_l \colon \bigoplus_{l \in \mathbf{Z}_{\geq 0}} V_{2l}^* \otimes_{\mathbf{C}} V_{2l} \to L^2(K)$$

is an isomorphism as $K\times K\text{-bimodules}.$ Here $\widehat{\bigoplus}$ means a Hilbert space direct sum.

Since $L^2_{(M_0,\sigma_0)}(K) \subset L^2(K)$, we have an irreducible decomposition of $L^2_{(M_0,\sigma_0)}(K)$:

$$L^{2}_{(M_{0},\sigma_{0})}(K) \simeq \bigoplus_{l \in \mathbf{Z}_{\geq 0}} (V^{*}_{2l}[\sigma_{0}]) \otimes_{\mathbf{C}} V_{2l}.$$

Here $V[\sigma_0]$ means the σ_0 -isotypic component in $(\tau|_{M_0}, V)$ for a K-module (τ, V) . Therefore we obtain an isomorphism

$$r_K^{-1} \circ \bigoplus_{l \in \mathbf{Z}_{\geq 0}} \Phi_l \colon \bigoplus_{l \in \mathbf{Z}_{\geq 0}} (V_{2l}^*[\sigma_0]) \otimes_{\mathbf{C}} V_{2l} \to H_{(\nu_0, \sigma_0)}.$$

Since M_0 is generated by the two elements

$$m_{0,1} = \operatorname{diag}(-1, 1, -1), \qquad m_{0,2} = \operatorname{diag}(1, -1, -1) \in M_0,$$

we note that $v \in V_{2l}[\sigma_0]$ if and only if

$$\tau_{2l}(m_{0,i})v = \sigma_0(m_{0,i})v = (-1)^{\sigma_{0,i}}v \qquad (i=1,2)$$

for $v \in V_{2l}$. From the definition of (τ_{2l}, V_{2l}) and

$$\varphi_1^{-1}(m_{0,1}) = \left\{ \pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}, \quad \varphi_1^{-1}(m_{0,2}) = \left\{ \pm \begin{pmatrix} \sqrt{-1} & 0 \\ 0 & -\sqrt{-1} \end{pmatrix} \right\},$$

we have $\tau_{2l}(m_{0,1})v_k^{(2l)} = (-1)^k v_{2l-k}^{(2l)}$ and $\tau_{2l}(m_{0,2})v_k^{(2l)} = (-1)^{l-k}v_k^{(2l)}$. Hence we have

$$V_{2l}[\sigma_0] = \bigoplus_{k \in Z(\sigma_0; l)} \mathbf{C} \cdot (v_{2l-k}^{(2l)} + (-1)^{\varepsilon(\sigma_0; l)} v_k^{(2l)}),$$

where $\varepsilon(\sigma_0; l) \in \{0, 1\}$ such that $\varepsilon(\sigma_0; l) \equiv l - \sigma_{0,1} - \sigma_{0,2} \mod 2$ and

$$Z(\sigma_0; l) = \begin{cases} \{k \in \mathbf{Z} \mid 0 \le k \le l, \ k \equiv l - \sigma_{0,2} \mod 2\} & \text{if } \varepsilon(\sigma_0; l) = 0, \\ \{k \in \mathbf{Z} \mid 0 \le k \le l - 1, \ k \equiv l - \sigma_{0,2} \mod 2\} & \text{if } \varepsilon(\sigma_0; l) = 1. \end{cases}$$

We see that $\{v_{2l-k}^{(2l)*} + (-1)^{\varepsilon(\sigma_0;l)}v_k^{(2l)*} \mid k \in Z(\sigma_0;l)\}$ is the basis of $V_{2l}^*[\sigma_0]$, by using the identification $V_{2l}^* = V_{2l}$ in Lemma 3.4.

Now we define the elementary function $s(l; p, q) \in H_{(\nu_0, \sigma_0)}$ by

$$s(l; p, q) = r_K^{-1} \circ \Phi_l((v_{2l-p}^{(2l)*} + (-1)^{\varepsilon(\sigma_0; l)} v_p^{(2l)*}) \otimes v_q^{(2l)})$$

for $l \in \mathbf{Z}_{\geq 0}$, $p \in Z(\sigma_0; l)$ and $0 \leq q \leq 2l$.

For each $p \in Z(\sigma_0; l)$, we put S(l; p) a column vector of degree 2l+1 whose q+1-th component is s(l; p, q), i.e. ${}^t(s(l; p, 0), s(l; p, 1), \cdots, s(l; p, 2l))$.

Moreover we denote by $\langle S(l;p) \rangle$ the subspace of $H_{(\nu_0,\sigma_0)}$ generated by the functions in the entries of the vector S(l;p), i.e. $\langle S(l;p) \rangle = \bigoplus_{q=0}^{2l} \mathbf{C} \cdot s(l;p,q) \simeq V_{2l}$. Via the isomorphism between $\langle S(l;p) \rangle$ and V_{2l} , we identify $\{s(l;p,q) \mid 0 \leq q \leq 2l\}$ with the standard basis.

From above arguments, we obtain the following.

PROPOSITION 4.1. As an unitary representation of K, it has an irreducible decomposition:

$$H_{(\nu_0,\sigma_0)} \simeq \bigoplus_{l \in \mathbf{Z}_{\geq 0}} (V_{2l}^*[\sigma_0]) \otimes_{\mathbf{C}} V_{2l}$$

Then the τ_{2l} -isotypic component of $\pi_{(\nu_0,\sigma_0)}$ is given by

$$\bigoplus_{p \in Z(\sigma_0; l)} \langle S(l; p) \rangle.$$

COROLLARY 4.2. The multiplicity $d(\sigma_0; l)$ of τ_{2l} in $\pi_{(\nu_0, \sigma_0), K}$ is given by

$$d(\sigma_0; l) = \begin{cases} (l+2)/2 & \text{if } (\sigma_{0,1}, \sigma_{0,2}) = (0,0) \text{ and } l \text{ is even,} \\ (l-1)/2 & \text{if } (\sigma_{0,1}, \sigma_{0,2}) = (0,0) \text{ and } l \text{ is odd,} \\ l/2 & \text{if } (\sigma_{0,1}, \sigma_{0,2}) \neq (0,0) \text{ and } l \text{ is even,} \\ (l+1)/2 & \text{if } (\sigma_{0,1}, \sigma_{0,2}) \neq (0,0) \text{ and } l \text{ is odd.} \end{cases}$$

4.2. General setting. Let $H_{(\nu_i,\sigma_i),K}$ be the K-finite part of $H_{(\nu_i,\sigma_i)}$. In order to describe the action of \mathfrak{g} or $\mathfrak{g}_{\mathbf{C}} = \mathfrak{g} \otimes_{\mathbf{R}} \mathbf{C}$, it suffices to investigate the action of \mathfrak{p} or $\mathfrak{p}_{\mathbf{C}}$, because of the Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$.

For a K-type (τ_{2l}, V_{2l}) of $\pi_{(\nu_i, \sigma_i)}$ and a K-homomorphism $\eta: V_{2l} \to H_{(\nu_i, \sigma_i), K}$, we define a linear map

$$\tilde{\eta} \colon \mathfrak{p}_{\mathbf{C}} \otimes_{\mathbf{C}} V_{2l} \to H_{(\nu_i,\sigma_i),K}$$

by $X \otimes v \mapsto \pi_{(\nu_i,\sigma_i)}(X)\eta(v)$. Here we denote differential of $\pi_{(\nu_i,\sigma_i)}$ again by $\pi_{(\nu_i,\sigma_i)}$. Then $\tilde{\eta}$ is K-homomorphism with $\mathfrak{p}_{\mathbf{C}}$ endowed with the adjoint action Ad of K.

Since

$$V_{2l} \otimes_{\mathbf{C}} \mathfrak{p}_{\mathbf{C}} \simeq V_{2l} \otimes_{\mathbf{C}} V_4 \simeq \bigoplus_{-2 \leq m \leq 2} V_{2(l+m)},$$

there are five injective K-homomorphisms

$$I_{2m}^{2l} \colon V_{2(l+m)} \to V_{2l} \otimes_{\mathbf{C}} \mathfrak{p}_{\mathbf{C}}, \qquad -2 \le m \le 2$$

for general $l \in \mathbb{Z}_{>0}$. Then we define C-linear maps

 $\Gamma_{l,m}^{i} \colon \operatorname{Hom}_{K}(V_{2l}, H_{(\nu_{i},\sigma_{i}),K}) \to \operatorname{Hom}_{K}(V_{2(l+m)}, H_{(\nu_{i},\sigma_{i}),K}), \quad -2 \le m \le 2$

by $\eta \mapsto \tilde{\eta} \circ I_{2m}^{2l}$.

Now we settle the goal of this paper:

PROBLEM 4.1. (i) Describe the injective K-homomorphism I_{2m}^{2l} in terms of the standard basis.

(ii) Determine the matrix representations of the linear homomorphisms $\Gamma_{l,m}^i$ with respect to the induced basis defined in the next subsection.

We have already accomplished (i) in Proposition 3.2. We accomplish (ii) in Theorem 4.5 and 5.5. As a result, we obtain infinite number of 'contiguous relations', a kind of system of differential-difference relations among vectors in $H_{(\nu_i,\sigma_i)}[\tau_{2l}]$ and $H_{(\nu_i,\sigma_i)}[\tau_{2(l+m)}]$. Here $H_{(\nu_i,\sigma_i)}[\tau]$ is τ -isotypic component of $H_{(\nu_i,\sigma_i)}$.

T. MIYAZAKI

4.3. The canonical blocks of elementary functions. Let $\eta: V_{2l} \to H_{(\nu_i,\sigma_i),K}$ be a non-zero K-homomorphism. Then we identify η with the column vector of degree 2l + 1 whose q + 1-th component is $\eta(v_q^{(2l)})$ for $0 \leq q \leq 2l$, i.e. ${}^{t}(\eta(v_{0}^{(2l)}), \eta(v_{1}^{(2l)}), \cdots, \eta(v_{2l}^{(2l)})).$

By this identification, we identify S(l; p) with the K-homomorphism

$$V_{2l} \ni v_q^{(2l)} \mapsto s(l; p, q) \in H_{(\nu_0, \sigma_0), K}, \quad 0 \le q \le 2l$$

for $p \in Z(\sigma_0; l)$. We note that $\{S(l; p) \mid p \in Z(\sigma_0; l)\}$ is a basis of the space $\operatorname{Hom}_{K}(V_{2l}, H_{(\nu_{0}, \sigma_{0}), K})$ and we call it the induced basis from the standard basis.

We define a certain matrix of elementary functions corresponding to the induced basis $\{S(l;p) \mid p \in Z(\sigma_0; l)\}$ of $\operatorname{Hom}_K(V_{2l}, H_{(\nu_0, \sigma_0), K})$ for each K-type τ_{2l} of our principal series representation $\pi_{(\nu_0,\sigma_0)}$.

DEFINITION 4.3. The following $(2l + 1) \times d(\sigma_0; l)$ matrix $\mathbf{S}(\sigma_0; l)$ is called the canonical block of elementary functions for τ_{2l} -isotypic component of $\pi_{(\nu_0,\sigma_0)}$: When $(\sigma_{0,1},\sigma_{0,2}) = (0,0)$, we consider the matrix

$$\mathbf{S}(\sigma_0; l) = \begin{cases} (S(l; 0), S(l; 2), S(l; 4), \cdots, S(l; l)) & \text{if } l \text{ is even,} \\ (S(l; 1), S(l; 3), S(l; 5), \cdots, S(l; l-2)) & \text{if } l \text{ is odd.} \end{cases}$$

When $(\sigma_{0,1}, \sigma_{0,2}) = (1,0)$, we consider the matrix

$$\mathbf{S}(\sigma_0; l) = \begin{cases} (S(l; 0), S(l; 2), S(l; 4), \cdots, S(l; l-2)) & \text{if } l \text{ is even,} \\ (S(l; 1), S(l; 3), S(l; 5), \cdots, S(l; l)) & \text{if } l \text{ is odd.} \end{cases}$$

When $\sigma_{0,2} = 1$, we consider the matrix

$$\mathbf{S}(\sigma_0; l) = \begin{cases} (S(l; 1), S(l; 3), S(l; 5), \cdots, S(l; l-1)) & \text{if } l \text{ is even,} \\ (S(l; 0), S(l; 2), S(l; 4), \cdots, S(l; l-1)) & \text{if } l \text{ is odd.} \end{cases}$$

4.4. The $\mathfrak{p}_{\mathbf{C}}$ -matrix corresponding to I_{2m}^{2l} . For two integers c_0 , c_1 such that $c_0 \leq c_1$ and a rational function f(x) in the variable x, we denote by

$$\operatorname{Diag}_{c_0 \le n \le c_1}(f(n))$$

the diagonal matrix of size $c_1 - c_0 + 1$ with an entry f(n) at the $(n - c_0 + 1, n - c_0 + 1)$ -th component. Let $\mathbf{e}_i^{(l)}$ $(0 \le i \le l)$ be the column unit vector of degree l + 1 with its i + 1-th component 1 and the remaining components 0. Moreover, let $\mathbf{e}_i^{(l)}$ be the column zero vector of degree l+1 when i < 0 or l < i.

In this subsection, we define $\mathfrak{p}_{\mathbf{C}}$ -matrix $\mathfrak{C}_{l,m}$ of size $(2(l+m)+1) \times (2l+1)$ corresponding to I_{2m}^{2l} with respect to the standard basis. Let $\sum_{i=0}^{4} \iota_i^{(l,m)} \otimes X_i$ be the image of I_{2m}^{2l} under the composite of natural

linear maps

$$\operatorname{Hom}_{K}(V_{2(l+m)}, V_{2l} \otimes_{\mathbf{C}} \mathfrak{p}_{\mathbf{C}}) \to \operatorname{Hom}_{\mathbf{C}}(V_{2(l+m)}, V_{2l} \otimes_{\mathbf{C}} \mathfrak{p}_{\mathbf{C}})$$
$$\simeq \operatorname{Hom}_{\mathbf{C}}(V_{2(l+m)}, V_{2l}) \otimes_{\mathbf{C}} \mathfrak{p}_{\mathbf{C}}.$$

Then we define $\mathfrak{p}_{\mathbf{C}}$ -matrix $\mathfrak{C}_{l,m} = \sum_{i=0}^{4} R(\iota_i^{(l,m)}) \otimes X_i$ where $R(\iota_i^{(l,m)})$ is the matrix representation of $\iota_i^{(l,m)}$ with respect to the standard basis. Explicit expression of the matrix $R(\iota_i^{(l,m)})$ of size $(2(l+m)+1) \times (2l+1)$ is given by

$$\left(O_{2(l+m)+1,m+2}, R(\iota_i^{(l,m)}), O_{2(l+m)+1,m+2} \right)$$

= $\left(O_{2(l+m)+1,4-i}, \underset{0 \le k \le 2(l+m)}{\text{Diag}} (A_{[2l,2m;k,i]}), O_{2(l+m)+1,i} \right)$

for $-2 \leq m \leq 2$ and $0 \leq i \leq 4$. Here we omit the symbol $O_{m,n}$ when m = 0or n = 0.

For a column vector $\mathbf{v} = {}^t(v_0, v_1, \cdots, v_{2l}) \in (H_{(\nu_i, \sigma_i), K})^{\oplus 2l+1}$ which is identified with an element of $\operatorname{Hom}_{K}(V_{2l}, H_{(\nu_{i},\sigma_{i}),K})$, we define $\mathfrak{C}_{l,m}\mathbf{v} \in$ $(H_{(\nu_i,\sigma_i),K})^{\oplus 2(l+m)+1} \simeq \mathbf{C}^{2(l+m)+1} \otimes_{\mathbf{C}} H_{(\nu_i,\sigma_i),K}$ by

$$\mathfrak{C}_{l,m}\mathbf{v} = \sum_{\substack{0 \le j \le 4\\ 0 \le q \le 2l}} (R(\iota_j^{(l,m)}) \cdot \mathbf{e}_q^{(2l)}) \otimes (\pi_{(\nu_i,\sigma_i)}(X_j)v_q).$$

Here $R(\iota_j^{(l,m)}) \cdot \mathbf{e}_q^{(2l)}$ is the ordinal product of matrices $R(\iota_j^{(l,m)})$ and $\mathbf{e}_q^{(2l)}$. From the definition of $\mathfrak{C}_{l,m}$, we note that the vector $\mathfrak{C}_{l,m}\mathbf{v}$ is identified

with the image of **v** under $\Gamma_{l,m}^i$.

4.5. The contiguous relations.

LEMMA 4.4. The standard basis X_i $(0 \le i \le 4)$ in $\mathfrak{p}_{\mathbf{C}}$ have the following expressions according to the Iwasawa decomposition $\mathfrak{g}_{\mathbf{C}} = \mathfrak{n}_{\mathbf{C}} \oplus \mathfrak{a}_{\mathbf{C}} \oplus \mathfrak{k}_{\mathbf{C}}$:

$$\begin{split} X_0 &= -2\sqrt{-1}E_{e_2-e_3} + H_2 + \sqrt{-1}K_{23}, \\ X_1 &= -\left(E_{e_1-e_3} + \sqrt{-1}E_{e_1-e_2}\right) + \frac{1}{2}(K_{13} + \sqrt{-1}K_{12}), \\ X_2 &= -\frac{1}{3}(2H_1 - H_2), \\ X_3 &= &(E_{e_1-e_3} - \sqrt{-1}E_{e_1-e_2}) - \frac{1}{2}(K_{13} - \sqrt{-1}K_{12}), \\ X_4 &= &2\sqrt{-1}E_{e_2-e_3} + H_2 - \sqrt{-1}K_{23}. \end{split}$$

PROOF. We obtain the assertion immediately from Lemma 3.1.

We give the matrix representation of $\Gamma^0_{l,m}$ with respect to the induced basis as follows.

THEOREM 4.5. For $l \in \mathbb{Z}_{>0}$, $-2 \leq m \leq 2$ such that $d(\sigma_0; l) > 0$ and $d(\sigma_0; l+m) > 0$, we have

(4.1)
$$\mathfrak{C}_{l,m}\mathbf{S}(\sigma_0; l) = \mathbf{S}(\sigma_0; l+m) \cdot R(\Gamma_{l,m}^0)$$

with the matrix representation $R(\Gamma_{l,m}^{0}) \in M_{d(\sigma_{0};l+m),d(\sigma_{0};l)}(\mathbf{C})$ of $\Gamma_{l,m}^{0}$ with respect to the induced basis $\{S(l;p) \mid p \in Z(\sigma_{0};l)\}$:

We give the explicit expressions of the matrix

$$\begin{pmatrix} O_{n(\sigma_0;l,m),d(\sigma_0;l)} \\ R(\Gamma^0_{l,m}) \end{pmatrix}$$

as follows:

When $\sigma_{0,2} = 0$ and $(m, \sigma_{0,1} + l) \in \{0, \pm 2\} \times (2\mathbf{Z}),$

$$\begin{pmatrix} \operatorname{Diag}_{0 \le k \le d(\sigma_0; l) - 1} \left(\gamma_{[l, m; 2k + \delta(\sigma_0; l), -1]}^{(0)} \right) \\ O_{1, d(\sigma_0; l)} \end{pmatrix} + \begin{pmatrix} O_{1, d(\sigma_0; l)} \\ \operatorname{Diag}_{0 \le k \le d(\sigma_0; l) - 1} \left(\gamma_{[l, m; 2k + \delta(\sigma_0; l), 0]}^{(0)} \right) \end{pmatrix} \\ + \begin{pmatrix} O_{2, d(\sigma_0; l) - 1} & O_{2, 1} \\ \operatorname{Diag}_{0 \le k \le d(\sigma_0; l) - 2} \left(\gamma_{[l, m; 2k + \delta(\sigma_0; l), 1]}^{(0)} \right) & \gamma_{[l, m; l, 1]}^{(0)} \cdot e_{d(\sigma_0; l) - 3}^{(d(\sigma_0; l) - 2)} \end{pmatrix}.$$

When $\sigma_{0,2} = 0$ and $(m, \sigma_{0,1} + l) \in \{0, \pm 2\} \times (1 + 2\mathbf{Z}),$

$$\begin{pmatrix} \operatorname{Diag}_{0 \le k \le d(\sigma_0; l) - 1} \left(\gamma_{[l,m;2k+\delta(\sigma_0; l), -1]}^{(0)} \right) \\ O_{1,d(\sigma_0; l)} \end{pmatrix} + \begin{pmatrix} O_{1,d(\sigma_0; l)} \\ \operatorname{Diag}_{0 \le k \le d(\sigma_0; l) - 1} \left(\gamma_{[l,m;2k+\delta(\sigma_0; l), 0]}^{(0)} \right) \\ + \begin{pmatrix} O_{2,d(\sigma_0; l) - 1} & O_{2,1} \\ \operatorname{Diag}_{0 \le k \le d(\sigma_0; l) - 2} \left(\gamma_{[l,m;2k+\delta(\sigma_0; l), 1]}^{(0)} \right) & O_{d(\sigma_0; l) - 1,1} \end{pmatrix}.$$

When $\sigma_{0,2} = 0$, $(m, \sigma_{0,1} + l) \in \{\pm 1\} \times (2\mathbf{Z})$,

$$\begin{split} & \underset{0 \leq k \leq d(\sigma_{0}; l) - 1}{\operatorname{Diag}} \begin{pmatrix} \gamma_{[l,m;2k+\delta(\sigma_{0}; l), -1]}^{(0)} \\ + \begin{pmatrix} O_{1,d(\sigma_{0}; l) - 1} & 0 \\ D_{1,d(\sigma_{0}; l) - 2} & 0 \\ 0 \leq k \leq d(\sigma_{0}; l) - 2 \end{pmatrix} & O_{d(\sigma_{0}; l) - 1, 1} \end{pmatrix} \\ & + \begin{pmatrix} O_{2,d(\sigma_{0}; l) - 2} & O_{2,1} & O_{2,1} \\ D_{1,m;2k+\delta(\sigma_{0}; l), 0} & O_{d(\sigma_{0}; l) - 2, 1} & -\gamma_{[l,m;l,1]}^{(0)} \cdot e_{d(\sigma_{0}; l) - 3}^{(d(\sigma_{0}; l) - 3)} \end{pmatrix} \end{split}$$

When $\sigma_{0,2} = 0$ and $(m, \sigma_{0,1} + l) \in \{\pm 1\} \times (1 + 2\mathbf{Z}),$

$$\begin{pmatrix} \operatorname{Diag}_{0 \le k \le d(\sigma_0; l) - 1} \left(\gamma^{(0)}_{[l, m; 2k + \delta(\sigma_0; l), -1]} \right) \\ O_{2, d(\sigma_0; l)} \end{pmatrix} + \begin{pmatrix} O_{1, d(\sigma_0; l)} \\ \operatorname{Diag}_{0 \le k \le d(\sigma_0; l) - 1} \left(\gamma^{(0)}_{[l, m; 2k + \delta(\sigma_0; l), 0]} \right) \\ O_{1, d(\sigma_0; l)} \end{pmatrix}$$

$$+ \begin{pmatrix} O_{2,d(\sigma_{0};l)} \\ Diag (\gamma_{[l,m;2k+\delta(\sigma_{0};l),1]}^{(0)}) \end{pmatrix}.$$

$$When \sigma_{0,2} = 1,$$

$$\begin{pmatrix} Diag (\gamma_{[l,m;2k+\delta(\sigma_{0};l),-1]}^{(0)}) \\ O_{1,d(\sigma_{0};l)} \end{pmatrix} + \begin{pmatrix} O_{1,d(\sigma_{0};l)} \\ Diag (\gamma_{[l,m;2k+\delta(\sigma_{0};l),0]}^{(0)}) \\ O_{1,d(\sigma_{0};l)} \end{pmatrix} + \begin{pmatrix} O_{2,d(\sigma_{0};l),0} \\ Diag (\gamma_{[l,m;2k+\delta(\sigma_{0};l),0]}^{(0)}) \end{pmatrix}$$

$$+ \begin{pmatrix} O_{2,d(\sigma_{0};l)-1} & O_{2,1} \\ Diag (\gamma_{[l,m;2k+\delta(\sigma_{0};l),1]}^{(0)}) & (-1)^{\varepsilon(\sigma_{0};l+m)}\gamma_{[l,m;l-1,1]}^{(0)} \cdot e_{d(\sigma_{0};l)-2}^{(d(\sigma_{0};l)-2)} \end{pmatrix}.$$

Here

$$\begin{split} \gamma_{[l,m;p,1]}^{(0)} &= (\nu_{0,2} + \rho_{0,2} - l + p) A_{[2l,2m;2l-p+m-2,0]}, \\ \gamma_{[l,m;p,0]}^{(0)} &= -\frac{1}{3} \Big(2\nu_{0,1} - \nu_{0,2} + 2\rho_{0,1} - \rho_{0,2} + lm - 3 + \frac{m(m+1)}{2} \Big) A_{[2l,2m;2l-p+m,2]}, \\ \gamma_{[l,m;p,-1]}^{(0)} &= (\nu_{0,2} + \rho_{0,2} + l - p) A_{[2l,2m;2l-p+m+2,4]}, \\ &= \left(\begin{array}{c} (2-m)/2 & \text{if } m \in \{0, \ \pm 2\}, \end{array} \right) \end{split}$$

$$n(\sigma_0; l, m) = \begin{cases} (3-m)/2 & \text{if } (m, l+\sigma_{0,2}) \in \{\pm 1\} \times (2\mathbf{Z}), \\ (1-m)/2 & \text{if } (m, l+\sigma_{0,2}) \in \{\pm 1\} \times (1+2\mathbf{Z}), \end{cases}$$

and $\delta(\sigma_0; l) \in \{0, 1\}$ such that $\delta(\sigma_0; l) \equiv l - \sigma_{0,2} \mod 2$.

In the above equations, we put $A_{[2l,2m;k,i]} = 0$ for k < 0 or k > 2(l+m), and omit the symbols $\underset{c \leq n \leq c-1}{\text{Diag}} (f(n)), O_{0,n}, O_{m,0} \text{ and } \mathbf{e}_i^{(-1)}$.

PROOF. Since

$$s(l;p,q)(1_3) = \langle (v_{2l-p}^{(2l)*} + (-1)^{\varepsilon(\sigma_0;l)} v_p^{(2l)*}), v_q^{(2l)} \rangle = \delta_{2l-pq} + (-1)^{\varepsilon(\sigma_0;l)} \delta_{pq},$$

we have

(4.2)
$$S(l;p)(1_3) = \mathbf{e}_{2l-p}^{(2l)} + (-1)^{\varepsilon(\sigma_0;l)} \mathbf{e}_p^{(2l)}$$

Hence $S(l;p)(1_3)$ $(p \in Z(\sigma_0; l))$ are linearly independent over **C**. Thus we note that it suffices to evaluate the both side of the equation (4.1) at $1_3 \in G$.

First, we compute $\{\pi_{(\nu_0,\sigma_0)}(X_i)s(l;p,q)\}(1_3)$ for $0 \le i \le 4$, $p \in Z(\sigma_0;l)$ and $0 \le q \le 2l$. Since $\{s(l;p,q) \mid 0 \le q \le 2l\}$ is the standard basis of $\langle S(l;p) \rangle$, we have

$$\{ \pi_{(\nu_0,\sigma_0)}(\sqrt{-1}K_{23})s(l;p,q) \}(1_3) = (l-q)(\delta_{2l-p\,q} + (-1)^{\varepsilon(\sigma_0;l)}\delta_{pq}), \\ \{ \pi_{(\nu_0,\sigma_0)}(K_{13} + \sqrt{-1}K_{12})s(l;p,q) \}(1_3) = -q(\delta_{2l-p+1\,q} + (-1)^{\varepsilon(\sigma_0;l)}\delta_{p+1\,q}), \\ \{ \pi_{(\nu_0,\sigma_0)}(K_{13} - \sqrt{-1}K_{12})s(l;p,q) \}(1_3) =$$

$$= (2l-q)(\delta_{2l-p-1\,q} + (-1)^{\varepsilon(\sigma_0;l)}\delta_{p-1\,q}).$$

Moreover, we obtain

$$\begin{aligned} \{\pi_{(\nu_0,\sigma_0)}(E_{\alpha})s(l;p,q)\}(1_3) &= 0 & (\alpha \in \Sigma^+), \\ \{\pi_{(\nu_0,\sigma_0)}(H_i)s(l;p,q)\}(1_3) &= (\nu_{0,i} + \rho_{0,i})s(l;p,q)(1_3) \\ &= (\nu_{0,i} + \rho_{0,i})(\delta_{2l-p\,q} + (-1)^{\varepsilon(\sigma_0;l)}\delta_{pq}) \quad (i = 1, 2), \end{aligned}$$

from the definition of principal series representation. From these computations and Iwasawa decomposition in Lemma 4.4, we obtain

$$\begin{split} &\{\pi_{(\nu_0,\sigma_0)}(X_0)s(l;p,q)\}(1_3) = (\nu_{0,2} + \rho_{0,2} + l - q)(\delta_{2l-p\,q} + (-1)^{\varepsilon(\sigma_0;l)}\delta_{pq}), \\ &\{\pi_{(\nu_0,\sigma_0)}(X_1)s(l;p,q)\}(1_3) = -\frac{q}{2}(\delta_{2l-p+1\,q} + (-1)^{\varepsilon(\sigma_0;l)}\delta_{p+1\,q}), \\ &\{\pi_{(\nu_0,\sigma_0)}(X_2)s(l;p,q)\}(1_3) \\ &= -\frac{1}{3}(2\nu_{0,1} - \nu_{0,2} + 2\rho_{0,1} - \rho_{0,2})(\delta_{2l-p\,q} + (-1)^{\varepsilon(\sigma_0;l)}\delta_{pq}), \\ &\{\pi_{(\nu_0,\sigma_0)}(X_3)s(l;p,q)\}(1_3) = -\frac{2l-q}{2}(\delta_{2l-p-1\,q} - (-1)^{\varepsilon(\sigma_0;l)}\delta_{p-1\,q}), \\ &\{\pi_{(\nu_0,\sigma_0)}(X_4)s(l;p,q)\}(1_3) = (\nu_{0,2} + \rho_{0,2} - l + q)(\delta_{2l-p\,q} + (-1)^{\varepsilon(\sigma_0;l)}\delta_{pq}). \end{split}$$

We set

$$\pi_{(\nu_0,\sigma_0)}(X_i)S(l;p) = \sum_{0 \le q \le 2l} \mathbf{e}_q^{(2l)} \otimes (\pi_{(\nu_0,\sigma_0)}(X_i)s(l;p,q)).$$

Then we obtain

$$\begin{aligned} &\{\pi_{(\nu_0,\sigma_0)}(X_0)S(l;p)\}(1_3) \\ &= (\nu_{0,2} + \rho_{0,2} - l + p)\mathbf{e}_{2l-p}^{(2l)} + (-1)^{\varepsilon(\sigma_0;l)}(\nu_{0,2} + \rho_{0,2} + l - p)\mathbf{e}_{p}^{(2l)}, \\ &\{\pi_{(\nu_0,\sigma_0)}(X_1)S(l;p)\}(1_3) = -\frac{2l-p+1}{2}\mathbf{e}_{2l-p+1}^{(2l)} - (-1)^{\varepsilon(\sigma_0;l)}\frac{p+1}{2}\mathbf{e}_{p+1}^{(2l)}, \\ &\{\pi_{(\nu_0,\sigma_0)}(X_2)S(l;p)\}(1_3) \\ &= -\frac{1}{3}(2\nu_{0,1} - \nu_{0,2} + 2\rho_{0,1} - \rho_{0,2})(\mathbf{e}_{2l-p}^{(2l)} + (-1)^{\varepsilon(\sigma_0;l)}\mathbf{e}_{p}^{(2l)}), \\ &\{\pi_{(\nu_0,\sigma_0)}(X_3)S(l;p)\}(1_3) = -\frac{p+1}{2}\mathbf{e}_{2l-p-1}^{(2l)} - (-1)^{\varepsilon(\sigma_0;l)}\frac{2l-p+1}{2}\mathbf{e}_{p-1}^{(2l)}, \\ &\{\pi_{(\nu_0,\sigma_0)}(X_4)S(l;p)\}(1_3) \\ &= (\nu_{0,2} + \rho_{0,2} + l - p)\mathbf{e}_{2l-p}^{(2l)} + (-1)^{\varepsilon(\sigma_0;l)}(\nu_{0,2} + \rho_{0,2} - l + p)\mathbf{e}_{p}^{(2l)}. \end{aligned}$$

Let us compute $\{\mathfrak{C}_{l,m}S(l;p)\}(1_3)$. By the above equations, we have $\{\mathfrak{C}_{l,m}S(l;p)\}(1_3)$

$$= \sum_{\substack{0 \le i \le 4 \\ 0 \le q \le 2l}} (R(\iota_i^{(l,m)}) \cdot \mathbf{e}_q^{(2l)}) \otimes \{(\pi_{(\nu_0,\sigma_0)}(X_i)s(l;p,q))\}(1_3)$$

$$\begin{split} &= \sum_{0 \le i \le 4} R(\iota_i^{(l,m)}) \cdot \{ (\pi_{(\nu_0,\sigma_0)}(X_i)S(l;p)) \} (1_3) \\ &= R(\iota_0^{(l,m)}) \cdot \{ (\nu_{0,2} + \rho_{0,2} - l + p)\mathbf{e}_{2l-p}^{(2l)} + (-1)^{\varepsilon(\sigma_0;l)}(\nu_{0,2} + \rho_{0,2} + l - p)\mathbf{e}_p^{(2l)} \} \\ &+ R(\iota_1^{(l,m)}) \cdot \left\{ -\frac{2l - p + 1}{2}\mathbf{e}_{2l-p+1}^{(2l)} - (-1)^{\varepsilon(\sigma_0;l)}\frac{p + 1}{2}\mathbf{e}_{p+1}^{(2l)} \right\} \\ &+ R(\iota_2^{(l,m)}) \cdot \left\{ -\frac{1}{3}(2\nu_{0,1} - \nu_{0,2} + 2\rho_{0,1} - \rho_{0,2})(\mathbf{e}_{2l-p}^{(2l)} + (-1)^{\varepsilon(\sigma_0;l)}\mathbf{e}_p^{(2l)}) \right\} \\ &+ R(\iota_3^{(l,m)}) \cdot \left\{ -\frac{p + 1}{2}\mathbf{e}_{2l-p-1}^{(2l)} - (-1)^{\varepsilon(\sigma_0;l)}\frac{2l - p + 1}{2}\mathbf{e}_{p-1}^{(2l)} \right\} \\ &+ R(\iota_4^{(l,m)}) \cdot \{ (\nu_{0,2} + \rho_{0,2} + l - p)\mathbf{e}_{2l-p}^{(2l)} + (-1)^{\varepsilon(\sigma_0;l)}(\nu_{0,2} + \rho_{0,2} - l + p)\mathbf{e}_p^{(2l)} \}. \end{split}$$
 Since

Since

$$R(\iota_i^{(l,m)})\mathbf{e}_q^{(2l)} = A_{[2l,2m;i+q+m-2,i]}\mathbf{e}_{i+q+m-2}^{(2(l+m))}, \quad -2 \le m \le 2,$$

we obtain

(4.3) {
$$\mathfrak{C}_{l,m}S(l;p)$$
}(1₃)
= $\sum_{-1 \le i \le 1} \{ \alpha_{[l,m;p,i]} \mathbf{e}_{2(l+m)-(p+m+2i)}^{(2(l+m))} + (-1)^{\varepsilon(\sigma_0;l)} \beta_{[l,m;p,i]} \mathbf{e}_{p+m+2i}^{(2(l+m))} \},$

where

$$\begin{split} \alpha_{[l,m;p,1]} = & (\nu_{0,2} + \rho_{0,2} - l + p) A_{[2l,2m;2l-p+m-2,0]}, \\ \alpha_{[l,m;p,0]} = & -\frac{1}{3} (2\nu_{0,1} - \nu_{0,2} + 2\rho_{0,1} - \rho_{0,2}) A_{[2l,2m;2l-p+m,2]} \\ & -\frac{2l-p+1}{2} A_{[2l,2m;2l-p+m,1]} - \frac{p+1}{2} A_{[2l,2m;2l-p+m,3]}, \\ \alpha_{[l,m;p,-1]} = & (\nu_{0,2} + \rho_{0,2} + l - p) A_{[2l,2m;2l-p+m+2,4]}, \\ \beta_{[l,m;p,1]} = & (\nu_{0,2} + \rho_{0,2} - l + p) A_{[2l,2m;p+m+2,4]}, \\ \beta_{[l,m;p,0]} = & -\frac{1}{3} (2\nu_{0,1} - \nu_{0,2} + 2\rho_{0,1} - \rho_{0,2}) A_{[2l,2m;p+m,2]} \\ & -\frac{p+1}{2} A_{[2l,2m;p+m,1]} - \frac{2l-p+1}{2} A_{[2l,2m;p+m,3]}, \\ \beta_{[l,m;p,-1]} = & (\nu_{0,2} + \rho_{0,2} + l - p) A_{[2l,2m;p+m-2,0]}. \end{split}$$

$$\begin{split} \rho_{[l,m;p,-1]} = & (\nu_{0,2} + \rho_{0,2} + l - p) A_{[2l,2m;p+m-2,0]}. \end{split}$$
 By the relations of the coefficients $A_{[2l,2m;k,i]}$ in Lemma 3.3, we see that

$$\alpha_{[l,m;p,i]} = (-1)^m \beta_{[l,m;p,i]} = \gamma_{[l,m;p,i]}^{(0)}, \quad -1 \le i \le 1.$$

Therefore, (4.3) become

(4.4)
$$\{\mathfrak{C}_{l,m}S(l;p)\}(1_3) = \sum_{-1 \le i \le 1} \gamma_{[l,m;p,i]}^{(0)} \{\mathbf{e}_{2(l+m)-(p+m+2i)}^{(2(l+m))} + (-1)^{\varepsilon(\sigma_0;l)+m} \mathbf{e}_{p+m+2i}^{(2(l+m))}\}.$$

From the equations (4.2), (4.4) and $\varepsilon(\sigma_0; l) + m \equiv \varepsilon(\sigma_0; l + m) \mod 2$, we obtain the assertion.

5. The (\mathfrak{g}, K) -module structures of the P_i -principal series representations for i = 1, 2

In this section, we set i = 1 or 2.

5.1. The discrete series representations of $SL^{\pm}(2, \mathbf{R})$. The set of equivalence classes of discrete series representations of $SL^{\pm}(2, \mathbf{R})$ is exhausted by the induced representation $D_k = \operatorname{Ind}_{SL(2,\mathbf{R})}^{SL^{\pm}(2,\mathbf{R})}(D_k^+)$. Here D_k^+ is the discrete series representation of $SL(2, \mathbf{R})$ with Blattner parameter k, i.e. the one whose minimal SO(2)-type is given by the character

$$SO(2) \ni \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} \mapsto e^{\sqrt{-1}kt} \in \mathbf{C}^{\times}$$

We denote by D_k^- the contragradient representation of D_k^+ and set $y_0 = \text{diag}(1,-1) \in O(2)$. Then a discrete series representation D_k is uniquely determined by specifying the $SL(2, \mathbf{R})$ -module structure together with the action of y_0 . Since $D_k|_{SL(2,\mathbf{R})} = D_k^+ \oplus D_k^-$ and $D_k^+ \oplus D_k^-$ is infinitesimally equivalent with a subrepresentation of some principal series representation of $SL(2, \mathbf{R})$, we obtain the following realization of associated $(\mathfrak{sl}(2, \mathbf{C}), O(2))$ -module of D_k :

$$V_{D_k,O(2)} = \bigoplus_{\alpha \in \mathbf{Z}_{\geq 0}} W_{k+2\alpha} \qquad (W_p = \mathbf{C} \cdot \chi_p + \mathbf{C} \cdot \chi_{-p})$$

and

$$D_{k}(\kappa_{t})\chi_{p} = e^{\sqrt{-1}pt}\chi_{p} \qquad D_{k}(y_{0})\chi_{p} = \chi_{-p}, \qquad D_{k}(w)\chi_{p} = \sqrt{-1}p\chi_{p},$$
$$D_{k}(x_{+})\chi_{p} = (k+p)\chi_{p+2}, \qquad D_{k}(x_{-})\chi_{p} = (k-p)\chi_{p-2},$$
where

$$w = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ x_{\pm} = \begin{pmatrix} 1 & \pm\sqrt{-1} \\ \pm\sqrt{-1} & -1 \end{pmatrix} \in \mathfrak{sl}(2, \mathbf{C}),$$

$$\kappa_t = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} \in SO(2) \quad (t \in \mathbf{R}).$$

Here we denote differential of D_k again by D_k and the O(2)-finite part of V_{D_k} by $V_{D_k,O(2)}$. See [1, §2.5] for details.

5.2. The irreducible decompositions of $\pi_{(\nu_1,\sigma_1)}|_K$ and $\pi_{(\nu_2,\sigma_2)}|_K$ as K-modules. We identify M_i with $SL^{\pm}(2, \mathbf{R})$ by natural isomorphisms $m_i \colon SL^{\pm}(2, \mathbf{R}) \to M_i$ defined by

$$m_1(h) = \begin{pmatrix} \det(h)^{-1} & O_{1,2} \\ O_{2,1} & h \end{pmatrix}, \qquad m_2(h) = \begin{pmatrix} h & O_{2,1} \\ O_{1,2} & \det(h)^{-1} \end{pmatrix}$$

for $h \in SL^{\pm}(2, \mathbf{R})$. Then we may put $\sigma_i = D_k \circ m_i^{-1}$ for some $k \ge 2$.

We analyze the K-type of the representation space $H_{(\nu_i,\sigma_i)}$ of the P_i -principal series representation. The target V_{σ_i} of functions **f** in $H_{(\nu_i,\sigma_i)}$ has a decomposition:

$$V_{\sigma_i} = V_{D_k} = \bigoplus_{\alpha \in \mathbf{Z}_{\geq 0}} W_{k+2\alpha}.$$

Denote the corresponding decomposition of \mathbf{f} by

$$\mathbf{f}(x) = \sum_{\alpha=0}^{\infty} (f_{k+2\alpha}(x) \otimes \chi_{k+2\alpha} + f_{-(k+2\alpha)}(x) \otimes \chi_{-(k+2\alpha)}).$$

From the definition of the space $H_{(\nu_i,\sigma_i)}$, we have

 $\mathbf{f}|_K(mx) = \sigma_i(m)\mathbf{f}|_K(x) \qquad \text{(a.e. } x \in K, \ m \in K_i = M_i \cap K \simeq O(2)\text{)}.$

For $m = m_i(\kappa_t)$, $m_i(y_0)$, comparing the coefficients of χ_p in the left hand side with those in the right hand side, we have the equations

$$f_p|_K(m_i(\kappa_t)x) = e^{\sqrt{-1}pt} f_p|_K(x), \qquad f_p|_K(m_i(y_0)x) = f_{-p}|_K(x)$$

Moreover, from the equality of inner products

$$\int_{K} \|\mathbf{f}\|_{K}(x)\|_{\sigma_{i}}^{2} dx = \sum_{\varepsilon \in \{\pm 1\}, \ \alpha \in \mathbf{Z}_{\geq 0}} \left\{ \int_{K} \left| f_{\varepsilon(k+2\alpha)} |_{K}(x) \right|^{2} dx \right\} \|\chi_{\varepsilon(k+2\alpha)}\|_{\sigma_{i}}^{2},$$

we have $f_p|_K \in L^2(K)$. Therefore $\mathbf{f}|_K$ belongs to

$$\bigoplus_{\alpha \in \mathbf{Z}_{\geq 0}} L_i^2(K; W_{k+2\alpha})$$

where

$$L_i^2(K; W_p) = \left\{ \mathbf{f} \colon K \to W_p \mid \begin{array}{c} \mathbf{f}(x) = f(x) \otimes \chi_p + f(m_i(y_0)x) \otimes \chi_{-p}, \\ f \in L^2_{(K_i^\circ, \chi_p)}(K), \quad x \in K \end{array} \right\}$$
$$L_{(K_i^\circ, \chi_p)}^2(K) = \left\{ f \in L^2(K) \mid \begin{array}{c} f(m_i(\kappa_t)x) = e^{\sqrt{-1}pt}f(x), \\ m_i(\kappa_t) \in K_i^\circ, \ x \in K \end{array} \right\}.$$

Here K_i° means the connected component of K_i , which is isomorphic to SO(2). We easily see that the restriction map

$$r_K^{(i)} \colon H_{(\nu_i,\sigma_i)} \ni \mathbf{f} \mapsto \mathbf{f}|_K \in \bigoplus_{\alpha \in \mathbf{Z}_{\ge 0}} L_i^2(K; W_{k+2\alpha})$$

is a K-isomorphism.

By Peter-Weyl's theorem, we have the following irreducible decomposition of $L^{2}_{(K_{i}^{\circ},\chi_{p})}(K)$:

$$L^2_{(K_i^\circ,\chi_p)}(K) \simeq \bigoplus_{l \in \mathbf{Z}_{\geq 0}} (V^*_{2l}[\xi_{(i;-p)}]) \otimes_{\mathbf{C}} V_{2l}.$$

Here

$$\xi_{(i;p)} \colon K_i^{\circ} \ni m_i(\kappa_t) \mapsto e^{\sqrt{-1}pt} \in \mathbf{C}^{\diamond}$$

and $V[\xi_{(i;p)}]$ means the $\xi_{(i;p)}\text{-isotypic component in }(\tau|_{K_i^\circ},V)$ for a $K\text{-module }(\tau,V).$

In this section, we denote by $\{v_{1,q}^{(2l)} \mid 0 \le q \le 2l\}$ the standard basis of V_{2l} . We define an another basis $\{v_{2,q}^{(2l)} \mid 0 \le q \le 2l\}$ of V_{2l} by

$$v_{2,q}^{(2l)} = \tau_{2l}(u_c)v_{1,q}^{(2l)} = \frac{1}{2^l}(x+y)^q(-x+y)^{2l-q} \quad (0 \le q \le 2l)$$

where

$$u_c = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \in SO(3).$$

We note that $v \in V_{2l}[\xi_{(i;-p)}]$ if and only if

$$\pi_{2l}(m_i(\kappa_t))v = \xi_{(i;-p)}(m_i(\kappa_t))v = e^{-\sqrt{-1}pt}v \qquad (t \in \mathbf{R})$$

for $v \in V_{2l}$. From the definition of (τ_{2l}, V_{2l}) and

$$\varphi^{-1}(m_1(\kappa_t)) = \varphi^{-1}(u_c^{-1}m_2(\kappa_t)u_c) = \left\{ \pm \operatorname{diag}(e^{-\sqrt{-1}t/2}, e^{\sqrt{-1}t/2}) \right\},\,$$

we have $\tau_{2l}(m_i(\kappa_t))v_{i,q}^{(2l)} = e^{\sqrt{-1}(q-l)t}v_{i,q}^{(2l)}$. Hence we have

$$V_{2l}[\xi_{(i;-p)}] = \begin{cases} \mathbf{C} \cdot v_{i,l-p}^{(2l)} & \text{if } -l \le p \le l \\ 0 & \text{otherwise} \end{cases}$$

By the identification $V_{2l}^* = V_{2l}$ in Lemma 3.4, we obtain

$$L^{2}_{(K_{i}^{\circ},\chi_{p})}(K) \simeq \bigoplus_{l \in \mathbf{Z}_{\geq 0}}^{\infty} (\mathbf{C} \cdot v_{i,l+p}^{(2l)*}) \otimes_{\mathbf{C}} V_{2l}$$

Here we put $v_{i,l+p}^{(2l)*} = 0$ if p < -l or l < p. Moreover, since

$$\varphi^{-1}(m_1(y_0)) = \left\{ \pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\},\$$
$$\varphi^{-1}(u_c^{-1}m_2(y_0)u_c) = \left\{ \pm \begin{pmatrix} 0 & \sqrt{-1} \\ \sqrt{-1} & 0 \end{pmatrix} \right\},\$$

we have

 $\begin{aligned} \tau_{2l}^*(m_1(y_0)^{-1})v_{1,l+p}^{(2l)*} &= (-1)^{l+p}v_{1,l-p}^{(2l)*}, \quad \tau_{2l}^*(m_2(y_0)^{-1})v_{2,l+p}^{(2l)*} &= (-1)^l v_{2,l-p}^{(2l)*}. \end{aligned}$ For $0 \le p \le l-k$ such that $p \equiv l-k \mod 2$, we define the elementary function $t_i(l;p,q) \in H_{(\nu_i,\sigma_i)}$ by

$$t_i(l; p, q) = r_K^{(i)-1}(\tilde{t}_i(l; p, q))$$

where

$$\begin{split} \tilde{t}_1(l;p,q)(x) = & \langle v_{1,2l-p}^{(2l)*}, \tau_{2l}(x) v_{1,q}^{(2l)} \rangle \otimes \chi_{l-p} + (-1)^p \langle v_{1,p}^{(2l)*}, \tau_{2l}(x) v_{1,q}^{(2l)} \rangle \otimes \chi_{p-l}, \\ \tilde{t}_2(l;p,q)(x) = & \langle v_{2,2l-p}^{(2l)*}, \tau_{2l}(x) v_{1,q}^{(2l)} \rangle \otimes \chi_{l-p} + (-1)^l \langle v_{2,p}^{(2l)*}, \tau_{2l}(x) v_{1,q}^{(2l)} \rangle \otimes \chi_{p-l}. \end{split}$$

Let $T_i(l; p)$ be a column vector of degree 2l+1 with its q+1-th component $t_i(l; p, q)$, i.e. $t(t_i(l; p, 0), t_i(l; p, 1), \cdots, t_i(l; p, 2l))$.

Moreover we denote by $\langle T_i(l;p) \rangle$ the subspace of $H_{(\nu_i,\sigma_i)}$ generated by the functions in the entries of the vector $T_i(l;p)$, i.e.

$$\langle T_i(l;p)\rangle = \bigoplus_{q=0}^{2l} \mathbf{C} \cdot t_i(l;p,q) \simeq V_{2l}.$$

Via the isomorphism between $\langle T_i(l;p) \rangle$ and V_{2l} , we identify $\{t_i(l;p,q) \mid 0 \leq q \leq 2l\}$ with the standard basis.

From above arguments, we obtain the following.

PROPOSITION 5.1. As an unitary representation of K, it has an irreducible decomposition:

$$H_{(\nu_i,\sigma_i)} = \bigoplus_{\substack{l \in \mathbf{Z}_{\geq 0}, \ 0 \leq p \leq l-k \\ p \equiv l-k \bmod 2}} \langle T_i(l;p) \rangle$$

for i = 1, 2. Then the τ_{2l} -isotypic component of $\pi_{(\nu_i,\sigma_i)}$ is given by

$$\bigoplus_{\substack{0 \le p \le l-k \\ p \equiv l-k \mod 2}} \langle T_i(l;p) \rangle.$$

COROLLARY 5.2. The multiplicity $d(\sigma_i; l)$ of τ_{2l} in $\pi_{(\nu_i, \sigma_i), K}$ is given by

$$d(\sigma_i; l) = \begin{cases} (l-k+2)/2 & \text{if } k \le l \text{ and } l-k \text{ is even,} \\ (l-k+1)/2 & \text{if } k \le l \text{ and } l-k \text{ is odd,} \\ 0 & \text{if } k > l. \end{cases}$$

5.3. The canonical blocks of elementary functions. By the identification introduced in Subsection 4.3, we identify $T_i(l; p)$ with the K-homomorphism

$$V_{2l} \ni v_{1,q}^{(2l)} \mapsto t_i(l; p, q) \in H_{(\nu_i, \sigma_i), K}, \quad 0 \le q \le 2l$$

for $0 \le p \le l - k$ such that $p \equiv l - k \mod 2$. We note that $\{T_i(l; p) \mid 0 \le p \le l - k, p \equiv l - k \mod 2\}$ is a basis of $\operatorname{Hom}_K(V_{2l}, H_{(\nu_i, \sigma_i), K})$ and we call it the induced basis from the standard basis.

For each K-type τ_{2l} of our P_i -principal series representation $\pi_{(\nu_i,\sigma_i)}$, we define a certain matrix of elementary functions corresponding to the induced basis $\{T_i(l;p) \mid 0 \leq p \leq l-k, \ p \equiv l-k \mod 2\}$ of $\operatorname{Hom}_K(V_{2l}, H_{(\nu_i,\sigma_i),K})$.

DEFINITION 5.3. For $l \in \mathbb{Z}_{\geq 0}$ such that $d(\sigma_i; l) > 0$, the following $(2l+1) \times d(\sigma_i; l)$ matrix $\mathbf{T}_i(\sigma_i; l)$ is called the canonical block of elementary functions for τ_{2l} -isotypic component of $\pi_{(\nu_i,\sigma_i)}$: When l-k is even, we consider the matrix

$$\mathbf{T}_i(\sigma_i; l) = (T_i(l; 0), T_i(l; 2), T_i(l; 4), \cdots, T_i(l; l-k)).$$

When l - k is odd, we consider the matrix

$$\mathbf{T}_i(\sigma_i; l) = (T_i(l; 1), T_i(l; 3), T_i(l; 5), \cdots, T_i(l; l-k)).$$

5.4. The contiguous relations.

LEMMA 5.4. (i) The standard basis $\{X_j \mid 0 \leq j \leq 4\}$ of $\mathfrak{p}_{\mathbf{C}}$ have the following expressions according to the decomposition $\mathfrak{g}_{\mathbf{C}} = (\mathfrak{n}_{1,\mathbf{C}} \oplus \mathfrak{a}_{1,\mathbf{C}} \oplus \mathfrak{m}_{1,\mathbf{C}}) + \mathfrak{k}_{\mathbf{C}}$:

$$\begin{aligned} X_0 &= m_1(x_-), \qquad X_1 = -\left(E_{e_1 - e_3} + \sqrt{-1}E_{e_1 - e_2}\right) + \frac{1}{2}(K_{13} + \sqrt{-1}K_{12}) \\ X_2 &= -\frac{1}{3}H^{(1)}, \quad X_3 = (E_{e_1 - e_3} - \sqrt{-1}E_{e_1 - e_2}) - \frac{1}{2}(K_{13} - \sqrt{-1}K_{12}), \\ X_4 &= m_1(x_+). \end{aligned}$$

(ii) The standard basis $\{X_j \mid 0 \leq j \leq 4\}$ of $\mathfrak{p}_{\mathbf{C}}$ have the following expressions according to the decomposition $\mathfrak{g}_{\mathbf{C}} = \operatorname{Ad}(u_c^{-1})(\mathfrak{n}_{2,\mathbf{C}} \oplus \mathfrak{a}_{2,\mathbf{C}} \oplus \mathfrak{m}_{2,\mathbf{C}}) + \mathfrak{k}_{\mathbf{C}}$:

$$\begin{aligned} X_0 &= -Ad(u_c^{-1})m(x_-), \\ X_1 &= Ad(u_c^{-1})(E_{e_1-e_3} - \sqrt{-1}E_{e_2-e_3}) - \frac{1}{2}(K_{13} + \sqrt{-1}K_{12}), \\ X_2 &= \frac{1}{3}Ad(u_c^{-1})H^{(2)}, \\ X_3 &= -Ad(u_c^{-1})(E_{e_1-e_3} + \sqrt{-1}E_{e_2-e_3}) + \frac{1}{2}(K_{13} - \sqrt{-1}K_{12}), \\ X_4 &= -Ad(u_c^{-1})m(x_+), \end{aligned}$$

PROOF. We obtain the assertion immediately from Lemma 3.1. \Box

We give the matrix representation of $\Gamma_{l,m}^{i}$ with respect to the induced basis as follows.

THEOREM 5.5. For i = 1, 2 and $-2 \le m \le 2$, we have the following equation with the matrix representation $R(\Gamma_{l,m}^i) \in M_{d(\sigma_i;l+m),d(\sigma_i;l)}(\mathbf{C})$ of $\Gamma_{l,m}^i$ with respect to the induced basis $\{T_i(l;p) \mid 0 \le p \le l-k, p \equiv l-k \mod 2\}$:

(5.1)
$$\mathfrak{C}_{l,m}\mathbf{T}_i(\sigma_i;l) = \mathbf{T}_i(\sigma_i;l+m) \cdot R(\Gamma^i_{l,m}).$$

We give the explicit expressions of the matrix

$$\begin{pmatrix} O_{n(\sigma_i;l,m),d(\sigma_i;l)} \\ R(\Gamma_{l,m}^i) \end{pmatrix}$$

359

$$\begin{pmatrix} \operatorname{Diag}_{0 \leq j \leq d(\sigma_i; l) - 1} (\gamma_{[l,m;2j+\delta(\sigma_i; l), -1]}^{(i)}) \\ O_{1,d(\sigma_i; l)} \end{pmatrix} + \begin{pmatrix} O_{1,d(\sigma_i; l)} \\ \operatorname{Diag}_{0 \leq j \leq d(\sigma_i; l) - 1} (\gamma_{[l,m;2j+\delta(\sigma_i; l), 1]}^{(i)}) \end{pmatrix} + \begin{pmatrix} O_{2,d(\sigma_i; l) - 1} \\ O_{2,d(\sigma_i; l) - 1} & O_{2,1} \\ O_{2,d(\sigma_i; l) - 2} (\gamma_{[l,m;2j+\delta(\sigma_i; l), 1]}^{(i)}) & O_{d(\sigma_i; l) - 1,1} \end{pmatrix} \end{pmatrix} .$$

$$Here$$

$$\gamma_{[l,m;p,1]}^{(i)} = (-1)^{i+1} (k - l + p) A_{[2l,2m;2l-p+m-2,0]},$$

$$\gamma_{[l,m;p,0]}^{(i)} = \frac{(-1)^{i}}{3} (\nu_i + \rho_i + lm - 3 + \frac{m(m+1)}{2}) A_{[2l,2m;2l-p+m,2]},$$

$$\gamma_{[l,m;p,-1]}^{(i)} = (-1)^{i+1} (k + l - p) A_{[2l,2m;2l-p+m+2,4]},$$

$$n(\sigma_i; l, m) = \begin{cases} (2 - m)/2 & \text{if } m \in \{0, \pm 2\}, \\ (3 - m)/2 & \text{if } (m, l - k) \in \{\pm 1\} \times (2\mathbf{Z}), \\ (1 - m)/2 & \text{if } (m, l - k) \in \{\pm 1\} \times (1 + 2\mathbf{Z}), \end{cases}$$

and $\delta(\sigma_i; l) \in \{0, 1\}$ such that $\delta(\sigma_i; l) \equiv l - k \mod 2$.

In the above equations, we put $A_{[2l,2m;p,j]} = 0$ for p < 0 or p > 2(l+m), and omit the symbols Diag (f(n)) $(c_0 > c_1)$, $O_{m,n}$ $(m \le 0 \text{ or } n \le 0)$. $c_0 \leq n \leq c_1$

PROOF. By the similar computation in the proof of Theorem 4.5 using Lemma 5.4 (i), we obtain the assertion in the case of i = 1. In the case of i = 2, the value of $T_2(l; p)$ at $u_c \in G$ is given by

$$T_2(l;p)(u_c) = \mathbf{e}_{2l-p}^{(2l)} \otimes \chi_{l-p} + (-1)^l \mathbf{e}_p^{(2l)} \otimes \chi_{p-l}.$$

Thus, by the similar computation using Lemma 5.4 (ii), we also obtain the assertion in the case of i = 2 evaluating the both side of the equation (5.1) at $u_c \in G$.

6. The action of $\mathfrak{p}_{\mathbf{C}}$

The linear map $\Gamma_{l,m}^i$ characterize the action of $\mathfrak{p}_{\mathbf{C}}$. In this section, we give the explicit description of the action of $\mathfrak{p}_{\mathbf{C}}$ on the elementary functions.

6.1. The projectors for $V_l \otimes_{\mathbf{C}} V_4$. For $-2 \leq m \leq 2$, we describe a surjective $\mathfrak{sl}(2, \mathbb{C})$ -homomorphism P_{2m}^l from $V_l \otimes_{\mathbb{C}} V_4$ to V_{l+2m} in terms of the standard basis as follows.

LEMMA 6.1. Let $\{v_q^{(l)} \mid 0 \le q \le l\}$ be the standard basis of V_l for $l \in \mathbb{Z}_{\ge 0}$. We put $v_q^{(l)} = 0$ when q < 0 or q > l. We define linear maps $P_{2m}^l: V_l \otimes_{\mathbf{C}} V_4 \to V_{l+2m} \ (-2 \le m \le 2)$ by

$$P_{2m}^{l}(v_{q}^{(l)} \otimes w_{r}) = B_{[l,2m;q,r]} \cdot v_{q+r+m-2}^{(l+2m)},$$

when V_{l+2m} -component of $V_l \otimes_{\mathbf{C}} V_4$ does not vanish.

Here the coefficients $B_{[l,2m;q,r]} = b(l,2m;q,r)/d'(l,2m)$ are defined by following formulae.

FORMULA 1: The coefficients of P_4^l : $V_l \otimes_{\mathbf{C}} V_4 \to V_{l+4}$ are given as follows:

$$b(l,4;q,r) = 1$$
 $(0 \le r \le 4),$ $d'(l,4) = 1$

FORMULA 2: The coefficients of $P_2^l: V_l \otimes_{\mathbf{C}} V_4 \to V_{l+2}$ are given as follows:

$$\begin{split} b(l,2;q,0) = & 4q, \qquad b(l,2;q,1) = - (l-4q), \quad b(l,2;q,2) = - 2(l-2q), \\ b(l,2;q,3) = - (3l-4q), \quad b(l,2;q,4) = - 4(l-q), \qquad d'(l,2) = l+4. \end{split}$$

FORMULA 3: The coefficients of P_0^l : $V_l \otimes_{\mathbf{C}} V_4 \to V_l$ are given as follows:

$$\begin{split} b(l,0;q,0) =& 6q(q-1), \\ b(l,0;q,2) =& l^2 - 6lq + 6q^2 - l, \\ b(l,0;q,4) =& 6(l-q)(l-q-1), \end{split} \quad \begin{array}{l} b(l,0;q,1) =& -3q(l-2q+1), \\ b(l,0;q,3) =& 3(l-2q-1)(l-q), \\ d'(l,0) =& (l+3)(l+2). \end{split}$$

FORMULA 4: The coefficients of $P_{-2}^l: V_l \otimes_{\mathbf{C}} V_4 \to V_{l-2}$ are given as follows:

$$\begin{split} b(l,-2;q,0) =& 4q(q-1)(q-2), \quad b(l,-2;q,1) = -q(q-1)(3l-4q+2), \\ b(l,-2;q,2) =& 2q(l-2q)(l-q), \\ b(l,-2;q,3) =& -(l-4q-2)(l-q)(l-q-1), \\ b(l,-2;q,4) =& -4(l-q)(l-q-1)(l-q-2), \quad d'(l,-2) = (l+2)(l+1)l. \end{split}$$

FORMULA 5: The coefficients of $P_{-4}^l: V_l \otimes_{\mathbf{C}} V_4 \to V_{l-4}$ are given as follows:

$$\begin{split} b(l,-4;q,0) &= q(q-1)(q-2)(q-3), \\ b(l,-4;q,1) &= -q(q-1)(q-2)(l-q), \\ b(l,-4;q,2) &= q(q-1)(l-q)(l-q-1), \\ b(l,-4;q,3) &= -q(l-q)(l-q-1)(l-q-2), \\ b(l,-4;q,4) &= (l-q)(l-q-1)(l-q-2)(l-q-3), \\ d'(l,-4) &= (l+1)l(l-1)(l-2). \end{split}$$

Then P_{2m}^l is the generator of $\operatorname{Hom}_{\mathfrak{sl}(2,\mathbf{C})}(V_l \otimes_{\mathbf{C}} V_4, V_{l+2m})$ such that $P_{2m}^l \circ I_{2m}^l = \operatorname{id}_{V_{l+2m}}$.

PROOF. The composite

$$V_l \otimes_{\mathbf{C}} V_4 \simeq V_l^* \otimes_{\mathbf{C}} V_4^* \simeq (V_l \otimes_{\mathbf{C}} V_4)^* \ni f \mapsto f \circ I_{2m}^l \in V_{l+2m}^* \simeq V_{l+2m}$$

is a surjective $\mathfrak{sl}(2, \mathbb{C})$ -homomorphism from $V_l \otimes_{\mathbb{C}} V_4$ to V_{l+2m} , which is unique up to scalar multiple. Therefore we obtain the assertion from Proposition 3.2 and Lemma 3.4.

6.2. The action of $\mathfrak{p}_{\mathbf{C}}$ on the elementary functions.

PROPOSITION 6.2. (i) An explicit expression of the action of $\mathfrak{p}_{\mathbf{C}}$ on the basis $\{s(l; p, q) \mid l \geq 0, p \in Z(\sigma_0; l), 0 \leq q \leq 2l\}$ of $H_{(\nu_0, \sigma_0), K}$ is given by following equation:

$$\pi_{(\nu_0,\sigma_0)}(X_r)s(l;p,q) = \sum_{\substack{-1 \le j \le 1 \\ -2 \le m \le 2}} \gamma_{[l,m;p,j]}^{(0)} B_{[2l,2m;q,r]}s(l+m;p+m+2j,q+m+r-2).$$

Here we put

$$\begin{split} &\gamma^{(0)}_{[0,m;0,j]} = B_{[0,2m;0,r]} = 0 \ \text{for} \ m < 2, \quad \gamma^{(0)}_{[1,m;p,j]} = B_{[2,2m;q,r]} = 0 \ \text{for} \ m < 0, \\ &s(l;p,q) = 0 \ \text{whenever} \ p \leq l \ \text{such that} \ p \notin Z(\sigma_0;l) \ \text{or} \ q < 0 \ \text{or} \ q > 2l, \\ &s(l;p,q) = (-1)^{\varepsilon(\sigma_0;l)} s(l;2l-p,q) \ \text{for} \ p > l. \end{split}$$

(ii) For i = 1, 2, the explicit expression of the action of $\mathfrak{p}_{\mathbf{C}}$ on the basis $\{t_i(l; p, q) \mid l \geq k, 0 \leq p \leq l-k, p \equiv l-k \mod 2, 0 \leq q \leq 2l\}$ of $H_{(\nu_i, \sigma_i), K}$ is given by following equation:

$$\pi_{(\nu_i,\sigma_i)}(X_r)t_i(l;p,q) = \sum_{\substack{-1 \le j \le 1 \\ -2 \le m \le 2}} \gamma_{[l,m;p,j]}^{(i)} B_{[2l,2m;q,r]}t_i(l+m;p+m+2j,q+m+r-2)$$

Here we put $t_i(l; p, q) = 0$ unless $0 \le p \le l-k$, $p \equiv l-k \mod 2$ and $0 \le q \le 2l$.

PROOF. Since

$$\pi_{(\nu_0,\sigma_0)}(X_r)s(l;p,q) = \sum_{-2 \le m \le 2} \Gamma^0_{l,m}(S(l;p)) \circ P^l_{2m}(v_q^{(2l)} \otimes X_r),$$

$$\pi_{(\nu_i,\sigma_i)}(X_r)t_i(l;p,q) = \sum_{-2 \le m \le 2} \Gamma^i_{l,m}(T_i(l;p)) \circ P^l_{2m}(v_q^{(2l)} \otimes X_r) \quad (i = 1, 2),$$

we obtain the assertion from Theorem 4.5, 5.5 and Lemma 6.1.

ACKNOWLEDGEMENTS.

The author would like to express his gratitude to Takayuki Oda for valuable advice on this work and also thanks to Yasuko Hasegawa for correction of many typos.

References

- D. Bump, Automorphic forms and representations, Cambridge Studies in Advanced Mathematics 55, Cambridge University Press, Cambridge, 1997.
- [2] T. Fujimura, On some degenerate principal series representations of O(p, 2), J. Lie Theory 11 (2001), 23-55.

T. MIYAZAKI

- [3] R. Howe, K-type structure in the principal series of GL₃. I, in: Analysis on homogeneous spaces and representation theory of Lie groups, Okayama-Kyoto (1997), volume 26 of Adv. Stud. Pure Math., pages 77–98. Math. Soc. Japan, Tokyo, 2000.
- [4] R. E. Howe and E.-C. Tan, Homogeneous functions on light cones: the infinitesimal structure of some degenerate principal series representations, Bull. Amer. Math. Soc. (N.S.) 28 (1993), 1-74.
- [5] H. Kraljević, Representations of the universal convering group of the group SU(n, 1), Glas. Mat. Ser. III 8(28) (1973), 23-72.
- [6] S. T. Lee, Degenerate principal series representations of Sp(2n, R), Compositio Math. 103 (1996), 123-151.
- [7] S. T. Lee and H. Y. Loke, Degenerate principal series representations of Sp(p,q), Israel J. Math. **137** (2003), 355-379.
- [8] H. Manabe, T. Ishii, and T. Oda, Principal series Whittaker functions on SL(3, R), Japan. J. Math. (N.S.) 30 (2004), 183-226.
- T. Miyazaki, Whittaker functions for generalized principal series representations of SL(3, R), to appear in Manuscripta Math.
- [10] T. Miyazaki, The (\mathfrak{g}, K) -module structures of principal series representations of $\operatorname{Sp}(3, \mathbf{R})$, preprint.
- [11] T. Oda, The standard (\mathfrak{g}, K) -modules of $\operatorname{Sp}(2, \mathbb{R})$ I, submitted.
- [12] E. Thieleker, On the integrable and square-integrable representations of Spin(1, 2m), Trans. Amer. Math. Soc. 230 (1977), 1-40.

T. Miyazaki Department of Mathematical Sciences University of Tokyo Japan *E-mail:* miyaza@ms.u-tokyo.ac.jp *Received:* 19.10.2007. *Revised:* 19.3.2008.