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ABSTRACT. We describe explicitly the structures of standard (g, K)-
modules of SL(3,R).

1. INTRODUCTION

For an admissible representation of a real reductive Lie group, the (g, K)-
module structure is a fundamental data of those. As far as we know, for
some ‘small’ reductive Lie groups G, the (g, K)-module structures of stan-
dard representations are completely described. For example, the description
of them for SL(2,R) is found in standard textbooks, and there are rather
complete results for some groups of real rank 1, e.g. SU(n, 1) by Kraljevi¢ [5]
and Spin(1,2n) by Thieleker [12]. Moreover, in recent years, many authors
give the explicit description of degenerate principal series representations of
several groups, e.g. Fujimura [2], Howe and Tan [4], Lee [6], Lee and Loke
[7]. However, for standard representations of Lie groups of higher rank, there
are few references as far as the author knows. It seems to be difficult to de-
scribe the whole (g, K)-module structures of those representations, since their
K-types are not multiplicity free. In the paper [11], the (g, K)-module struc-
tures of principal series representations of Sp(2, R) are described by Oda. In
a former paper [10], we extend the result for principal series representations
of Sp(3,R). The method in these papers is applicable to study of standard
representations of other groups. In this paper, we use this method to study
standard (g, K )-modules of SL(3,R).
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Before describing the case of SL(3,R), let us explain the problem in a
more precise form for a general real semisimple Lie group G with its Lie
algebra g. Fix a maximal compact subgroup K of G. Since standard (g, K)-
modules are realized as subspaces of L?(K) as a K-module, we can investigate
those K-module structure by Peter-Weyl’s theorem. In order to describe the
action of g or gc = g ®r C, it suffices to investigate the action of p or pc,
because of the Cartan decomposition g = ¢ ® p. To study the action of pc,
we compute the linear map I';; defined as follows.

Let (7, Hz) be a standard representation of G with its subspace Hy i of
K-finite vectors. For a K-type (7,V;) of 7 and a K-homomorphism 7n: V, —
H, k, we define a linear map 77: pc®cVy — Hr x by X ®v — X -n(v). Then
7 is a K-homomorphism with pc endowed with the adjoint action Ad of K.
Let V:®cpc =~ ®ie 1 Vr, be the decomposition into a direct sum of irreducible
K-modules and fix ¢; an injective K-homomorphism from V., to V; ®c pc for
each i. We define a linear map I'; ;: Homg (V;, Hr k) — Homg (V;,, Hr k)
by 1 + 7jot;. These linear maps I'; ; (i € I) characterize the action of pc. The
goal of this paper is to give explicit expressions of ¢; and I';; for any standard
representation m of G = SL(3,R). As a result, we obtain infinite number
of ’contiguous relations’, a kind of system of differential-difference relations
among vectors in H,[7] and H.[r;]. Here H[r] is T-isotypic component of
H,. These are described in Proposition 3.2, Theorem 4.5 and 5.5. We remark
that R. Howe give another description of I'- ; in [3] when 7 is a principal series
representation of GL(3,R).

As an application, we can utilize the contiguous relations to obtain the
explicit formulae of some spherical functions. In the paper [8], Manabe, Ishii
and Oda give the explicit formulae of Whittaker functions for principal se-
ries representations of SL(3,R) to solve the holonomic system of differential
equations characterizing those functions, which is derived from the Capelli
elements and the contiguous relations around minimal K-type. We can ob-
tain the holonomic systems characterizing Whittaker functions for standard
representations of SL(3,R) induced from the maximal parabolic subgroup by
using the result of this paper. We give the explicit formulae of Whittaker
functions by solving this system in [9]. On the other hand, if we have the
explicit formula of Whittaker function with a certain K-type, then we can
give those with another K-type by using contiguous relations.

We give the contents of this paper. In Section 2, we recall the structure
of SL(3,R) and define standard representations. In Section 3, we introduce
the standard basis of a finite dimensional irreducible representation of K and
give explicit expressions of ¢;: V;, — V; ®c pc. In Section 4, we introduce
the general setting of this paper and give matrix representations of I';; for
principal series representations in Theorem 4.5. In Section 5, we give the ma-
trix representations of I'; ; for standard representations of SL(3,R) induced
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from the maximal parabolic subgroup in Theorem 5.5. In Section 6, we give
explicit expressions of the action of pc in Proposition 6.2.

2. PRELIMINARIES

2.1. Groups and algebras. We denote by Z, R and C the ring of rational
integers, the real number field and the complex number field, respectively.
Let Z>q be the set of non-negative integers, 1,, the unit matrix of size n and
Om,n the zero matrix of size m x n and E;; the matrix of size 3 with 1 at
(4,7)-th entry and 0 at other entries. We denote by d;; the Kronecker delta,
ie.

= { b i
) 0, otherwise.
For a Lie algebra [, we denote by [c = [ ®gr C the complexification of I.

Let G be the special linear group SL(3,R) of degree three and g its Lie
algebra. We define a Cartan involution @ of G by G > g — ‘g~! € G. Here
tg and g—! means the transpose and the inverse of g, respectively. Then the
maximal compact subgroup of G is given by

K={geG|0(g) =g}=50(3).

If we denote the differential of § again by 0, then we have (X) = —tX for
X € g. Let £ and p be the +1 and the —1 eigenspaces of 6 in g, respectively,
that is,

t={Xeg|'X=-X}=50(3), p={Xeg|'X=X}

Then £ is the Lie algebra of K and g has the Cartan decomposition g = €& p.

Put ag = {diag(tl,tg,tg) | t; € R (1 < < 3), t1 + 1o+ t3 = 0} Then
ap is a maximal abelian subalgebra of p. For each 1 < i < 3, we define a
linear form e; on ag by ag > diag(ty,te,t3) — t; € C. The set 3 of the roots
for (ap, g) is given by ¥ = ¥(ag,g) = {e; —e; | 1 < i # j < 3}, and the
subset Xt = {e; —¢; | 1 <1i < j <3} forms a positive root system. For each
a € X, we denote the root space by g, and choose a root vector E, in g, by
Eeq,—ej = Eij (1 <i 7&.7 < 3)

If we put ng = ®aez+ g, then g has an Iwasawa decomposition g =
nodagPd . Also we have G = NyAgK, where Ny = exp(ng) and Ay = exp(ap).

Let n;, ny be subalgebras of ny defined by n1 = ge,—c, D Gey—es, N2 =
Oei—e5 D Gey—es- We take a basis {Hy, Ha} of ag by

H, :dlag(laoafl)a H, :dlag(oalafl)a
and set HY = 2H, — Hy, H® = H, + H,. we define subalgebras a;, as
of ag by ay = R-HW, a; = R- H®. The group G has three non-trivial

standard parabolic subgroups Py, P1, P> with Langland decompositions P; =
N;A;M; (0 < i< 2) where

Mo = {diag(e1,e2,£1€2) | &; € {£1} (1 <i < 2)},
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N det(h)il 0172 +
M1{< Ons ! )‘heSL (2,R) ",

_ h 02,1 +
My = { ( o dogiia )‘he SL (2,R)},

Ai =exp(a;) N;=exp(n;) (1=1,2).

Here SL*(2,R) = {g € GL(2,R) | det(g) = +£1}. For i = 1,2, let m; be a
Lie algebra of M;.

2.2. Definition of the P;-principal series representations of G. For 0 <1 < 2,
in order to define the P;-principal series representation of GG, we prepare the
data (v;, 0;) as follows.

For vy € Homg (ag, C), we define a coordinate (vo.1,%0,2) € C? by v, =
vo(H;) (i = 1,2). Then the half sum py = e; — e3 of the positive roots has
coordinate (po 1, po,2) = (2,1). We define a quasicharacter €”°: Ay — C* by

e (a) = a’*"ay"?, a = diag(a1,az,a3) € Ao.
We fix a character og of M. oy is realized by (00,1,00,2) € {0,1}%2 such that
oo(diag(e1,e2,e162)) = €77 ea™?, 1,2 € {£1}.

For each i = 1,2, we identify v; € Homg(a;, C) with a complex number
l/i(H(i)) € C. Let p; (i = 1,2) be the half sums of positive roots whose root
spaces are contained in n;, i.e. p; = %(261 — ey —e3), p2 = %(el 4+ e9 —
2e3). Then both p; and py are identified with 3. We fix a discrete series
representation o; of M; ~ SL*(2,R) for i = 1,2.

DEFINITION 2.1. For 0 <1 < 2, we define the P;-principal series repre-
sentation 7, -,y of G by

T(v;,00) = IndIGDi(lNi ® evith b2 O'i)7

L.€. T(y, o) 15 the Tight Teqular representation of G on the space H(,, 5,y which
is the completion of

N f(nama) = e+ (@)o,(m) f(z)
(viso) — {f G — Vo, smooth ‘ for ne N;, a€ Ay, me M;, € G

with respect to the norm

112 = [ G2,

Here V,, is a representation space of o; and || - ||»,; s its norm.

REMARK 2.2. The P;-principal series representations are also called stan-
dard representations or generalized principal representations.
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3. REPRESENTATIONS OF K = SO(3)

3.1. The spinor covering. To describe the finite dimensional representations
of SO(3), the simplest way seems to be the one utilizing the double covering
w: SU(2) = Spin(3) — SO(3). We use the following realization introduced
in [8].

We define ¢: SU(2) — SO(3) by

P+ —rP—s*  =2(ps—qr) 2(pr + gs)
p(r) = 2(ps +qr) PP +rP—s*  —2(pg—rs)
—2(pr — gs) 2(pq +1s) p?—q¢®> —1r2 452

for z = ( ii\/\/g]s ;j\/\/;ﬁ ) € SU(2) (p,q,m,s € R). Then ¢ is
surjective homomorphism whose kernel is given by {£12}.

The differential dy: su(2) — s0(3) of ¢ is an isomorphism and it maps
the basis

b (VT 0 A I U A
Lo v ) Pl 0) PO UVET 0
to —2Ks3, 2K13,—2K15. Here K’L'j = E'L'j — Eji (1 <i<ji< 3)

3.2. Representations of SU(2). The set of equivalence classes of the finite di-
mensional continuous representations of SU(2) is exhausted by the symmetric
tensor product 7; (I € Z>g) of the representation SU(2) 3 g — (v g-v) €
GL(C?). We use the following realizations of those which are introduced in
8].

Let Vi be the subspace consisting of degree I homogeneous polynomials
of two variables x,y in the polynomial ring C[z,y]. For ¢ € SU(2) with

gl = ( fl—) 2 ) and f(x,y) € V, we set

71(9)f (x,y) = f(az + by, —bx + ay).

Passing to the Lie algebra su(2), the derivation of 7;, denoted by same symbol,
is described as follows by using the standard basis {vy, = x*y!=% | 0 < k < [}
of V; and the basis {u1, us,uz} of su(2). Namely, we have

Tl(H)Uk Z(l — 2kz)vk, Tl(E)’Uk = — k’Uk_l, Tl(F)’Uk Z(k’ - Z)Uk+1-
Here {E, H, F'} is sly-triple defined by

1 1
H=—-1u, E= 5(“2 —V=1lug), F = _§(u2 + V—lug) € su(2)c.

The condition that 7; defines a representation of SO(3) by passing to the
quotient with respect to ¢: SU(2) — SO(3) is that 7(—12) = (=1)! = 1,
i.e. I is even. For | € Z>g, we denote the irreducible representation of SO(3)
induced from (791, Va;) again by (o1, Vay).
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3.3. The adjoint representation of K on pc. It is known that pc becomes a
K-module via the adjoint action of K. Concerning this, we have the following
lemma.

LEMMA 3.1. Let {w; | 0 < j < 4} be the standard basis of (14,Va) and
{X; 10 <j <4} be a basis of pc defined as follows:

1
Xo =Hy —V—1(Ea3 + E32), X1 =-— 5{\/*1(]1712 + E91) + (Eiz + Es1)},

1 1
Xo=— 5(2H1 — Hj), X3 =— 5{\/*1(]1712 + E91) — (BEiz + Es1)},
Xy =Hs + vV—1(Es3 + Es55).

Then via the isomorphism between Vi and pc as K-modules we have the
identification w; = X; (0 < j <4).

PROOF. By direct computation, we have Table. 1 of the adjoint actions
of the basis {dp(E), dp(H), dp(F)} of tc on the basis {X; | 0 < j <4} of
pc. Comparing the actions in the above with the actions in Subsection 3.2,
we obtain the assertion. O

TABLE 1. The adjoint actions of ¢ on pc.

X, X, X, X, X,
d(p(H) 4X0 2X1 0 72X3 74X4
d(p(E) 0 _XO —2X1 —3X2 —4X3
d(p(F) 74X1 73X2 72X3 71X4 0

3.4. Clebsch-Gordan coefficients for the representations of sl(2,C) with re-
spect to standard basis. For later use, we consider the irreducible decompo-
sition of V; ®c Vi as sl(2,C) = su(2)c-modules for arbitrary non-negative
integer .

Generically, the tensor product V; ®c V4 has five irreducible components
Vita, Vigo, Vi, Vi_o and V,_4. Here some components may vanish. We give an
explicit expression of a nonzero s[(2, C)-homomorphism from each irreducible
component to V; ®c V4 as follows.

PROPOSITION 3.2. Let {’U](cl) | 0 < k <1} be the standard basis of V) for

leZsy. Weputv,(cl) =0 when k <0 ork > 1.
If Viqiom-component of Vi @c Vy does not vanish, then we define linear
maps Ib, : Vigom — Vi®c Vi (-2 <m < 2) by

4
14+2m !
Ié'frl(vl(c " )) = Z Al 2mik,i] U;(cig,m,i & wj.
i=0
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Here the coefficients Ap opmq) = a(l,2m; k, i) /d(l,2m) are defined by fol-
lowing formulae.
ForMuULA 1: The coefficients of Il Viga — Vi ®c Vy are given as follows:

a(l,4;k,0) =(1+4—-k)({+3-k)(I+2-k)(I+1-k),
a(l,4;k,1) =4l +4-k)(+3—-k){+2—k)k,
a(l,4;k,2) =6(1+4 - k) +3—k)k(k—1),
a(l,4;k,3) =4(l+4 - k)k(k - 1)(k —2),
a(l,4; k,4) =k(k - 1)(k — 2)(k — 3),
dil,4) =(14+49)1+3)1+2)1+1).
ForMULA 2: The coefficients of 12 Vige = Vi ®c Vy are given as follows:
a(l,2;k,0)=(1+2-k)(I+1-k)(-k),

a(l,2:k,1) =— (1 +2— k)1 +1— k)(I — 4k),

a(l,2;k,2) = — 3(1+2 — k)(I — 2k + 2)k,

a(l,2:k,3) = — (31 — 4k + 8)k(k — 1),

a(l,2;k,4) = — k(k —1)(k —2), d(,2) = (1+2)1+ 1)L

FORMULA 3: The coefficients of IL: Vi — Vi @c Vi are given as follows:
a(l,0;k,0) =(1—k)(l—-1-k), a(l,0;k,1)=—2(l - k)(I — 2k — 1),
a(l,0;k,2) =(1* — 6kl + 6k* — 1), a(l,0;k,3) =2(1 — 2k + 1)k,

a(l,0;k,4) =k(k — 1), d(l,0) =l(l-1).

ForMULA 4: The coefficients of Il_2: Vi_o = Vi ®c Vy are given as follows:
a(l,—2;k,0) =( — k — 2), a(l,—2;k,1) = — (3l — 4k — 6),
a(l,—2;k,2) =3(l — 2k — 2), a(l,—2;k,3) = — (I — 4k — 2),
a(l,—2;k,4) = — k, d(l,—2) =l — 2.

ForMULA 5: The coefficients of I£4: Viy — Vi ®c Vi are given as follows:
a(l,—4;k,0) =1, a(l,—4;k,1) = — 4, a(l,—4;k,2) =6,
a(l,—4;k,3) = — 4, a(l,—4;k,4) =1, d(l,—4) =1.

Then 1L, is a generator of Homyg2,c)(Vit2m, Vi ®c Vi), which is unique
up to scalar multiple.

PROOF. We have
(1 ©74)(E) o I, (v ™)

=" Apsmo - (mEWS ) @wi+ > Apamoi V8 s @ (ra(E)w;)
3 1=0
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4
=- Z(@ —m — ) Ay 2m:0,4 + (0 + 1) A 2m:0,i41]) - ’Uﬂm_i ® w;.
i=0
Here we put A 2,m;0,5) = 0. By direct computation, we confirm
(2 —=m — i) Ay 2ms0,9 + (0 + 1) A 2m;0,i41] = 0
for —2<m <2 and 0 <i<4. Hence
(1 @ 71)(E) o I, (v T2™) = 0.
Moreover, we have
(n @ 7a)(H) 0 Ly (0 ™) = (14 2m) I, (™),

since

(n @) (H)(vf ® wy) = (n(H)o{) © w; + v @ (ra(H)w;)

— (14+4—2i— 2" @ w;.

This means Iém(v(()l+2m)) is the highest weight vector of the Vj2,,-component

of Vi ®c Vi with respect to a Borel subalgebra (C - H) & (C - E) of s1(2, C).
Therefore, in order to complete the proof, it suffices to confirm
(0 ® Ta)(F) 0 Iy, (v ™) = Iy 0 i (F) (0 ™)
for each 0 < k <[+ 2m.

We confirm these equations by direct computation. O

The coefficients A[j ;1,5 in the above proposition satisfy the following
relations.

LEMMA 3.3. The coefficients Ay am;k,q5) in Proposition 3.2 satisfy following
relations:
A 2mitrom—tk,0] = (D)™ Apomik,as Apzmitem—k2 = (D™ Ap2mik,2),
{k—m+1D)Ap2mp, + @ —k+m~+1)Ap2mp 3}
= (ml —+ m2 +m — 6)A[l,2m;k,2]'
for =2<m <2 and 0 <k <Il+2m.

PROOF. These are obtained by direct computation. O

3.5. The contragradient representation of (1, V;). We denote by (7*,V*) the
contragradient representation of (7, V). Here we note that V}* is equivalent to
V; as SU(2)-modules, since the irreducible [ + 1-dimensional representation of
SU(2) is unique up to isomorphism.
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LEMMA 3.4. Let {’U](Cl)* | 0 < k <1} be the dual basis of the standard basis
{’U](cl) |0 <k <I}. Via the isomorphism between V; and V;* as K-modules we
have the identification

L—E)NED ).
0 = L

for 0 <k <I.

PRrOOF. We denote by (,) the canonical pairing on V;* ®c V;.

Since

(rf (H)o™ o)) = =i m(H)o)) = (2m — D = (2k = D,
we have Tl*(H)vl(cl)* = (2k — l)vl(cl)*. Similarly, we obtain

* l)* 1)* * 1)* 1)*
7 (E)U,(C) =(k+ 1)1),8r17 7 (F)vl(c) =(l-k+ 1)1),221.

From these equations, the identification U(()l) = vl(l)* determines the isomor-
phism in the statement. 0

4. THE (g, K)-MODULE STRUCTURES OF THE P,-PRINCIPAL SERIES
REPRESENTATIONS

4.1. The irreducible decomposition of T(,, »)x as a K-module. We set
L%Mo,ao)(K) = {f € L*(K) | f(mz) = oo(m)f(x) for a.e. m € M, z € K}

and give a K-module structure by the right regular action of K. Then the
restriction map rx: H,y00) 2 f = flx € L%MO’GO)(K) is an isomorphism of
K-modules.

L?(K) has a K x K-bimodule structure by the two sided regular action:

((k1, ko) f)(x) = f(ky'wks), z€ K, f e L*(K), (ki,k) € K x K.
Then we define a homomorphism ®;: V3;®cVa — L?(K) of K x K-bimodules
by

wWR v (x— (w, 7o (T)V)).
Then Peter-Weyl’s theorem tells that

@ q)li @ ‘/27 ®C‘/21~>L2(K)

1€Z > 1€Z >

is an isomorphism as K x K-bimodules. Here € means a Hilbert space direct
sum.

Since L2

(Mo00) ) C L?(K), we have an irreducible decomposition of

L%Mo,oo) (K):

—

Lty 00y E) = €D (Vailoo]) ®c Var.



346 T. MIYAZAKI

Here V]og] means the og-isotypic component in (7|pz, V) for a K-module
(1, V). Therefore we obtain an isomorphism

rit o P @ @ (Vailoo) ®c Var — Hugon)-
I€Z>o l€Z >

Since My is generated by the two elements
mo,1 =diag(—1,1,—1), mo,2 =diag(l,—1,—1) € My,
we note that v € Vy[og] if and only if
Tor(mo i )v =00(mo;)v = (—1)7% (i=1,2)

for v € Vo;. From the definition of (o, V2;) and

@fl(mo,l)Z{i( ,01 (1) )}7 1 (mo2) Z{i( ~ 7\(/)7—1 )},

we have Tgl(moJ)U](fl) (—1)*v; (2 )k and 7o;(mo 2)v ,(fl) = (—1)l_kvl(€2l). Hence
we have

Vailoo] @ C- U2l k+( )E(ao;l)vz(fl)),
ke€Z(oo;l)

where e(09;1) € {0,1} such that £(09;1) =1 — 09,1 — 00,2 mod 2 and

Z(00;1) = {k€eZ|0<Ek<I, k=1—002mod2} if e(o0;1) =0,
g0:t) = {k€Z|0§k<l—1 k=1-00omod?2} ife(og;l)=1.

We see that {vgl)z + (—1)(e0; l)v | k € Z(oo;1)} is the basis of Vi[og], by
using the identification V;; = V5; in Lemma 3.4.
Now we define the elementary function s(I;p, q) € H(,,,,) by

s(lp,q) = it 0 ®u((vh )y + (~1)F D) @ o)

for l € Zso, p € Z(0p;1) and 0 < ¢ < 2I.

For each p € Z(09;1), we put S(I; p) a column vector of degree 2/+1 whose
q + 1-th component is s(I;p, q), i.e. *( s(l;p,0), s(l;p,1), --- ,s(l;p,2l) ).

Moreover we denote by (S(/;p)) the subspace of H,, -, generated by
the functions in the entries of the vector S(I;p), i.e. (S(l;p)) = @ilzo C-
s(l;p,q) ~ Va. Via the isomorphism between (S(I;p)) and Vo, we identify
{s(l;p,q) | 0 < ¢ < 21} with the standard basis.

From above arguments, we obtain the following.

PROPOSITION 4.1. As an unitary representation of K, it has an irre-
ducible decomposition:

—

Hipo0) = €D (Viiloo]) ®c Var.
l6220
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Then the To-isotypic component of T, »4) S given by
D (s
pEZ(o0;l)

COROLLARY 4.2. The multiplicity d(oo;1) of Tor in T(yy,00),x 15 given by

(14+2)/2 if (001,002) = (0,0) and ! is even,
d(o0;1) = (I-1)/2 if(001,00,2) = (0,0) and I is odd,
0 /2 if (00.1,002) # (0,0) and I is even,
(I+1)/2 if (00,1,00,2) # (0,0) and ! is odd.

4.2. General setting. Let H(,, ,,),x be the K-finite part of H,, 5,). In order
to describe the action of g or gc = g®gr C, it suffices to investigate the action
of p or pc, because of the Cartan decomposition g = € & p.

For a K-type (7o, Vi) of 7, »,) and a K-homomorphism n: Vo —
H, 0.),K, we define a linear map

n:pc ®c Var — Hy, 0), K

by X @ v = 7, 0.)(X)n(v). Here we denote differential of 7(,, ) again by
T(vi,0:)- Lhen 7 is K-homomorphism with pc endowed with the adjoint action
Ad of K.

Since

Vo ®@cpc ~ Vo ®c Vi ~ @ Vo(i4m)

—2<m<2
there are five injective K-homomorphisms
I3 Vaem) — Var ®c pe, —2<m<2
for general [ € Z>(o. Then we define C-linear maps
fm: Hompg (Var, Hy, o) ) — Hompg (Vaiimy, Hp, o))y —2<m <2

by 1+ 7j o I3},
Now we settle the goal of this paper:

PROBLEM 4.1. (i) Describe the injective K -homomorphism 12\ in terms
of the standard basis.
(ii) Determine the matriz representations of the linear homomorphisms I'}

with respect to the induced basis defined in the next subsection.

We have already accomplished (i) in Proposition 3.2. We accomplish (ii)
in Theorem 4.5 and 5.5. As a result, we obtain infinite number of ’contiguous
relations’; a kind of system of differential-difference relations among vectors
in He, o121 and H,, o,)[Toq+m)]- Here Hy,, 5[] is T-isotypic component
of H(Vi,Ui)'
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4.3. The canonical blocks of elementary functions. Let n: Vor — H(,, 5.), K be
a non-zero K-homomorphism. Then we identify n with the column vector

of degree 2] + 1 whose ¢ + 1-th component is 7(vq (2 l)) for 0 < g < 21, ie.

2l 21 2l
Cn(ee™), (™), - (i) ).
By this identification, we identify S(I;p) with the K-homomorphism

Var 3 v = s(ip,q) € Hig ooy s 0< ¢ <21

for p € Z(00;1). We note that {S(l;p) | p € Z(00;1)} is a basis of the space
Homg (Var, H(yy,00),x ) and we call it the induced basis from the standard basis.

We define a certain matrix of elementary functions corresponding to the
induced basis {S(l;p) | p € Z(00;1)} of Homg (Var, H(yy,64), i) for each K-type
71 of our principal series representation (., 5)-

DEFINITION 4.3.  The following (21 + 1) x d(oo;1) matriz S(oo;1) is
called the canonical block of elementary functions for o;-isotypic component
of T(vy,00): When (00,1,002) = (0,0), we consider the matriz

o (80), 5(;2), S(:4), -+ ,8(11)) if L is even,
S(UO’Z){ (S(:1). S(:3), S5, - .S(E1—2)) ifl is odd.
When (00,1,00,2) = (1,0), we consider the matriz
( S(1:0), S

S(00:1) = (1;2), S(l;4), -+ ,S(;1—2) ) ifl is even,
TV (S, S(1:3), S(;5)
When 092 = 1, we consider the matriz

S(00:1) = (S(;1), S(;3), S(;5), -+ ,S(L;1=1)) iflis even,
00T (8(1;0), S(1;2), S(1:4), -+ ,S(L;1—1)) ifl is odd.

LS 1)) if 1 is odd.

4.4. The pc-matriz corresponding to I%fn For two integers cg, c1 such that
¢p < ¢ and a rational function f(z) in the variable z, we denote by

Diag (f(n))

co<n<ci

the diagonal matrix of size ¢; — ¢y + 1 with an entry f(n) at the (n — co +
1,m — ¢g + 1)-th component. Let e(l) (0 <4 <1) be the column unit vector
of degree [ 4+ 1 with its ¢ + 1-th component 1 and the remaining components
0. Moreover, let egl
[ <.

In this subsection, we define pc-matrix €, of size (2(I4+m)+1) x (21+1)
corresponding to 12! with respect to the standard basis.

Let ZZ o El ™) © X, be the image of I\, under the composite of natural
linear maps

) be the column zero vector of degree [ + 1 when ¢ < 0 or

Hompg (Va(4m), Var ®c pc) — Home (Vaiim), Vai @c pc)
~ Home (Va(14m), Vai) ®c pc-
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Then we define pc-matrix €, = Z?:o R(LZ(-l’m)) ® X; where R(LZ(-l’m)) is the
(_l,m)

expression of the matrix R(LZ(-l’m)) of size (2(I+m)+1) x (21 + 1) is given by

matrix representation of ¢ with respect to the standard basis. Explicit

(02(l+m)+1,m+27 R(Lz(-l’m)% 02(l+m)+1,m+2>
= <02(1+m)+1,4i7 Diag  (Aj21,2mik,i))s 02(l+m)+1,i>
0<k<2(Lrm)

for =2 <m <2 and 0 < ¢ < 4. Here we omit the symbol O,, , when m =0
orn =20.

For a column vector v = “(vg, vy, - ,vn) € (Hp,on,x)P " which
is identified with an element of Hompg (Va, Hy, 0,),x), We define &, v €
(H(yi,a'i),K)@2(l+m)+1 >~ C2(l+m)+1 ®C H(V.;,O'i),K by

lm
v = D (RE™) ) @ (14,00 (X;)0g).
0<j<4
0<q<2l

Here R(L§l7m)) . e((fl) is the ordinal product of matrices R(Lg»l’m)) and e¢(12l).
From the definition of &; ,,, we note that the vector ¢;,,v is identified
with the image of v under I'j .

4.5. The contiguous relations.

LEMMA 4.4. The standard basis X; (0 <1i < 4) in pc have the following
expressions according to the Iwasawa decomposition gc = nc G ac & tc:

Xo=—-2V—-1FEc, ¢, + Hy + vV—1Ko3,
— 1 —
Xl :7(E61763+ 71E61782)+§(K13+ 71K12))

1
X2 = - §(2H1 - HQ);

— 1 —
X3 :(Eelfeg - 71E€17€2) - §(K13 - 71K12)7
X4 =2V 71E€2763 + Hy — vV —1Ko3.
PROOF. We obtain the assertion immediately from Lemma 3.1. o

We give the matrix representation of F?,m with respect to the induced
basis as follows.

THEOREM 4.5. Forl € Z>o, —2 < m < 2 such that d(og;l) > 0 and
d(oo; 1 +m) > 0, we have

(4.1) €1.mS(00;1) = S(o0; 1+ m) - R(I'Y,,)
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with the matriz representation R(F?’m) € My(oyi4+m),d(ooit) (C) of I with

L,m
respect to the induced basis {S(l;p) | p € Z(o0;1)}:
We give the explicit expressions of the matrix

On(o0:1,m),d(o0:1)
R(TY,,)
as follows:

When 092 =0 and (m, 001 +1) € {0,£2} x (272),

- 0) O1 dion:
O<k<]?;(agl) I(V[I,m;%w(oo;l),—l]) 4 1’d((0)°’l)
=R=ao00)— Diag (fy ) ) )
O1,d(00:1) 0<k<d(ooi)—1  [LTi2kH0(@0iD).0)
OQ,d(ao;l)—l 02,1

Diag (7(0). . ) ’Y(O)- ,e(d(ag;l):2)
o<h<dlonyy3 1bmi2k+5(o0id)1] [tm;1,1] * Cd(oo;l)—3

When 092 =0 and (m, 001 +1) € {0,£2} x (1 +2Z),

. (0) O1 d(oo:
O<k£ll(agl) 1(7[17M;2k+6(00;l)7—1l) + 1,d((0)o,l)
=R=ag0t)= Diag ('y ] i )
Ol,d(ag;l) 0<k<d(ogl)—1 [l,m;2k+6(00;l),0]
O2,d(c0;1)—1 021

Diag (7(0). i ) Od(oo:1)—
0<k<d(onl)—3 [1,m;2k+68(00;1),1] d(oo;l)—1,1

When a92 =0, (m,001 + 1) € {£1} x (27Z),

Diag (7(0), oail).— )
0<h<d(ood)-1 [lm;2k+8(o0;l),—1]

Ol,d(o’g;l)—l 0

+ . (0)
Diag (7 . . ) Od(oo:l)—
0<k<d(opl)—  Lmi2kto(ooid).0] Aot =11

O2,d(0051)—2 021 021

s s

Diag (7(0,)” oo ) Odlon)— 77(07)7? 'e(df,a‘?*l):f‘)
0<k<d(o031)—3 [L,m;2k+6(0030), 1] (o031)—2,1 [1,ms1,1] * Cd(oosl)—3

When 092 =0 and (m, o001 +1) € {£1} x (1 +2Z),

Di (0) Ol,d(ao;l)
iag (7 oSl ) .

0<h<d(ogn)— 0T O<k<12ll(agl)
SRkR>aloost)—

Ol,d(o’g;l)

( (0) )
\ 7[l,m;2k+5(00?l)70]
OQ,d(Ug;l)



THE STRUCTURES OF STANDARD (g, K)-MODULES OF SL(3,R) 351

O2,d(00:1)
+ . (0)
Diag (7 . . )
0<h<dlont) 1 [1,m;2k+8(c03l),1]
When g2 = 1,
. (0) O1 d(oo:
Diag (fy[l,m;2k+5(<fo;l)ﬁ1]) Jdtooid)
0<k<d(oo;l)—1 + Diag (7(0) )
O1,d(00s1) 0<k<d(co;l)—1 [t,m;2k+6(c031),0]
O2,d(0051) 1 02,1
+ : (0) e(o0;l+m) A, (0) (d(o051)—2)
Diag (v. .>—1)° Vitmi—1.11 " Cdlonl)—
0<h<dlort) [L,ms2k+8(0030),1] ( [Lmsi—1,1] " €d(oosl)—2
Here
0
7{;77)71;,,71] = (vo2 + po2 — L+ P)Api2m2i—ptm—2,0),
(0)
Tt,msp,0)

m(m + 1)

9 )A[Ql,Qm;Ql—p+m,2]a

1
=-3 (21/0,1 — 1,2+ 2po,1 — po2 +Im—3+

0
7{;7271;,,7_1] = (vo2 + po2 +1—p)Api2m2i—ptmt24)

(2—m)/2 if me {0, £2},
n(og;l,m)=<¢ (3—m)/2 if (m,l+002) € {£1} x (2Z),
(1—=m)/2 if (m,l+002) € {£1} x (1+2Z),
and §(o0;1) € {0,1} such that 6(o;1) =1 — 09,2 mod 2.
In the above equations, we put A omk, = 0 for k <0 or k> 2(l +m),

and omit the symbols Diag (f(n)), Oon, Omo and eg_l).
c<n<c—1

PROOF. Since
1)* 003 * 00;
s(52,0)(13) = (v + (DT Do) 0E20) = b1+ (-1)770 05,
we have
l e(oo;
(4.2) S(:p)(13) = efy” + (—1)=(e0le(),

Hence S(I;p)(13) (p € Z(op;1)) are linearly independent over C. Thus we
note that it suffices to evaluate the both side of the equation (4.1) at 13 € G.

First, we compute {7, +,)(X:)s(l;p,q)}(13) for 0 < i < 4, p € Z(00;1)
and 0 < g < 2[. Since {s(I;p,q) | 0 < ¢ < 2} is the standard basis of (S(l;p)),
we have

{T(wo.00) (V=1EK33)s(1;p, 0)}(13) = (I = @) (Ba1—p g + (—1)75,,),
{Two.00) (K13 + V=1K12)s(l;p, ) }(13) = —q(S21—ps14 + (1), 11,),
{7 (vo,00) (K13 — V=1K12)s(; p, ) }(13) =
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= (20— ¢)(621—p-14 + (_1)6(00;”51)—1 q)-
Moreover, we obtain
{7 (wo,00) (Ea)s(l;p,q)}(13) =0 (a e nH),
{7 wo,00) (Hi)s(l:p,a) }(13) = (vo,i + po,i)s(l p: q)(1s)
= (0, + p0,1) B21—p g + (=1)D5,,) (i =1,2),

from the definition of principal series representation. From these computa-
tions and Iwasawa decomposition in Lemma 4.4, we obtain

{T(vo.00)(X0)s(l; p, @)} (13) = (v0.2 + po.2 + 1 = @) (Sa—pg + (—1)7 7 5p,),

q c(o0:
{7-[-(1/070'0)(X1)S(l;p’Q)}(]‘B) = *5(52lfp+1q +(=1) ¢ 07l)5p+1 q)a
{ﬂ(ug,ag)(XQ)S(l;paQ)}(13)

1 .
= —§(2V0,1 — 12+ 2001 — po.2)(0a1_pg + (—1)50D5, ),
2l — q (oo
{T(w0,00) (X3)s(ip, @)} (1) = === (21-p-14 = (=1) (oil)g, 14),
{7 (o,00) (Xa)s(l;p, @) }(13) = (Lo,2 + po.2 — L+ @) (Ba1—pq + (1)),
We set
Twooo)(XD)Sp) = Y el @ (W(uy.00) (Xi)s(li 1, 0))-
0<q<2l

Then we obtain

{7 (v0,00) (X0)S(l5p) } (13)
= (o2 + po2—1+ p)e(;l_)p + (1)@ (1 5 + poo 4+ 1 — p)ez(fl),

20 —p+1 P+l
(T ooy (X1)S(1;p)}(13) = fﬁpeglgm —(—1) o,preg)l,
{ﬂ-(l/o,o'o)(XQ)S(l?p)}(ls)
1 .
= —5(21/0,1 —vo,2+ 2po1 — po,2)(egl,)p + (—1)=lroDel2h),
+1 soy 2l —p 41

{00 (X2)S (1)} (13) = Py — (~1)71 00 el
{Tr(l/o,o'o)(X4)S(l;p)}(13)

= (o2 +po2 +1- p)eé?i)p + (=10 (1,2 + o2 — L+ p)el?.

Let us compute {€; ,,S(l;p)}(13). By the above equations, we have
{€.m S p)}(13)

= 37 (RE™) - €)@ {(T(p,00) (X2) (159, 0))} (13)

0<i<4
0<q<21l
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= 3" REE™) AT (y,00) (X0)S (1)) H(13)

0<i<4
= R(y™) (o2 + po2 — L +p)esy”, + (=177 (o2 + po.p + 1= p)e?}
tm 20-p+1 soyP+1
R { fegz—)pﬂ (1)l _—— 5 ,(;Jr)l}
m 1 g(00;
+R(S™) - { §(2V0 1= Vo2 +2po1 — po, 2)(e$l)p + (—1)=¢ U’I)efl))}
p+1 21 e(on: 2l_p+1 21
+ REE™)y { - @~ (~1)od : e;_{}
+RS™) {02 + po2 + 1 — )e§2p+(41)dam”(M124,p02A,ZAPp)efw}.
Since
R(Lz(l’m))eg?l) = A[2l72m;i+q+m—2,i]ez(i(éiz)_)Qa —2<m<2,
we obtain

(4.3) {€1,mS(l;p)}(13)
(2(14+m))

(2(1+m)) e(oo;l
Z {amsp, 1€2(14-m) — (p+-m-+2i) +(=1) (o )6[1 m;p,i| €ptm4-2i b
—1<i<1

where

Ol m;p,1] =(v0,2 + po2 — 1+ p)A[Ql,2m;2l—p+m—2,O]a

1
A m;p,0] = — 5(21/0,1 — Vo2 + 2Po,l - P0,2)A[2z 2m;2l—p+m,2]
20— p+1 p+1

2 A[2l,2m;217p+m,1] 9 A[2l 2m;2l—p+m,3]»
Q[1,m;p,—1] =102+ po2 +1— p)A[Ql,Qm;2l7p+m+2,4]7

Bii,mip,] =(Y0,2 + po,2 — L+ D) A1, 2miptm+2,4]»

1
Bt,mip,0) = — §(21/0 1= 10,2+ 2p0,1 — po,2)Al21,2mipt+m.2]
pt1 2l-p+1
9 A[Ql 2m;p+m,1] — fA[Ql,Qm;p-i-M,iﬁ]a

Bii,mip,—1] =02 + po,2 + 1 — P) Aj21 2mipt-m—2,0]-
By the relations of the coefficients Az 2k, in Lemma 3.3, we see that
mipil = (1) Blmipi) = Wompap 1 <1< 1.
Therefore, (4.3) become
(44)  {€mS(p)}(1a)

(2(1+m)) oo;l)+m (2(I+m))
Z:WMW 2mw)wwwﬂ+kndo)mpmwﬁ
—1<i<1
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From the equations (4.2), (4.4) and e(op;1) + m = &(09;1 + m) mod 2, we
obtain the assertion. O

5. THE (g, K)-MODULE STRUCTURES OF THE P;-PRINCIPAL SERIES
REPRESENTATIONS FOR ¢ = 1,2

In this section, we set ¢ = 1 or 2.

5.1. The discrete series representations of SL*(2,R). The set of equivalence
classes of discrete series representations of SL¥(2,R) is exhausted by the
induced representation Dy = Indgiai’{?)(D;). Here D;r is the discrete series
representation of SL(2,R) with Blattner parameter k, i.e. the one whose
minimal SO(2)-type is given by the character
SO(2) 3 < cost  sint ) s eVTh € X,
—sint cost

We denote by D, the contragradient representation of D;Cr and set yg =
diag(1,—1) € O(2). Then a discrete series representation Dy is uniquely
determined by specifying the SL(2,R)-module structure together with the
action of yo. Since Dilsr2,r) = D;Cr ® D, and D;Cr ® D, is infinitesimally
equivalent with a subrepresentation of some principal series representation of
SL(2,R), we obtain the following realization of associated (s((2,C),O(2))-
module of Dy:

Vbe,002) = @ Wit2a (Wp =C.-xp,+C- X,p)
aEZzg
and
Di(ke)xp = e\/__lthp Dr(yY0)xp = X—ps Di(w)xp = V—1pxp,
Di(z)xp = (k+Dp)xpr2, Dr(r_)xp = (k= p)Xxp—2,

where
(0 1 B 1 £/
w<_1 0)’xi<i\/—_1 1 >€5[(2,C),

nt< cost Sint)eSO@) (t€R).

—sint cost
Here we denote differential of Dy, again by Dy, and the O(2)-finite part of Vp,
by Vp, o) See [1, §2.5] for details.

5.2. The irreducible decompositions of (., o,)|Kx and 7, +.)| K as K-modules.
We identify M; with SL*(2, R) by natural isomorphisms m;: SL*(2,R) —
M; defined by

mi(h) = ( degg’l Oz ) ma(h) :( 0?,2 ole?(§i)1*1 )
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for h € SL*(2,R). Then we may put o; = Dy o m;l for some k > 2.

We analyze the K-type of the representation space H(,, ) of the P;-
principal series representation. The target V,, of functions f in H,, 5,) has a
decomposition:

Vo, = Vb, = @ Wit2a-
a€Z>

Denote the corresponding decomposition of f by

oo

f(z) = Z(fk+2a(ﬂf) ®@ Xk+2a + - (kr20) (T) @ X~ (k12a))-
a=0

From the definition of the space H(,, »,), we have
flx(mx) = os(m)f|x(xz) (ae. z€ K, me K, = M; N K ~ 0(2)).

For m = m;(k:), mi(yo), comparing the coefficients of x, in the left hand
side with those in the right hand side, we have the equations

Folic(ma(re)z) = eV~ fy e (), folx(mi(yo)w) = fplx (x).

Moreover, from the equality of inner products

2
/K||f|K($)||§id$: > {/K|fe(k+2a)|K(x)‘ dx} X200 15,

ee{*1}, a€Z>o

we have fp|x € L*(K). Therefore f|x belongs to

P LK Wiiaa)

a€Zso
where
2 . _ N f(l’) f(x) ® Xp + f(mz(yo)g;) ® X*pa
Li(K,Wp)—{f K — W, oK), w€K }
; — V- 1pt
L(Kf,xp)(K) = {f € L*(K) ;];(:Z:;t(fte) I)(;’, Z . Kf(x), } .

Here K means the connected component of K, which is isomorphic to SO(2).
We easily see that the restriction map

—

1 Hyyoy 3 £ flc € @ LA(K; Wigza)

DLGZZO

is a K-isomorphism.
By Peter-Weyl’s theorem, we have the following irreducible decomposition

of L. (K):

—

L(Kf,xp)(K) =~ @ (Vailéi—p]) ®c Vau.
lGZZO
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Here
Esp) - KT 2 mi(ke) — eVt e ¢
and V[{(;;;)] means the §;;)-isotypic component in (7|2, V') for a K-module
(r, V).
In this section, we denote by {vfé) | 0 < g < 2} the standard basis of
V5;. We define an another basis {vé?é) | 0 < ¢ <20} of Vo by

1
oy = Tlucly) = Sa+y)(—a+y)* 0 (0<q<2)
where
0 0 -1
ue=|(0 1 0 € 50(3).
10 0

We note that v € Va[§(;;—p)] if and only if
ot (310 =€y (M) = e~V 1Py (teR)
for v € V. From the definition of (7o, V2;) and

o ma m0)) = 0 (g M) = {2 ding(e VT2, VT2 L

we have Tgl(mi(ﬁt))vg;) = e\/jl(q_l)tvg). Hence we have

c-oP i —1<p<l,
Varl€(i;—p)] :{ 0 Vig—p 1 SpP=

otherwise .

By the identification V5; = Vo; in Lemma 3.4, we obtain

—

21)*
Lo (E) = @ (C- o)) ©c Var.
leZZO

Here we put vﬁ?_; =0if p < =l or [ < p. Moreover, since

o~ (ma(yo)) = {i ( —01 (1) )},

e utmanind = {£ (2 Vo)

we have

* — 21)* 21)* * _ 21)* 21)*
5 (ma(yo) "o = ()P (maye) el ) = (— 1)

For 0 < p <1—k such that p = —k mod 2, we define the elementary function
ti(l;p,q) € Hy, 4,y by

till;p,q) = 07 @l p.q))
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where
t2(l;p, q)(x)

Let T;(l; p) be a column vector of degree 2]+ 1 with its ¢+ 1-th component
ti(l;p,q), ie. "(ti(1;p,0), ti(lip, 1), -+ ,ti(l;p,21) ).

Moreover we denote by (T;(l; p)) the subspace of H,, ,,) generated by the
functions in the entries of the vector T;(l; p), i.e.

21 21) % 21
Y @ Xi—p + (~ 1P o ()00 @ Xp—t,
21 20)* 21
Y @ xi—p + (D)D" oy (2)0%)) © Xpt.

2l
<v§,2gip, Tou(z)v

(

1
201)*

(WS ()0

2
(Ti(l;p)) = @C ti(lip,q) = V.
q=0

Via the isomorphism between (T;(l;p)) and Vo, we identify {¢;(I;p,q) | 0 <
g < 21} with the standard basis.
From above arguments, we obtain the following.

PROPOSITION 5.1. As an unitary representation of K, it has an irre-
ducible decomposition:
Hey, 0 = &y (Ti(L;p))
1€Z >0, 0<p<i—k
p=l—k mod 2

for i =1,2. Then the T -isotypic component of 7(,, ;) s given by

D (@)
0<p<i—k
p=Il—k mod 2

COROLLARY 5.2. The multiplicity d(o:;1) of Tar in T(y, o,),k 15 given by

(I—k+2)/2 ifk<landl—k is even,
dlo;)=<¢ (I—k+1)/2 ifk<landl—Fkis odd,
0 ifk>1.

5.3. The canonical blocks of elementary functions. By the identification in-
troduced in Subsection 4.3, we identify T;(l; p) with the K-homomorphism

Var vfé) =il q) € Huy, ok, 0<q <21

for 0 < p <1 — k such that p =1 — k mod 2. We note that {T;(l;p) |0 <p <
I —Fk, p=1—Fkmod 2} is a basis of Homg (Va;, H,, ,),x) and we call it the
induced basis from the standard basis.

For each K-type 79 of our P;-principal series representation 7(,, o,), we
define a certain matrix of elementary functions corresponding to the induced
basis {T;(l;p) |0 <p <Il—k, p=1—Fkmod 2} of Homg (Vor, H(, 0,),x)-

s
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DEFINITION 5.3. For |l € Zxo such that d(o;;1) > 0, the following
(20 + 1) x d(o;1) matriz T;(o;;1) is called the canonical block of elemen-
tary functions for Ty -isotypic component of w, »,y: When | —k is even, we
consider the matrix

Ti(oi;1) =( T5(1;0), Ti(1;2), Ti(l;4), --- ,Ti(l;1 = k) ).
When | — k is odd, we consider the matrix
Ti(oi;l) =( T;(L; 1), T3(5:3), Ti(l;5), -+ Ti(l;1— k) ).

5.4. The contiguous relations.

LEMMA 5.4. (i) The standard basis {X; | 0 < j < 4} of pc have the

following expressions according to the decomposition gc = (m,c @ a1,c B
my.c) + Ec:
1
Xo :ml(x*)a X1=- (Eelfez + v 71E61*62) + §(K13 +V 71K12)a
1 1
Xo=—HY, X3 =(Beymey — V-1Ee ;) = 5 (Kis = V=1K),

X4 :m1($+).

(i1) The standard basis {X; | 0 < j < 4} of pc have the following expressions
according to the decomposition gc = Ad(u;1)(n2,c @ az,c ® mac) + bc:

Xo = - Ad(u; (),

— 1
X1 :Ad(ugl)(Eel—ez. - _1E62—63) - §(K13 + v _1K12)a
X, :%Ad(ugl)H@),

1
X3 =— Ad(ugl)(Eelfez +v 71E62*63) + §(K13 Y 71K12)a
Xy = — Ad(u; m(as),
PROOF. We obtain the assertion immediately from Lemma 3.1. o

We give the matrix representation of Fim with respect to the induced
basis as follows.

THEOREM 5.5. For ¢ = 1,2 and —2 < m < 2, we have the following
equation with the matrix representation R(Fim) € My(o,;14m),d(0:is1)(C) of
F?,m with respect to the induced basis {T;(l;p) | 0 <p <l—k, p=1—k mod 2}:
(5.1) CmTi(o;1) = Ti(opl+m) - R(F%ym).

We give the explicit expressions of the matrix

On(oi51,m),d(os:0)
R(TY,,)
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by
. @) O1,d(0;
o< ‘le(agl) I(V[l,m;2j+6(aq,;l)7—1]> + Ld((i)“l)
<j<d(oi;l)— Diag (’y 94 y )
O1.d(o:i1) 0<i<d(on -1 T
O2.4(0::0)—1 02,1
+ Diag (7[(li)m-2 +6(o1) 1]> Od(gi;l)—l,l
0<j<d(opl)—2 T,
Here
7[(ll,)m;;071] =(=1)"" (k= 1+ p) A1, 2m:21—prm—2,0];
i —1) m(m + 1)
[(z,)m;p,o] _( s (ui + pi+1Im — 3+ %)A[2l,2m;217p+m,2]a

7[(;;)777,;;0771] :(71)i+1(k +1- p)A[Ql,Qm;Ql—p+m+2,4]a
(2—m)/2 if me {0, £2},
(B3—m)/2 if (m,l—k) e {£1} x (22),
1-m)/2 if (m,l—k) e {£1} x (1 +2Z),
and §(o4;1) € {0,1} such that 6(o;;1) =1 — k mod 2.
In the above equations, we put A om:p.j) = 0 for p <0 orp > 2(1 +m),
and omit the symbols Diag (f(n)) (co > ¢1), Omn (M <0 orn <0).

co<n<ci

n(gi;lam) -

PROOF. By the similar computation in the proof of Theorem 4.5 using
Lemma 5.4 (i), we obtain the assertion in the case of i = 1. In the case of
i = 2, the value of T5(I;p) at u. € G is given by

To(l; p)(ue) :eé?i)p @ Xi—p + (_1)le§>2l) @ Xp—1-

Thus, by the similar computation using Lemma 5.4 (ii), we also obtain the
assertion in the case of i = 2 evaluating the both side of the equation (5.1) at
ue. € G. O

6. THE ACTION OF pc

The linear map F;m characterize the action of pc. In this section, we

give the explicit description of the action of pc on the elementary functions.

6.1. The projectors for Vi ®c V4. For —2 < m < 2, we describe a surjective
5[(2, C)-homomorphism Pi  from Vi ®c Vj to Viiam in terms of the standard
basis as follows.

LEMMA 6.1. Let {Uél) | 0 < g <I} be the standard basis of Vi forl € Z>.

Weputv((]l):Owhenq<0 orq>1.

We define linear maps Ple: VidcVi— Vigom (—2<m <2) by

1+2
P2lm(vz(1l) & wT) = B[l,Qm;q,r] ' v((]:’r;n’ﬂ)L72’
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when Vi yom-component of V; ®c Vy does not vanish.

Here the coefficients By om;q.rp = b(1,2m;q,7)/d' (1,2m) are defined by
following formulae.
ForMuULA 1: The coefficients of Pi: Vi ®c Vi — Viga are given as follows:

b(l,4;q,7) =1 (0<r <4), d'(1,4) =1.
ForMULA 2: The coefficients of PQZ: Vi ®c Vi — Vigo are given as follows:

b(l,2;¢,0) =4q, b(l,2;q,1) = — (I —4q), b(,2;¢,2) = —2(l — 2q),
b(l7 27 q, 3) = - (Sl - 4q)7 b(la 27 q, 4) = - 4(Z - q)a dl(l7 2) =l + 4.

FORMULA 3: The coefficients of Pt: Vi ®@c Vi — Vi are given as follows:

b(l707Q70) :6q(q_ 1)) b(laovqal) = _Sq(l_2q+1)7
b(1,0;¢,4) =6(l —q)(l —q — 1), d'(1,0) =(1+3)(I +2).
FORMULA 4: The coefficients of P o: Vi ®c Vi — Vi_o are given as follows:
b(l, —2;q, ) =4q(¢—1)(¢—2), b(l,—2¢,1) = —q(qg —1)(3l — 4g + 2),
b(l,—2 q; ) —(l=4q=2)(1-q)(l —q—1),
b(l,-2;¢,4) =—4(l - )l —qg—-1)1—-q—2), d(,-2)=(01+2)(+1)

ForMULA 5: The coefficients of P£4: Vi ®c Vi — Vi_4 are given as follows:

b(l, —4;4,0) = q(q — 1)(q — 2)(q — 3),
b(l, —4;q, ) —q(q—1)(g—2)(I - q),
b(l,=4;¢,2) = q(qg = D)l = q)(l —q — 1),
b(l,—4:¢,3) = —q(l—q)(l —q—1)(l —q — 2),
b(l,~41¢,4)=(1—q)(l—q—1)(—q=2)(l—q—3),
d'(l,—4)= 1+ 1)1 —-1)(1-2).
Then Pj,, is the generator of Homg(2,c)(Vi ®c Vi, Vigam) such that P, o
L. = idv; o, -
PROOF. The composite
Viec Vi Vi @c Vi~ (Vi®c Va)* 3 fr foly, € Vigm = Vitom

is a surjective s[(2, C)-homomorphism from V;®c V4 to Viy2.,, which is unique
up to scalar multiple. Therefore we obtain the assertion from Proposition 3.2
and Lemma 3.4. O
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6.2. The action of pc on the elementary functions.

PROPOSITION 6.2. (i) An explicit expression of the action of pc on the
basis {s(l;p,q) | 1 > 0, p € Z(oo;1), 0 < q < 21} of Hyyo0),x 15 given by
following equation:

ﬂ(yg,ao)(XT)S(l;paQ)

0 .

= Z ,y[(l,Zn;p,j]B[2lv2m§q7T]S(l +mip+m+2j,g+m+r—2).
—1<j<1
—2<m<2

Here we put

0 0
,y[(O,)'m;O,j] = B[O,Qm;O,r] =0 fO?” m < 2, 7[(17)7,1;;07]‘] = B[2,2m;q,r] =0 fO?” m < 0,

s(l;p,q) = 0 whenever p <1 such that p ¢ Z(og;1) or g <0 or q¢ > 21,
s(l;p,q) = (=1)7*Vs(l;21 — p,q) for p> 1.
(i) For i = 1,2, the explicit expression of the action of pc on the basis
{tilbp,g) |1 >k, 0<p<l—k, p=l—kmod2, 0<q<2l} of Hy, 0., K
is given by following equation:

ﬂ(yq,,ai)(XT)ti(l;pa q)

= Z ’Y[(Z?m;p,j]B[2l,2m;q,r] tl(l +mip+m+2j,g+m+r— 2)
—1<5<1
—2<m<2

Here we put t;(I;p,q) = 0 unless0 < p < l—k, p=l—kmod 2 and0 < g < 2.

PROOF. Since
7T(L/o,c;o)(*XVT)S(Z;Z%q) = Z F?m(S(Zyp)) OP2lm(Ut(12l) ®X7‘)7

—2<m<2
//T(Viﬂm)(XT)ti(l;pa Q) = Z ;,m(ﬂ(lﬂp)) © P2lm(v¢(12l) & XT) (Z = 17 2);
—2<m<2
we obtain the assertion from Theorem 4.5, 5.5 and Lemma 6.1. o
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