Minimal Spectrum-Sums of Bipartite Graphs with Exactly Two Vertex-Disjoint Cycles

Fuyi Wei, ${ }^{\text {a }}$ Bo Zhou, ${ }^{\text {b,* }}$ and Nenad Trinajstićc ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Applied Mathematics, College of Science, South China Agricultural University, Guangzhou 510640, China
${ }^{\mathrm{b}}$ Department of Mathematics, South China Normal University, Guangzhou 510631, China
${ }^{\text {c }}$ The Ruđer Bošković Institute, P. O. Box 180, HR-10 002 Zagreb, Croatia

RECEIVED OCTOBER 29, 2007; REVISED MARCH 27, 2008; ACCEPTED APRIL 1, 2008

Abstract

The spectrum-sum of a graph is defined as the sum of the absolute values of its eigenvalues.

Keywords graph spectrum spectrum-sum bipartite graphs alternant structures The graphs with minimal spectrum-sums in the class of connected bipartite graphs with exactly two vertex-disjoint cycles, in the class of connected bipartite graphs with exactly two vertex--disjoint cycles whose lengths are congruent with 2 modulo 4 , and in the class of connected bipartite graphs with exactly two vertex-disjoint cycles one of which has length congruent with 2 modulo 4, are determined, respectively.

INTRODUCTION

Let G be a simple graph with n vertices. ${ }^{1}$ The characteristic polynomial of G is the characteristic polynomial of its adjacency matrix, denoted by $\phi(\mathrm{G}, \lambda)$. 2,3 The eigenvalues of G denoted by $\lambda_{1}, \ldots, \lambda_{n}$, are the roots of $\phi(\mathrm{G}, \lambda)=$ 0 . The set of graph-eigenvalues is also called the spectrum of the graph. ${ }^{4}$ The spectrum-sum of G is defined as the sum of the absolute values of all elements in the gra-ph-spectrum:

$$
\mathrm{E}(\mathrm{G})=\left|\lambda_{1}\right|+\left|\lambda_{2}\right|+\ldots+\left|\lambda_{n}\right| .
$$

In the literature, the energy of a graph is usually employed for the spectrum-sum, e.g., Refs. 5-8. This term was introduced by Gutman ${ }^{9}$ and an explanation why he had chosen this term is given in Ref. 10. We choose the
term spectrum-sum since in physical sciences energy represents a measurable quantity.

If G is the molecular graph of a conjugated hydrocarbon, often called the Hückel graph, ${ }^{11}$ then the corresponding set of eigenvalues is called the Hückel spectrum. ${ }^{12}$ The connection between the graph spectrum and Hückel spectrum and the role of Hückel spectrum in the theory of conjugated molecules were discussed in detail elsewhere. ${ }^{13,14}$ The use of the Hückel spectrum in chemistry has been recently presented, for example, in this journal. ${ }^{15}$

For a bipartite graph G (depicting the alternant structures) ${ }^{16}$ with n vertices, its characteristic polynomial can be written as:

$$
\phi(\mathrm{G}, \lambda)=\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k} b_{k}(\mathrm{G}) x^{n-2 k}
$$

[^0]where $b_{k}(\mathrm{G}) \geq 0$ for $k=0,1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor$. For convenience, let $b_{k}(\mathrm{G})=0$ for $\mathrm{k}<0$ or $\mathrm{k}>\left\lfloor\frac{n}{2}\right\rfloor$. We also note that the spectrum-sum can be calculated by the Coulson integral
formula: ${ }^{17}$
$$
\mathrm{E}(\mathrm{G})=\frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^{2}} \log \left[1+\sum_{k=1}^{[n / 2]} b_{k}(\mathrm{G}) x^{2 k}\right] d x
$$

Thus, one can define a quasi-order relation over the class of all bipartite graphs: if G and G^{\prime} are bipartite graphs with n vertices, then:

$$
\mathrm{G} \succeq \mathrm{G}^{\prime} \Leftrightarrow b_{k}(\mathrm{G}) \geq b_{k}\left(\mathrm{G}^{\prime}\right) \text { for } k=0,1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor .
$$

If $\mathrm{G} \succeq \mathrm{G}^{\prime}$ and there is a k_{0} such that $b_{k_{0}}(\mathrm{G})>b_{k_{0}}\left(\mathrm{G}^{\prime}\right)$, then we write $\mathrm{G} \succ \mathrm{G}^{\prime}$. According to the Coulson integral formula for energy, for bipartite graphs G and G^{\prime}, we have:

$$
\begin{equation*}
\mathrm{G} \succ \mathrm{G}^{\prime} \Rightarrow \mathrm{E}(\mathrm{G})>\mathrm{E}\left(\mathrm{G}^{\prime}\right) \tag{1}
\end{equation*}
$$

Gutman ${ }^{18}$ determined acyclic conjugated structures (trees) with extremal Hückel π-electron energies (spec-trum-sums). That work triggered interest in determining graphs with minimal or maximal spectrum sums. ${ }^{5-8,19-26}$ In the present report, we join these efforts by studying graphs with minimal spectrum-sums in the class of bipartite graphs with exactly two vertex-disjoint cycles. Examples of these graphs are shown in Figure 1.

Figure 1. Examples of graphs with minimal spectrum-sums in the class of bipartite graphs with exactly two vertex-disjoint cycles.

PRELIMINARIES

Let P_{n} and C_{n} be the path and cycle with n vertices, respectively. Let U_{n}^{l} be the graph obtained by attaching $n-l$ pendent vertices to a vertex of the cycle C_{l}. The ver-tex-disjoint union of graphs G and H is denoted by $\mathrm{G} \cup \mathrm{H},[p] \mathrm{G}$ denotes the vertex-disjoint union of p copies of G.

Lemma $1 .{ }^{10}$ - Let G be a bipartite graph and let $u v$ be a bridge of G . Then:

$$
b_{k}(\mathrm{G})=b_{k}(\mathrm{G}-u v)+b_{k-1}(\mathrm{G}-u-v) .
$$

According to Lemma 1, it is easy to see that the following two lemmas hold.

Lemma 2. - Let G be a bipartite graph and let $u v$ be a bridge of G . Then $\mathrm{G} \succ \mathrm{G}-u v$.

For example, if an acyclic graph G with n vertices contains a subgraph H with $t<n$ vertices, then according to Lemma 2, we have $\mathrm{G} \succ \mathrm{H} \cup[n-t] \mathrm{P}_{1}$.

Lemma 3. - Let G and G^{\prime} be two bipartite graphs with n vertices. Let $u v$ be a bridge of G and $u^{\prime} v^{\prime}$ be a bridge of G^{\prime}. If $\mathrm{G}-u v \succeq \mathrm{G}^{\prime}-u^{\prime} v^{\prime}$ and $\mathrm{G}-u-v \succ \mathrm{G}^{\prime}-u^{\prime}-v^{\prime}$, or $\mathrm{G}-u v \succ \mathrm{G}^{\prime}-u^{\prime} v^{\prime}$ and $\mathrm{G}-u-v \succeq \mathrm{G}^{\prime}-u^{\prime}-v^{\prime}$ then $\mathrm{G} \succ \mathrm{G}^{\prime}$.

According to Theorems 4 and 5 in Ref. 5 and Theorem 4 in Ref. 6, we have:

Lemma 4. ${ }^{5,6}$ - Let G be an n-vertex bipartite unicyclic graph whose unique cycle length is l. If $\mathrm{G} \neq \mathrm{U}_{n}^{l}$, then $\mathrm{G} \succ \mathrm{U}_{n}^{l}$. If $l>4$ then $\mathrm{U}_{n}^{l} \succ \mathrm{U}_{n}^{4}$. If $l>6$ then $\mathrm{U}_{n}^{l} \succ \mathrm{U}_{n}^{6}$.

Lemma 5. ${ }^{26}$ - Let G_{1} and G_{2} be two vertex-disjoint bipartite graphs. Then for any $\mathrm{k} \geq 0$,
$b_{k}\left(\mathrm{G}_{1} \cup \mathrm{G}_{2}\right)=\sum_{i=0}^{k} b_{i}\left(\mathrm{G}_{1}\right) b_{k-i}\left(\mathrm{G}_{2}\right)$.
Proof: Let $n_{i}=\left|\mathrm{V}\left(\mathrm{G}_{i}\right)\right|$ for $i=1,2$. Note that:

$$
\begin{aligned}
& \sum_{i=0}^{\lfloor n / 2\rfloor}(-1)^{k} b_{k}\left(\mathrm{G}_{1} \cup \mathrm{G}_{2}\right) x^{n-2 k}= \\
& \phi\left(\mathrm{G}_{1} \cup \mathrm{G}_{2}, x\right)= \\
& \phi\left(\mathrm{G}_{1}, x\right) \phi\left(\mathrm{G}_{2}, x\right)= \\
& \left\lfloor n_{i} / 2\right\rfloor \\
& \sum_{i=0}(-1)^{i} b_{i}\left(\mathrm{G}_{1}\right) x^{n_{1}-2 i} \sum_{i=0}^{\left\lfloor n_{2} / 2\right\rfloor}(-1)^{i} b_{i}\left(\mathrm{G}_{2}\right) x^{n_{2}-2 i}
\end{aligned}
$$

The result follows directly.

RESULTS

Let $\mathrm{B}_{n_{1}, n_{2}}^{l_{1}, l_{2}}$ be the graph obtained by adding an edge between the vertex of maximal degree in $\mathrm{U}_{n_{1}}^{l_{1}}$ and the vertex of maximal degree in $\mathrm{U}_{n_{2}}^{l_{2}}$. Let G be an n-vertex connected bipartite graph with exactly two vertex-disjoint cycles. Then there are two vertex-disjoint cycles $\mathrm{C}^{(1)}$ and $\mathrm{C}^{(2)}$ in G with lengths l_{1} and l_{2}, respectively, and there is a unique path P connecting a vertex say $u=u_{1}$ in $\mathrm{C}^{(1)}$ and a vertex say v in $\mathrm{C}^{(2)}$, such that each edge in P is a bridge of G , where l_{1} and l_{2} are even and at least four. Let u_{2} be the unique neighbor of u_{1} in P . Then $\mathrm{G}-u_{1} u_{2}$ consists of two components G_{1} containing the cycle $\mathrm{C}^{(1)}$ and G_{2} containing the cycle $\mathrm{C}^{(2)}$. Let $n_{i}=\left|\mathrm{V}\left(\mathrm{G}_{i}\right)\right|, i=1,2$ Obviously, $n_{1}+n_{2}=n$.

Theorem 6. - Let G be an n-vertex connected bipartite graph with exactly two vertex-disjoint cycles, where $\mathrm{n} \geq$ 9. If $\mathrm{G} \neq \mathrm{B}_{4, n-4}^{4,4}$ then $\mathrm{G} \succ \mathrm{B}_{4, n-4}^{4,4}$.

Proof: According to Lemma $4, \mathrm{G}_{i} \succeq \mathrm{U}_{n_{i}}^{4}$ for $i=1,2$. According to Lemma 5:

$$
\mathrm{G}-u_{1} u_{2}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \succeq \mathrm{U}_{n_{1}}^{4} \cup \mathrm{U}_{n_{2}}^{4}
$$

Now we consider the graph $\mathrm{G}-u_{1}-u_{2}=\left(\mathrm{G}_{1}-u_{1}\right) \cup$ $\left(\mathrm{G}_{2}-u_{2}\right)$. Note that $\mathrm{G}_{1}-u_{1}$ is an acyclic graph containing a path P_{3}. According to Lemma $2, \mathrm{G}_{1}-u_{1} \succeq \mathrm{P}_{3}\left[n_{1}-4\right] \mathrm{P}_{1}$, and if u_{2} lies on the cycle $\mathrm{C}^{(2)}$, then $\mathrm{G}_{2}-u_{2} \succeq \mathrm{P}_{3} \cup$ [$\left.n_{2}-4\right] \mathrm{P}_{1}$. Suppose that u_{2} lies outside the cycle $\mathrm{C}^{(2)}$. According to Lemma $2, \mathrm{G}_{2}-u_{2} \succeq \mathrm{C}_{l_{2}} \cup\left[n_{2}-1-l_{2}\right] \mathrm{P}_{1}$. It is easily seen that:
$b_{1}\left(\mathrm{C}_{l_{2}} \cup\left[n_{2}-1-l_{2}\right] \mathrm{P}_{1}\right)=l_{2}>2=b_{1}\left(\mathrm{P}_{3} \cup\left[n_{2}-4\right] \mathrm{P}_{1}\right)$, and $b_{k}\left(\mathrm{C}_{l_{2}} \cup\left[n_{2}-1-l_{2}\right] \mathrm{P}_{1}\right) \geq 0=b_{k}\left(\mathrm{P}_{3} \cup\left[n_{2}-4\right] \mathrm{P}_{1}\right)$ for all $k \geq 2$. Thus, we have $\mathrm{G}_{2}-u_{2} \succeq \mathrm{C}_{l_{2}} \cup\left[n_{2}-1-l_{2}\right] \mathrm{P}_{1} \succ$ $\mathrm{P}_{3} \cup\left[n_{2}-4\right] \mathrm{P}_{1}$. It follows that $\mathrm{G}_{2}-u_{2} \succeq \mathrm{P}_{3} \cup\left[n_{2}-4\right] \mathrm{P}_{1}$ whether u_{2} lies on the cycle $\mathrm{C}^{(2)}$ or not. Thus we have proved that: $\mathrm{G}_{1}-u_{1} \succeq \mathrm{P}_{3} \cup\left[n_{1}-4\right] \mathrm{P}_{1}$ and $\mathrm{G}_{2}-u_{2} \succeq \mathrm{P}_{3} \cup$ $\left[n_{2}-4\right] \mathrm{P}_{1}$. Now according to Lemma 5:

$$
\mathrm{G}-u_{1}-u_{2}=\left(\mathrm{G}_{1}-u_{1}\right) \cup\left(\mathrm{G}_{2}-u_{2}\right) \succeq[2] \mathrm{P}_{3} \cup[n-8] \mathrm{P}_{1} .
$$

If $\min \left\{n_{1}, n_{2}\right\}=4$ say $n_{1}=4$ then since $G \neq \mathrm{B}_{4, n-4}^{4,4}$ we have $\mathrm{G}_{2}-u_{2}$ containing the path or the star on four vertices as a subgraph, and so $b_{1}\left(\mathrm{G}-u_{1}-u_{2}\right)=b_{1}\left(\mathrm{G}_{1}-u_{1}\right)+$ $b_{1}\left(\mathrm{G}_{2}-u_{2}\right) \geq 2+3>4=b_{1}\left([2] \mathrm{P}_{3} \cup[n-8] \mathrm{P}_{1}\right)$, implying:

$$
\mathrm{G}-u_{1}-u_{2}=\left(\mathrm{G}_{1}-u_{1}\right) \cup\left(\mathrm{G}_{2}-u_{2}\right) \succ[2] \mathrm{P}_{3} \cup[n-8] \mathrm{P}_{1} .
$$

According to Lemma 3, we have $G \succ B_{n_{1}, n_{2}}^{4,4}$ and if $\min \left\{n_{1}, n_{2}\right\}=4$, then $\mathrm{G} \succ \mathrm{B}_{n_{1}, n_{2}}^{4,4}=\mathrm{B}_{4, n-4}^{4,4}$ and so the result follows. By direct calculation:

$$
\begin{aligned}
\phi\left(\mathrm{U}_{n_{1}}^{4} \cup \mathrm{U}_{n_{2}}^{4}, \lambda\right)= & {\left[\lambda^{n_{1}}-n_{1} \lambda^{n_{1}-2}+\left(2 n_{1}-8\right) \lambda^{n_{1}-4}\right] \times } \\
& {\left[\lambda^{n_{2}}-n_{2} \lambda^{n_{2}-2}+\left(2 n_{2}-8\right) \lambda^{n_{2}-4}\right]=} \\
& {\left[\lambda^{n}-n \lambda^{n-2}+\left(n_{1} n_{2}+2 n-16\right) \lambda^{n-4}-\right.} \\
& 4\left(n_{1} n_{2}-2 n\right) \lambda^{n-6}+ \\
& 4\left(n_{1} n_{2}-4 n+16\right) \lambda^{n-8} .
\end{aligned}
$$

Suppose that $\min \left\{n_{1}, n_{2}\right\}>4$. Then $n_{1} n_{2}>4(n-4)$. Thus $b_{2}\left(\mathrm{U}_{n_{1}}^{4} \cup \mathrm{U}_{n_{2}}^{4}\right)=n_{1} n_{2}+2 n-16>4(\mathrm{n}-4)+2 \mathrm{n}-$ $16 \geq b_{2}\left(\mathrm{U}_{4}^{4} \cup \mathrm{U}_{n-4}^{4^{2}}\right)$. Similarly, $b_{k}\left(\mathrm{U}_{n_{1}}^{4} \cup \mathrm{U}_{n_{2}}^{4}\right)>b_{k}$ $\left(\mathrm{U}_{4}^{4} \cup \mathrm{U}_{n-4}^{4}\right)$ for $k=3,4$ Note that $b_{k}\left(\mathrm{U}_{n_{1}}^{4} \cup \mathrm{U}_{n_{2}}^{4}\right)=$ $b_{k}\left(\mathrm{U}_{4}^{4} \cup \mathrm{U}_{n-4}^{4}\right)=0$ for $k \geq 4$. It follows that $\mathrm{U}_{n_{1}}^{4} \cup \mathrm{U}_{n_{2}}^{4}$ $\succ \mathrm{U}_{4}^{4} \cup \mathrm{U}_{n-4}^{4}$. According to Lemma 3, $\mathrm{B}_{n_{1}, n_{2}}^{4,4} \succ \mathrm{~B}_{4, n-4}^{4,4}$. It follows that $\mathrm{G} \succeq \mathrm{B}_{n_{1}, n_{2}}^{4,4} \succ \mathrm{~B}_{4, n-4}^{4,4}$.

Theorem 7. - Let G be an n-vertex connected bipartite graph with exactly two vertex-disjoint cycles, where $n \geq 13$. If both cycle lengths of G are congruent with 2 modulo 4 and $\mathrm{G} \neq \mathrm{B}_{6, n-6}^{6,6}$, then $\mathrm{G} \succ \mathrm{B}_{6, n-6}^{6,6}$.

Proof: According to Lemma 4, $\mathrm{G}_{i} \succeq \mathrm{U}_{n_{i}}^{6}$ for $i=1,2$. According to Lemma 5, $\mathrm{G}-u_{1} u_{2}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \succeq \mathrm{U}_{n_{1}}^{6} \cup \mathrm{U}_{n_{2}}^{6}$.

Now we consider the graph $\mathrm{G}-u_{1}-u_{2}=\left(\mathrm{G}_{1}-u_{1}\right) \cup$ $\left(\mathrm{G}_{2}-u_{2}\right)$. According to Lemma 2, $\mathrm{G}_{1}-u_{1} \succeq \mathrm{P}_{5} \cup\left[n_{1}-6\right] \mathrm{P}_{1}$, and if u_{2} lies on the cycle $\mathrm{C}^{(2)}$ then $\mathrm{G}_{2}-u_{2} \succeq \mathrm{P}_{5} \cup\left[n_{2}-6\right] \mathrm{P}_{1}$.

Suppose that u_{2} lies outside the cycle $\mathrm{C}^{(2)}$. According to Lemma 2, $\mathrm{G}_{2}-u_{2} \succeq \mathrm{C}_{l_{2}} \cup\left[\mathrm{n}_{2}-1-l_{2}\right] \mathrm{P}_{1}$. It is easily seen that:

$$
\begin{gathered}
b_{1}\left(\mathrm{C}_{l_{2}} \cup\left[n_{2}-1-l_{2}\right] \mathrm{P}_{1}\right)=l_{2}>4=b_{1}\left(\mathrm{P}_{5} \cup\left[n_{2}-6\right] \mathrm{P}_{1}\right), \\
b_{2}\left(\mathrm{C}_{l_{2}} \cup\left[n_{2}-1-l_{2}\right] \mathrm{P}_{1}\right)=\frac{l_{2}\left(l_{2}-3\right)}{2}>3=b_{2}\left(\mathrm{P}_{5} \cup\left[n_{2}-6\right] \mathrm{P}_{1}\right),
\end{gathered}
$$

and $b_{k}\left(\mathrm{C}_{l_{2}} \cup\left[n_{2}-1-l_{2}\right] \mathrm{P}_{1}\right) \geq 0=b_{k}\left(\mathrm{P}_{5} \cup\left[n_{2}-6\right] \mathrm{P}_{1}\right)$ for all $k \geq 3$. Thus, we have $\mathrm{G}_{2}-u_{2} \succeq \mathrm{C}_{l_{2}} \cup\left[\mathrm{n}_{2}-1-l_{2}\right] \mathrm{P}_{1} \succ$ $\mathrm{P}_{5} \cup\left[n_{2}-6\right] \mathrm{P}_{1}$. It follows that $\mathrm{G}_{2}-u_{2} \succeq \mathrm{P}_{5} \cup\left[\mathrm{n}_{2}-6\right] \mathrm{P}_{1}$ whether u_{2} lies on the cycle $\mathrm{C}^{(2)}$ or not. According to Lemma 5:

$$
\mathrm{G}-u_{1}-u_{2}=\left(\mathrm{G}_{1}-u_{1}\right) \cup\left(\mathrm{G}_{2}-u_{2}\right) \succeq[2] \mathrm{P}_{5} \cup[n-12] \mathrm{P}_{1} .
$$

If $\min \left\{n_{1}, n_{2}\right\}=6$ say $n_{1}=6$, then since $\mathrm{G} \neq \mathrm{B}_{6, n-6}^{6,6}$ we have $G_{2}-u_{2}$ containing a subgraph formed by attaching a pendent vertex to the path P_{5}, and so $b_{1}\left(\mathrm{G}-u_{1}-u_{2}\right)=b_{1}\left(\mathrm{G}_{1}-u_{1}\right)+b_{1}\left(\mathrm{G}_{2}-u_{2}\right) \geq 4+5>8=$ $b_{1}\left([2] \mathrm{P}_{5} \cup[n-12] \mathrm{P}_{1}\right.$, implying:

$$
\mathrm{G}-u_{1}-u_{2}=\left(\mathrm{G}_{1}-u_{1}\right) \cup\left(\mathrm{G}_{2}-u_{2}\right) \succ[2] \mathrm{P}_{5} \cup[n-12] \mathrm{P}_{1} .
$$

According to Lemma 3, we have $\mathrm{G} \succeq \mathrm{B}_{n_{1}, n_{2}}^{6,6}$, and if $n_{1}=6$, then $\mathrm{G} \succ \mathrm{B}_{n_{1}, n_{2}}^{6,6}=\mathrm{B}_{6, n-6}^{6,6}$, and so the result follows. By direct calculation:

$$
\begin{aligned}
& \phi\left(\mathrm{U}_{n_{1}}^{6} \cup \mathrm{U}_{n_{2}}^{6}, \lambda\right)= \\
& \quad\left[\lambda^{n_{1}}-n_{1} \lambda^{n_{1}-2}+\left(4 n_{1}-5\right) \lambda^{n_{1}-4}-\left(3 n_{1}-18\right) \lambda^{n_{1}-6}\right] \times \\
& \quad\left[\lambda^{n_{2}}-n_{2} \lambda^{n_{2}-2}+\left(4 n_{2}-5\right) \lambda^{n_{2}-4}-\left(3 n_{2}-18\right) \lambda^{n_{2}-6}\right]= \\
& \quad \lambda^{n}-n \lambda^{n-2}+\left(n_{1} n_{2}+4 n-30\right) \lambda^{n-4}- \\
& \quad\left(8 n_{1} n_{2}-12 n-36\right) \lambda^{n-6}+\left(22 n_{1} n_{2}-78 n+225\right) \lambda^{n-8}- \\
& \quad\left(24 n_{1} n_{2}-117 n+540\right) \lambda^{n-10}+\left(9 n_{1} n_{2}-54 n-324\right) \lambda^{n-12} .
\end{aligned}
$$

If $\min \left\{n_{1}, n_{2}\right\}>6$ then $n_{1}, n_{2}>6(n-6)$, and from the characteristic polynomial above, we have $\mathrm{U}_{n_{1}}^{6} \cup \mathrm{U}_{n_{2}}^{6} \succ$ $\mathrm{U}_{6}^{6} \cup \mathrm{U}_{n-6}^{6}$. According to Lemma 3, we have $\mathrm{G} \succeq \mathrm{B}_{n_{1}, n_{2}}^{6,6_{2}^{2}}=$ $B_{6, n-6}^{6,6}$

The following theorem was reported in Ref. 26. Here we give an alternate proof.

Theorem 8. - Let G be an n-vertex connected bipartite graph with exactly two vertex-disjoint cycles, where $n \geq$ 11. If one cycle length of G is congruent with 2 modulo 4 and $\mathrm{G} \neq \mathrm{B}_{4, n-4}^{4,6}$, then $\mathrm{G} \succ \mathrm{B}_{4, n-4}^{4,6}$.

Proof: Suppose without loss of generality that $l_{2} \equiv 2$ (mod 4). According to Lemma 4, $\mathrm{G}_{1} \succeq U_{n_{1}}^{4}$ and $\mathrm{G}_{2} \succeq U_{n_{2}}^{6}$. According to Lemma 5, $\mathrm{G}-u_{1} u_{2}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \succeq \mathrm{U}_{n_{1}}^{4} \cup \mathrm{U}_{n_{2}}^{6}$.

Now we consider the graph $\mathrm{G}-u_{1}-u_{2}=\left(\mathrm{G}_{1}-u_{1}\right) \cup$ $\left(\mathrm{G}_{2}-u_{2}\right)$. According to Lemma 2, $\mathrm{G}_{1}-u_{1} \succeq \mathrm{P}_{3} \cup$ [$\left.n_{1}-4\right] \mathrm{P}_{1}$, and if u_{2} lies on the cycle $\mathrm{C}^{(2)}$, then $\mathrm{G}_{2}-\mathrm{u}_{2} \succeq$ $\mathrm{P}_{5} \cup\left[n_{2}-6\right] \mathrm{P}_{1}$.

Suppose that u_{2} lies outside the cycle $\mathrm{C}^{(2)}$. According to Lemma 2, $\mathrm{G}_{2}-u_{2} \succeq \mathrm{C}_{l_{2}} \cup\left[n_{2}-1-l_{2}\right] \mathrm{P}_{1}$. It is easily seen that:

$$
b_{1}\left(\mathrm{C}_{l_{2}} \cup\left[n_{2}-1-l_{2}\right] \mathrm{P}_{1}\right)=l_{2}>4=b_{1}\left(\mathrm{P}_{5} \cup\left[n_{2}-6\right] \mathrm{P}_{1}\right),
$$

$b_{2}\left(\mathrm{C}_{l_{2}} \cup\left[n_{2}-1-l_{2}\right] \mathrm{P}_{1}\right)=\frac{l_{2}\left(l_{2}-3\right)}{2}>3=b_{2}\left(\mathrm{P}_{5} \cup\left[n_{2}-6\right] \mathrm{P}_{1}\right)$,
and $b_{k}\left(\mathrm{C}_{l_{2}} \cup\left[n_{2}-1-l_{2}\right] \mathrm{P}_{1}\right) \geq 0=b_{k}\left(\mathrm{P}_{5} \cup\left[n_{2}-6\right] \mathrm{P}_{1}\right)$ for all $k \geq 3$. Thus, we have $\mathrm{G}_{2}-u_{2} \succeq \mathrm{C}_{l_{2}} \cup\left[n_{2}-1-l_{2}\right] \mathrm{P}_{1} \succ$ $\mathrm{P}_{5} \cup\left[n_{2}-6\right] \mathrm{P}_{1}$. It follows that $\mathrm{G}_{2}-u_{2} \succeq \mathrm{P}_{5} \cup\left[n_{2}-6\right] \mathrm{P}_{1}$ whether u_{2} lies either on the cycle $\mathrm{C}^{(2)}$ or not. According to Lemma 5:

$$
\mathrm{G}-u_{1}-u_{2}=\left(\mathrm{G}_{1}-u_{1}\right) \cup\left(\mathrm{G}_{2}-u_{2}\right) \succeq \mathrm{P}_{3} \cup \mathrm{P}_{5} \cup[n-10] \mathrm{P}_{1} .
$$

If $n_{1}=4$ then since, $G \neq B_{4, n-4}^{4,6}$, we have $\mathrm{G}_{2}-u_{2}$ containing a subgraph formed by attaching a pendent vertex to the path P_{5} and so $b_{1}\left(\mathrm{G}-u_{1}-u_{2}\right)=b_{1}\left(\mathrm{G}_{1}-u_{1}\right)+$ $b_{1}\left(\mathrm{G}_{2}-u_{2}\right) \geq 2+5>6=b_{1}\left(\mathrm{P}_{3} \cup \mathrm{P}_{5} \cup[n-10] \mathrm{P}_{1}\right.$, implying:

$$
G-u_{1}-u_{2}=\left(\mathrm{G}_{1}-u_{1}\right) \cup\left(\mathrm{G}_{2}-u_{2}\right) \succ \mathrm{P}_{3} \cup \mathrm{P}_{5}[n-10] \mathrm{P}_{1} .
$$

According to Lemma 3, we have $\mathrm{G} \succeq \mathrm{B}_{n_{1}, n_{2}}^{4,6}$, and if $n_{1}=4$, then $\mathrm{G} \succ \mathrm{B}_{n_{1}, n_{2}}^{4,6}=\mathrm{B}_{4, n-4}^{4,6}$, and so the result follows. By direct calculation:

$$
\begin{aligned}
\phi\left(\mathrm{U}_{n_{1}}^{4} \cup \mathrm{U}_{n_{2}}^{6}, \lambda\right)= & \lambda^{n}-n \lambda^{n-2}+\left(n_{1} n_{2}+2 n_{2}+2 n-23\right) \lambda^{n-4}- \\
& \left(6 n_{1} n_{2}+10 n_{2}-15 n-18\right) \lambda^{n-6}+ \\
& \left(11 n_{1} n_{2}+16 n_{2}-48 n+120\right) \lambda^{n-8}- \\
& \left(6 n_{1} n_{2}+12 n_{2}-36 n+144\right) \lambda^{n-10} .
\end{aligned}
$$

If $n_{1}>4$ then $f\left(n_{1}, n_{2}\right)=a n_{1} n_{2}+b n_{2}>f(4, n-4)$ for $(a, b)=(1,2),(6,10),(11,16),(6,12)$ and thus from the characteristic polynomial above, we have $\mathrm{U}_{n_{1}}^{4} \cup \mathrm{U}_{n_{2}}^{6} \cup$ $\mathrm{U}_{4}^{4} \cup \mathrm{U}_{n-4}^{6}$. According to Lemma 3, we have $\mathrm{G} \succeq \mathrm{B}_{n_{1}, n_{2}}^{4,6} \succ$ $\mathrm{B}_{4, n-6}^{4,6}$. \square

Let G be an n-vertex connected bipartite graph with exactly two vertex-disjoint cycles, where $n \geq 9$. According to Theorems 6,7 and 8 , and using (1), we have:
(i) If $\mathrm{G} \neq \mathrm{B}_{4, n-4}^{4,4}$ then $\mathrm{E}(\mathrm{G})>\mathrm{E}\left(\mathrm{B}_{4, n-4}^{4,4}\right)$.
(ii) If both cycle lengths of G are congruent with 2 modulo 4 and $\mathrm{G} \neq \mathrm{B}_{6, n-6}^{6,6}$ where $n \geq 13$ then $\mathrm{E}(\mathrm{G})>$ $\mathrm{E}\left(\mathrm{B}_{6, n-6}^{6,6}\right)$
(iii) If one cycle length of G is congruent with 2 modulo 4 and $\mathrm{G} \neq \mathrm{B}_{4, n-4}^{4,6}$, where $n \geq 11$ then $\mathrm{E}(\mathrm{G})>\mathrm{E}\left(\mathrm{B}_{4, n-4}^{4,6}\right)$.
For the graphs $\mathrm{B}_{4, n-4}^{4,4}, \mathrm{~B}_{4, n-4}^{4,6}$ and $\mathrm{B}_{6, n-6}^{6,6}$ with $n \geq 12$, it may be easily checked by Lemmas 3 and 4 or by the characteristic polynomials that $\mathrm{E}\left(\mathrm{B}_{4, n-4}^{4,4}\right)<\mathrm{E}\left(\mathrm{B}_{4, n-4}^{4,6}\right)<$ $\mathrm{E}\left(\mathrm{B}_{6, n-6}^{6,6}\right)$.

Acknowledgements. - This work was supported by the National Natural Science Foundation of China (Grant No. 10671076) and the Ministry of Science, Education and Sports of Croatia (Grant No. 098-1770495-2919). We thank the referees for extensive and helpful comments.

REFERENCES

1. R. J. Wilson, Introduction to Graph Theory, Oliver \& Boyd, Edinburgh, 1972, p. 9.
2. N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, FL, 1992, Chapter 5.
3. D. Janežič, A. Miličević, S. Nikolić, and N. Trinajstić, Gra-ph-Theoretical Matrices in Chemistry, University of Kragujevac, Kragujevac, 2007, Chapter 2.
4. D. Cvetković, M. Doob, and H. Sachs, Spectra of Graphs Theory and Application, $3^{\text {rd }}$ ed., Johann Ambrosius Barth, Heidelberg, 1995.
5. Y. Hou, J. Math. Chem. 29 (2001) 163-168.
6. A. Chen, A. Chang, and W. C. Shiu, MATCH Commun. Math. Comput. Chem. 55 (2006) 95-102.
7. Y. Hou, Lin. Multilin. Algebra 49 (2002) 347-354.
8. I. Gutman, B. Furtula, and H. Hua, MATCH Commun. Math. Comput. Chem. 58 (2007) 85-92.
9. I. Gutman, Ber. Math.-Stat. Sket. Forschungszentrum Graz 103 (1978) 1-22.
10. I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, 1986, pp. 139-139.
11. A. Graovac and N. Trinajstić, Croat. Chem. Acta 59 (1975) 95-104.
12. N. Trinajstić, in: Chemical Graph Theory - Introduction and Fundamentals, Gordon and Breach, New York, 1991, pp. 235-279.
13. A. Graovac, I. Gutman, and N. Trinajstić, Topological Approach to the Chemistry of Conjugated Molecules, Sprin-ger-Verlag, Berlin, 1977.
14. N. Trinajstić, Z. Mihalić, and A. Graovac, in: Graph-Theoretical Approaches to Chemical Reactivity, Kluwer, Dordrecht, 1994, pp. 37-72.
15. S. Nikolić, A. Miličević, and N. Trinajstić, Croat. Chem. Acta 79 (2006) 155-159.
16. N. Trinajstić, in: G. A. Segal (Ed.), Modern Theoretical Chemistry. 7. Semiempirical Methods of Electronic Structure Calculations. Part A: Techniques, Plenum Press, New York, 1977, pp. 1-28.
17. C. A. Coulson, Proc. Cambridge Phil. Soc. 36 (1940) 201-206.
18. I. Gutman, Theoret. Chim. Acta 45 (1977) 79-87.
19. F. Zhang and H. Li, Discr. Appl. Math. 92 (1999) 71-84.
20. H. Li, J. Math. Chem. 25 (1999) 145-169.
21. J. Zhang and B. Zhou, J. Math. Chem. 37 (2005) 423-431.
22. J. Zhang and B. Zhou, Appl. Math. J. Chinese Univ. Ser. A 20 (2005) 233-238.
23. W. Lin, X. Guo, and H. Li, MATCH Commun. Math. Comput. Chem. 54 (2005) 363-378.
24. J. Rada, Discr. Appl. Math. 92 (2005) 437-443.
25. Y. Yang and B. Zhou, MATCH Commun. Math. Comput. Chem. 59 (2008) 321-342.
26. Z. Liu and B. Zhou, MATCH Commun. Math. Comput. Chem. 59 (2008) 381-396.

SAŽETAK

Minimalne spektralne sume bipartitnih grafova stočno dva prstena razmaknuta jednim bridom

Fuyi Wei, Bo Zhou i Nenad Trinajstić

Spektralna suma grafa definirana kao zbroj apsolutnih vrijednosti svih elemenata u spektru grafa. Pronađeni su grafovi s minimalnim spektralnim sumama u klasi bipartitnih grafova s točno dva prstena razmaknuta jednim bridom gdje su veličine prstenova sukladno s 2 modulo 4 i u klasi bipartitnih grafova s točno dva prstena razmaknuta jednim bridom gdje je veličina jednoga prstena sukladana s 2 modulo 4 .

[^0]: * Author to whom correspondence should be addressed. (E-mail: zhoubo@scnu.edu.cn)

