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another class. Now, for a given sufficiently gene-
ral algorithm, neither it is practically possible to
characterize the class of problems to which it is
fitted, nor we can blindly refer to results obtained
in a other area. And so, the only way to devise an
effective algorithm is to exploit the properties of
the specific class of problems under consideration.

Obviously, the most useful property is convexi-
ty, which ensures the uniqueness of the minimum,
thus allowing the use of local, much more effec-
tive, optimization techniques. Unfortunately, as it
is well known, synthesis problems are, in general,
not convex. However, there are many problems,
of significant practical interest, which are convex
or partially convex. In these cases very effective
techniques can and have been recently devised
[18—23].

In the light of above considerations, this paper
has a twofold aim. The first is to review these last
mentioned results under a general framework, in
order to illustrate when and how convexity can be
exploited. The second is to show that in these
cases the use of global optimization algorithms is
not only a waste of computational resources, but
can, indeed, prevent the attainment of the solution.

In Section 2, the array synthesis problem is
briefly reviewed under a general and unitary set-
ting, in order to put in evidence the origin and the
relevance of the trapping problem, the role of con-

1 INTRODUCTION AND RATIONALE

In the last years, global stochastic optimization
techniques, as Simulated Annealing, Genetic Algo-
rithms and Particle Swarm Optimization, have
been widely proposed and adopted as a flexible
and convenient way to solve antenna, and in par-
ticular array, synthesis problems [1—15]. The dif-
fused enthusiasm for these »physically inspired«
optimization techniques has induced to neglect the
fact that all global optimization algorithms are li-
mited in their performances by the computational
cost required to get, within a given precision, the
solution. This cost grows very rapidly with the
number of unknowns [16], i. e., with the antenna
size. As a consequence, in large scale problems,
due to the necessity of stopping the search after a
given amount of flops, it is likely that only sub-
-optimal solutions will be generally achieved,
which can be significantly worse than the actual
optimal ones. Moreover, not only general global
algorithms are computationally heavy: they are
also all essentially equivalent, as implied by the
so called No Free Lunch Theorems [17]. Loosely
speaking, these theorems state that a truly general-
-purpose universal optimization strategy does not
exist: on average the performances of any two op-
timization algorithms are the same across all pos-
sible optimization problems. Hence, for any algo-
rithm, an elevated performance over one class of
problems is exactly paid for in performance over

Many efforts have been done in recent years to solve array synthesis problems in a way as effective as
possible. Stochastic optimization schemes have been widely applied to this end, notwithstanding their per-
formance rapidly lowers as the size of the problem increases. This trend has led to neglect mathematical
properties of the problem, as convexity or partial convexity, which may be very useful to devise really effec-
tive synthesis procedures. In this paper we show that in a number of array synthesis problems of significant
practical interest global optimisation is not required at all, or can be limited to a subset of the unknowns.
This is by no means an academic point, as we show that a proper exploitation of the convexity allows to
achieve, in a much shorter time, design solutions significantly better than those obtained by using general
purpose global optimization techniques.
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Fig. 1 Mathematical model of an antenna system
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Concerning the design specifications, they can
be subdivided in two classes:
— sharp constraints (e.g., array and element sizes,

excitation phase and/or amplitude quantization,
excitation dynamics, minimum gain, maximum
side-lobes level,…) which must be satisfied;

— quality criteria or loose-constants, (e.g., Q fac-
tor, efficiency, etc.) which enforce the solution
to enjoy as much as possible some appealing
feature.

Sharp constraints specify in the excitation, pa-
rameter and radiated field spaces corresponding
subsets Xc, Pc and Yc, respectively, to which the
solution must belong. Quality criteria define cor-
responding functionals in one or more of the spa-
ces, which the solution should minimize (or maxi-
mize). And so, to solve the synthesis problems
amounts to find a point (x,p) ε Xc xPc such that its
image S(x, p) belongs to Yc, i.e., a point of the set
(Xc × Yc) ∩ S−1(Yc), or, equivalently, of S(Xc × Pc)
∩ Yc = Ys ∩ Yc. If a solution does exist, i.e., if
the intersection is not void, quality criteria could
be used to pick up a »best« solution.

And so, any synthesis problem is essentially an
intersection finding one, which can be always re-
duced [24] to that of minimizing over Xc xPc the
functional φ(x, p) = d2(S (x,p),Yc) wherein d2(y,Yc)
is the squared distance between y and the set Yc,
i.e.,

(1)

2⋅2 denoting the norm in the output space. Accor-
dingly, solving an array antenna synthesis problem
amounts to find a minimum of the functional (1),
i.e., to find a point such that the distance of its
image from the set Yc attains its (absolute) mini-
mum. Therefore, any synthesis algorithm is, in its
essence, a minimization algorithm, providing a se-
quence of points (xn,pn) = zn ∈ Xc × Pc such that
the corresponding sequence of squared distances
d 2(S (zn),Yc) is not increasing and converging to
the absolute infimum of the functional (1). Note
that if this minimum is not zero, strictly speaking
the synthesis problem does not have a solution.
However, the corresponding minimum point is, in
the chosen norm, the best choice we can adopt,
unless some constraint is relaxed.

In order to be practically significant, the solu-
tion must not be too sensitive, otherwise small, un-
avoidable, relative errors in its realization could
induce large relative errors in the corresponding
radiated field, quite surely moving it outside Yc.

d y Y y yc y Y c
c c

2 2( , ) inf ,= −
∈

vexity and the necessity of reducing as much as
possible the size of the problem to which global
optimizers must be applied. Then, we consider a
class of array synthesis problems which are con-
vex, hence do not require global optimization at
all (Section 3), or partially convex, thus allowing
to adopt an hybrid approach, reducing the need for
global optimization (Section 4). In Section 5 the
capabilities and performances of this hybrid ap-
proach are demonstrated with reference to prob-
lems of practical interest. It is shown that the
achievable results outperform those reported in the
recent literature. Conclusions follows.

2 THE ARRAY ANTENNA SYNTHESIS 
PROBLEM AND ITS DIFFICULTIES

In its general formulation, the array synthesis
problem can be stated as follows:
Given a set of design specifications concerning:
1) the radiated pattern (or patterns, in the case of

scanning or reconfigurable beam antennas);
2) the radiating elements and the array structure;
determine:
— the array structure and excitation (or excitati-

ons, in the case of scanning or reconfigurable
beam antennas);

— the feeding network required to provide such
excitation;

so that the design requirements are fulfilled.

Leaving aside the beam forming network, the
antenna system can be schematically represented
as shown in Figure 1. The inputs x and p are the
array excitations and a suitable set of parameters
specifying its geometrical and electromagnetic pro-
perties, respectively, and y is the corresponding ra-
diated field. From the mathematical viewpoint, x,
p and y can be assumed to belong to Banach or
Hilbert spaces, say X, P and Y, finite (X and P) or
infinite (Y) dimensional [24]. The system is repre-
sented by a (frequency dependent) continuous ope-
rator, S, which is linear in x, but usually not li-
near in p.
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According to (1), solving the synthesis problem
amounts to find a point of the set Ys nearest to Yc.
Now in most practical instances, both sets turn out
to be non-convex. This implies that, apart from the
points of absolute minimum, there can be, and usu-
ally there are, also points of relative minimum of
the functional (1). As a consequence, the minimi-
zation algorithm can be trapped in a local mini-
mum, and we get a false solution. Because we are
not able to distinguish between absolute and rela-
tive minima and the number of secondary minima
increases rapidly with the dimension of problem
(i.e., the antenna size), the trapping problem is a
crucial one, which must be explicitly faced for de-
veloping effective synthesis techniques. This is the
fundamental reason which leads to the adoption of
global minimization algorithms. However, as has
been stressed in the Introduction, they in practice
can not guarantee the attainment of the optimum,
unless the size of the problem is sufficiently small.
Accordingly, full exploitation of any property, such
as convexity or partial convexity, which allows to
avoid or reduce as much as possible the need for
global algorithms appears mandatory in order to
develop effective synthesis techniques for large
size problems.

3 A CLASS OF PROBLEM NOT REQUIRING 
GLOBAL OPTIMIZATIONS

In this Section we consider a class of convex
synthesis problems, which, accordingly, does not
require global optimization [18, 19, 21].

For a fixed geometry array, let us consider the
problem of choosing the complex excitation coef-
ficients in such a way to maximize the field in a
given direction, while enforcing an arbitrary upper
level outside a given main lobe region.

Let us refer, by the sake of simplicity, to the
case wherein one can introduce an array factor
AF(θ,ϕ). Then, by choosing the reference phase in
such a way that AF(θ0,ϕ0) = π in the target direc-
tion (θ0,ϕ0), the problem can be formulated as
[18]:

(3)

subject to

(4)

(5)
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To avoid a large sensitiveness, the problem must
be well conditioned, i.e., for a given relative varia-
tion of (xn,pn) ∈ Xc × Pc, a comparable relative
variation of the radiated field should correspond.

To face this issue, we can exploit the concept
of degrees of freedom of the radiated field. As
shown in [25, 26], due to the properties of the ra-
diation operator, the fields radiated (or scattered)
by any bounded source can be uniformly approxi-
mated, by elements of a finite dimensional linear
space with arbitrarily small error. Moreover, for
large sources, the behaviour of the approximation
error as a function of the number of dimensions is
step-like, and goes very rapidly to zero as the num-
ber of dimension exceeds a critical value, N0 say.
This means that, for any given precision, the set
of all radiated fields can be embedded in a finite
dimensional linear space, with (complex) dimen-
sion slightly larger than N0. A tight upper bound
for N0 can be obtained, and it turns out that [26]

(2)

wherein Σ is the surface of the source convex hull,
and λ the wavelength. Note that expression (2)
refers to the case of a domain fully encircling the
sources. However, analogous results can be ob-
tained in the case of truncated domain [26].

From above results, we get immediately that if
the (complex) dimension of the input space X × P
significantly exceeds N0, the problem will be cer-
tainly ill conditioned, unless the constraints set
Xc × Pc has a sufficiently small-diameter. As a mat-
ter of fact, in such a case the operator S would
have a quasi null-space, which obviously implies
ill-conditioning. On the other hand, if the dimen-
sion of X × P is significantly lower than N0, we
will not fully exploit the potentiality of a source
with the given size and shape.

In any practical instance the interspacing bet-
ween the array elements is at least equal to λ/2.
Accordingly, the synthesis problem can be safely
assumed well conditioned in the case of a fixed
geometry array. However, in the general case whe-
rein also the elements positions can be varied, the
problem can become ill conditioned. This is by no
means a drawback, as the extra degrees of free-
dom can be exploited, for instance, to reduce the
number of the array elements, without significant-
ly affecting the array performance.

Let us now turn to the main difficulty of the
array synthesis problem.
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≅
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Fig. 2 Synthesized array factor of a 40-elements λ/2 spaced
linear array optimized by using the LP approach. The achie-

ved current distribution is also reported

Fig. 3 Synthesized array factor of a 100-elements λ/2 spaced
linear array optimized by using the LP. The excitations distri-

bution is also reported
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The optimal pattern and the synthesized weights
are reported in Figure 3. It must be stressed that
the achieved maximum is 10 dB higher than that
obtained in [13], which dramatically shows that in
this case, due to the relatively large number of un-
knowns, the optimum solution could not be reached
by using global optimization based schemes.

4 A CLASS OF PROBLEMS WHEREIN 
PARTIAL CONVEXITY CAN BE EXPLOITED

When the geometry of the array is not fixed in
advance, so that also the locations the radiating
elements must be determined, the above synthesis

wherein I1,…, IN are the complex excitations and
{θ1,ϕ1},..,{θM,ϕM}, is a sufficiently fine discretiza-
tion of the sidelobe region. Then, as (3) is linear
in terms of the unknowns, and constraints (4), (5)
define convex sets, the overall problem is reduced
to the minimization of a linear function on a con-
vex set. This is a Convex Programming (CP) pro-
blem, which admits a single minimum, so that glo-
bal optimization is not required. The same state-
ment stays valid if an array factor can not be de-
fined (as in the case of conformal arrays), if mu-
tual coupling is taken into account, as well as if
other constraints as:

— near field constraints,
— non super-directivity constraints,
— constraints on excitations variations,

or any combination of them are added. Also, under
the same kind of constraints, the same general con-
clusions also hold true in case one wants to opti-
mize directivity (which is readily achieved by mini-
mizing the radiated power for a given maximum)
or designing an optimal difference pattern [21].
Notably, in the case of centro-symmetric (linear or
planar) arrays the overall focusing (or difference
pattern) problem reduces to a simpler Linear Pro-
gramming (LP) one [19, 21], which can be solved
by using simple and effective local optimization
routines (as LINPROG in MATLAB). As a conse-
quence of all the above, solving optimal focusing
problems using global optimization procedures is
questionable, as local approaches will find better
solutions in a shorter time.

As an example, let us first consider the prob-
lem considered in [11], i. e., the synthesis of a λ/2
spaced 40 elements linear array in such a way to
maximize the radiated field in the broadside direc-
tion, while enforcing a desired mask for the side-
lobes, as reported in Figure 2 (a-line). Due to the
centro-symmetric geometry of the considered
array, the optimum radiation pattern is real [19]
and the synthesis problem reduces to a LP one.
The synthesized radiation pattern and the corre-
sponding currents distribution are reported in Fi-
gure 2. The result is about 1 dB better than that
achieved in [11] by means of time-consuming glo-
bal optimizations.

As a second example, let us refer to the pro-
blem considered in [13], wherein an hybrid sto-
chastic scheme has been adopted for optimizing
the weights of a λ/2-spaced 100 elements linear
array in order to best meet a specified far-field re-
quirement, with a 60dB notch on one side (see 
a-line, Fig. 3). Also in this case, the problem can
solved by means of a simple LP based procedure.
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On the other side, the proposed approach also
has a draw-back. In fact, as it requires the solu-
tion of an auxiliary CP problem, the evaluation of
the objective function f (Y) is usually by far more
cumbersome than the evaluation of F(X,Y), which
has also to be taken into account. This circum-
stance affects the choice of the global optimiza-
tion one has to adopt. In particular, Genetic Algo-
rithms [3], which require computation of the ob-
jective function for each element of the population
(at each generation), appear less appealing than
Simulated Annealing [1].

5 APPLICATIONS OF THE HYBRID 
APPROACH TO SOME ARRAY 
ANTENNA SYNTHESIS PROBLEMS

In order to illustrate by means of examples the
above considered approach, in this Section we pre-
sent some results achieved in the synthesis of pen-
cil beams and difference patterns by means of
sparse linear and planar arrays. As a further con-
tribution, very recent results in the synthesis of ra-
diating systems capable to simultaneously produce
»optimal sum and difference patterns« are also re-
ported.

5.1 Synthesis of sparse and weighted arrays

In order to exemplify the approach, let us first
discuss the problem of determining the excitations
and locations of a linear array in such a way to
maximize the field in a given direction while keep-
ing the sidelobes below a given arbitrary mask
[18, 19, 20, 23]. In such a case, by defining X =
[I1,..., IN], where I1,..., IN are the (complex) exci-
tations of the array, and Y = [d1,...,dN], where
d1,...,dN are the unknown locations of the elements
of the array, it can be easily shown that the syn-
thesis problem can be reduced to a CP for any
fixed set of locations, so that the overall formula-
tion proposed above can be applied. As an exam-
ple, let us herein consider the problem of deter-
mining the locations and weights of a sparse li-
near array with 25 elements and a length of 50 λ,
such to maximize the radiated field in the broad-
side direction, while enforcing a desired mask for
the sidelobes, as described in [5, 6]. By adopting
the hybrid approach, fixing the same array dimen-
sion and the same beam-width considered in [5,
6], we achieve the result reported in Figure 4 
(a-line), to be compared with the best result re-
ported in [5, 6] (b-line), which has a SSL of  4 B
higher. The synthesized locations and weights are
reported in Figure 5. Note that all the antennas

problems are no more convex. However, they are
still convex with respect to the excitations for each
given set of tentative locations. Then, it makes
sense to consider the following class of problems.
Let us denote by X = [x1,...,xN] a subset of varia-
bles to be determined, and by Y = [ y1,...yM] the
complementary one. Let us suppose that the syn-
thesis problem can be formulated as [20, 22]:

(6.1)

(6.2)

Finally, let us suppose that both the objective
function F and the constraint sets determined by
the functions G1,…,GP are convex with respect to
X for each value of Y. Then, instead of using glo-
bal optimization on all variables, let us consider a
hybrid procedure, trying to take advantage from
the convexity of the problem with respect to X.
To this end, let us define the auxiliary function
f(Y), defined as

(7)

wherein, for each fixed Y, CY is the convex set
defined by the constraints (6.2). Note that f (Y) is
a function of the second subset of variables. While
not being generally available in explicit form, the
function f (Y) can be computed as the solution of
a CP problem. Its solution will provide not only
the (unique) minimum value of F(X,Y) for the
given value of Y, but also a value of X where such
a minimum is achieved [Note the minimum can be
achieved either at a single point or on a convex
subset of CY]. Then, the overall problem can be
conveniently formulated as the global optimization
of the function f (Y). In this way the number of
unknowns in the global optimization process is re-
duced with respect to the simpler and largely adop-
ted solution of performing the global optimization
simultaneously on all variables. This latter would
involve N + M instead of M variables. As a conse-
quence, global optimization tools have to deal with
a reduced number of unknowns, thus saving com-
putational times and/or finding better solutions. As
expected, much better performances have been ve-
rified when N is significantly smaller than the
overall number of unknowns and in all those cases
wherein this number is very large [20, 22, 23].
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Figure 4 Synthesized array factors for a sparse linear array
with 25 isotropic elements. a-line: 50 λ array, [10]. b-line:
50 λ array, hybrid approach. c-line: 26 λ array, hybrid ap-

proach

Fig. 5 Synthesized weights and locations by using the hybrid
approach for the 50 λ array of Figure 4

O. M. Bucci, M. D’Urso, T. IserniaSome Facts and Challenges...

AUTOMATIKA 49(2008) 1—2, 13—2018

rature. Also in this more complex case, we get so-
lutions better than the ones achieved when the
same of global optimizer acts on all the involved
unknowns, as in [4, 7]. In particular, with refe-
rence to a sparse planar array with elements not
uniformly located on a rectangle of 4 λ × 3λ [7],
by using only 29 elements the hybrid method is
able to achieve a SLL = −19 dB, while the best
results reported in [7] achieves a SLL = −16.5 dB
with 41 elements.

5.2 Optimal compromise amongst sum and 
difference pattern problems problem

In radar applications, both sum and difference
patterns are simultaneously required. In order to
avoid a full duplication of the feeding network
(one network for the pencil beam and another one
for the difference pattern), it has been suggested
to design the feeding network in such a way to op-
timize the sum pattern, while subdividing the array
into sub-arrays to get the difference pattern. A pro-
per clustering of the N array elements into sub-ar-
rays, and a proper choice of the weight of each
sub-array, allow to get a »good« difference pattern,
with the maximum possible slope and subject to
the same upper bounds on the sidelobes [10, 14,
15, 23]. This kind of synthesis problems can be
dealt with by means of the hybrid approach pro-
posed above. In this case, X = [g1,...,gR], wherein
R is the number of adopted sub-arrays, and g1,...,gR
their weights. Moreover, Y = [h1,...,hN] is an array
of integer unknowns, with hi ∈ [0, R], wherein hi =
= k means that the i-th element of the array be-
longs to the k-th sub-array, whereas hi = 0 means
that the i-th element does not belong to any clus-
ter.

Addressing the interested reader to [22, 23] for
more details, we present in the following a com-
parison with a very recent result, reported in [15],
relative to a linear array of 20 elements and 8 sub-
-arrays. The result achieved with the hybrid ap-
proach choosing the same beam-width (as estima-
ted from the Figure 3 of [15]), is reported in Figu-
re 6. We get a SLL of −43 dB, which is 1 dB lower
than the result of [15]. The synthesized clustering
and weights are

Y = [2 8 5 3 6 7 7 4 5 1 1 5 4 7 7 6 3 5 8 2]
and
X = [2.90 0.78 10.75 11.45 7.81 13.05 13.74 4.56],
respectively. On the other side, it must be noted
that the approach of [15], thanks to a clever ex-
ploration of the unknowns space, is more effective
from the computational time and memory require-

with non negligible weights are located in a re-
duced interval of about 26 λ. This circumstance
suggests the possibility of reducing the overall di-
mension of the synthesized array from 50 λ to
26 λ. By still adopting the hybrid approach, but
without constraining the array length to 50 λ, we
achieve the result shown in Figure 4 (c-line), with
a further decrease of SLL of more than 1 dB. As
it can be seen, it is possible to reduce the final
SLL, simultaneously reducing the overall dimen-
sion of the array, preserving the same beam-width
of the original pattern.

As a second example, let us consider the syn-
thesis of sum patterns by means of sparse planar
arrays. In this case the set of unknowns Y contain
a couple of real numbers for each element of the
array, as both coordinates of the plane have to be
determined. The set X = [I1,.., IN] still contains the
elements weights. In order to keep the paper in its
length, the results achieved by using the hybrid
approach mentioned above will not be reported in
the following. The interesting reader is addressed
to [22] for the analysis and discussion of the
achieved results and the comparison with the lite-



Fig. 6 Synthesized difference patterns for N = 20 and R = 8
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ments point of view. It is also worth to note that
the best performance one can achieve by indepen-
dently feeding all the elements according to the
optimal synthesis procedure described in [27] is a
SLL of −45dB.

6 CONCLUSIONS AND CHALLENGES

The above discussion and examples clearly
show that a proper exploitation of the characteri-
stics of the different synthesis problems allows
(much) improved design solutions with respect to
»blind« approaches simply relying on global opti-
mization procedures. As consequence of a careful
discussion of the need, role and way to exploit
global optimization, a different perspective has
been presented here, which can be summarized in
a sentence:

exploit carefully all the mathematical proper-
ties of the problem which allows to reduce as
much as possible the need of using global opti-
mizers.

Of course, a number of challenging questions
arise, as: 
— are there other problems belonging to the two

classes discussed above?
— Up to what extent, and how, can the above re-

sults be extended to antennas other than arrays?
— Is there any clever way to deal with more cum-

bersome synthesis problems, such as phase only
or sparse array synthesis with constrained, in
particular identical, excitations?

In the light of the very good results which have
been achieved, these points certainly deserve a
deep investigation.



Neke činjenice i izazovi u problemu sinteze antenskih nizova. Zadnjih godina učinjeni su mnogi napori
kako bi se riješio problem sinteze antenskih nizova na najefikasniji mogući način. Često su primjenjivane sto-
hastičke optimizacijske sheme premda performance metode drastično opadaju kako raste veličina problema.
Ovaj trend je doveo do potpunog negiranja matematičkih svojstava promatranog problema, jer je negirano
svojstvo konveksnosti odnosno djelomične konveksnosti koje se može iskoristiti za razvoj izrazito efikasne
metode sinteze. U radu ćemo pokazati da mnogi problemi sinteze antenskih nizova od značajnog praktičnog
interesa uopće ne zahtijevaju globalnu optimizacijsku metodu, ili se globalna optimizacijska metoda može
primijeniti na podskup varijabli-nepoznanica. Ta činjenica je mnogo šira od akademske diskusije jer ispravno
korištenje svojstva konveksnosti omogućuje dizajn antenskog niza, postignut u puno kraće vrijeme, sa značaj-
no boljim svojstvima u odnosu na dizajn postignut globalnom optimizacijskom metodom. 

Klju~ne rije~i: konveksna optimizacija, sinteza antenskog niza

AUTHORS’ ADDRESSES

Ovidio Mario Bucci
DIET, Università degli Studi di Napoli, Federico II
Viale Claudio 21, I-80125, Napoli, Italy
E-mail: bucci@unina.it
IREA-CNR, Istituto per il Rilevamento Elettromagnetico
dell’Ambiente
Via Diocleziano 321, I-80125, Napoli, Italy
E-mail: bucci.om@irea.cnr.it.

Partition Method. Electronic Letters, vol. 44, 2, pp.
75—76, January 2008.

[16] A. S. Nemirovsky, D. B. Yudin, Problem Complexity
and Method Efficiency in Optimization. Wiley,
Interscience Series in Discrete Mathematics, 1983.

[17] D. H. Wolpert, W. G. Macready, No Free Lunch
Theorems for Optimization. IEEE Trans. on Evolu-
tionary Computation, vol. 1, pp. 67—82, 1997.

[18] T. Isernia, P. Di Iorio, F. Soldovieri, An Effective
Approach for the Optimal Focusing of Array
Fields Subject to Arbitrary Upper Bounds. IEEE
Trans. Ant. Propag, vol. 50, pp. 1837—1847, 2000.

[19] O. M. Bucci, L. Caccavale, T. Isernia, Optimal Fo-
cusing of Uniformly Spaced Arrays Subject to Ar-
bitrary Upper Bounds in Non-target Directions.
IEEE Trans. Ant. Propag, vol. 50, pp. 1549—1554,
2002.

[20] T. Isernia, F. J. Ares Pena, O. M. Bucci, M. D’Urso, J.
F. Gomez, J. Rodriguez, A hybrid Approach for the
Optimal Synthesis of Pencil Beams Through Array
Antennas. IEEE Trans. Ant. Propag., vol. 52, pp.
2912—2918, 2004.

[21] O. M. Bucci, M. D’Urso, T. Isernia, Optimal Synthe-
sis of Difference Patterns Subject to Arbitrary
Sidelobe Bounds by Using Arbitrary Array Anten-
nas. IEE Proc. Mic Ant. Propag., vol. 152, pp.129—
137, 2005.

[22] M. D’Urso, T. Isernia, Solving Some Array Synthesis
Problems by Means of an Effective Hybrid Appro-
ach. IEEE Trans. Ant. Propag., vol. 55, pp. 750—759
March 2007.

[23] M. D’Urso, T. Isernia, F. Meliadò, An Effective Hy-
brid Approach for the Optimal Synthesis of Mono-
pulse Antennas. IEEE Trans. Ant. Propag., vol. 55,
pp. 1059—1066, April 2007.

[24] O. M. Bucci, G. D’Elia, G. Mazzarella, G. Panariello,
Antenna Pattern Synthesis: A New General Ap-
proach. Proceedings of IEEE, vol. 82, pp. 358—371,
1994.

[25] O. M. Bucci, G. Franceschetti, On the Degrees of
Freedom of Scattered Fields. IEEE Trans. Antennas
Propagat., vol. AP-37, pp. 918—926, 1989.

[26] O. M. Bucci, C. Gennarelli, C. Savarese, Represen-
tation of Electromagnetic Fields over Arbitrary
Surfaces by a Finite and Nonredundant Number
of Samples. IEEE Trans. Antennas Propagat., vol. 46,
pp. 351—359, 1998.

[27] D. A. Mc Namara, Direct Synthesis of Optimum Dif-
ference Patterns for Discrete Linear Array Using
Zolotarev Distribution. IEE Proc. H, vol. 140, no. 6,
pp. 445—450, Dec. 1993.

20 AUTOMATIKA 49(2008) 1—2, 13—20

Some Facts and Challenges... O. M. Bucci, M. D’Urso, T. Isernia

Michele D’Urso
DIET, Università degli Studi di Napoli, Federico II
Viale Claudio 21, I-80125, Napoli, Italy
DIMET, Università Mediterranea di Reggio Calabria
Via Graziella, Loc. Feo di Vito,
I-89060, Reggio Calabria (Italy)
E-mail: micdurso@unina.it.

Tommaso Isernia
DIMET, Università Mediterranea di Reggio Calabria, 
Via Graziella, Loc. Feo di Vito,
I-89060, Reggio Calabria (Italy)
E-mail: tommaso.isernia@unirc.it.

Received: 2008-4-30


