
Rui Miguel Silva CoutoPattern Based Software DevelopmentUniversidade do MinhoEscola de Engenhariajulho de 2017Rui Miguel Silva CoutoPattern Based Software DevelopmentMinho | 2017 U

julho de 2017

Tese de Doutoramento em InformáticaTrabalho realizado sob a orientação do Professor António Nestor Ribeiroe doProfessor José Francisco Creissac Campos

Rui Miguel Silva CoutoPattern Based Software Development
Universidade do MinhoEscola de Engenharia

Acknowledgments

This work would not have been possible without the collaboration of many people, to whom I

owe a lot.

First, and foremost I thank my supervisors António Nestor Ribeiro e José Creissac Campos,

not only for providing me this opportunity, their support and encouragement, but also for their

friendship. They provided guidance throughout this project, with numerous suggestions, revi-

sions, and always had the availability to help me.

To my wife, Isabel, I thank with all my heart for always being there for me (even when I was

not!), for all the love, patience and forgiveness for my absence. She always encouraged me to

keep going even in the hardest moments.

To my family I thank for everything that I will never be able to give back. In particular, to my

parents, my brother, my sister in law, my nephews I thank for their love and care, and always

remembering me that they were there for me. They always supported me in this project, and

forgave me even when I was not present for them.

To all my colleagues I thank for the help, encouragement and funny moments they provided. My

special thank to André, Bernardo, Cláudio, Georges, Hugo, Jorge, Marco, Miguel, Paulo, Rui,

and I wish them the best success.

Finally, I thank everyone not mentioned here that contributed directly or indirectly to this

project.

This project was supported by the University of Minho and INESCTEC/HASLab.

v

vi

Abstract

Several types of approaches support the software development process. Special interest should be

paid to model driven development methodologies, of which Model Driven Architecture (MDA)

is a main example. The usage of software models in these methodologies improves the quality of

the produced solutions. On the one hand, models are formal artifacts to represent the software

to develop. On the other hand, models represented in computable formats are amenable to the

application of systematic transformation techniques, in order to produce other models or source

code as output.

The architectural models used in the MDA are derived from requirement specifications, and are

achieved through manual processes. The negative effects of manual transformation steps are well

known, since they are susceptible to interpretation errors and subjectivity. Errors resulting from

this process are propagated through all of the development process, and reflected in the produced

solutions. Since requirement models specify the system to be developed, naturally, they should

not be disconnected from the development process itself.

Formalizing requirement specifications in computable formats would enable their operationaliza-

tion. Such would provide the possibility to analyze and manipulate them, and also to perform

a requirement patterns inference process. Requirement patterns represent well known solutions

for recurring problems, and their nature provides architectural hints. If software patterns can be

derived from the requirement patterns, then through the composition of the resulting software

patterns, architectural models can be achieved. As a result, requirements models will be bet-

ter integrated into the MDA chain, thus extending the advantages of the MDA to requirement

models, providing a software development process which starts from requirements and through

rigorous transformations results in software solutions.

This work presents an approach that aims to provide such an integration of requirements models

into the MDA. The approach starts with the formalization of software requirements in a controlled

natural language. The requirements are then transformed into an intermediary representation

(namely, an ontology), with support for information extraction. Such makes it possible to perform

requirement pattern inference, in order to understand, at a higher level of abstraction, the features

required in the software solution. Associating the requirement patterns with software patterns,

makes it possible to instantiate and compose such patterns, in order to produce architectural

vii

viii

artifacts as output. The presented approach is supported by a tool, designed to support the

several steps of the approach. Furthermore, the tool provides the required automation level to

produce the architectural models. Two validation studies and a case study in the eCommerce

domain are also presented, in order to illustrate the viability of both the tool and the approach.

Resumo

Diferentes tipos de abordagens suportam o processo de desenvolvimento de software. Especial

interesse deve ser dado às metodologias baseadas em modelos, das quais a Model Driven Ar-

chitecture (MDA) é um exemplo relevante. O uso de modelos de software nestas metodologias

melhora a qualidade das soluções obtidas. Por um lado, os modelos são artefactos formais para

representar o software a ser desenvolvido. Por outro lado, os modelos representados em formatos

computáveis podem ser manipulados utilizando técnicas de transformação sistemáticas, de modo

a obter como resultado outros modelos, ou código fonte.

Os modelos arquitecturais usados na MDA derivam das especificações de requisitos, sendo obtidos

através de processos manuais. O impacto negativo da aplicação de transformações manuais é bem

conhecido, uma vez que estas são suscept́ıveis a erros de interpretação e subjectividade. Os erros

resultantes deste process são propagados através do processo de desenvolvimento, e reflectem-

se nas soluções produzidas. Uma vez que os modelos de requisitos especificam os sistemas a

desenvolver, naturalmente, estes não devem estar desligados do processo de desenvolvimento.

A formalização dos modelos de requisitos em formatos computáveis possibilitaria a sua opera-

cionalização. Tal forneceria a capacidade de analisar e manipulçar os modelos, e também su-

portaria a inferncia de padrões de requisitos. Padrões de requisitos representam soluções bem

conhecidas, para problemas recorrentes, e a sua natureza fornece indicações arquitecturais. Se

for posśıvel obter padrões de software, através de padrões de requisitos, então através de um

processo de composição de padrões de software, é posśıvel obter modelos arquitecturais. Como

resultado, os padrões de requisitos podem ser integrados na cadeia MDA, estendendo assim as

vantagens desse processo aos modelos de requisitos, e obtendo um processo de desenvolvimento

que inicia nos requisitos, e fornece transformações rigorosas que levam a soluções de software.

Este trabalho apresenta uma abordagem que tem como objectivo fornecer tal integração de

modelos de requisitos, na MDA. A abordagem inicia com a formalização de requisitos de software

numa linguagem natural controlada. Os requisitos são então transformados numa representação

intermédia (nomeadamente, uma ontologia), com suporte para extração de informação. Tal

fornece a possibilidade de efectuar inferência de padrões de requisitos, de modo a perceber, a um

alto ńıvel de abstracçção, as funcionalidades necessárias nas soluções de software. Associando

os padrões de requisitos com padrões de software, é posśıvel instanciar e compor esses padrões,

ix

x

de modo a obter artefactos arquitecturais. A abordagem apresentada é suportada por uma

ferramenta, desenhada para suportar os diferentes passos da abordagem. Para além disso, a

ferramenta fornece a automação necessária para produzir os modelos arquitecturais. São também

apresentados dois estudos de validação e um caso de estudo na área de eCommerce, de modo a

ilustrar a viabilidade da abordagem e da ferramenta.

Contents

1 Introduction 1

1.1 Context . 1

1.2 Problem . 3

1.3 Proposal . 4

1.3.1 Thesis . 5

1.3.2 Research Questions . 6

1.3.3 Objectives . 6

1.4 Contributions . 7

1.5 Document Structure . 9

2 Background 11

2.1 The Model Driven Architecture Framework . 11

2.1.1 The MDA process . 13

2.1.2 Discussion . 14

2.2 Simplified Languages With Support for Automation 14

2.2.1 Use Cases . 14

2.2.2 Natural Language Processing . 15

2.2.3 Computable Formats . 16

2.2.4 Intermediary Languages . 16

2.2.5 Annotation . 18

2.2.6 Operationalization Approaches . 18

2.2.7 Discussion . 20

2.3 Representation of Requirements on Knowledge Bases 21

2.3.1 Ontologies . 21

2.3.2 Ontology Languages . 22

2.3.3 Knowledge Base Analysis . 22

2.3.4 Web Ontology Language . 23

2.3.5 Discussion . 24

2.4 Knowledge Inference Mechanism . 25

2.4.1 Inference in OWL . 25

xi

xii CONTENTS

2.4.2 Available OWL Tools . 26

2.4.3 Discussion . 26

2.5 Software Patterns . 27

2.5.1 Patterns . 27

2.5.2 Requirement Patterns . 27

2.5.3 Patterns Categorization . 29

2.5.4 Pattern Inference . 30

2.5.5 Software Pattern Instantiation . 32

2.5.6 Discussion . 32

2.6 Software Pattern Composition Process . 33

2.6.1 Composition Techniques . 33

2.6.2 Discussion . 33

2.7 From Requirement Patterns to Software Patterns 34

2.7.1 Selecting Patterns for Requirements . 34

2.7.2 Relating Requirements . 35

2.7.3 Forces . 36

2.7.4 Discussion . 36

2.8 Similar Approaches and Supporting Tools . 37

2.8.1 Requirements Based Approaches . 37

2.8.2 Supporting Tools . 37

2.8.3 Discussion . 37

2.9 Summary . 38

3 The SCARP Approach 41

3.1 Automation of a Model based Process . 42

3.1.1 MDA and the Proposed Approach . 42

3.1.2 The Entities and Workflows Framework 42

3.2 SCARP Overview . 43

3.3 SCARP Parametrization . 44

3.3.1 Domain Model Specification . 44

3.3.2 Patterns catalogs . 47

3.4 Use Cases Specification . 47

3.4.1 RUS . 49

3.4.2 RUST . 50

3.5 OWL Generation . 51

3.6 Requirements Patterns . 53

3.6.1 Pattern Inference . 56

3.7 Software Patterns . 57

3.7.1 Goals and Concerns . 58

3.7.2 Forces . 61

3.7.3 Matching Process . 63

CONTENTS xiii

3.8 Architectural Solution . 66

3.8.1 Software Pattern Definition . 68

3.8.2 Instantiation Process . 69

3.8.3 Pattern Composition . 69

3.8.4 Solution Enhancement . 70

3.8.5 Solution Validation . 72

3.8.6 Serialization . 73

3.9 Code . 74

3.10 Summary . 75

4 Instantiation of SCARP 77

4.1 uCat Tool . 77

4.2 Domain Model Specification . 78

4.3 Use Case Specification . 80

4.3.1 Entities Extraction . 82

4.4 Ontology Creation . 83

4.4.1 Types Definition . 83

4.4.2 OWL Ontology Generation . 85

4.5 Requirement Pattern inference . 87

4.5.1 Data Query Mechanism . 87

4.5.2 Pattern Specification . 87

4.5.3 uQL . 88

4.5.4 Pattern Inference . 91

4.6 Requirements to Software Patterns . 92

4.6.1 Concerns, Goals and Forces definition . 92

4.6.2 Matching Process . 94

4.7 Software Pattern Instantiation . 98

4.7.1 Software Pattern Representation . 98

4.7.2 Software Pattern Definition . 99

4.7.3 Instantiation Process . 100

4.7.4 Composition . 103

4.7.5 Enhancement . 104

4.7.6 Producing XMI . 107

4.8 Generation of Outputs . 109

4.8.1 Source Code . 109

4.8.2 User Interface Prototypes . 110

4.9 Summary . 111

5 Validation 113

5.1 Study 1 Description . 113

5.1.1 Objectives . 115

xiv CONTENTS

5.1.2 Study Setup . 115

5.1.3 Addressing the Objectives . 117

5.1.4 Study Validation . 118

5.2 Study 1 Execution . 118

5.2.1 Execution of the study . 119

5.2.2 Results of the Study . 119

5.2.3 Discussion . 122

5.2.4 Summary . 124

5.3 Study 2 - Pattern Inference Process and Usability

Assessment . 124

5.3.1 Setup of the Experiment . 125

5.3.2 Results of the Experiment . 126

5.3.3 Discussion . 128

5.4 Threats to Validity . 130

5.5 Summary . 131

6 Case study 133

6.1 Context . 133

6.2 Domain Model . 135

6.3 uQL Queries . 136

6.4 Software Patterns and Matching Information . 138

6.4.1 Concerns . 138

6.4.2 Goals . 139

6.4.3 Forces . 140

6.5 Requirements . 143

6.5.1 Register . 143

6.5.2 Login . 144

6.5.3 Return Home . 145

6.5.4 Browse Products . 146

6.5.5 View Product . 146

6.5.6 Show Highlights . 147

6.5.7 View Actions History . 147

6.5.8 Search Product . 148

6.5.9 Add Product to Cart . 148

6.5.10 Checkout . 149

6.6 Individuals Classification . 149

6.7 Requirement Patterns Inference . 150

6.7.1 Inferred Patterns . 151

6.8 Produced Solution . 152

6.8.1 Parametrization . 152

6.8.2 Solution . 156

CONTENTS xv

6.9 Discussion . 159

6.10 Summary . 163

7 Conclusions 165

7.1 Discussion . 168

7.1.1 Answer to Research Questions . 169

7.1.2 Thesis . 170

7.2 Future Work . 170

Appendices 173

A Inputs and Outputs of SCARP 173

A.1 Domain model . 173

A.2 RUST Specification . 174

A.3 SPARQL queries . 174

A.4 Ontology representing the “Add product to cart” use case. 175

A.5 Mapping information . 177

A.6 XMI representation of software patterns. 185

B Inputs and outputs regarding the validation studies 205

B.1 Specifications selected for the first study . 205

B.1.1 Use cases . 205

B.1.2 Textual descriptions . 207

B.2 Scenario descriptions selected for the second study 208

B.3 Requirement patterns catalog . 208

B.3.1 Simple Search . 208

B.3.2 Catalog . 209

B.3.3 Registration . 209

B.3.4 List Builder . 209

B.4 Software patterns catalog . 211

B.4.1 Proxy . 211

B.4.2 Command . 212

B.4.3 Memento . 214

B.4.4 Iterator . 215

B.4.5 Composite . 217

B.4.6 Flyweight . 218

B.4.7 Singleton . 220

B.5 Requirement Pattern to Software Pattern Matching Information 221

B.6 Diagrams used in the validation of the produced solution 230

xvi CONTENTS

List of Figures

1.1 Waterfall [6] (on the left) and V [36] (on the right) software development method-

ologies. 2

1.2 Spiral [10] (on the left) and Agile [5] (on the right) software development method-

ologies. 2

1.3 The SCenario bAsed Rapid software Prototyping (SCARP) approach, as part of

a model driven development process. 4

2.1 Overview of the MDA process [70]. 13

2.2 Use case diagram (left) and description (right), for the scenario of describing the

registration of a product on an eCommerce platform. 15

2.3 LIDA system architecture (adapted from [92]). 19

2.4 Example of Essential Use Case (EUC) to Essential User Interface prototyping

(adapted from [65]). 20

2.5 Simplified representation of an ontology. 22

2.6 Representation of a simple ontology (describing the information in Listing 2.4). . 24

2.7 Patterns as bridges between problems/contexts and solutions. 27

2.8 Overview of Withall’s pattern catalog (from [120]). 28

2.9 Categorization of software patterns, according to their abstraction level (higher

on the bottom, lower on the top) [27]. 30

2.10 Design pattern inference approach, adapted from [22]. 31

2.11 Pattern composition techniques. 33

2.12 Adaptor and Composite patterns composition by a) Stringing and b) Overlapping. 34

3.1 The SCARP process. 43

3.2 Artifacts in the Application Domain. 44

3.3 Setup of SCARP - providing the domain model. 45

3.4 A domain model for an eCommerce context. 46

3.5 SCARP process inputs. 47

3.6 Specification of user requirements step. 48

3.7 Step 1 of SCARP - creating the RUS specification. 48

3.8 Generating the OWL knowledge base. 52

xvii

xviii LIST OF FIGURES

3.9 Step 2 of SCARP - creating the OWL ontology. 52

3.10 Relation between User, System and Actor in the domain model. 53

3.11 Inference of requirement patterns. 54

3.12 Step 3 of SCARP - inferring the requirement patterns. 54

3.13 Representation of a statement in a) Natural language, b) uQL and c) SPARQL

Protocol and RDF Query Language (SPARQL). 56

3.14 Transition from requirement patterns to software patterns. 57

3.15 Step 4 of SCARP - Transition from requirement to software patterns. 58

3.16 Attributes of patterns at different levels. 58

3.17 Requirement patterns, concerns and forces for the HasShoppingCart requirement

pattern. 63

3.18 Software patterns, goals and forces relationship for the Proxy software pattern. . 64

3.19 Software patterns, goals and forces relationship for the Memento software pattern. 64

3.20 Software patterns, goals and forces relationship for the Command software pattern. 64

3.21 Requirement patterns to software patterns process flow. 64

3.22 Summary of the relations between concerns, forces, goals and software patterns,

for the HasShoppingCart. 66

3.23 Production of the architectural solution. 67

3.24 Step 5 of SCARP - producing an architectural solution from a set of software

patterns. 67

3.25 Proxy design pattern structure (adapter from [41]). 68

3.26 Proxy design pattern instantiation. 69

3.27 Composition of Proxy, Memento and Command patterns through overlapping. . . . 70

3.28 Relationship between System and Product extracted from the domain model. . . 71

3.29 Enhanced version of the solution resulting from the pattern composition process,

regarding relationships. 71

3.30 Relationship between User, Age, Name and Address extracted from the domain

model. 71

3.31 Enhanced version of the solution resulting from the pattern composition process,

regarding relationships and attributes. 72

3.32 Revised solution . 73

3.33 Generating source code. 74

3.34 Step 6 of SCARP - producing source code. 74

4.1 uCat architecture. 78

4.2 Domain model plugin user interface. 79

4.3 Indication of an error in the domain model. 79

4.4 Use case diagram specification interface. 81

4.5 Use case scenario specification interface. 81

4.6 Entities visualization plugin. 82

4.7 Types definition plugin, with the automatically extracted information. 84

LIST OF FIGURES xix

4.8 Types definition plugin with all types defined. 85

4.9 Ontology generator plugin. 87

4.10 Reasoner plugin depicting a SPARQL query to infer object types, and corre-

sponding result. 88

4.11 uQL requirement pattern specification user interface. 91

4.12 Requirement pattern inference plugin user interface. 92

4.13 Requirement pattern to software pattern matching process. 93

4.14 Interface to create the Requirement Pattern, Software Pattern, Concern, Goal and

Forces mapping information. 95

4.15 Requirement pattern to software pattern process flow. 96

4.16 Architectural mapping plugin user interface. 98

4.17 Proxy software pattern structure (adapted from [41]). 99

4.18 Proxy software pattern instantiation. 101

4.19 Memento software pattern instantiation. 101

4.20 Command software pattern instantiation. 102

4.21 Software pattern instantiation user interface. 102

4.22 UML representation of the architecture resulting from the pattern composition

process (with merged entities in gray). 105

4.23 Enhancement of the solution via stringing merging operator. 106

4.24 Excerpt of enhanced solution with additional attributes. 106

4.25 Types definition plugin user interface. 107

4.26 Representation in ArgoUML of the XMI produced in SCARP. 109

4.27 Usage of SCARP outputs in order to support the generation of presentation code. 110

4.28 Example of MODUS web page, generated from an output of SCARP. 111

5.1 RUS validation process. 115

5.2 Questionnaire results for numeric questions. 121

5.3 Questionnaire result for Likert scale questions. 121

5.4 Results before and after adjusting the percentages, for the inference of the pattern

catalog. 129

5.5 Patterns inference resulting percentages (average values and standard deviation)

for Simple Search, Catalog, Registration and List Builder requirement patterns. . 129

6.1 Amazon main page. 134

6.2 Amazon shopping cart page. 134

6.3 Domain model for the eCommerce domain, in uCat. 135

6.4 Case study’s use case diagram. 144

6.5 “Register” use case description. 144

6.6 “Login” use case description. 145

6.7 “Return home” use case description. 145

6.8 “Browse product” use case description. 146

xx LIST OF FIGURES

6.9 “View product” use case description. 146

6.10 “Show highlights” use case description. 147

6.11 “View actions history” use case description. 147

6.12 “Search product” use case description. 148

6.13 “Add product” to cart use case description. 148

6.14 “Checkout” use case description. 149

6.15 Requirement pattern inference result. 151

6.16 Resulting forces matrix. 152

6.17 Resulting inferred software patterns, with best matches highligted. 152

6.18 Parametrization of the Proxy pattern, for the HasShoppingCart requirement pattern.152

6.19 Parametrization of all software patterns. 154

6.20 Types for the inferred properties. 155

6.21 Results of the validation study performed in the generated model. 156

6.22 Resulting architecture from the serialization process, with identification of require-

ment patterns. 158

6.23 Main page of the user interface prototype. 161

6.24 Listing of products in the user interface prototype. 162

B.1 Software patterns template. 211

B.2 Proxy pattern structure. 212

B.3 Proxy pattern instance. 212

B.4 Command pattern structure. 213

B.5 Command pattern instance. 214

B.6 Memento pattern structure. 214

B.7 Memento pattern instance. 215

B.8 Iterator pattern structure. 216

B.9 Iterator pattern instance. 216

B.10 Composite pattern structure. 217

B.11 Composite pattern instance. 218

B.12 Flyweight pattern structure. 219

B.13 Flyweight pattern instance. 220

B.14 Singleton pattern structure. 220

B.15 Singleton pattern instance. 221

B.16 Diagram A. 230

B.17 Diagram B. 230

B.18 Diagram D. 231

B.19 Diagram E. 231

B.20 Diagram F. 232

List of Tables

2.1 Extract of ACE to MLL mapping [73]. 16

2.2 Example of conflicts between requirements (adapted from [85]). 35

2.3 Overview of the related work. 39

2.4 Comparison of existing approaches. 40

3.1 RUS formatted “Add product to cart” use case. 49

3.2 Result of applying uQL in Listing 3.2 to the knowledge base. 57

3.3 Positive contributions between requirement patterns and software patterns

(through forces), as support for the matching process. 65

3.4 Negative contributions between requirement patterns and software patterns

(through forces), as support for the matching process. 65

3.5 Matrix describing the relations between forces for the HasShoppingCart require-

ment pattern. 66

4.1 Example of forces matrix relating goals to concerns. 97

5.1 Questionnaire - part a). 114

5.2 Questionnaire - part b). 114

5.3 Excerpt of a RUS use case specification used in the study. 116

5.4 Study objectives and corresponding tasks. 118

5.5 Excerpt of a collected use case and its RUS version. 120

5.6 RUS evaluation. 121

5.7 Excerpt of use case made by a participant. 121

5.8 Detailed SUS results. 127

6.1 Requirement patterns and corresponding concerns. 140

6.2 Concerns’ forces. 142

6.3 Goals’ forces. 142

6.4 Types specification. 150

B.1 Modify players information. 205

B.2 Cancel a tournament. 206

xxi

xxii LIST OF TABLES

B.3 Check donative information. 206

B.4 Remove a user. 206

B.5 Mark donative as used. 206

B.6 Change a project. 206

B.7 Allocate items to a certain project phase. 207

B.8 Check a job information. 207

Listings

2.1 Example of a ACE statements [73]. 17

2.2 Example of a Gherkin feature describing “Refund item” [126]. 17

2.3 Example of Boilerplate template [60]. 17

2.4 Example of a simple OWL ontology describing the information of a user which

clicks in a link. 24

2.5 Example of an SPARQL query to list which objects relate via click object property

to any subject. 25

3.1 RUST used for the specification of “Add product to cart” use case. 51

3.2 uQL HasShoppingCart requirement pattern. 56

3.3 Proxy software pattern specification in API-like format. 68

4.1 Excerpt of OWL representing the domain model in Figure 4.2. 80

4.2 SPARQL query to identify types for individuals. 83

4.3 SPARQL query to identify the types for User. 83

4.4 Excerpt of “Add product to cart” use case formalized in OWL 86

4.5 Excerpt of an Use Cases Query Language (uQL) query representing the HasShop-

pingCart requirement pattern. 89

4.6 Result of the translation of the uQL in Listing 4.5 query to SPARQL. 90

4.7 Proposal of algorithm to automatically generate uQL from a set of specifications. 90

4.8 Excerpt of the ontology supporting the matching process. 94

4.9 Queries to identify positive and negative relations between requirement and soft-

ware patterns. 96

4.10 Excerpt of the representation of the Proxy software pattern in XMI. 99

4.11 Representation of the Memento software pattern in API-like format. 100

4.12 Representation of the Command software pattern in API-like format. 100

4.13 Excerpt of XMI resulting from composition of Command and Memento software

patterns. 103

4.14 SPARQL query to extract individuals of the category TypeOf. 104

4.15 SPARQL query to extract individuals of the category PropertyOf. 106

4.16 Excerpt of the XMI resulting from the SCARP process. 108

4.17 Excerpt of the Java code generated by ArgoUML, from the produced XMI. . . . 110

5.1 Simple Search requirement pattern, written in uQL. 128

xxiii

xxiv LISTINGS

6.1 “HasAccount” uQL requirement pattern. 136

6.2 “HasShoppingCart” uQL requirement pattern. 136

6.3 “HasCatalog” uQL requirement pattern. 137

6.4 “HasDetails” uQL requirement pattern. 137

6.5 “HasSearch” uQL requirement pattern. 137

6.6 “HasHighlights” uQL requirement pattern. 137

6.7 “HasUpload” uQL requirement pattern. 138

6.8 “HasFriendship” uQL requirement pattern. 138

A.1 Representation of the domain model in OWL. 173

A.2 RUST specification used in this work. 174

A.3 SPARQL query to identify individuals related via TypeOf. 174

A.4 SPARQL query to identify individuals related via CompositionOf. 174

A.5 SPARQL query to identify individuals related via PropertyOf. 175

A.6 Representation in Web Ontology Language (OWL) of the “Add product to cart”

use case. 175

A.7 Ontology representing the matching information. 177

A.8 XMI representation of the Command software pattern. 185

A.9 XMI representation of the Composite software pattern. 188

A.10 XMI representation of the Flyweight software pattern. 190

A.11 XMI representation of the Iterator software pattern. 194

A.12 XMI representation of the Memento software pattern. 197

A.13 XMI representation of the Proxy software pattern. 200

A.14 XMI representation of the Singleton software pattern. 203

B.1 uQL Simple Search requirement pattern. 208

B.2 uQL Catalog requirement pattern. 209

B.3 uQL Registration requirement pattern. 209

B.4 uQL List Builder requirement pattern. 209

B.5 OWL matching information. 221

LISTINGS xxv

Acronyms

ACE Attempto Controlled English

API Application Programming Interface

CNL Controlled Natural Language

CPN Colored Petri Net

CMS Content Management Systems

DL Description Logics

EUC Essential Use Case

EWF Entities and Workflow Framework

HSC Has Shopping Cart

MDA Model Driven Architecture

Modelery Models Refinery

MBUID Model Based User Interface Development

MODUS MOdel-based Developed User Systems

NFR Non-Functional Requirements

OMG Object Management Group

OWL Web Ontology Language

PIM Platform Independent Model

PSM Platform Specific Model

RDF Resource Description Framework

SWEBOK Software Engineering Body Of Knowledge

SPARQL SPARQL Protocol and RDF Query Language

SCARP SCenario bAsed Rapid software Prototyping

SUS System Usability Scale

SQL Structured Query Language

uCat Use Cases Analysis Tool

UML Unified Modeling Language

uQL Use Cases Query Language

URL Uniform Resource Locator

xxvi LISTINGS

W3C World Wide Web Consortium

XMI XML Metadata Interchange

XML eXtensible Markup Language

Chapter 1

Introduction

1.1 Context

Software engineering is defined by the IEEE as “The application of a systematic, disciplined,

quantifiable approach to the development, operation, and maintenance of software; (...)” [99]. The

software development process, in particular, corresponds to the set of tasks required to achieve

software solutions. As defined in the guide to the Software Engineering Body Of Knowledge

(SWEBOK), the process is composed of several phases, including requirements specification,

software design, construction, testing and maintenance [11].

Several software development methodologies exist in order to support the software development

process. For instance, Pressman [94] categorizes the approaches, or, software development models

as Linear Sequential, Prototyping, RAD, Evolutionary, Component-based, Formal methods and

Fourth Generation Techniques. These methodologies can be distinguished from each others by,

for instance, how they approach the several phases of the development process, what outputs

they create, which kind of models are used, how the development process is managed, and how

tests are performed.

Linear methodologies are an example of classical approaches (c.f. Figure 1.1). These methodolo-

gies present processes where the development tasks are performed in sequential order. Changes

on a previous step imply restarting the processes at that point, since no iteration is envisaged.

A more flexible approach to software development is the one proposed by evolutionary method-

ologies (c.f. Figure 1.2). In these methodologies, software is produced by a continuous iterative

process, which at each cycle adds new features to the final solution.

In the model driven development methodologies (e.g. Model Driven Architecture (MDA)), the

software development process is based in models. Models in these methodologies are the main

inputs, and their transformation is what produces results. Other approaches resort also to

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Waterfall [6] (on the left) and V [36] (on the right) software development method-

ologies.

Figure 1.2: Spiral [10] (on the left) and Agile [5] (on the right) software development method-

ologies.

1.2. PROBLEM 3

models, but not as the primary inputs. In the MDA, different models are defined (e.g. structural

and behavioral), and consecutively refined and transformed into other models and into source

code, resulting in the production of the software solutions [91]. Using architectural models to

create software solutions introduces formalism in the process, making it more systematic and

rigorous.

The relevance of model driven development approaches in practice, is supported by its acceptance

in industry [106]. Thus, is is worth noting that contributions for the MDA are not only relevant

from a theoretical point of view, but are also relevant in practice.

An interesting aspect of MDA, is the possibility of automating the models transformation pro-

cesses. Indeed, part of its steps and processes have been automated, both regarding the transfor-

mation of models, generation of source code, and even reverse processes (as generation of models

from source code). Tools and approaches (e.g. [121]) have contributed to the success of the au-

tomation, improving the development process itself both in time, costs and quality [70, 106, 117].

More specifically, existing contributions support the transformation of architectural models, into

source code. Despite the MDA advances, room for improvement can still be found. Requirements

are one of the areas where enhancements can be made.

1.2 Problem

Approaches and tools that support architectural models transformation improve the systematiza-

tion and quality of the development process, by providing support for rigorous transformations.

Requirement models, while relevant for the software development process, have not been ad-

dressed with the same emphasis in this MDA vision. Indeed, a gap between requirements models

and architectural models can be found, regarding systematic and automatic models transforma-

tions between the two levels.

The creation of architectural models, in the context of MDA, is based on the analysis of re-

quirement models. This transition is manually performed, due to the lack of systematic and

automated transformation processes. It is acknowledged that manual transition processes are

susceptible to errors resulting from interpretation [34]. Although existing approaches have proven

to successfully support such a manual processes, the advantages of systematizing the transition

should be taken into account.

Software requirements models exist in the same space as architectural models, but the lacking

of a systematic transition process can be identified. The transformation between these two kind

of models could improve the MDA process, including the requirements in the automatic and

systematic transformation chain.

4 CHAPTER 1. INTRODUCTION

1.3 Proposal

The objective of this work is to tackle the aforementioned issues in the transformation of require-

ment models into architectural models, by providing the same level of automation existing in

the transformation of architectural models in the MDA. The automation supports the inclusion

of requirement specifications as part of the MDA process. Such results in an extension of the

process, which starts the automated development process in the requirements, rather than in

architectural models.

Integrating the requirement models in the MDA provides several advantages. Providing a sys-

tematic process to convert requirement models into architectural models supports the mitigation

of errors resulting from interpretation, therefore reducing the subjectivity in the process. Au-

tomating the process supports a more efficient iterative development process, while reducing

errors resulting from manual transformations. When requirements are changed, the effort to

specify new models of the proposed solution, or adjusting existing ones is reduced.

The introduction of formalism in the process, as proposed by this work, is acknowledged to

improve the quality of the software solutions. At the beginning of the software engineering

related tasks, it establishes the basis for a more rigorous development process, hopefully resulting

in higher quality solutions. A formalization language with the capability to be understood both

by users and developers establishes a common ground for communication, without the cost of

classical formal notations. Finally, the formal layer enables also the possibility to apply analysis,

validation and verification techniques over the models.

The SCenario bAsed Rapid software Prototyping (SCARP) framework is proposed in order to

integrate requirement models as part of the MDA chain (c.f. Figure 1.3). SCARP presents a se-

quential process composed of several phases, from the requirements specification (c.f. Figure 1.3

Use cases), to the architectural solutions production (c.f. Figure 1.3 Architectural Solution).

This framework is a comprehensive process, which starts with requirement models specification,

until the production of architectural artifacts. In this work emphasis is put in the steps con-

cerning the formalization and transformation of the requirement models. For the other steps

(e.g. architectural model transformation), it takes advantage of the work already developed

by using the MDA (c.f. Figure 1.3 MDA), in the context of architectural model specification,

transformation and operationalization.

Figure 1.3: The SCenario bAsed Rapid software Prototyping (SCARP) approach, as part of a

model driven development process.

1.3. PROPOSAL 5

In order to support requirement models transformation within the MDA framework, in SCARP,

requirements are written in a language with support for automation, while maintaining the

readability. The objective of focusing on readability is to support the specification tasks, without

the need for complex formats. The automation aspects support the systematic and automatic

interpretation of the requirements.

SCARP assumes that the provided requirements have previously been object of study through

requirements engineering techniques. They have therefore been analyzed and specified. Similarly,

at the end of the SCARP, support for the code generation steps is not addressed, since (for

instance) MDA approaches deal with the tasks of operationalizing models. Instead, the proposed

approach focus in the generation of architectural models. The resulting architectural models, as

architectural prototypes, should then be refined and iterated as part of the software development

process.

1.3.1 Thesis

This work proposes to integrate requirement models as part of the MDA process, and as re-

sult make requirement models inputs of the process. Currently, the MDA does not provide to

requirement models the same emphasis provided to other models, as computable inputs. This

integration is possible by providing a framework to automate the transformation of requirement

models into architectural models. As result, requirement model are put at the same level of

architectural models, in the MDA process. Such is achieved by, on the one hand, providing a

language to formalize requirements, and enable their analysis. On the other hand, by providing a

systematic process to derive the appropriate architectural models, required for the MDA process.

The mitigation of errors resulting from the manual transformation processes, required to produce

architectural models from requirement models, is a relevant motivation in this work. Currently,

in practice architectural models are produced by manual processes. As a consequence, they

are vulnerable to subjectivity. Furthermore, manual processes result in costs. Automating the

transformation process provide two contributions. On the one hand, reduces the interpretation

and transformation errors, and on the other hand, reduces the costs of producing architectural

models from requirement models. This MDA extension reduces also the costs of changes in re-

quirement models, since the architectural models can be automatically produced. A model driven

(compliant) approach, based in the user requirements and in the domain model informations is

proposed.

Thesis “It is possible to create a framework, based on the MDA and support its extension,

by including requirement models transformation as part of the process. Functional requirements,

specifically use cases, have the required properties in order to be formalized and support automatic

transformation techniques, which support their integration in MDA.”

6 CHAPTER 1. INTRODUCTION

1.3.2 Research Questions

When defining an approach to prove the aforementioned thesis, a set of research questions

emerges. These questions, on the one hand, concern to the viability of the proposed approach

and, on the other hand, help shape the course of the work, by defining a set of guiding lines, as

a mean to answer those questions. The set of research questions approached in this thesis is the

following one.

Question 1 Is it possible to have a simple, yet expressive language for use case specification,

with support for automation?

It is proposed to explore if use cases can be expressed in a simple language, in order to provide easy

automation, while keeping their original information. This question is addressed in Sections 3.4,

3.5, 4.3 and 5.2.

Question 2 Is it possible to perform software requirement patterns inference over use cases,

more specifically in the knowledge base representing them?

It is proposed to explore if the OWL, and consequently the use cases, contain the required

information to support requirement patterns inference, and extraction of meaningful information

about the architectures which support them. This question is addressed in Sections 3.6, 4.5 and

5.3.

Question 3 Can requirement patterns be used to select a set of architectural patterns solving

them?

It is proposed to explore if requirement patterns contain relevant enough information to enable

selection of the appropriate software patterns, that support the features they describe. This

question is addressed in Section 3.7 and 4.6.

Question 4 Can a set of architectural patterns be instantiated and combined, within a defined

context, in order to achieve prototype architectures?

It is proposed to explore whether the use cases provide enough information to support a mean-

ingful pattern composition, leading to architectures that are compliant with that use cases. This

question is addressed in Section 3.8 and 4.7.

1.3.3 Objectives

In order to answer the proposed research questions, a set of objectives is presented. The objectives

go towards supporting each step of the SCARP process. Specifically, regarding the requirements

specification, the information inference mechanism, and making the bridge to architectural mod-

els. Those objectives go also towards answering the research questions, as follows.

1.4. CONTRIBUTIONS 7

1. Validate the viability of using a simple language to support formal use case specifications,

which can be automatically formalized (i.e., transformed into a computable format);

2. Create a software requirement patterns inference mechanism, which enables the possibility

to perform pattern inference on a knowledge base;

3. Implement a software requirement patterns to architectural pattern mapping technique, to

allow achieving a set of architectural patterns from the knowledge base;

4. Define an architectural pattern instantiation and composition technique, in order to achieve

architectural solutions from a set of architectural patterns;

5. Present a systematic and automated process which combines the aforementioned objectives

into a single platform.

6. Develop a tool to support the automated process.

1.4 Contributions

The work presented in this thesis addresses several knowledge areas. In each of the addressed

areas contributions were made. These contributions are now briefly described. A number of

scientific publications resulted from this work and are referenced when relevant, and listed at the

end of the section.

Regarding requirements specification, and specifically use cases, a contribution in the form of a

language and process was made. Specifically, a Controlled Natural Language (CNL) to support

the specification of use case scenarios was developed and validated [24, 26, 28]. The language

supports automatic translation into OWL.

There are also contributions on requirements and software patterns. A contribution of this

thesis is a process to support the association of requirement patterns to software patterns, in

a systematic way. The implementation of a patterns’ catalog was started, as a way to support

the process. Similarly, an approach to automatically compose those patterns was implemented.

Finally, and regarding software patterns, a survey regarding existing types of patterns (and

corresponding templates to describe them) was performed. As a result, a hierarchization of

existing types of software patterns, and a unified template to specify software patterns were

achieved [27].

The Use Cases Analysis Tool (uCat) is another contribution of this work1. The tool supports

the aforementioned SCARP process, in an automated way. The tool serves at the same time as

a proof of concept, and as a reference implementation [24, 26].

uCat’s development has provided inputs for the development of two other tools. MOdel-based

Developed User Systems (MODUS), a tool and approach for Model Based User Interface De-

1Website: http://myopenx.di.uminho.pt/ucat/

http://myopenx.di.uminho.pt/ucat/

8 CHAPTER 1. INTRODUCTION

velopment (MBUID), supports the process of prototyping user interfaces, based on a structural

model and domain information. The MODUS approach was influenced by SCARP and can be

used to complement it. The outputs from the SCARP can be provided as inputs for MODUS,

thus, introducing the generation of user interfaces in the process.

Additionally the uCat tool includes support for integration with the Modelery, a repository for

model driven development artifacts, for instance, models and patterns [25, 21]. Storing these

artifacts and making them publicly available to other developers fosters both reuse and improve-

ment of knowledge. The integration with the repository enables the possibility to export/import

models directly from the online repository.

In total, this work resulted in 7 scientific publications.

• Rui Couto et al. MapIt: A model based pattern recovery tool. In MOMPES 2012 (see [22]).

• Rui Couto et al. A patterns based reverse engineering approach for java source code. In

SEW 2012 (see [23]).

• Rui Couto et al. Application of ontologies in identifying requirements patterns in use cases.

In FESCA 2014 (see [24]).

• Rui Couto et al. A study on the viability of formalizing use cases. In QUATIC 2014

(see [26]).

• Rui Couto et al. The modelery: A collaborative web based repository. In ICCSA 2014

(see [25]).

• Rui Couto et al. The modelery: a model-based software development repository. In IJWIS

2015 (see [21]).

• Rui Couto et al. Validating an approach to formalize use cases with ontologies. In FESCA

2016 (see [28]).

Additionally, a technical report was created during this work, and the collaboration on the

development of MODUS resulted in a scientific publication.

• Rui Couto et al. A survey on software patterns. Technical report, HASLab INESC TEC

and Universidade do Minho, 2016 (see [27]).

• Marina Machado et al. Modus: uma metodologia de prototipagem de interfaces baseada em

modelos. In INFORUM 2015 (see [84]).

1.5. DOCUMENT STRUCTURE 9

1.5 Document Structure

Besides this introduction, this document is organized in six additional chapters. Chapter 2

presents an overview of related and background work. Work in the areas approached by this

thesis is presented, in order to provide an overview about existing approaches, methodologies

and tools.

Chapter 3 presents SCARP, the proposed approach to integrate requirements models in MDA.

It starts by presenting an overview of the process, and next details each of the steps of the

approach.

Chapter 4 presents both how SCARP can be instantiated with concrete input and output formats,

as well as the uCat tool. uCat supports the SCARP approach, by providing an interface to

support each step of the approach, regarding the specified input and output formats. uCat

demonstrates the viability of automating the SCARP approach, and provides detailed guidelines

on how to achieve such.

Chapter 5 presents the validation of SCARP and uCat. Two studies regarding the validation of

several aspects of both the approach and the tool are presented. The specification of requirements

and inference of information from the specifications are also addressed.

Chapter 6 presents a case study for SCARP, and corresponding supporting tool uCat. A set

of requirements from the eCommerce domain is presented, to which SCARP is applied. The

required inputs and outputs for each step are presented, as well as the resulting artifacts. uCat

is used in order to demonstrate the study.

Finally, Chapter 7 concludes this document by providing an overall vision of the performed work,

viability of the approach and final remarks. This chapter presents also the answer to the research

questions, and leave indications for future work.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This section presents an overview of background work in several areas relevant to the proposed

work. Related works include approaches, tools and methodologies, and their contributions to

the proposed objectives are analyzed.

In order to better organize the related work, the following areas are addressed.

1. The MDA framework;

2. Requirement specification languages with automation capabilities;

3. Structured representation of requirements;

4. Knowledge inference on requirements representations;

5. Software patterns;

6. Requirements models based approaches.

2.1 The Model Driven Architecture Framework

The MDA [70] is a framework that allows developers to build software systems focusing on the

core business of the applications, instead of platform details such as hardware, programming lan-

guages, operating systems or frameworks. Specified by the Object Management Group (OMG),

it relies on the Unified Modeling Language (UML) and a number of standards. The MDA has

the objective of creating machine readable documents, that have computational capabilities, and

therefore, can be used to automated means.

The traditional development processes have some drawbacks that the MDA proposes to solve,

namely issues with productivity, portability, interoperability and maintenance [70]. Next

11

12 CHAPTER 2. BACKGROUND

is explained how each of those issues affects the traditional development processes, and how the

MDA solves them.

Productivity In traditional software development methodologies, models are specified at the

beginning of the development process, and meant to be used as guides for the remaining

process. However, as the development process goes on (with iterations and improvements),

developers tend to forget the models, and focus only on the code. Hence, models are “just

papers” that represent the system at the end of the design phase, and of little usage. The

MDA focus in the models definitions, and systems are directly generated from the models.

Hence, reiterations of the process should occur in the model, not at source level, making

the model always synchronized with the real software system.

Portability New technologies emerge at a quick pace. In a short period of time it was possible

to see the focus of the applications moving from desktop applications, to web-based ones.

The increase in the performance of smartphones turned again the focus from web to mobile.

More recently, the lower cost and consumption of processors is moving the focus towards

wearable devices. There is a big issue raised by this tendency, as already existing software

has only two options to continue to exist. Either the code is ported (or reimplemented as

a new version), or left as is, as legacy software, raising then interoperability and security

issues. As the MDA focus in the models, only new transformations from models to code

must be implemented for each new platform, with the advantage that the transformations

can be reused.

Interoperability Monolithic systems are mostly abandoned nowadays. Interoperability is a key

feature for software systems. However, the integration of several technologies from several

vendors is not always straightforward. The MDA proposes that tools generate models and

code from models, but also the bridges between them.

Maintenance and documentation On the one hand, traditional methodologies do not en-

courage writing documentation. It is usually seen as a tedious and undesired task. On the

other hand, models are not used as documentation of the code, as they are usually depre-

cated as reiterations of the development process occur. Again, as the MDA focus on the

models, models are itself the documentation of the process (as they are not abandoned).

The transformation tools can support bidirectional transformations, allowing changes in

the code to be propagated to the models.

The MDA proposes to solve the presented issues with traditional software development ap-

proaches by basing the development process on models. It proposes also two abstraction levels

to define the models, which provide different visions of the system to be developed.

Platform Independent Models (PIM) are models which are independent of the technology.

They focus in the solution itself, rather than on specific details. The MDA puts the

development emphasis in models. Then, tools are used to achieve more specific models.

2.1. THE MODEL DRIVEN ARCHITECTURE FRAMEWORK 13

Platform Specific Models (PSM) are models which are closer to source code, as they include

details related with the platforms in which they will be deployed. Context should be pro-

vided so the tools can generate Platform Specific Model (PSM) from Platform Independent

Model (PIM).

2.1.1 The MDA process

Figure 2.1 provides an overview of the MDA process, as well as a summary of the MDA building

blocks. The MDA requires the following inputs:

• High level models, defined in standard languages, and containing all the information of the

system being modeled;

• Standard languages, to write those models;

• Transformation definitions, both from PIM to PSM, and from PSM to code;

• Languages to write the transformation definitions, to allow a systematic process;

• Tools that implement the execution of the transformation definitions, to allow the trans-

formations;

• Tools that implement the execution of the transformation of PSM to code, to achieve the

final solution.

Figure 2.1: Overview of the MDA process [70].

A notable work regarding the MDA is presented by Mellor and Balcer [88]. The authors present

an approach, by restricting the specification language, to formalize requirements into verifiable

diagrams. From those diagrams is possible to generate code for specific scenarios. Such is

possible because the authors present a profile for UML to model structure and behavior of a

given system, with the required expressiveness to execute it. The models are as expressive as

source code, which enables the automatic generation of code. While suitable for a restricted set

of scenarios, this work is a supporting approach for MDA, through industry standards (UML),

which shows the viability of MDA.

14 CHAPTER 2. BACKGROUND

2.1.2 Discussion

In the MDA, requirement specifications do not have the same emphasis of software models.

Indeed, while software models are integrated as part of systematic and automated transformation

models, requirements are used as guides to produce software model.

The integration of the proposed approach in the MDA, provides to the proposed approach support

not only to use standard technologies to create the models (c.f. UML), but also systematic

approaches to refine models until source code. It establishes the basis for an automated process

from models until source code.

Several studies have shown the viability of using models to create software solutions (i.e., con-

cretizing the MDA). The approach is more than just a proof of concept, or a good theoretical

approach, as it has uses in practice. Those works provide a sound basis for the proposed approach.

2.2 Simplified Languages With Support for Automation

For the proposed approach a simple language with support for automation is required. Repre-

senting requirements in simplified formats not always implies losing expressiveness or automation

capabilities. Several approaches which propose simplified languages for requirements specifica-

tion, with support for automation, can be found. This section presents some relevant approaches

in the context of this work.

2.2.1 Use Cases

Use cases are a requirements specification methodology based in the description of steps and

interactions between different actors and systems. Originally proposed by Jacobson [61], were

later adopted and standardized by the OMG. The OMG specified use cases as models for software

requirement specifications, through scenarios which describe the interactions between a user and

a system (c.f. Figure 2.2), and made them part of the UML.

The OMG does not specify in concrete how use cases should be specified. Such is due to their

capability to be used at different stages of requirements analysis and specification, and with

different flavors; from more textual description amenable for analysis, to more operational de-

scriptions useful for specification. However, and as use cases describe the system features, several

approaches emerged in order to operationalize them.

Tabular representations have proven popular (e.g. as proposed in [38] and [20]). This style of

representation is based in an operational actor/system interaction style (as presented in Fig-

ure 2.2), where the interactions are described sequentially. Use cases can also contain additional

information such as preconditions and postconditions [8].

2.2. SIMPLIFIED LANGUAGES WITH SUPPORT FOR AUTOMATION 15

Figure 2.2: Use case diagram (left) and description (right), for the scenario of describing the

registration of a product on an eCommerce platform.

Use cases are a powerful approach to describe use case specifications. They provide a simple

format for scenarios description. While not directly computable, there have been several proposes

in order to improve their specifications, namely the tabular formats. Although, as they are

usually written in natural language, they can be combined with approaches which support to

formalize and operationalize the requirement specifications, making them amenable to being

operationalized and formalized.

2.2.2 Natural Language Processing

One of the most common approaches to support the formalization of software requirements is

the application of natural language analysis techniques. Natural language analysis techniques

provide the capability to analyze a wide variety of specifications, since they do not rely on any

predefined format. These techniques analyze relevant keywords and relations between them,

in order to create a meaningful structure. Natural analysis techniques are commonly used to

generate architectural models [108, 77], and also to generate formal models as support for ap-

plying verification techniques [42, 125]. Some works require some kind of preprocessing on the

specifications (e.g. annotation), in order to improve the descriptions, prior to their analysis [101].

The application of natural language processing techniques supports the analysis of existing spec-

ifications. However, it is acknowledged the variability of the results when applying these tech-

niques. Providing some structure on these kind of specifications could improve this aspect. The

same is true for the complexity of the techniques required to perform both kind of analysis.

While analyzing natural language requires specialized tools, analyzing restricted formats can be

significantly easier and provide more predictable results.

16 CHAPTER 2. BACKGROUND

2.2.3 Computable Formats

Not only textual representations have been used to represent requirements. An alternative is to

use some kind of computable format, such as computational models. Representing requirements

in this format has the clear advantage of being a direct computable and formalized format,

therefore no details are lost in translation or interpretations processes. The major drawbacks

are the need for users which clearly understand the modeling language, and a possible loss in

readability. It is possible to find authors addressing the modeling of structural and functional

aspects, for instance resorting to Colored Petri Net (CPN) [63] or UML extensions [110, 111, 111].

Computable formats reduce the work needed to analyze and formalize a specification. Ultimately

reducing the need for translation processes, and loss of information in that processes. However,

writing this kind of specifications require all the participant users to understand what is be-

ing specified. Consequently, the readability of the specifications is also affected. This kind of

specification would benefit from a more flexible format in order to improve the overall readability.

2.2.4 Intermediary Languages

A possible approach to operationalize requirements is to write them in a language which supports

their automatic formalization, for being close to a computable format. These kind of formats

exist in between the computable formats, which are directly computable, and natural language

which requires performing textual analysis. An example of such language is Attempto Controlled

English (ACE) [73], a language based in OWL. ACE specifications are close to the same code

in OWL, however with improved readability. This approach enables an easy automatic formal-

ization process. ACE is also directly mappable into OWL, while supporting specifications close

to natural language (c.f. Table 2.1). The table presents the same expression in ACE and in

Manchester-like Language (MLL). MLL is a simplification of the Manchester language [56], one

of the languages available to specify OWL ontologies.

Table 2.1: Extract of ACE to MLL mapping [73].

ACE MLL

hIi is a hT i. hIi HasType hT i
hIi is not a hT i. hIi HasType not hT i
hI1i hRi hI2i. hI1i hRi hI2i
hI1i does not hRihI1i. hI1i not hRihI1i
hIi hRi a hT i. hIi HasType hRi hT i

It is easy to understand that this kind of specifications while specifying the format of the sup-

ported specifications, restrict the kind of inputs that they support. However, at the same time,

they make the process of automatically analyzing the specifications easier.

2.2. SIMPLIFIED LANGUAGES WITH SUPPORT FOR AUTOMATION 17

Hence, a possible approach to achieve a simple language with support for automated analysis

is to define a subset of another more complex language (e.g. natural language). Following one

such approach, the resulting specifications are more controlled, since they follow a predefined

format. The adoption of these languages might limit the complexity of statements. Being the

input formats predefined, naturally the specifications cannot have the same complexity of natural

languages. Limiting the complexity of statements is not necessarily a negative aspect, and also

less complexity is not synonymous of less expressiveness (as demonstrated in [7]).

An approach to define a subset of another language is by reducing the original statements to

simpler or more strict formats [20, 87]. For instance, as proposed by Kuhn [73], the ACE is a re-

stricted language, with support for the specification of simple statements (e.g. Listing 2.1). These

statements have a high expressiveness, while supporting automation. Another popular approach

which resorts also to a predefined input format, with support for automation is Gherkin [126]. In

Gherkin, the users input scenarios (c.f. features, in Listing 2.2), which have a predefined specifi-

cation format. The format in which the scenarios are specified supports automatic analysis and

generation of Ruby code blocks, in order to perform code verification.

Kate sees no officer.

Kate sees Bill.

John buys a present.

Listing 2.1: Example of a ACE statements [73].

Feature: Refund item

Scenario: Jeff returns a faulty microwave

Given Jeff has bought a microwave for $100

And he has a receipt

When he returns the microwave

Then Jeff should be refunded $100

Listing 2.2: Example of a Gherkin feature describing “Refund item” [126].

Similarly to Gherkin, boilerplates are an approach to describe functional requirements in a spe-

cific format [60]. Specifying a requirement consists in selecting an appropriate template (see

Listing 2.3 for an example), and filling the placeholders (e.g. <stakeholder type>). Boilerplate

templates are categorized by their objective, and creating a requirement specification consists in

selecting the most appropriate template. Although not designed to support use case specifica-

tions, boilerplates successfully show how a language based in a simple statements is suitable to

create functional requirements as scenario descriptions.

The <stakeholder type > shall be able to <capability >

within <performance > of <event >

while <operational condition >.

Listing 2.3: Example of Boilerplate template [60].

18 CHAPTER 2. BACKGROUND

Complex specifications can also be transformed into simpler ones by reducing the set of allowed

words in the descriptions [109]. This approach has two major effects. On the one hand, specifi-

cations are easier to understand, since the number of synonyms, or even ambiguous words can

be removed. On the other hand, it supports to index the specifications to a domain. Naturally,

a subset of words is required for creating specifications in each domain. Also, users are more

restrict while creating the specifications. Reducing terms in requirement specifications provides

the advantage of producing more consistent specifications. Such provides simpler specifications,

which are easier to understand by users within the same context.

The usage of CNLs is an interesting approach. On the one hand, it supports specifications in for-

mats which do not impact expressiveness, and are therefore suitable for expressing requirements.

On the other hand, specifications written in this format are easier to automate. Naturally, being

the formats restricted and predefined, a learning process is required in order for the users to

adapt to the language. From the existing approaches and formats, none was designed with the

specification of use cases in mind. However, a possibility is to select an existing approach (such

as ACE, for instance), in order to support use case scenarios specification.

2.2.5 Annotation

Enhancement of existing specifications in order to perform their formalization is also a recurring

approach to support requirements formalization. Annotations help in the analysis process by

adding meaning to the terms in specifications. The verification process can then take advantage

of annotations in order to check the validity and consistency of specifications. Annotations have

several usages, such as defining the meaning of words [72], which later support the generation

of corresponding models. Some other works require preprocessing specifications, in order to

normalize them according to a certain format [78, 64]. The normalization process results in

specifications that are easier to analyze by tools and, therefore, ease the generation of models

with support for formalization. It is also possible to find works which improve existing templates

(e.g. for use cases [115]), in order to gather more information supporting the formalization

process.

Adding meaning to terms in the specifications eases the process of analyzing such requirements.

However, manual interaction processes, while providing flexibility, can also be source a of errors.

In the case of the annotation process, a full understanding of both the requirements and the

context is required. An alternative is to define in beforehand the meaning for terms, in order to

support the process. This way, during the specification the input of the users can be reduced.

2.2.6 Operationalization Approaches

The approach proposed in this thesis advocates the usage of use cases as input, in order to pro-

duce software architectures. Several approaches propose the usage of use cases as the basis for

2.2. SIMPLIFIED LANGUAGES WITH SUPPORT FOR AUTOMATION 19

the development process (c.f. use case-based software development). One of the most influential

works regarding use case centered software development was developed by Jacobson [61]. In

his work, use cases play the central role to support the development process, from the design

phase until testing. Unlike what is the goal here, development progresses through manual steps.

Approaches based on use cases have the advantage of producing outputs closer to users’ speci-

fications. Furthermore, these approaches support the viability of achieving software outputs in

a systematic way, from use case descriptions. However, specifications are prone to errors, and

do not contain all the required information to produce adequate solutions. Hence, an adequate

design of the methodologies to extract the relevant information, and gather the remaining ones,

is required. Most approaches focus on making a direct translation from use cases to architec-

tural outputs. Naturally, performing this step without intermediary representations, hardens the

viability to perform any kind of verification prior to generating the outputs.

Several approaches which provide support to automatically generate UML models from specifi-

cations can be found in the literature [98, 75, 49, 87, 31]. Overmeyer et al. present an interesting

approach to generate UML diagrams, the LIDA methodology (c.f. Figure 2.3). The methodology

is based in the classification of different words in the specification (e.g. class, attribute, etc.),

and through textual analysis, architectural models are produced [92].

Figure 2.3: LIDA system architecture (adapted from [92]).

Not only the generation of architectural models from requirement specifications has been ad-

dressed. It is possible to find approaches which focus on the generation of other kind of outputs.

A recurrent kind of output are software prototypes, either executable business logic [79], or the

user interface [65]. Kamalrudin and Grundy present an approach to generate user interface pro-

totypes from EUC [65]. Not only the authors demonstrate the viability of producing prototypes

from requirements specifications, but also resort to a specification in EUC (e.g. Figure 2.4) to

do such. These kind of approaches have well defined objectives, as is the case of verifying the

final software, in early stages of development (either by testing features, or interacting with mock

user interfaces). The approaches provide useful mechanisms to support verification and mitigate

errors in the final solution. However, generated outputs tend to be “throwaway prototypes”,

meaning that they do not contribute to the implementation process. The same is true for the

used interfaces, since those kind of prototypes do not consider the business layer.

20 CHAPTER 2. BACKGROUND

Figure 2.4: Example of EUC to Essential User Interface prototyping (adapted from [65]).

The addressed works provide valuable hints regarding the rationale that requirements are able to

convey. They describe processes which successfully support the generation of software architec-

tures directly from requirement specifications. Hence, requirements provide enough information

to derive hints regarding the architectures they represent. Furthermore, not only it is possible to

generate architectures, but also other kind of useful outputs as user interfaces. Overall, the pre-

sented approaches have a well defined objective, of producing a certain kind of output from the

requirements. Hence, not a big emphasis is put in their analysis and verification. Furthermore,

these works do not focus the integration in the MDA. An alternative approach to automate

and improve the analysis of the use cases is to formalize the data they contain in order to apply

a verification process, prior to generating these outputs. This way, not only it is possible to

produce software outputs, but also to perform a preliminary validation and verification process.

2.2.7 Discussion

Currently existing approaches to support the formalization of requirements vary from textual

analysis, to requirements specification in computable formats (e.g. architectural models). The

formats in which these requirements are specified vary also, from simple textual descriptions, to

more structured formats as use cases.

The decision on the format to adopt in order to specify the requirements must take in account

three major factors, depending on the desired objectives. First, there is expressiveness, which is

the capability of the language to represent what users intent to convey. Second, the readability

of specifications must be considered. On the one hand, specifications can be written in formats,

as for instance natural language, which are more flexible regarding the supported terms. These

formats tend to be easier to read, but harder to operationalize. On the other hand, more strict

formats as CPNs, tend to be harder to read, but easier to operationalize. Finally, the difficulty

to automate specifications’ processing must be considered.

2.3. REPRESENTATION OF REQUIREMENTS ON KNOWLEDGE BASES 21

Considering the three aforementioned aspects, resorting to use cases in a tabular format, as the

specification structure in order to fulfill the presented objectives is proposed. As for the specifica-

tions itself, the adoption an intermediary format (similar to ACE) to describe the specifications

is proposed. The intermediary format presents a compromise between readability, expressiveness

and ease of analysis. ACE is not tailored to support use cases, but can be adjusted to do such,

since it support the specification of simple statements.

The viability of producing relevant outputs from requirement specifications was addressed by

several authors. Several approaches which support the generation of useful models and proto-

types can be found. However, the approaches focus directly in the generation of outputs, and

do not concern their previous representation in computable formats neither the generation of

architectural models. Representing the requirements in such format prior to generating soft-

ware outputs provides several advantages, such as analysis and validation of the correctness of

requirements (therefore, avoiding the propagation of errors to the final solution).

2.3 Representation of Requirements on Knowledge Bases

The usage of knowledge bases to represent requirements information has been proved to be a

viable approach. Having a language with support for automation, can provide the required

support to automatically generate such knowledge base.

Regarding the proposed approach, three major requirements define the approach to adopt. First,

it should allow to formally describe the knowledge in a structured way. Second, it should pro-

vide powerful means to query and analyze the knowledge. Finally, the knowledge base must

be described in an accepted standard. Such is essential in order to extend and integrate the

representation in other works. This section presents approaches which can be adopted in order

to fulfill these objectives.

2.3.1 Ontologies

Ontologies are a recurrent format to formalize requirements on a knowledge base, due to their

expressiveness. Ontology (a branch of philosophy), is the science of what is, of the kinds and

structures of objects, processes, events and relations in every area of reality [104]. In information

science, an ontology is a formalization of a specific domain, in terms of objects, properties

and relationships. Ontologies provide support for structuring knowledge as concepts and their

relationships, and specifying concrete values for those concepts (instances). In Figure 2.5 a

simplified representation of an ontology is presented (as an ontology itself). In this case the

OWL syntax was used. It is possible to see the concepts as Class, Type or Individual, which

define the knowledge representation.

22 CHAPTER 2. BACKGROUND

Figure 2.5: Simplified representation of an ontology.

In the context of this work, ontologies are a suitable approach to represent requirements speci-

fication. They support the specification of knowledge in a formal and structured way. Specific

languages and tools are required to support them.

2.3.2 Ontology Languages

Classical ontology languages are mostly concerned with structuring and representing information

(e.g. Ontolingua [47], LOOM [83], OCML [89] and FLogic [67]). Current ontology languages

add, on top of classical ones, intercommunication capabilities. This kind of ontologies are be-

coming more used and popular. They have the same properties as the former ones, but foster

interoperability via the Web. Web based ontology languages include RDF Schema, and others

based on those such as SHOE [51], XOL [66] and OWL [74]. Perhaps one of the most well known,

and a World Wide Web Consortium (W3C) standard, is OWL.

Due to their expressiveness, several authors address the representation of requirements in ontolo-

gies. A systematic literature review on methodologies to support the requirements engineering

process with ontologies is presented by Dermeval et al. [32]. Several benefits on the usage of

ontologies as support for requirements engineering are identified, including reducing ambiguity,

inconsistency and incompleteness. This work, provides relevant information on the use of ontolo-

gies for requirements. First of all, it is a proof that ontologies are powerful means to formalize

and analyze requirements. Second, OWL seems to be a good approach for requirements specifi-

cations, as it has been adopted by about half of the described approaches. These works do not

address, however, the viability of using ontologies to support the software development process

itself.

From the analysis of the related work, it is possible to conclude that, from the several available

languages, OWL is currently accepted as the de facto language to describe ontologies. Hence, it

seems to be an appropriate way to support information specification.

2.3.3 Knowledge Base Analysis

The usage of ontologies to represent knowledge not only supports the formalization of infor-

mation but also supports its analysis. Such is also a recurring approach. Not only ontologies

2.3. REPRESENTATION OF REQUIREMENTS ON KNOWLEDGE BASES 23

have been used to represent requirements, but also to reason about them. Several approaches

present mechanisms for the formalization of requirements, with emphasis (for instance) on their

elicitation [105, 58, 43] and verification [44, 45].

Works performing analysis of requirements resorting to ontologies support the viability of using

such kind of representation in order to formalize and analyze knowledge contained in descriptions.

2.3.4 Web Ontology Language

OWL is a declarative ontology language, based in the W3C standards XML, RDF, and RDF

Schema (RDF-S), which fosters interoperability. RDF is a standard model for data interchange

(over the Web). It combines the identification of data through URIs as well as the relationships

between them, is what is usually referred to as a “triple” (Resource Description Framework

(RDF) triples). The data results in a labeled graph for data representation. RDF-S provides the

vocabulary to model information in RDF, while eXtensible Markup Language (XML) corresponds

to the format in which the information is described.

OWL has three different levels of expressiveness: OWL Full, OWL Description Logics (DL),

and, OWL Lite. While OWL Full supports mixing OWL statements with RDF, creating more

expressive documents, at the cost of no reasoners support for such specifications, OWL DL

provides maximum expressiveness, while providing inference capabilities. It enforces restrictions

on the allowed statements, in order to enable reasoning capabilities. Finally, OWL Lite is a

simplified version of OWL DL, with less expressiveness.

OWL supports the definition of several constructs to build ontologies1. Some of the most relevant

constructs available to specify ontologies include the following.

Class similarly to Object Oriented Languages, represents a concept in the domain (e.g. Actor).

The classes can have instances, or Individuals. Classes define the structure of the ontology.

Individual represent an element which belongs to a Class (e.g. user), an instance. The indi-

viduals (and their relations) are the data of the knowledge base. Individuals relate between

themselves via Object Properties.

ObjectProperty represent the relation between individuals (e.g. clicks). An individual related

to another individual via an object property forms an RDF triple (e.g. user clicks link).

DataProperty represent data in the individuals (e.g. id of type integer). They make it possible

to add information to individuals beyond their names.

AnnotationProperty can also be associated with individuals (e.g. transient), denoting an

annotation.

DataType represent the types supported by OWL (e.g. integer, decimal, string, etc.).

1Full list of elements in http://www.w3.org/TR/owl2-manchester-syntax/, last accessed in 2016-05-26

http://www.w3.org/TR/owl2-manchester-syntax/

24 CHAPTER 2. BACKGROUND

OWL ontologies can be written in several interchangeable languages. Listing 2.4 presents an

example on an ontology, written in the Manchester OWL Syntax [56], which provides a more

easy to read format than other representations. The ontology contains information about a user

clicking a link. User is an individual of class Actor. Clicks is the object property (a fact) that

relates it to the Link. Figure 2.6 presents an overview of the ontology. In this work, ontologies

will be described in the Manchester OWL Syntax.

Ontology: <http :// www.url.com >

ObjectProperty: <http :// www.url.com#clicks >

Class: <http :// www.url.com#Actor >

Individual: <http :// www.url.com#link >

Individual: <http :// www.url.com#user >

Types:

<http :// www.url.com#Actor >

Facts:

<http :// www.url.com#clicks > <http :// www.url.com#link >

Listing 2.4: Example of a simple OWL ontology describing the information of a user which clicks

in a link.

Figure 2.6: Representation of a simple ontology (describing the information in Listing 2.4).

Some languages have the objective of easing the specification of OWL ontologies, as is the case

of Manchester Syntax [56] and Rabbit [50], or even higher level formats as the aforementioned

ACE [73]. ACE further improves readability of the statements, when compared with Manchester

or Rabbit syntax, by providing a simple format for interactions description. Hence, ACE can

be adjusted in order to support the specification of (use case) requirements, even if it was not

designed specifically to support that kind of specification. Adopting one such approach, not

only supports formalizing requirements, but also reasoning about them. On the one hand,

being ACE closer to natural language, makes it easier to write, and consequently formalize, the

requirements. On the other hand, the language formalizes the requirements, which supports the

reasoning process.

2.3.5 Discussion

Knowledge bases are a possible approach to formalize requirements information. Several ap-

proaches exist to support such specifications, but ontologies stand out for their capabilities to

structure knowledge, while providing inference capabilities. Several authors successfully ad-

dressed the usage of ontologies in order to represent requirements and reason about them. The

2.4. KNOWLEDGE INFERENCE MECHANISM 25

presented works do not address, however, representation of use cases in ontologies. Nevertheless,

these works, can be used as a basis for a more specific application of ontologies to represent use

cases.

From the several languages available to create ontologies, OWL seems to be the most appropriate

as it is widely adopted and supported by several tools. OWL has the expressiveness to define

requirements ontologies as well as their instances. Adoption of the OWL DL subset supports

also performing the query process on that knowledge.

2.4 Knowledge Inference Mechanism

Knowledge inference mechanisms support the analysis of the formalized information in knowl-

edge bases, through well defined processes and languages. From several usages for the inference

techniques, one is to analyze the relations between requirements. Such enables the possibility to

apply pattern inference mechanisms. Implementing a pattern inference mechanism is required

in order to recognize the high level requirements expressed in specifications, as part of the pro-

posed approach. Next follows some approaches which support information and pattern inference

processes.

2.4.1 Inference in OWL

One of the main reasons to adopt OWL as the language to define requirements is the available

query engines. The inference mechanisms support knowledge extraction in order to analyze and

interpret the data specified in the knowledge bases.

Several languages exist to query OWL knowledge bases, as is the case of DL query which resorts to

the Manchester Syntax [57], Terp [102], SWRL [90] and SQWRL. However, the de facto language

for data query is SPARQL [2], as proposed by the W3C. SPARQL is a structured query language

(much like Structured Query Language (SQL)). SPARQL queries can either result in data sets

or RDF graphs. Hence, this powerful and standard query language was selected.

PREFIX : <http :// www.url.com#>

SELECT ?object

WHERE {

?s :clicks ?object

}

Listing 2.5: Example of an SPARQL query to list which objects relate via click object property

to any subject.

Listing 2.5 shows an example of a SPARQL query, to identify individuals which are the target

of the clicks object property. The prefix identifies the ontology to be queried, and the words

26 CHAPTER 2. BACKGROUND

preceded by “?” denote variables (e.g. ?object). The Where block, describes the query itself,

in a triple format.

Considering the proposed objectives, exploring the SPARQL seems to be appropriate, since it is

the most adopted (and supported) language.

2.4.2 Available OWL Tools

Several tools support the development and use of OWL (see W3C’s website2 for a list). The

Protégé IDE is perhaps the most well known [71]. There are also several implementations of

reasoners supporting OWL (e.g., Chainsaw, FaCT++, JFact, HermiT, Pellet, RacerPro). Two

reasoners stand apart from the others, namely HermiT (used in Protégé), and Apache Jena.

Apache Jena is an open-source framework for Java which supports creating, manipulating and

querying RDF (and OWL) ontologies.

Another alternative to interaction with ontologies is the OWL API [55]. It is another open

source Java framework with the same objectives of Apache Jena. Both frameworks would suit

the approach needs. The selected tool to support the proposed work is Apache Jena. First, it

supports the creation of ontologies, as required by the proposed approach. Second, being an

Apache framework, it will continue to have support and updates, as the Apache projects tend to

be reliable.

Since is part of the objectives to have a tool which supports the inference process, Apache Jena

seems to be an adequate way to integrate OWL specification and query mechanisms into Java

applications.

2.4.3 Discussion

In order to represent requirements information, knowledge bases are a recurrent approach. It is

possible to find several works addressing such representations resorting to ontologies. Ontologies

are expressive enough to handle such specifications, while providing query mechanisms.

Regarding the proposed approach, these works provide valuable insights on how to perform the

formalization of the information, and which kind of verification techniques it is possible to apply.

They further provide hints on which specific technologies are most common, as is the case of

OWL and SPARQL. Despite none of the works addressing specifically the representation of use

cases, they provide valuable hints on how to achieve such, and regarding the viability of such

approach. Both exploring the capability of OWL to represent requirements’ information, and

SPARQL’s capability to query them is proposed.

2W3C list of relevant OWL tools, http://www.w3.org/2001/sw/wiki/OWL, last visited February 2016

http://www.w3.org/2001/sw/wiki/OWL

2.5. SOFTWARE PATTERNS 27

2.5 Software Patterns

This section presents an overview on software patterns’ related works. Approaches concerning

their definition, representation, instantiation, usage and inference are presented, in order to

discuss the viability of formalize and operationalize them. Not an extensive amount of works

can be traced in all areas, but some insights can be obtained from the existing ones.

2.5.1 Patterns

The term Pattern can be traced back to Christopher Alexander’s work [1]. A pattern is defined

as a well known solution, for a given kind of problem, that arises in a specific context. Given

a problem, patterns enable solutions to be reused without the need to recreate them all over

again. Patterns exist within a certain context. Hence, given a problem/context pair, patterns

provide the corresponding solution (c.f. Figure 2.7). Such an idea of a pattern was later adopted

to software engineering by Gamma et al. [41]. Since then, there have been a large amount of

works related with patterns [96].

Figure 2.7: Patterns as bridges between problems/contexts and solutions.

In software engineering patterns appear in several flavors, depending on their objectives. Two

kind of patterns are specially relevant in the context of this work. First, are the requirements

patterns. Specifically, for a given set of stakeholders needs, the matching requirement patterns

present a good requirements specification. The second relevant kind consists of design and

architectural patterns. Design patterns provide solutions for common issues which occur at the

design level (i.e. organizations of classes). Architectural patterns produce solutions for issues

which occur at a higher architectural level (i.e. organizations of classes groups).

2.5.2 Requirement Patterns

Requirement patterns are both applicable on software engineering and requirements engineering,

with works addressing their specification, management and application. While not as popular

as other kinds of patterns (e.g. design and architectural patterns), several works regarding

requirement patterns can be found. Requirement patterns are referred to in literature also

as software requirement patterns. In this work, in order to differentiate them from patterns

which describe solutions (e.g. design and architectural patterns), they are simply referred to as

requirement patterns.

28 CHAPTER 2. BACKGROUND

A systematic literature review on requirement patterns was performed by Silva and Benitti [29].

Three interesting outputs resulted from the literature review.

• As expected, the usage of templates in order to specify requirement patterns is common

practice;

• While some authors focus on the specification of non functional requirements with re-

quirement patterns, there is evidence that they can also be used to specify functional

requirements;

• Requirement patterns should support composition processes.

Regarding the proposed objective, it is relevant the fact that there is evidence of their usage,

specifically to specify functional requirements.

Several authors address the definition and specification of requirement patterns [119, 40]. A rele-

vant contribution is provided by Withal [120], which presents a catalog of requirement patterns,

addressing aspects such as their usage, classification and identification. Another relevant work

is presented by Yan, which catalogs and classifies 72 eCommerce patterns [123].

The organization of requirement patterns in catalogs has been addressed by several works in

order to support different scenarios. Apart from the aforementioned work by Withal [120] (one

of the most complete, with 41 patterns, distributed by 8 categories as depicted in Figure 2.8), it

is possible to find catalogs which document domain specific patterns, as Content Management

Systems (CMS) [93], or address specific aspects of the systems, as usability [16], trust [54],

sustainability [97] or legal aspects [53].

Figure 2.8: Overview of Withall’s pattern catalog (from [120]).

2.5. SOFTWARE PATTERNS 29

Analysis on the adoption of requirement patterns shows that, despite the difficulties, they are

being adopted as recurrent practice, for instance in the industry [39, 30]. Works which address the

usage of requirement pattern in systematic ways contribute to their adoption. Authors present

approaches to formalize requirements, and to reason about them [39, 30]. Existing approaches

tend, however, to focus in the requirements engineering aspects. Tools and approaches focus in

handling, managing and analyzing requirements and their relations (e.g. support for reuse), as

means to support the software development process. In the context of this work, the inference

of requirement patterns from requirement specifications is proposed, in order to automate the

analysis of requirements.

Analysis of existing works on requirement patterns shows that authors are concerned mostly

with the analysis and verification of specifications, in order to improve the specifications them-

selves. It was not possible to find, however, works providing a systematic and automated oriented

transition process from requirement patterns to software specifications. Since requirement pat-

terns represent aspects of the final solution, implementing such a transition provides support to

generate solutions closer to the intended specifications.

2.5.3 Patterns Categorization

The pattern instantiation process consists in producing specific outputs (e.g. models, or code),

from a pattern specification. In the context of this work, the instantiation of software patterns,

in order to produce architectural models, is proposed.

Opposing to requirement patterns, the quantity of works concerning software patterns is exten-

sive, therefore, it is not trivial to find a clear categorization of existing works. A literature review

was performed in the context of this work. From this review two relevant outputs were produced.

First, a template was specified with the intent of supporting all kind of patterns. Second, two

levels of patterns were defined, namely Patterns and Patterns Sets, in which existing approaches

can be categorized. Figure 2.9 presents the result of the categorization process.

The Pattern sets are subdivided in three categories. Pattern Catalogs consist in a set of software

patterns described and organized according to their nature, in order to support their usage.

Pattern Languages consist in subset of patterns and their relations. Pattern compounds are small

sets of patterns which are usually found together, or are known for producing good solutions when

combined.

The patterns themselves can represent information at different levels of abstraction. Requirement

patterns, as aforementioned, represent common requirements found in different specifications.

Analysis patterns represent knowledge at analysis level, without concerning source code or im-

plementation. Architectural Patterns, as presented for instance by Buschmann et al. [15], present

architectural solutions for specific situations, with corresponding forces and drawbacks. Design

Patterns, as proposed by Gamma et al., define design-level solutions for well known problems for

Object Oriented projects. Finally, Idioms define platform specific solutions.

30 CHAPTER 2. BACKGROUND

Figure 2.9: Categorization of software patterns, according to their abstraction level (higher on

the bottom, lower on the top) [27].

Regarding the production of models as input for the MDA process, they are achieved by com-

posing software patterns. Thus, apart from the requirement patterns, two other patterns are of

special interest. On the one hand, architectural patterns which specify how to organize groups

of classes, at a high level of abstraction. On the other hand, design patterns specify how the

individual classes should be organized. More information can be found in the technical report

resulting from the literature review [27].

2.5.4 Pattern Inference

The inference of patterns from knowledge bases has already been the subject of study. It is

possible to find works from the late 90’s regarding pattern inference on several formats [113].

For the proposed approach, the objective consists in the inference of requirement patterns, which

in their genesis are similar to software patterns. As result, presented work focuses in software

patterns.

One of the most influential works regarding software patterns, specifically design patterns, was

presented by Gamma et al. [41]. Such work, in a form of a pattern catalog, defined the basis

for many following works. There are other influential works describing software patterns at

other levels of abstraction, as is the case of architectural patterns [37, 15] and requirement

patterns [119]. The definition of patterns is essential in order to perform their inference.

When patterns started to be defined, several works emerged regarding their inference (see, for

instance, [96] for a survey). Software pattern inference was addressed in several aspects. Some

2.5. SOFTWARE PATTERNS 31

authors propose their inference by analyzing source code in which they are are contained [113,

100]. These approaches are mostly useful for documentation and reengineering tasks, since they

provide a better understanding of the source code organization. Directly analyzing the source

code avoids the need to pre-process the code and apply transformation techniques. The analysis

is made directly in the artifacts themselves.

An alternative to analyzing only the source code, is to generate an intermediary representation.

An example of such is to generate a UML model from the respective source code, and map it

into a ontology, written for instance in Prolog [68]. Creating an intermediary representation,

as a knowledge base, is more expressive, but there is the need to apply an analysis process to

the source code, prior to generating the knowledge base. This translation process represents an

additional cost, and might lead to loss of information. In the case of analyzing only source code,

there are also tools supporting software pattern inference. An example is the Ptidej tool suite,

with the objective of evaluating and enhancing software quality through patterns [48].

Previous works by the authors provided relevant background to support the objectives proposed

in this thesis [22, 23]. The authors developed an approach to analyze Java source code, generate

high level models (class diagrams), and in those models infer the existence of design patterns,

resorting to a knowledge base and an inference engine, as depicted in Figure 2.10. These works

provided knowledge in order to extend such approach, and support the proposed objectives.

Figure 2.10: Design pattern inference approach, adapted from [22].

The specific inference of software patterns from OWL knowledge bases has also been addressed

[69, 59]. The approaches analyze source code in order to generate intermediary representations,

which are next formalized in OWL. Resorting to OWL’s inference engine, the authors are able

to perform software pattern inference. These works are of special interest, since the proposed

approach requires support for inferring requirement patterns from a knowledge base.

As part of the objectives proposed in this work, several approaches were presented which can

be adjusted in order to support the formalization of requirements in OWL. The aforementioned

approaches all deal with software patterns. For requirement patterns, specially considering their

32 CHAPTER 2. BACKGROUND

inference, there are not a large amount of works available. However, since requirement patterns

are similar to software patterns, it is possible to develop a new inference approach based on the

existing ones.

2.5.5 Software Pattern Instantiation

Software patterns were not designed with the objective of being automatically instantiated.

Instead, it is the responsibility of developers to specify concrete instances of the patterns. As

part of the objectives for the proposed approach, this instantiation process is required to be

semi-automated. By supporting automatic instantiation, patterns can be used in a composition

process to achieve a unified solution.

One of the fields specified in software patterns catalogs (e.g. [41, 15]) is the sample implementation

(e.g. Structure and Implementation), which guides the application of that patterns. In order to

support a semi-automatic process, it is possible to resort to the provided sample implementation

to document patterns in an appropriate format. Being the sample implementation defined as

a structure, similar to a template, creating the concrete instances consists in concretizing such

templates.

The instantiation process required for the proposed approach concerns the design and architec-

tural patterns level. Instances of both kind of models can be materialized as architectural models,

for instance as UML class diagrams, in order to represent the structural aspects.

By analyzing existing pattern catalogs and the pattern structures, it is proposed to define a

template format with support for instantiation. This template format generates then instances

of the proposed implementation, with interaction from the users.

2.5.6 Discussion

The amount and scope of works regarding patterns has established a relatively large body of

knowledge in that area. Nevertheless, regarding the automation of the instantiation process,

there are currently no suitable approaches which satisfy the proposed objective. A process is

required to create concrete software patterns, in such a way that, while being semi-automatically

performed, the process generates outputs according to the correspondent pattern.

In order to implement an approach to systematically support the instantiation process (with

automation in mind), currently documented patterns were analyzed. Existing patterns tend to

be specified alongside with their structure, or sample implementation. Abstracting such definition

provides support to reuse them, by supporting the definition of instances.

2.6. SOFTWARE PATTERN COMPOSITION PROCESS 33

2.6 Software Pattern Composition Process

Software patterns can be composed resorting to different operators, in order to be incorporated as

part of the same solution. The process’ automation is required in order to support the automatic

generation of architectural models. This section describes the analysis of existing approaches

concerning the composition, model generation and code production processes.

2.6.1 Composition Techniques

Three major categories of pattern composition techniques can be found in the literature, namely

Connection, Combination and Inclusion (c.f. Figure 2.11) [114, 112]. Connection of patterns

consists in connecting elements from one pattern to another pattern. Such results in the two

patterns existing separately, but still associated. Combination of patterns is based on unifying

compatible classes existing in different patterns, in a single class. Finally Inclusion of patterns,

consists in a pattern being included as part of another one.

Figure 2.11: Pattern composition techniques.

Two major merging operators support the three pattern composition techniques, specifically

Stringing and Overlapping (c.f. Figure 2.12) [121, 114]. Stringing consists in connecting elements

of the two patterns (e.g. through an association), in order to make a connection between those

two elements. Overlapping is a merging operator which combines the information of two entities,

existing in different patterns, merging then the patterns.

2.6.2 Discussion

Applying the pattern composition techniques is straightforward to perform. The process consists

in selecting the appropriate components, and applying the aforementioned operators. Existing

works successfully describe how the process should be performed. There are however issues which

result from the composition process. Two are worth mentioning, namely the traceability of the

34 CHAPTER 2. BACKGROUND

Figure 2.12: Adaptor and Composite patterns composition by a) Stringing and b) Overlapping.

original patterns, and the selection of the appropriate components to compose. Approaches that

address the traceability aspects, propose improvements on the merging operators and processes,

in order to keep some information which supports traceability [112]. Remains also to implement

an automated process, according to the selected pattern representation format.

2.7 From Requirement Patterns to Software Patterns

The association of requirement patterns to software patterns enables the possibility to make the

transition from the requirements level, to the architectural one. This mapping process consists in

selecting the most appropriate software pattern, to support a certain requirement pattern. This

selection process is performed by analyzing how the software patterns support the requirement

patterns.

2.7.1 Selecting Patterns for Requirements

The selection of the appropriate software patterns to support an architecture can be performed

by analyzing the requirements information. This is only natural, since requirements describe the

desired features in the final solutions, and patterns contain a set of contributions to the solutions

in which they are integrated. Usually, the selection of software patterns, based in requirements

specification, is performed through manual processes [46, 18].

Of special interest is the systematic approach presented by Bass et al. to select patterns, in

order to support usability [4]. High level requirement specifications are decomposed into smaller

components (scenarios), which can be analyzed at a lower level. Patterns are characterized by

2.7. FROM REQUIREMENT PATTERNS TO SOFTWARE PATTERNS 35

their benefits to usability, and the composition process consists in selecting the most appropriate

benefits to support a certain scenario. Bass et al. approach, despite being designed to support

usability (patterns), can be adapted to support software and requirement patterns. Decomposing

the patterns to lower level components, enables the possibility to compare their concerns and

contributions, thus, supporting a matching process.

In order to have an automated process, it remains to provide a systematic approach to analyze

the relations between requirement patterns concerns and software patterns contributions.

2.7.2 Relating Requirements

In the Non-Functional Requirements (NFR) area it is possible to find several works addressing the

interactions among several requirements (see [86] for a survey). It is known that requirements

interact between them, not only affecting the final solution, but also other existing require-

ments [17, 118]. A special kind of interaction is the conflict. Conflicts denote contradictory

concerns among different requirements, meaning that when a requirement is set, it conflicts with

the objective of other requirements defined in beforehand [33, 9].

The identification of conflicts between requirements is based in the objectives of each requirement,

and how each contributes to the solution. Mairiza et al. present a systematic approach to analyze

conflicts between requirements [85]. In that approach, requirements are described by their types,

and their interactions are analyzed. Such results in a table of conflicts, as presented in Table 2.2.

In the table, the symbol X means an absolute conflict, * a relative conflict and O no conflict. The

conflicts for the remaining relationships (empty cells) are unknown.

Table 2.2: Example of conflicts between requirements (adapted from [85]).

NFRs Functionality Interoperability Maintainability Performance Portability

Functionality O * *

Interoperability X

Maintainability * O X

Performance * X X * X

Portability X

The methodologies to analyze conflicts on non-functional requirements can be adapted to support

the analysis of conflicts in patterns. If patterns are described at the same level of abstraction

(corresponding to the NFRs types), it is then possible to generate a similar approach to clearly

define the interactions between patterns, achieving then a systematic approach. It remains then

to formally specify, at the same level, characteristics of both kinds of patterns (i.e. requirement

and software), in order to support one such approach.

36 CHAPTER 2. BACKGROUND

2.7.3 Forces

Software patterns can be described by their low level impact in the solutions. In the patterns

community, there is a term to describe those low level characteristics, the forces. The term force

is used to denote (c.f. Buschmann [15]): “any aspect of the problem that should be considered

when solving it, such as Requirements (what the solution must fulfill), Constraints (things to

consider), and Desirable properties (that the solution should have)”.

In general, forces represent the pros and cons of adopting a specific pattern. They may com-

plement or contradict each other. For instance the extensibility of a system might contradict

minimization of its source code, since a generic solution tends to be more complex in terms of

code. In Buschmann’s words [15], “forces are the key to solving the problem. The better they are

balanced, the better the solution to the problem”. Software pattern catalogs tend to describe the

forces (e.g. intent) for each cataloged pattern [15, 41]. The application of different patterns, and

the effects of the forces on the resulting application, are usually presented in a tabular format,

where for each force is shown the impact on other forces. This format is usually called the forces

matrix.

Requirements patterns, can also be described by the forces that compose them. Specifically, it

is possible to analyze their goals, which can be characterized by their forces, similarly to non

functional requirements [46].

2.7.4 Discussion

It is possible to find several approaches to map requirement patterns to software patterns. Ex-

isting works focus in the analysis of low level aspects of both requirements and patterns, in order

to perform their matching. However, approaches tend to not formalize the information, therefore

presenting hard to automate approaches. In the non-functional requirements area, approaches

have been proposed that relate requirements by their contribution (either positive or negative to

other requirements) in order to analyze their conflicts, and produce a conflicts table. Describing

requirements at the same abstraction level is also proposed to enable their comparison.

Based in the presented approaches, it is proposed to analyze the viability of specifying require-

ment and software at the same level of abstraction. Of special interest are the forces, which can

be used in order to analyze conflicts, and support an automated process. The objective to have

a mapping process from requirements to software patterns consists then in selecting the most

appropriated software pattern, based in its contribution for the requirement pattern.

2.8. SIMILAR APPROACHES AND SUPPORTING TOOLS 37

2.8 Similar Approaches and Supporting Tools

It is possible to find approaches which have objectives close to the ones proposed in this work.

These approaches were analyzed in order to understand their contributions, and later be used

to implement the proposed approach. Furthermore, it is relevant to understand to which extent

existing works cover the proposed objectives.

2.8.1 Requirements Based Approaches

Similar approaches can, overall, be classified in two major groups. First, there are works which

resort to the analysis of textual specifications, and identify relevant terms which are directly

translated into entities. Relations between those terms are then translated into relations between

the entities [3, 92]. One approach worth mentioning is presented by Liu, where use cases are

formalized and described according to a vocabulary, with predefined meaning [81]. In the second

category of works, are the approaches that take the specifications on a predefined format, which

can afterwards be converted into source code [103]. For instance, Bulajic et al. present an

approach which generates source code, but focus in the validation of business requirements,

during the requirement negotiation process [14].

Presented approaches successfully address the generation of software outputs (e.g. models and

source code), based on requirement specifications. The processes are not, however, focused in

contributing to the MDA, by extending the process. Instead, they implement a different vision,

where models are not required to support the different steps of the processes.

2.8.2 Supporting Tools

The tools which can help to achieve the proposed objectives include the Apache Jena framework

to support the representation and query of OWL ontologies, in Java [62]. The Protégé tool

provides several facilities in order to develop and test the required ontologies [71].

As a way to support the storage, sharing and spreading of the inputs and outputs of the pro-

posed approach, it was developed the Modelery [21, 25]. Modelery consists in an online models

repository, which provides an API, in order to enable the integration of the models’ upload and

download features in modeling tools.

2.8.3 Discussion

The existence of approaches with similar objectives to the proposed ones is acknowledged. While

these approaches support the generation of different kinds of artifacts, they differ from the

proposed in this work. Indeed, none of the approaches concerns the extension of the MDA

process, by formalizing requirements and automating the architectural model generation process.

38 CHAPTER 2. BACKGROUND

Instead, the approaches focus in the generation of specific outputs instead of models. Thus, to

the best of the author’s knowledge, no work capable of covering the proposed objectives exists.

Supporting tools provide a valuable help in order to achieve the proposed objectives. They

contribute for several steps of the proposed process, namely in the representation and and analysis

of requirements in an intermediary format. Both the analysis and interchange of ontologies is

also supported by existing tools.

2.9 Summary

This chapter provides an overview of the works related with the objectives for the proposed

approach. Several areas were addressed, as well as their current contributions and issues to

tackle, in order to accomplish the proposed objectives.

There are several existing approaches in order to specify requirements in a simple format. From

natural languages, to more formal formats, different authors present different visions. A possible

approach is to find a middle term, with a controlled language, which can easily be formalized.

Structuring requirements information can be achieved in several ways. From the analyzed ones,

OWL seems to be a suitable approach for its capabilities to specify and organize knowledge.

Indeed, if a proper specification language is selected, the requirements formalization into OWL

can be achieved without comprehensive textual analysis techniques.

Some existing knowledge bases representations support the information extraction process, by

providing query languages. Hence, formalizing the requirements in an appropriate knowledge

base, provides support for such query languages, and consequently for information inference.

This information inference mechanism tackles the objective of performing pattern inference in

the knowledge base.

Patterns in software engineering are well established nowadays, from their specification and

composition to their inference. As expected, the presented approaches are generic enough in

order to be adjusted to the individual needs. Hence, based on existing works, it is possible

to develop a specific approach. Since patterns are well documented and several authors have

analyzed them at several levels of abstraction, their mapping into other kinds of patterns is

possible by analyzing their lower level characteristics.

Patterns are also currently well documented, with characteristics such as sample implementation

and examples of usage. Hence, creating concrete instances is possible by defining generic for-

mats for their specification. Their composition has also been object of study, with two merging

operators (stringing and overlapping), supporting the composition of architectures from a set of

pattern instances. The MDA provides the framework to take these resulting architectures, and

produce computable outputs as result.

2.9. SUMMARY 39

Table 2.3: Overview of the related work.

Process Implemented

Requirements operationalization e.g. [92, 65]

Requirements to intermediary representation e.g. [63, 73]

Use case representation e.g. [61, 38, 20]

Use case formalization ⇥
Use cases to intermediary representation ⇥
Use cases to ontology ⇥
Architectural to Architectural Models e.g. [70]

Architectural to Software Models e.g. [70]

Software pattern inference e.g. [22, 23, 96]

Software pattern composition e.g. [114, 112]

Requirement pattern inference ⇥
Requirement pattern to software pattern ⇥
Requirement Model to Software model ⇥

Finally, approaches with similar objectives to the presented ones do not tackle the same objective

of producing architectural models in order to take advantage from the MDA. Existing tools

and libraries can, however, support the implementation of a new tool supporting the proposed

approach.

In conclusion, it is possible to find a large amount of works in the literature regarding the several

aspects of the proposed approach. Indeed, these works provide valuable contributions to specify

a new approach. In order to take advantage of existing works, there are adjustments which

need to be made, since they were designed with different objectives. Table 2.3 summarizes the

current state of the several addressed areas. It is possible to see that use cases formalization,

transformation and requirement pattern inference are the areas with less focus.

Although many areas are covered by existing approaches, they are not combined into a single

solution. As an example, use case specification languages with support to automatic transfor-

mation have not been integrated with requirement patterns. An overview of approaches with

similar objectives to the proposed ones is presented in Table 2.4. In the table is shown that, from

existing approaches, none is able to fully automate the requirement models to software models

process, through a systematic pattern process. While the objectives of SCARP go towards a

semi-automatic process, it is not proposed to produce software solutions as complete as other

approaches. For SCARP is, however, proposed to deal with patterns in order to improve the

transformation process.

40 CHAPTER 2. BACKGROUND

Table 2.4: Comparison of existing approaches.

Jacobson [61] Overmyer [92] et al.
Kamalrudin and

Grundy [65]

SCARP

goals

Available ⇥ –

Automatic ⇥ –

Model Based –

Requirements Models ⇥ ⇥ ⇥
Intermediary
representation

⇥ ⇥ ⇥

Self contained Steps ⇥
Use cases ⇥
Evolutionary prototypes ⇥
Executable outputs ⇥

Chapter 3

The SCARP Approach

This chapter presents the SCenario bAsed Rapid software Prototyping (SCARP) approach.

SCARP has the objective of providing a systematic process to produce software artifacts (e.g.

architectural information and prototypes), based on the textual specification of requirements.

The approach is a comprehensive process, composed of several steps addressing the different

areas involved in going from requirements specification to architectural artifacts production.

Dealing with different areas results in a multi step process. SCARP was designed to support

the automation of some of these steps, in order to provide a systematic process to produce

software artifacts from requirements specifications. Requirements elicitation and refinement is

not addressed in SCARP. Instead, it is considered to be a previous step, part of Requirements

Engineering processes.

The diversity of steps results from the need to address the formal representation of require-

ments, extraction of information, and consequent transformations until source code. Thus, the

process starts with requirements formalization resorting to a CNL. The formalization is then

transformed into an intermediary format with support for querying. Such enables the system-

atic and automated analysis of the requirements information. The automated analysis process

supports, for instance, the extraction of requirement patterns, which are mapped into software

patterns. Performing composition of those patterns results in architectural outputs, supporting

the specified requirements. SCARP has an iterative nature, supported by systematic and auto-

mated processes. Hence, if the resulting outputs are not as expected, it is possible to repeat the

process, adjusting the inputs.

Not the same emphasis was equally given to all phases, since for some of them good solutions

already exist (c.f. Chapter 2). Some of the phases are described in more detail, as for instance

the use case formalization processes, while to other phases, due to having known solutions to

support them (as the code generation from XML Metadata Interchange (XMI)), less emphasis is

given. This chapter describes, for each step of SCARP, which are the tasks and issues to tackle.

41

42 CHAPTER 3. THE SCARP APPROACH

3.1 Automation of a Model based Process

Automation in model bases software development methodologies supports, among others, its ap-

plication in a systematic and consistent manner, ensuring repeatability. Systematization provides

also the viability to develop a tool supporting the process.

Regarding the previously defined objectives (see Section 1.3.3), works addressed so far tend to

support both systematization and automation of specific aspects of the problem. Hence, part of

the systematization consists in taking advantage from these aforementioned works.

3.1.1 MDA and the Proposed Approach

The proposed approach relies in models in order to support several steps. Furthermore, models at

two levels are required: those in which patterns are applied, and, those containing the information

required to produce software prototypes. Hence, the MDA suits the proposed approach. It is

possible to map the outputs from the approach to corresponding MDA artifacts (c.f. Figure 2.1),

as follows.

High level models (PIM) are the models generated from the combination of architectural

patterns.

Standard Languages can be industry standards (as proposed by Mellor and Balcer, presented

next [88]), therefore UML.

Transformation definitions need some information about the context (see Entities and Work-

flow Framework (EWF) in the next section).

Languages to write the transformation are part of the informations related with the con-

text.

Tools are artifacts needed in order to automate the transformation process (and part of the

proposed objectives).

By using the MDA it is possible to achieve automatic generation of code, by providing the

required artifacts. Hence, there is the need to implement them, in order to complete the process.

3.1.2 The Entities and Workflows Framework

The MDA transformation processes (both from PIM to PSM, and from PSM to code), require

inputs related with the specific platform in which these models are being deployed. This infor-

mation supports the models refinement process, and both automated or manual transformation

processes. If provided in an appropriate format, this information can support the automated

transformation process.

3.2. SCARP OVERVIEW 43

In order to provide support for that information, the EWF is proposed. The purpose of such

framework is to support the automated transformation process, by providing context to the

entities in the models. Such allows not only to add meaning and structure to the entities, but

also behavior. Hence, the EWF supports the transformation of the models, by specializing the

entities in the models, leading then to source code meaningful for the EWF context.

In practice, the EWF specifies the application domain, while providing some more information.

On the one hand, it provides the domain information relevant for the application being developed.

Such includes the existing entities, and how they relate. On the other hand, the EWF provides

inputs specific for the domain. Such includes query and mapping information. Briefly, the EWF

will provide the transformation definition required by the MDA in order to perform the models’

transformation.

3.2 SCARP Overview

The SCARP process is composed of two groups of tasks. First, there is the parametrization

tasks, which include the specification of the domain model and transformation information, as

well as the specification of the pattern catalogs (c.f. Figure 3.1 Application domain and

Process Inputs). The second group of SCARP tasks starts with the formalization of use cases

scenarios by the user (Figure 3.1 I)), resorting to a CNL to describe the scenarios. The use cases

are then converted into an intermediary knowledge base, specifically in OWL (Figure 3.1 II)).

OWL enables the possibility to query the formalized use cases information, in order to extract

requirement patterns (Figure 3.1 III)). The requirement patterns can be associated with software

patterns (Figure 3.1 IV)). Composing software patterns through appropriate techniques leads to

architectural solutions (Figure 3.1 V)). The architectural solutions correspond to UML models,

that can be used to produce, for instance, source code (Figure 3.1 VI)).

Figure 3.1: The SCARP process.

In order to support SCARP three types of reusable inputs are required. First, the domain

model is required. In a domain model the existing entities and corresponding relationships (for

a specific domain) are described. Second, the process inputs are required. They parametrize

how the process is performed. Queries and transformation rules are examples of process inputs.

44 CHAPTER 3. THE SCARP APPROACH

When changing the application domain, the domain inputs can be reused, however the domain

model should be adjusted accordingly. These two inputs correspond to the EWF. Finally, the

use cases must be provided. They correspond to the starting point of the SCARP process.

Two actors are expected to interact with SCARP. On the one hand, there are the actors which

perform the approach setup. Such includes the specification of reusable inputs, as the domain

model and queries which is the specification of the EWF. On the other hand are the actors which

use the approach to generate the architectural outputs. The latter ones provide, for instance,

the use case specifications and types information.

The next section details each step of SCARP. For each step the required processes are presented,

as well as the inputs supporting the processes.

3.3 SCARP Parametrization

The existence of previous knowledge is assumed in order to support the extraction of domain

relevant information in SCARP. This step of parametrizing the application context is required,

prior to the execution of the process itself, and corresponds to the first group of tasks to apply

SCARP. Such is performed by providing the Application Domain, as well as the patterns and

matching information process inputs (c.f. Figure 3.2), corresponding to the EWF.

3.3.1 Domain Model Specification

The Application Domain is a reusable artifact used in SCARP, and represented by a Domain

Model, which defines the kind of application that the process will generate. The Domain Model

supports also the extraction of a Glossary of terms existing in the domain, the Relations between

the entities, as well as the Types and Attributes of the entities.

The level of detail of the domain model will affect the process itself, since the process relies in

this model.

Figure 3.2: Artifacts in the Application Domain.

Figure 3.3 details (resorting to a UML activity diagram) the information flow for the Applica-

tion Domain specification process. The user has the responsibility to specify such Application

Domain. The user starts by Creating the Domain Model, which results in a specific Do-

main Model instance (for the application context). In SCARP the domain model instance is

3.3. SCARP PARAMETRIZATION 45

used to Extract information related with that domain. Such process consists in producing a

knowledge base containing the Glossary of terms related with the domain (e.g. Actor, User,

Email), the Types information (e.g. Actor, Person, Field) and Attributes for those terms

(e.g. Email, Age, Name). All those outputs are useful for the following steps.

Figure 3.3: Setup of SCARP - providing the domain model.

The Glossary corresponds to the set of existing entities in the Domain Model. The entities

represent all the known terms to the process in an open-world assumption, meaning that for

instance, new terms can be added later. The glossary information is extracted by iterating all

the domain model elements, and extracting their names and relationships.

The Types and Attributes information corresponds to a subset of the Glossary of terms. By

analyzing how the entities in the domain model relate to each other (i.e. the names of the

relationships between two entities), each entity is defined as having a type. In order to define this

information, three categories of relationships were specified, namely CompositionOf, PropertyOf

and TypeOf. The role of the categories is as follows.

CompositionOf classifies the relationships which state that an entity contains another entity.

PropertyOf classifies the relationships stating that an entity is a property of another entity.

TypeOf classifies the relationships which state that an entity has the type of another entity.

Figure 3.4 presents an example of a domain model, which can be provided to SCARP. Example of

entities contained in the model are User, Actor Cart and Order. Regarding their relationships,

it is possible to identify contains, has and is. If the contains relationships is classified as

the type CompositionOf, then the User contains Cart. Similarly, if is is classified as TypeOf,

therefore a User is an Actor. Finally, considering that has belongs to PropertyOf, a Cart contains

a Order.

The domain model specification has the objective of being lightweight, without restricting the

names of entities and relationships. By categorizing the different kinds of existing relationships

in the domain model, it is possible to assign meaning to the domain model elements.

46 CHAPTER 3. THE SCARP APPROACH

Figure 3.4: A domain model for an eCommerce context.

3.4. USE CASES SPECIFICATION 47

In order to support SCARP, the Domain Model is formalized into a knowledge base. Such is

required in order to enable the possibility to query the information.

3.3.2 Patterns catalogs

SCARP requires also the existence of two pattern catalogs in order to perform the process. On the

one hand, a requirement patterns catalog is required. This catalog must describe the requirement

patterns to be inferred in the specifications. The catalog must be specified in the form of queries

(see Appendix B.3 for an example of a requirement patterns catalog). On the other hand, a

software pattern catalog is required. The catalog can contain, for instance, the specification of

design and architectural patterns, to be used in order to achieve architectural models. These

patterns should be described in a format that abstracts the user from the implementation details,

and at the same time in a format which eases their operationalization (see Appendix B.4 for an

example of a software patterns catalog).

The requirement to software pattern matching process is based on the analysis of the relations

between these two types of patterns. Thus, the process requires the characterization of both

kinds of patterns, namely regarding the concerns of requirement patterns, and goals of software

patterns. This mapping information should be described in a format with support for automatic

analysis, namely in an OWL ontology (see Appendix B.5 for an example of matching information).

This information corresponds to the Process Inputs, depicted in Figure 3.5.

Figure 3.5: SCARP process inputs.

3.4 Use Cases Specification

The second group of tasks starts with the use case specification process. This corresponds also

to the first step of SCARP itself (c.f Figure 3.6 I)). The specification process consists in the

formalization of use cases. The output of this step is provided as input to the next step, in order

to create a knowledge base representing the information contained in the use cases.

Hence, the first step of SCARP starts with the specification of textual requirements, as presented

in Figure 3.7. Use cases represent the requirements to be analyzed in order to guide the elab-

oration of software artifacts. They contain the information required to extract hints about the

system they describe.

48 CHAPTER 3. THE SCARP APPROACH

Figure 3.6: Specification of user requirements step.

Use cases, if written in natural language, are hard to analyze and operationalize. To overcome

this difficulty, it was decided to use a CNL to support formalizing the specifications. Restricted

Use Case Statement (RUS) is the CNL which supports the requirement specification process.

The RUS language provides the core features to support the descriptions.

RUS relies on a template language, Restricted Use Case Statement Template (RUST), in order

to be described. The objective of the template language is twofold. On the one hand, it supports

the validation of RUS statements, regarding their syntactical validity. On the other hand, it

specifies how the information in RUS should be interpreted, and mapped into a knowledge base.

Figure 3.7: Step 1 of SCARP - creating the RUS specification.

The process of creating the specification consists in describing a use case in a tabular format, using

valid RUS statements. Knowing that the language used to create the specification is RUS, the

users start the process by taking previously defined Textual requirements descriptions, and

proceeds to Create a specification from them. An example of textual requirement description

is as follows.

3.4. USE CASES SPECIFICATION 49

There are several steps to follow in order to add a product to a shopping cart.

When a user selects a product, the system will show it. Next, the user has the oppor-

tunity to select the amount, color and size to buy, and click in the “add” button. The

system will process the request, by reading the amount, color and size, and adding the

product to the shopping cart. The system will also update the cart total, and show a

success or error message, depending if the process succeeds.

While creating the use cases, the SCARP users have the Glossary (extracted from the domain)

available in order to create specifications consistent with the domain. The RUST specifi-

cations, are used in order to Validate the (RUS) specifications (i.e. check if the RUS

statements comply with RUST). As output, a Valid RUS specifications is produced. The

corresponding valid RUS specification for the previously presented textual description is as pre-

sented in Table 3.1. It represents the information of the presented textual description, expressed

as valid RUS statements. In Figure 3.7 it is possible to see that Valid RUS specifications are

represented between User and SCARP swimlanes. That representation means that the specifi-

cations are available both to the user, to see and manipulate, and to SCARP, in order to process

them.

Table 3.1: RUS formatted “Add product to cart” use case.

Step User input System response

1 user selects a product

2 system shows the product

3 user selects the amount, color and size

4 user selects add

5 system reads the amount, color and size

6 system adds the product

7 system updates the cart

8 system shows success

3.4.1 RUS

RUS was not developed in order to express highly complex specifications, but focus on the

specification of sequential scenarios. Inspired in ACE [73], RUS was designed to handle simple

statements, based on the concept of triples < S,P,O >. The triple elements correspond, respec-

tively to the Subject, Predicate and Object of the sentence. This format provides support to write

statements such as user selects product, where user is the subject, selects is the predicate

and product is the object. In order to improve the expressiveness of RUS statements, it is also

possible to add keywords to this triple format. The keywords correspond to words that can

decorate the triples, as for instance < S, k1, P, k2, O >. In practice, the keywords correspond to

elements such as prepositions (e.g. in, on) or determiners (e.g. the, a). Adding these keywords

enables the possibility to create more expressive statements, such as user selects a product.

RUS defines two requirements for the specifications. First, use cases are specified with small and

simple statements, which comply to the triples format. Second, use cases specifications follow

50 CHAPTER 3. THE SCARP APPROACH

a tabular format (c.f. [38]). The main scenario should be written as the success case, while

possible variations should be written as exceptions and alternatives to the main scenario.

One of the objectives of RUS is to allow statements to keep their readability, despite being

converted from natural language to a CNL. Further discussing regarding this objective can be

found in two studies, that validate that RUS is expressive enough to handle several kinds of use

case scenarios specifications [26, 28] (c.f. Section 5.2).

As stated above, RUS relies on a template language, RUST, in order to perform the process of

validation and extraction of information. The use case in Table 3.1 is a valid RUS specification,

since all the statements are RUST compliant. Being the specification RUST complied, it is then

considered a valid RUS specification.

3.4.2 RUST

In order to define which triples are valid, the RUST template language was created. The tem-

plates define how the RUS statements should be written, which both guides the user on how to

write them, and, enables the possibility to validate them in runtime. RUST defines also how to

the statements should be processed, in order to map them into OWL.

As with RUS, the base of RUST is the concept of triple, for example the RUST statement <S>

<P> <O>, defines a statement with respectively a subject, predicate and object (c.f. RDF triple).

An example of a statement complying with this format is, for instance:

system shows product

In this case, system is the subject, shows the predicate and product is the object. RUST sup-

ports also the specification of statements with a variable number of objects. A RUST statement

which supports such has the last element of the triples defined as <O>+, namely <S> <P> <O>+.

An example of a RUS statement supported by this format is:

user selects the amount, color and size

In this case, the statement is decomposed in the equivalent triple ones, namely:

user selects amount

user selects color

user selects size

The definition of the valid decorator keywords is also performed in RUST. When creating a

RUST, any keyword existing between the triples is then considered a decorator keyword, as for

instance <S> k1 <P> k2 <O>. In this case, k1 and k2 are decorator keywords. As an example,

it is possible to define the RUST expression <S> <P> the <O>, which supports the specification

of the RUS statement system updates the cart.

3.5. OWL GENERATION 51

Considering the specification in Table 3.1 it is possible to see the existence of several kind of state-

ments, such as user selects add, user selects a product, system shows the product or

user selects the amount, color and size. With the triple format in mind, it is easy to

identify the corresponding RUST, which supports those statements. The first statement is the

most basic one, simply with three components, therefore the associate RUST is <S> <P> <O>.

The second one, adds an a, between the two last components, therefore <S> <P> a <O>. Simi-

larly, for the third one, <S> <P> the <O>. The last one, predicts a variable number of arguments,

therefore <S> <P> the <O>+.

RUST defines also how the extracted triples are mapped into OWL. This process is defined

in a simple format to specify how the triples information should be interpreted. Nevertheless,

the format to define requirements information is a tuple, which specifies what is an individual,

and what are its properties. Namely, by specifying <Individual: i, property: p>, where

i denotes the individual, and p denotes the associated property. An example is the definition

of facts, in the form <Individual: i, Facts, f>. A concrete instance of this example is

Individual:,<S>,Facts:,<P> <O>. This RUST states that, for a given triple, the subject

will be the individual, and the predicate and object will be the associated facts. Other kinds

of existing properties are the definition of equivalence (for instance between individuals, and

between classes), and annotations (available for all elements). This format was designed with

future improvement in mind, and is compatible with the specification of other kind of OWL

operators.

Studies performed in the context of this work suggest that a small set of RUST statements

is able to support a large number of specifications, since all the statements tend to be very

simple [26, 28]. Indeed, only a subset of the RUST presented in Listing A.2 is needed to cover the

statements in Table 3.1.

<S> <P> <O> -> Individual: ,<S>,Facts: ,<P> <O>

<S> <P> a <O> -> Individual: ,<S>,Facts: ,<P> <O>

<S> <P> in <O> -> Individual: ,<S>,Facts: ,<P> <O>

<S> <P> in a <O> -> Individual: ,<S>,Facts: ,<P> <O>

<S> <P> in the <O> -> Individual: ,<S>,Facts: ,<P> <O>

<S> <P> the <O> -> Individual: ,<S>,Facts: ,<P> <O>

<S> <P> the <O>+ -> Individual: ,<S>,Facts: ,<P> <O>+

Listing 3.1: RUST used for the specification of “Add product to cart” use case.

3.5 OWL Generation

The second step of SCARP consists in the translation of the use case specification previously

written in RUS, into an OWL ontology. The ontology represents an intermediary representation

of the use cases information. The information is used as basis for the requirement pattern

inference process (Figure 3.8 III)).

52 CHAPTER 3. THE SCARP APPROACH

Figure 3.8: Generating the OWL knowledge base.

Figure 3.9 details the process which supports generating the knowledge base from the provided

RUS specification. Apart from the use cases specification, from the previous step, this step

requires also the glossary and types information from the domain model, in order to create the

corresponding ontology.

Figure 3.9: Step 2 of SCARP - creating the OWL ontology.

Having the RUS specification (resulting from the last step), the process starts with the Infor-

mation extraction process. The process extracts from the specification Entities (c.f. subject

predicate and object), as well as Relationships between the entities.

Taking, for instance, the first two statements of the use case description in Table 3.1, we have user

selects a product and system shows the product. From these statements it is possible to

extract:

• Individuals: user, product and system;

• Predicates: selects and shows;

• Facts: (user) selects product and (system) shows product.

3.6. REQUIREMENTS PATTERNS 53

When mapping this information to OWL, individuals and facts have direct representations. The

predicates are represented as object properties. The object properties are numbered, according

to the order in which they appear in the specification.

The previously presented ontology contains only the entities’ information. As aforementioned, the

ontology requires also the types information. Types in SCARP are available to the user, which

can specify and modify them. Hence, Figure 3.9 presents them as part of both the User and

SCARP swimlanes. Figure 3.10 presents an excerpt of the domain model. In order to extract

the types information, the terms in the TypeOf category in the domain model are analyzed. The

figure depicts the relationship between the entities User, System and Actor. It is possible to see

both User and System are connected trough a connection named is, to the Actor. Because is

is considered a relation of the group TypeOf, it is possible to infer that User and System have

the type Actor.

Figure 3.10: Relation between User, System and Actor in the domain model.

In order to complete the ontology is necessary to define additional types, and associate them with

the corresponding entities. The types information is both extracted from the relations TypeOf,

and manually defined by the users.

Providing the types information results in a more complete and accurate ontology. For entities

with unspecified types, the generic type Object is assumed. At the end of this process, all the

information required to produce the ontology is gathered.

3.6 Requirements Patterns

The third step of SCARP (c.f. Figure 3.11), consists in the analysis of the knowledge base

containing the use cases information, in order to identify requirement patterns. In SCARP,

requirement patterns are inferred in order to obtain hints regarding the desired features in the

final solution. The identified features convey a set of properties to address, which in turn can

provide hints concerning the architectural solutions which support such properties.

Inferring Requirement Patterns consists in applying requirement pattern queries

(uQL/SPARQL) to OWL (c.f. Figure 3.12).

54 CHAPTER 3. THE SCARP APPROACH

Figure 3.11: Inference of requirement patterns.

Figure 3.12: Step 3 of SCARP - inferring the requirement patterns.

3.6. REQUIREMENTS PATTERNS 55

In order for the requirement pattern inference process to be performed, a set of patterns is

required. Requirement patterns are specified as SPARQL queries to be applied to the ontology.

The results of applying a SPARQL query provide information regarding which conditions of

that query were met, and corresponding context. Thus, describing a requirement pattern as

a SPARQL query, provides the possibility to understand if a requirement pattern exists in an

ontology, and in which context. In this case, the relevant context information corresponds to the

quantity of conditions that exist in the ontology. Having the information regarding the quantity

of met conditions, it is possible to understand to which extend the pattern does really exist in

the ontology.

Consider for instance, the triples t1 = “user selects product”, t2 = “system shows

product”, t3 = “system lists products” and t4 = “system creates log”. Consider also

that the HasShoppingCart (HSC) requirement pattern contains the triples t1 and t2, HSC =

{t1, t2}, and a pattern HasCategories (HC), contains the triples t2 and t4, HC = {t2, t4}. If

the ontology Requirements, contains t1, t2, t3, defined as Requirements = {t1, t2, t3}, then the

inference process consists in checking if the ontology contains the triples defined in the pat-

terns. For HasShoppingCart and HasCategories, the results are HSC ⇢ Requirements and

HC 6⇢ Requirements, meaning that HasShoppingCart exists in the ontology, and HasCategories

does not exist.

Rather than knowing only if a pattern exists or not in the knowledge base, it is more interesting

to know how likely is the pattern to exist. In practice, partial matching consists in identifying the

intersection of the pattern triples with the ontology ones, rather than knowing if the pattern is a

subset of the ontology. For patterns HSC = {t1, t2} and HC = {t2, t4}, the intersection with the

ontology Requirements = {t1, t2, t3} can be performed. The results are HSC\Requirements =

{t1, t2}, and since the result is equal to the set HasShoppingCart, this corresponds to a complete

match of HasShoppingCart in the ontology, and HC \ Requirements = {t1}. In this case, the

pattern matches only partially (specifically, in half of the triples). Hence, HasCategories exists

in the specification, but only partially.

When defining the patterns, the relevance of each triple to that pattern it is also defined. Regard-

ing HasCategories, if t2 is 3 times more relevant that t4, that means the pattern has a matching

percentage of 75%.

In practice, the specification of requirement patterns queries can be performed by analyzing

descriptions of known patterns, and writing them as queries. An example of the description of a

recurring feature is as follows.

The user selects (or opens) a product, and then the system presents (shows, or

displays) such product. Next, the user selects the properties for that product, and adds

it to the shopping cart. The system reads those properties, and updates the internal

data. Next, the system adds the product to the cart, and updates its representation.

56 CHAPTER 3. THE SCARP APPROACH

This feature describes the process of adding a product to a shopping cart (in an eCommerce

domain). The next step consists in creating the corresponding query, by analyzing each state-

ment of the description. SPARQL queries to define requirement pattern can become, however,

very verbose. Hence, and since knowledge is mainly described resorting to triples, a new and

simpler language to describe requirement patterns is proposed, the uQL. Listing 3.2 presents the

corresponding uQL query, for the aforementioned feature.

(user) (selects|opens) (? product) 10

(system) (shows|presents|displays) (? product) 20

(user) (selects) (? property) 10

(user) (?) (add) 10

(system) (reads|fetches) (? property) 10

(system) (updates) (data) 20

(system) (adds) (? product) 10

(system) (updates) (cart) 10

Listing 3.2: uQL HasShoppingCart requirement pattern.

In uQL, each statement corresponds to a condition to be met, that is, to a triple which should

exist in the specification. The statements support also the or logical operator (c.f. |), named

(c.f. ?product) and anonymous (c.f. ?) variables. Finally, each condition has an associated

percentage, denoting the weight of that statement in the specification, represented by the number

in front of each statement.

In order to provide an overview over the complexity of the three languages, Figure 3.13 presents

the three different representations for the first statement of the HasShoppingCart requirement

pattern. First, it is shown the statement in natural language (a)), and the corresponding uQL

(b)). It is also possible to see the SPARQL (c)) representation.

a) Natural language:

“(...) the user has the opportunity to select the amount, color and size to buy”

b) uQL:

(user) (selects|provides) (?) 15

c) SPARQL:

OPTIONAL ?subject3 ?predicate3 ?object3

. FILTER((?subject3 = :user) && (?predicate3 = :selects || ?predicate3 = :provides))

. ?predicate3 rdfs:comment ?condition3

Figure 3.13: Representation of a statement in a) Natural language, b) uQL and c) SPARQL.

3.6.1 Pattern Inference

When a uQL query is applied to the knowledge base, it indicates which statements match. Since

statements have an associated weight, the sum of weights of matching statements indicate the

matching percentage of the pattern, for the given knowledge base.

3.7. SOFTWARE PATTERNS 57

Table 3.2: Result of applying uQL in Listing 3.2 to the knowledge base.

uQL condition number 1 2 3 4 5 6 7 8

Match result true true true true true false true true

Match percentage 10% 20% 10% 10% 10% 20% 10% 10%

Match result (sum of percentages) 80%

For the given pattern in Listing 3.2, the result of the matching process is presented in Ta-

ble 3.2. The table presents, for each condition of the query, the corresponding percentage, and

if that condition matched in the knowledge base. For instance, condition number 1 (c.f. (user)

(selects|opens) (?product) 10) has been found in the knowledge base, and has a weight

of 10%. Adding the matching percentage of the conditions, it is possible to state that in this

case the pattern would have a matching percentage of 80%. It remains for the user to define a

reference percentage value, in order to filter the significative patterns.

3.7 Software Patterns

The fourth step of SCARP (see Figure 3.14) consists in the transition from requirement patterns

into software patterns. Requirement patterns describe features, which can be associated with

concerns. Software patterns on their turn provide functionalities, with the intent to support

requirements’ concerns. Hence a methodology to establish the bridge between requirements and

patterns is proposed.

The inputs for the instantiation process, are requirement patterns, software patterns and the

mapping information. As result a set of software patterns is produced, which support the iden-

tified requirements. Since software patterns can be seen as building blocks of software, their

identification contributes to support producing architectural solutions.

Figure 3.14: Transition from requirement patterns to software patterns.

The process of achieving software patterns from requirement patterns is depicted in Figure 3.15.

58 CHAPTER 3. THE SCARP APPROACH

Figure 3.15: Step 4 of SCARP - Transition from requirement to software patterns.

The first step of the process is the input of the Requirement Patterns. These patterns

result from the inference process in the previous step. The Goals, Concerns and Forces,

part of the process inputs, provide the required information in order to match the requirement

patterns to software patterns (i.e. Perform matching). This matching process results in a

set of Candidate software patterns. It is required to either manually Perform selection

of adequate patterns, or perform an Automatic match of patterns. The process ends with a

set of Software patterns, representing the solutions achieved to better handle the provided

requirement patterns.

3.7.1 Goals and Concerns

Patterns can be characterized by different aspects, representing different levels of abstraction.

In SCARP three levels of abstraction are considered, namely Concerns, Goals and Forces, as

depicted in Figure 3.16.

Figure 3.16: Attributes of patterns at different levels.

Requirement patterns’ Concerns provide information about properties to be fulfilled, in the

system to be implemented. Goals on their turn, provide information regarding the benefits that

an architectural pattern provides when applied. In the one hand, the users’ needs (c.f. concerns)

3.7. SOFTWARE PATTERNS 59

can be identified. On the other hand, the advantages provided by the usage of a certain pattern

(c.f. goals) can be identified. These two information groups can be seen as complementary. The

process of matching concerns to goals consists in identifying which goals are the most suitable to

support a set of concerns. However, there is still a gap between those two artifacts. They exist

at the same abstraction levels, but represent different aspects. The specification of the concerns

to goals mapping information is required in order to automate the transformation process. The

process requires the identification of both concerns and goals, and consequent decomposition into

forces.

Identifying concerns in requirement patterns can be achieved by reading and understanding

the meaning of each pattern being addressed. Patterns are by nature well defined and described.

That makes it possible to extract the concerns they convey. Following an approach similar to

Bass et al. [4], by reading the description of the patterns it is possible to extract their concerns.

For the process supporting a shopping cart in an eCommerce platform (c.f. HasShoppingCart),

for instance the Amazon website 1, has the following description:

If you want to order an item, click the Add to Basket button on the item’s

product detail page. Once you’ve added an item to your Basket, you can keep

searching or browsing until your Basket contains all the items you want to or-

der. You can access the contents of your Basket at any time by clicking the Basket

button on any page.

Tip: If your Shopping Basket is empty or items are miss-

ing from it, it’s likely that you’re not logged into your account.

Placing an available item in your Shopping Basket doesn’t reserve that item.

Available stock is only assigned to your order after you click Place your order and

receive an e-mail confirmation that we’ve received your order.

You can modify an item in your Shopping Basket: To change the quantity, enter a

number in the Quantity box and click Update.

Note: We strive to provide customers with great prices, and sometimes that means

we limit quantity to ensure that the majority of customers have an opportunity to

order products that have very low prices or a limited supply. We may also adjust

your quantity in checkout to reflect your recent purchases of a quantity-limited item.

To remove an item from your Shopping Basket, click Delete. To wait until another

day to buy some of the items in your Shopping Basket, click Save for later. This will

move the item to your Saved for Later list located below the Shopping Basket. Click

Move to Basket next to an item when you’re ready to purchase it.

Note: Items in your Shopping Basket will always reflect the most recent price

displayed on the item’s product detail page. This price may differ from the price the

item when you first placed it in your Basket.

1http://www.amazon.co.uk/gp/help/customer/display.html/?nodeId=502528&qid=1448537481, last visited

on 2015-11-26

http://www.amazon.co.uk/gp/help/customer/display.html/?nodeId=502528&qid=1448537481

60 CHAPTER 3. THE SCARP APPROACH

By reading the description it is possible to extract several relevant functional features. In the

presented sentences is possible to identify concerns:

• “If you want to order an item, click the Add to Basket button on the item’s product

detail page.” - states that a product contains details. Hence, the detailable concern;

• “You can access the contents of your Basket at any time by clicking the Basket button

on any page” - states that both the cart contains all the items, and belongs to a user.

Hence, respectively the listable and manageable concern;

• “Placing an available item in your Shopping Basket doesn’t reserve that item. Available

stock is only assigned to your order after you click Place your order and receive an e-

mail confirmation that we’ve received your order.” - states that there is an explicit process

to process the order. Hence, the processable concern;

• “You can modify an item in your Shopping Basket: To change the quantity, enter a

number in the Quantity box and click Update.” - clearly states that the user has the ability

to modify the cart content. Hence, the editable concern.

The concerns identification process depends on the interpretation of the descriptions, making the

process vulnerable to subjectivity. As result, some concerns of the description might be missing

in the extracted ones. Identified concerns support the architectural artifact identification process.

Concerns missing from the identification process can have as consequence missing architectural

artifacts. If such problem occurs, the concerns information should be refined, and the matching

process repeated. The refinement of the patterns is a continuous process. In this example it

was possible to identify, for the HasShoppingCart pattern, the associated detailable, listable,

manageable, processable and editable concerns.

Identifying goals on software patterns can be done by analyzing pattern catalogs. Pattern

catalogs (c.f. [41]), contain several fields to describe a pattern. One of those fields is the intent,

which details what benefits the patterns provide when used. Usually, the intent field contains

enough information to derive several goals. Another field that is useful to identify goals is the

description.

Considering, for instance, the Proxy pattern [41], the following intent can be found: “Provide a

surrogate or placeholder for another object to control access to it.” The pattern intent is very

clear, but it is possible to further read in the pattern’s applicability: “A protection proxy controls

access to the original object”. Hence, this pattern has the goal:

• Delegate - act as a bridge, or, surrogate to handle the client requests.

The Memento pattern has the intent: “Without violating encapsulation, capture and externalize

an object’s internal state so that the object can be restored to this state later.” From the pattern

intent, it is possible to highlight the capability this pattern provides to “capture and externalize

(...) state”. Furthermore, it allows to later “restore” the state. In the pattern applicability is is

3.7. SOFTWARE PATTERNS 61

possible to read: “a snapshot of (some portion of) an object’s state must be saved so that it can

be restored to that state later”. From the description, it is then possible to extract the goals:

• State - the possibility to keep the state for a set of objects whose state should be maintained;

• Edit - the possibility to edit the state, with the intent (for instance) to restore object states.

Another example is the Command pattern, with the intent: “Encapsulate a request as an object,

thereby letting you parameterize clients with different requests, queue or log requests, and support

undoable operations.” In its intent, it is possible to highlight the “parameterize clients with

different requests”. From the pattern’s applicability, we can read “parameterize objects by an

action to perform”. Hence, the goal:

• Process - represents the capability to perform a parametrized processing operation on

objects.

3.7.2 Forces

In the patterns community the term Force (originally borrowed from architecture and Christo-

pher Alexander’s work [1]) is used to denote (c.f. Buschmann): “any aspect of the problem

that should be considered when solving it, such as Requirements (what the solution must fulfill),

Constraints (things to consider), and Desirable properties (that the solution should have)”. The

identification of a pattern’s forces can be done by analyzing the catalog in which the pattern is

described.

In the SCARP’s context, Forces identify the specific impact of a Concern or Goal in the final

solution. Pattern’s forces enable the possibility to match concerns to goals, as forces are used to

describe both requirement and software pattern at the same level.

Forces on Concerns

By analyzing existing concerns, a set of forces can be defined (as proposed by other authors [85]).

Several concerns, including for instance Manageable, Processable, Editable were analyzed and

the following set of forces extracted.

• Abstraction - provide a layer to abstract the content;

• Separation - create a level of indirection to mediate access to content;

• Decoupling - provide means to loosely couple two elements;

• Coupling - enforce the relation between two elements;

• Direction - remove intermediary elements in the access of two elements;

• Indirection - support delegating a request;

62 CHAPTER 3. THE SCARP APPROACH

• Computability - the capability for an element to be processed;

• Versioning - the capability to keep one or more states of an object;

• Flexibility - the capability to adjust in runtime;

• Constraint - removes flexibility to ensure consistency.

Considering the impact of forces on concerns, the following associations can be made. In the

association, the symbol + or - denotes if that concern is positively or negatively affected by that

force.

• Manageable:

– Abstraction (+) - When an is object managed by another one benefits from abstracting

what is being owned;

– Separation (+) - An indirection in the reference for the owned object is beneficial as

it keeps the owned data transparent to the user;

– Decouple (+) - Decoupling the managed object allows it to evolve separately;

– Couple (-) - Coupling the object to the owner, negatively affects the owner when the

object changes;

– Direct (-) - Direct linking the owner to the object can provide too much control over

it.

• Processable

– Computability (+) - A processable object, benefits from the possibility to be processed;

– Indirection (+) - Delegating a task to another entity introduces flexibility in the

process;

– Separation (-) - An indirection level on processable introduces an undesired interme-

diate step of complexity.

• Editable

– Versioning (+) - Being able to keep one or several versions benefits the fact of an

object being editable;

– Flexibility (+) - If we have the concern of editing, then having the capability to adjust

it in runtime is a positive effect;

– Constraint (-) - Removing flexibility in the solution is undesired for the editable con-

cern.

The information regarding the requirement patterns, concerns, and forces is summarized in

Figure 3.17.

3.7. SOFTWARE PATTERNS 63

Figure 3.17: Requirement patterns, concerns and forces for the HasShoppingCart requirement

pattern.

After having defined the forces for the concerns, it is now required to identify the forces on the

goals. Such is essential to have both information described at the same level.

Forces on Goals

Software patterns are usually documented and described with their associated forces. Pattern

catalogs (e.g. [15]) contain for each pattern the corresponding force. As an example, and ac-

cording to Buschmann, the proxy pattern contains the forces Efficiency, Decoupling, Separation,

and on the negative side Efficiency and Overkill [15]. It is also possible to say that this pattern

supports abstraction, hence the Abstraction goal. The proxy pattern, contains only the Delegate

goal, therefore all forces belong to that goal. The relation regarding the software patterns, goals

and forces is summarized in Figure 3.18. Figures 3.19 and 3.20 present the same information,

for the Memento and Command patterns, respectively.

In the context of SCARP, concerns, goals and forces are represented as an ontology. Such

approach enables the possibility to automatically analyze the relations between those elements.

3.7.3 Matching Process

The automatic matching process, as represented in Figure 3.21, is composed of two parts. Part

A) consists in the extraction of concerns from requirement patterns, and respective forces. In

B), concern forces are matched against goals forces, in order to identify the corresponding goals.

From the goals it is possible to identify the software patterns.

64 CHAPTER 3. THE SCARP APPROACH

Figure 3.18: Software patterns, goals and forces relationship for the Proxy software pattern.

Figure 3.19: Software patterns, goals and forces relationship for the Memento software pattern.

Figure 3.20: Software patterns, goals and forces relationship for the Command software pattern.

Figure 3.21: Requirement patterns to software patterns process flow.

Performing the matching process consists in the application of the queries presented in List-

ing 4.9 (see page 96), to the ontology representing the requirements information. The result

of the matching process in the Has Shopping Cart (HSC) pattern is presented in Table 3.3 and

Table 3.4. From the table it is then possible to extract, for instance, that the Flexibility force has

a positive impact both on the Editable concern and on the Edit goal, therefore relates positively

the Memento and HasShoppingCart patterns.

3.7. SOFTWARE PATTERNS 65

Table 3.3: Positive contributions between requirement patterns and software patterns (through

forces), as support for the matching process.

Requirement pattern Concern Force Goal Software Pattern

HasShoppingCart Manageable Separation Edit Memento

HasShoppingCart Manageable Separation Process Command

HasShoppingCart Manageable Separation Delegate Proxy

HasShoppingCart Manageable Abstraction Delegate Proxy

HasShoppingCart Processable Computability Process Command

HasShoppingCart Processable Indirection Process Command

HasShoppingCart Editable Flexibility Edit Memento

HasShoppingCart Editable Versioning Edit Memento

Table 3.4: Negative contributions between requirement patterns and software patterns (through

forces), as support for the matching process.

Requirement pattern Concern Force Goal Software Pattern

HasShoppingCart Processable Separation Edit Memento

HasShoppingCart Processable Separation Process Command

HasShoppingCart Processable Separation Delegate Proxy

Figure 3.22 presents the combination of the aforementioned tables. On the left (Concerns)

the existing concerns for the HasShoppingCart requirement pattern are described. For each

Concern, the corresponding Goals, which are related via the same Forces are presented. On the

right (Software Patterns) the software patterns for the identified Goals are presented.

Following the pattern selection algorithm, the mapping for the Manageable pattern (c.f. Fig-

ure 3.22) is as follows.

• Manageable ! Delegate: 2 positive forces: Abstraction, Separation, and 0 negative forces.

• Manageable ! Process: 1 positive force: Separation, and 0 negative foces.

• Manageable ! Edit: 1 positive force: Separation, and 0 negative forces.

Based in this information, it is possible to state that the most suitable goal to respond to the

Manageable concern, is the Delegate. By applying this process iteratively to each concern and

goal, it is possible achieve the information of how each concern matches a goal. The resulting

output is the forces matrix (c.f. Table 3.5).

The forces matrix, as presented on Table 3.5, shows how each pattern influences the other ones.

On the left, the table shows the identified concerns. On the top, the Goals related with the

Concerns are shown. Each cell of the table presents the positive (+) and negative (-) amount

of forces which relate each Concern/Goal pair. For instance the Processable/Process pair, is

related via two positive forces (+2) and one negative force (-1).

66 CHAPTER 3. THE SCARP APPROACH

Figure 3.22: Summary of the relations between concerns, forces, goals and software patterns, for

the HasShoppingCart.

Table 3.5: Matrix describing the relations between forces for the HasShoppingCart requirement

pattern.

Goals

Delegate Edit Process

Concerns

Processable (+0, -1) (+0, -1) (+2, -1)

Editable (+0, -0) (+2, -0) (+0, -0)

Manageable (+2, -0) (+1, -0) (+1, -0)

Based on the forces matrix, it is possible to conclude that the best match for Manageable concern

is the Delegate goal, and Delegate is supported by the Proxy software pattern. Hence, Proxy is

a software pattern suitable for HasShoppingCart (c.f. Figure 3.22). Similarly, the Editable and

Processable concerns have the best match with Edit and Process (respectively). Thus, Command

and Memento are also patterns required to support the HasShoppingCart requirement pattern.

This resulting matching information can be used to either automatically select the software

pattern (as presented), or guide users to manually perform the pattern selection process.

3.8 Architectural Solution

The fifth step of SCARP (c.f. Figure 3.23) consists in the transition from software patterns, into

a corresponding architecture. The process relies in the input of the software patterns from the

3.8. ARCHITECTURAL SOLUTION 67

previous step, and information regarding the attributes and relationships of the entities, from

the domain model. The produced architectural model represents a solution which supports the

specified use cases. There are several software pattern catalogs available to support this step of

SCARP. Gamma et al.’s design patterns catalog [41] was selected in order to illustrate SCARP,

since it is one of the most popular patterns catalog available. The process to achieve an

Figure 3.23: Production of the architectural solution.

Figure 3.24: Step 5 of SCARP - producing an architectural solution from a set of software

patterns.

architectural solution from a set of software patterns (c.f. Figure 3.24) starts with the instan-

tiation process, of Software patterns. This process requires the input of those software

patterns and, with parametrization information provided by the user, SCARP is able to

perform the instantiation process. Such process produces a candidate solution, by merging

the software patterns (resorting to stringing and overlapping operators). The improvement

process enhances the achieved solution, and requires information regarding relationships and

attributes from the domain, and combines it in the candidate solution. This process results in

an improved solution, which after a validation from the user, results in the final solution.

The achieved solution can be serialized into XMI, or other computable formats.

68 CHAPTER 3. THE SCARP APPROACH

The iteration of early architectural models has been successfully adopted in practice, for instance,

through evolutionary prototyping [80, 52]. Evolutionary prototyping is the process of creating

an early prototype, which is iteratively refined until becoming the final solution. In SCARP, the

produced models can be used as basis for such an approach. The refinement of software models

can occur at the requirements level, while produces models (prototypes) can be iterated at the

MDA level.

3.8.1 Software Pattern Definition

The chosen approach to support the automated processing of patterns, is to represent them as

an Application Programming Interface (API)-like format, composed of a name and a set of pa-

rameters (e.g. name(parameter1, parameter2, ...)). In this case, the name of the pattern

corresponds to the name of the method, while the parameters correspond to the name of the

pattern constituents. The Proxy (c.f. Figure 3.25) pattern contains the elements client, Subject,

RealSubject and Proxy. The representation of this pattern is then proxy(client, subject,

realSubject, proxy). Alongside with the definition of the pattern it is necessary to provide

information regarding the role of each constituent, or participant (c.f. [41]). Hence, and accord-

ing to the proxy pattern definition, the client triggers the request, the proxy “maintains a

reference that lets the proxy access the real subject” or the interface that handles the request, the

subject “defines the common interface for RealSubject and Proxy”, and RealSubject “defines

the real object that the proxy represents”. Following an approach similar to Java and Javadoc, a

pattern signature is defined as presented in Listing 3.3, which includes also the pattern intent to

better document the pattern.

Figure 3.25: Proxy design pattern structure (adapter from [41]).

/**

* @intent Provide a surrogate or placeholder for another object to control access to it.

* @param client Triggers the request.

* @param subject Defines the common interface for RealSubject and Proxy.

* @param realSubject Defines the real object that the proxy represents.

* @param proxy Entry point to handle the request.

*/

proxy(client , subject , realSubject , proxy);

Listing 3.3: Proxy software pattern specification in API-like format.

3.8. ARCHITECTURAL SOLUTION 69

3.8.2 Instantiation Process

Having the pattern specified in the API-like format, the instantiation process corresponds then

to a invocation of that API. Such supports the creation of concrete software pattern instances,

as support for the composition process. Hence, it is necessary to define the concrete names for

the parameters, according to the provided documentation. With this approach it is possible to

automate the pattern instantiation process, while abstracting the user from the pattern’s details.

In the inference process the Proxy pattern was identified as a software pattern to be integrated in

the HasShoppingCart, in support for the Manageable concern. The parametrization information

consists in the definition of the parameters to be provided to the instantiation process. Hence,

the client owning all the instances is the System itself. The realSubject being abstracted cor-

responds to the shopping Cart, which is the entity being held and accessed. Thus, the subject,

being an interface, is the ICart. Finally, the object to intermediate the access to the cart (i.e.

Proxy) can be the User, which can handle the interactions with the cart. According to this def-

inition, the specification of the Proxy pattern is proxy(System, ICart, Cart, User);. The

parametrization information is summarized next. The result of the Proxy pattern instantiation

is shown in Figure 3.26.

• client: System - The system triggers changes in the cart;

• subject: ICart - The interface which defines the cart actions;

• realSubject: Cart - The implementation of the cart;

• proxy: User - The user handles the instance of the cart.

Figure 3.26: Proxy design pattern instantiation.

Recurrently applying this process to all inferred software patterns, results in a set of pattern

instances which are representative of the solution to be implemented. These instances contain

the classes to exist in the solution.

3.8.3 Pattern Composition

After the instantiation process, follows the unification of the several instances into a single

solution. Although there is no standard approach, several authors propose different alternatives

to perform the composition process. In this work the usage of stringing and overlapping [122]

70 CHAPTER 3. THE SCARP APPROACH

composition approaches is explored. Despite the large amount of available work regarding pattern

composition, stringing and overlapping are two of the most well known and accepted approaches.

The instances composition process is based in the overlapping technique. Overlapping supports

performing a unification operation over the classes. The unification process is performed by

considering classes with the same name to represent the same entity, and merging those classes

into a single one.

To apply the composition technique to Proxy, Memento and Command patterns instances, the

identification of common classes is necessary. For instance, the shopping Cart is a class common

to all three instances. Hence, and according to the overlapping technique, Cart class represents

the same entity in all the instances. By applying the same process to the remaining classes, the

architectural solution presented in Figure 3.27 is achieved. In the figure, the Proxy pattern is

represented in grey, the Memento pattern in blue and the Command in yellow.

Figure 3.27: Composition of Proxy, Memento and Command patterns through overlapping.

The solution presented in Figure 3.27 was produced from the instantiation of the Proxy, Com-

mando and Memento software patterns. After the instantiation, a pattern composition process

followed, resorting to the overlapping operator. User and Cart classes were identified as common

entities in all pattern instances, and merged, resulting in the presented architecture.

3.8.4 Solution Enhancement

The solution enhancement step, performed over the unified solution, resorts to the stringing

composition technique. In the domain model it is possible to see, for instance, that System is

related with Product via an association of the category CompositionOf, in this case contains

(c.f. Figure 3.28). Therefore, a new association needs to be added to the solution.

By analyzing the domain model relations of the type CompositionOf for the remaining classes

in the solution, the improvement of the solution is possible, as depicted in Figure 3.29.

3.8. ARCHITECTURAL SOLUTION 71

Figure 3.28: Relationship between System and Product extracted from the domain model.

Figure 3.29: Enhanced version of the solution resulting from the pattern composition process,

regarding relationships.

The final step of the composition process is the enhancement of the classes, by providing their

attributes. The entities related via associations of the category PropertyOf in the domain model,

as is the example of has relationship are analyzed. It is possible to see, for instance, that, the

entity User is related (among others) with Age, Name and Address (c.f. Figure 3.30). Hence, the

two entities represent attributes of the User class.

Figure 3.30: Relationship between User, Age, Name and Address extracted from the domain

model.

Having identified the attributes, it remains to specify their types. This step requires input from

the SCARP users. An example of types definition, for the three described attributes is as follows.

72 CHAPTER 3. THE SCARP APPROACH

• Name is a String;

• Age is an Integer;

• Address is a String.

After defining the types, the enhanced solution can be generated. The result is presented in

Figure 3.31.

Figure 3.31: Enhanced version of the solution resulting from the pattern composition process,

regarding relationships and attributes.

3.8.5 Solution Validation

After the creation of the unified and improved solution in SCARP, it remains to validate the

produced solution. Since both composition and enhancement are automated processes, there is a

possibility for incorrect information being added to the solution. Two main scenarios can occur

regarding incorrect and incomplete information in the final solution. The first scenario is the

addition of unnecessary (e.g. duplicate) relationships between entities, and the second one is the

addition of inappropriate (e.g. erroneous) attributes.

The last step of the composition process consists in manually verify the resulting model. An

example of an error resulting from the enhancement process, is the association between System

and Cart. Indeed, System should not be associated with Cart, since an association to ICart

3.8. ARCHITECTURAL SOLUTION 73

already exists. Thus, this association should be removed. The user has also the capability to

finish the model itself, adding the remaining attributes. An example of the revised solution is

the one presented in Figure 3.32.

Figure 3.32: Revised solution

It is expected that the users perform this verification process in order to validate the automat-

ically generated solution. After this validation the final solution is then produced. This final

solution corresponds to the architecture which supports the requirements specified at the be-

ginning of the process, considering the provided domain model. The following steps consist in

transforming the solution into an interchangeable format.

3.8.6 Serialization

After performing the solution validation, it is required to select a format to serialize the result.

The serialization process consists in translating the previous information into a computable

format (e.g. XMI).

The objective of the serialization is twofold. On the one hand, it is intended to support the

next step of SCARP, by producing source code. On the other hand, it is designed to support

interoperability with other processes and tools, by producing formats which are known to be

74 CHAPTER 3. THE SCARP APPROACH

widely adopted. In SCARP, a substantial emphasis was put in the adoption of standard formats.

The adoption of standards, demonstrates the open nature of SCARP, regarding the operability

with other approaches and tools.

3.9 Code

The final step of the SCARP approach (Figure 3.33, VI)) consists in generating code, from the

architectural model provided as output of the previous step. The produced code corresponds

to the implementation of the architecture obtained so far from the SCARP process. The code

corresponds also to the final output of SCARP. The process starts with the input of the

Figure 3.33: Generating source code.

solution achieved in the previous step. The user performs the tool selection process, in order

to choose a suitable MDA tool for the desired outputs. The tool proceeds then to the code

generation process, producing the source code which represents the solution.

Achieving source code from UML diagrams (as represented in XMI, for instance), is a well known

process, addressed by the MDA. The only relevant question to address in this step is the selection

of the tool which supports the code generation process.

Figure 3.34: Step 6 of SCARP - producing source code.

3.10. SUMMARY 75

3.10 Summary

This chapter presented the SCARP approach, as a process which supports the generation of

architectural artifacts, from a set of requirement specifications. In order to do such, requirements

representation techniques, pattern inference and matching processes, pattern instantiation and

composition approaches were described. Each step of the approach was described, explaining

the corresponding required input, processes and outputs. An overview of the process was also

provided, by presenting how the steps link to each other (via their inputs and output), and how

the process integrates in the MDA.

76 CHAPTER 3. THE SCARP APPROACH

Chapter 4

Instantiation of SCARP

This chapter describes uCat, a tool implemented to support the SCARP process. For each step of

SCARP, uCat provides several features which support the process. Alongside the description of

the decisions taken to provide a concrete implementation for SCARP steps, the chapter presents

how uCat supports each step.

4.1 uCat Tool

uCat was developed in Java in order to provide native multi-platform support. In order to make

it portable, there are also no external dependencies (e.g. databases or reasoners). All the required

features were embedded in the application. Providing a platform independent and dependency

free application was useful to support the validation studies, and will help foster the adoption

of the tool in the future. The use of standard technologies and languages (e.g. OWL, XML,

SPARQL), is relevant to both foster interoperability and enable the possibility to use external

tools to help in the process.

Figure 4.1 depicts uCat’s architecture. A modular format (built upon a plugin architecture) was

selected in order to implement the solution. Such approach improves the application quality,

allowing each plugin to exist independently. Also, it was possible to perform an incremental

development, by implementing the plugins as required. Another objective of the plugin architec-

ture is to provide a simple way to extend uCat. On the one hand, adding new features can be

done through the implementation of new plugins. These plugins can communicate with existing

ones via an internal messaging system, without the need to modify the latter. On the other

hand, existing plugins can be individually improved. Finally, the plugin architecture supports

the adjustment of uCat according to the user needs. Considering, for instance, there is only

the need to create specifications, plugins concerning inference (e.g. pattern inference) can be

removed. Indeed, for the studies presented in Chapter 5, several plugins were removed from

uCat in order to allow users to focus in the features being evaluated.

77

78 CHAPTER 4. INSTANTIATION OF SCARP

Figure 4.1: uCat architecture.

At the base of the architecture is a plugin framework, which supports the modular development

process. The plugin framework is parametrizable through a manifest file, which must contain the

name of the application, version and included plugins. The framework provides also support for

the Java interfaces that defines a plugin’s behavior. The GUI utils component provides common

GUI elements, such as alert windows or input/output dialogs. Also part of the framework is

the Logger, which supports logging the user activities. Finally, the plugin framework provides

some utils in support for file read/write and control of the main window. The internal messaging

system allows the plugins to communicate with each others and with the framework itself. The

contribution of each plugin is described in the following sections.

4.2 Domain Model Specification

In uCat, the domain model specification plugin provides a visual editor, where it is possible to

create or load the domain model for the application being generated. The domain model is

created resorting to a subset of the language available to create UML class diagrams. The plugin

supports the creation of entities and their relationships in order to create the domain model. An

example of a domain model created in this plugin is presented in Figure 4.2. On the left are

shown the elements that can be added to the model (entities and relationships), and on

the right the model itself. The plugin supports also exporting the data from the domain model

to an OWL file, saving the diagram as an image, and some customization options (as colors and

fonts).

In order to support automatic information extraction, the domain model representation in OWL

is required. The process to create an ontology containing the domain model information is

composed of two steps. First, each entity of the domain model is converted into an OWL

instance. Each relationship is converted into an OWL object property, which associates two

individuals.

4.2. DOMAIN MODEL SPECIFICATION 79

Figure 4.2: Domain model plugin user interface.

uCat verifies the consistency of the model prior to the generation of the knowledge base. Specif-

ically, missing names for entities and relationships are checked. Also, warnings are shown for

entities names not belonging to any category of the defined types. An example of the error for

a missing name in a relationship is shown in Figure 4.3.

Figure 4.3: Indication of an error in the domain model.

An example of the resulting ontology is presented in Listing 4.1. In the ontology, the existence of

several ObjectProperties (e.g. is, has) is specified, as well as their categories via OWL classes

(c.f. TypeOf, PropertyOf, CompositionOf). The definition of a connection type is done via the

Domain property in the ontology. It is also specified (for instance) that Product is part of Cart,

since the entities are related via an association of the type CompositionOf. The representation

of the domain model entities is done via OWL Individual (e.g. Cart, User). See Appendix A.1

for the full specification.

80 CHAPTER 4. INSTANTIATION OF SCARP

Ontology: <dm>

Class: owl:Thing

Class: <dm#TypeOf >

Class: <dm#PropertyOf >

Class: <dm#CompositionOf >

ObjectProperty: <dm#contains >

Domain:

<dm#CompositionOf >

ObjectProperty: <dm#is>

Domain:

<dm#TypeOf >

ObjectProperty: <dm#has>

Domain:

<dm#PropertyOf >

Individual: <dm#User>

Types:

owl:Thing

Facts:

<dm#is> <dm#Actor >,

<dm#has> <dm#Username >

Individual: <dm#Cart>

Types:

owl:Thing

Facts:

<dm#contains > <dm#Product >

Listing 4.1: Excerpt of OWL representing the domain model in Figure 4.2.

4.3 Use Case Specification

uCat provides a plugin (the use cases specification plugin) which supports the input of both use

case diagrams and corresponding scenarios. For creating the diagram, the plugin supports the

specification of actors, use cases and relationships. It is possible to add several actors, and for

each actor several use cases. Figure 4.4 on the left shows the available elements to create the

diagrams, specifically Actors, Use cases, Systems and Associations. On the right is presented

an example of an use case diagram.

The specification of the use case scenario for each use case, is done in a user input/system response

fashion (c.f. Fowler’s approach [38]), in a tabular format. In the scenario the user inputs and the

system responses are specified, as shown in Figure 4.5. The figure depicts the main (or success)

scenario for that use case. The plugin supports also the specification of alternative and exception

4.3. USE CASE SPECIFICATION 81

Figure 4.4: Use case diagram specification interface.

scenarios. Figure 4.5 presents an example of an alternative in step 3, and an exception in step 6.

Lines where alternatives occur have a blue background, while lines where exceptions occur have

a red background. The plugin performs runtime validation of the statements, against RUST. In

Figure 4.5 it is possible to see an invalid statement on line 9, which is shown in red font.

Figure 4.5: Use case scenario specification interface.

82 CHAPTER 4. INSTANTIATION OF SCARP

4.3.1 Entities Extraction

After specifying the use cases, the subject, predicate and objects present in that specifications can

be automatically extracted. That information corresponds to three sets of information, which

are useful for users to validate the use cases. uCat contains the entities visualization plugin,

which provides the possibility to visualize the information extracted from the domain model and

the use case specifications.

The purpose of this plugin is twofold. On the one hand, it provides a preliminary verification

step. The users have the possibility to see which information was extracted, and if there is (for

instance) missing information. On the other hand, the plugin supports the verification of the

consistency of the extracted information, against the domain model. In the plugin user interface

the subjects, predicates and objects extracted from the specifications are shown, and terms that

are not part of the domain model highlight in red. An highlighted word will be an hint for a

missing term on the domain model or a misspelled word.

Figure 4.6 shows the information extracted from the use cases (specified in Figure 4.4). It is

possible to see, for instance, that the words session, amount, login and add are highlighted.

The first two words, session and amount, correspond to terms missing in the domain model,

so the user should update it accordingly. Users should analyze the extracted information (i.e.

these, and remaining words) in order to update the domain model or use case specifications as

required.

Figure 4.6: Entities visualization plugin.

4.4. ONTOLOGY CREATION 83

The entities visualization plugin neither generates nor manipulates the internal data. Its sole

purpose is to provide a simple overview of the extracted data to support a preliminary validation

step. Indeed, no input is required by the user in this step to proceed with the process.

4.4 Ontology Creation

Creating the ontology that represents the requirements information is possible by automatically

analyzing the RUS specifications. It is, however, necessary to have the specification of the types

for the extracted entities. Two sources provide the types information, namely the domain model,

and manual user input.

4.4.1 Types Definition

The automatic types information extraction is supported by the query presented in Listing 4.2.

The query extracts all the types for all the entities in the domain model. Specifically, all the

subject and objects, related via an association of the TypeOf category are requested. This results

in the list of all instances and associated known types (see Appendix A.3 for the remaining

queries).

PREFIX : <http :// www.rmsc.com#>

SELECT ?subject ?type

WHERE { ?subject ?predicate ?type .

FILTER (? predicate rdf:type :TypeOf)

}

Listing 4.2: SPARQL query to identify types for individuals.

The previously presented query can be further specialized in order to return only the types for

a specific entity. Thus, in Listing 4.3 the query has been tailored by changing the ?subject

variable to User. The result of the query will provide the known types for User. The presented

query does not address transitivity of properties. Consequently, if an entity User is known to

have the type of another entity Actor, and Actor is known to have another type, e.g. Object,

it is not assumed that User has the type Object. However, it is worth noting that SPARQL has

enough expressiveness to handle such an extension to support transitivity analysis.

PREFIX : <http :// www.rmsc.com#>

SELECT ?type

WHERE { :User ?predicate ?type .

FILTER (? predicate rdf:type :TypeOf)

}

Listing 4.3: SPARQL query to identify the types for User.

Depending on the level of detail of the domain model, it might not be possible to infer all the types

information. In that case, users will have to manually specify the missing types. uCat contains

84 CHAPTER 4. INSTANTIATION OF SCARP

a plugin which simultaneously supports the analysis of the extracted types, and specification of

new ones. The types definition plugin is depicted in Figure 4.7. On the left the individuals, and

corresponding inferred types are show. On the right, the types used to specify those individuals

are presented.

Figure 4.7: Types definition plugin, with the automatically extracted information.

As it is possible to see in Figure 4.7, there are some missing types. Manually specifying the types

corresponds to the second step of the types definition process. In this step the user has also the

possibility to check if the types’ association is correct, and adjust it if necessary. Here, there are

two options available. The first one requires the user to manually specify each missing type. The

second one disregards the individuals’ types, considering that all have a generic type. SCARP

supports both kinds of information for the process of generating architectural prototypes. By

following the manual types definition approach, the types Action, Collection, Object, Data

and Property were defined and associated with the respective individuals. Figure 4.8 presents

the complete types table.

After the definition and attribution of the types to the individuals, the plugin updates the internal

representation of the use cases data. This adds more information, that is essential in order to

proceed with the SCARP process.

4.4. ONTOLOGY CREATION 85

Figure 4.8: Types definition plugin with all types defined.

4.4.2 OWL Ontology Generation

Combining the declared instances, object properties and types information supports the creation

of ontologies, as is the case with the one presented in Listing 4.4 (see Appendix A.4 for the full

specification). At this point the ontology is ready to be used, in the case of SCARP, ready to be

queried. The ontology can also be exported to be used in other tools (e.g. Protégé).

The achieved ontology contains the RUS representation of the Add product to cart use case (as

presented in Figure 4.5), enhanced with the types information. Combining this information with

OWL’s query capabilities establishes the basis to apply inference techniques.

The ontology generation uCat plugin was implemented, to support parametrization and gener-

ation of OWL ontologies, by combining the previously extracted information. The users have

the possibility to define both the name and the Uniform Resource Locator (URL) to identify the

elements in the ontology. Figure 4.9 shows the user interface for this plugin.

After selecting the option to create the ontology, the tool automatically creates and shows a

graphical representation of the ontology. However, the representation is only useful when consid-

ering small use case examples. When considering several use cases, the diagrams tend to become

too complex. In any case, the main objective is to process it automatically. The tool provides

also the possibility to see the source code of the generated ontology, in RDF/XML. Generating

86 CHAPTER 4. INSTANTIATION OF SCARP

the ontology is required in order to proceed with SCARP.

Prefix: j.0: <http :// www.url.com/Requirements/>

Ontology: <http :// www.url.com/Requirements >

AnnotationProperty: rdfs:comment

Datatype: rdf:PlainLiteral

ObjectProperty: j.0: selects

Annotations:

rdfs:comment "1"

ObjectProperty: j.0: shows

Annotations:

rdfs:comment "2"

Class: j.0: Object

Class: j.0: Actor

Individual: j.0: product

Types:

j.0: Object

Individual: j.0: system

Types:

j.0: Actor

Facts:

j.0: shows j.0: product

Individual: j.0: user

Types:

j.0: Actor

Facts:

j.0: selects j.0: product

(...)

Listing 4.4: Excerpt of “Add product to cart” use case formalized in OWL

4.5. REQUIREMENT PATTERN INFERENCE 87

Figure 4.9: Ontology generator plugin.

4.5 Requirement Pattern inference

Two requirements exist in order to perform the pattern inference process. First, the existence

of a query mechanism which supports the analysis of the ontology. Second, a set of queries,

representing the requirement patterns to be inferred.

4.5.1 Data Query Mechanism

The first requirement for pattern inference is supported by SPARQL and its corresponding

query mechanisms. In uCat, the reasoner plugin provides a functionality for users to query the

generated OWL ontology. In this plugin, the user has the possibility to write, apply and see the

result of SPARQL queries. Figure 4.10 presents the plugin. On the upper part it is possible to

write the SPARQL queries in textual format. On the bottom part the query result is presented,

both in textual and tabular format.

This plugin is intended to enable users to analyze the ontology generated from the specified

requirements, through a query language. Similarly to the entities visualization plugin, this

plugin neither changes nor adds information to the internal representation.

4.5.2 Pattern Specification

The second requirement to support the pattern inference process is the specification of require-

ment patterns. Defining the patterns is achieved by analyzing software specifications, similarly

88 CHAPTER 4. INSTANTIATION OF SCARP

Figure 4.10: Reasoner plugin depicting a SPARQL query to infer object types, and correspond-

ing result.

to the definition of other kind of patterns. By analyzing requirement specifications describing

the same requirement, it is possible to identify their similarities, achieving then a requirement

pattern [120]. Textual requirements defined by simple and clear statements are the best can-

didates for creating the corresponding requirement patterns. In Section 4.3 a description of a

requirement which describes a feature of support a shopping cart, was presented. A requirement

pattern, namely the HasShoppingCart, can be extracted from the description.

When such a kind of specification (for a a given feature) is found to be recurrent it is then

possible to consider it as a description of a requirement pattern. In this case it is possible to

extract that the pattern HasShoppingCart (c.f. Feature) is composed of several steps. One of

the steps, is for instance a user which selects a product. Another step is performed by the system

which reads the amount, color and size, previously defined by the user.

4.5.3 uQL

The automatic and systematic transformation of uQL into SPARQL is possible since SPARQL

also follows a triple format, similar to RDF. The process consists in creating a SPARQL query

for each uQL pattern. Each uQL statement corresponds to a SPARQL condition. A set of rules

is used in order to perform the transformation, as follows.

4.5. REQUIREMENT PATTERN INFERENCE 89

• Each statement results in an optional SPARQL triple which corresponds to the condition

to exist, i.e.

OPTIONAL { ?subject ?predicate ?object }

• Each or (c.f. “|”) condition is converted into a set of SPARQL or (c.f. “||”), allowing a

variable to have several values, i.e.

?var = :v1 || var = :v2 ...

• Each condition group results in a FILTER, which demands the condition to have those

properties, i.e.

FILTER (?subj = :s1 && ?pred = :p1 || ?pred = :p2 && ?obj = :o1 ...)

• From each condition is extracted the comment of the predicate, which supports under-

standing if the condition is met in the knowledge base, i.e.

?predicate rdfs:comment ?condition1

An example of an uQL query is presented in Listing 4.5. Each element of a uQL triple represented

by “()” corresponds to, respectively, predicate, subject and object. As described in Section 3.6,

the keywords define the name of the predicates, subjects and objects (e.g. user is a subject). The

| denotes the logical or, denoting that it can be one of the alternatives (e.g. provides|inserts

means either provide or inserts will match). The number in front of the statement (c.f. 10)

denotes the weight, in percentage of that statement for the requirement pattern. Finally, adding

variables to the queries is also possible, by preceding a keyword with a ? before a name (e.g.

?user), or anonymous variables (c.f. (?)). A variable represents the same entity across several

conditions.

(user) (selects) (? product) 10

(system) (shows) (? product) 10

(user) (provides|inserts) (?) 15

...

Listing 4.5: Excerpt of an uQL query representing the HasShoppingCart requirement pattern.

Following the aforementioned process for the uQL query presented in Listing 4.5 results in the

SPARQL query presented in Listing 4.6.

90 CHAPTER 4. INSTANTIATION OF SCARP

PREFIX : <http :// www.url.com/Requirements/>

PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf -schema#>

SELECT ?condition1 ?condition2 ?condition3

WHERE {

OPTIONAL { ?subject ?predicate ?object

. FILTER ((?subject = :user)

&& (?predicate = :selects))

. ?predicate rdfs:comment ?condition1 } .

OPTIONAL { ?subject2 ?predicate2 ?object2

. FILTER ((?subject2 = :system)

&& (?predicate2 = ont:shows))

. ?predicate2 rdfs:comment ?condition2 } .

OPTIONAL { ?subject3 ?predicate3 ?object3

. FILTER((?subject3= :user)

&& (?predicate3 = :provides ||

?predicate3 = :inserts))

. ?predicate3 rdfs:comment ?condition3 }

}

Listing 4.6: Result of the translation of the uQL in Listing 4.5 query to SPARQL.

In this example, the presented requirement pattern was derived from its description. However,

and according to the pattern’s philosophy, they are typically extracted from existing documents.

uQL patterns can be automatically extracted from requirement descriptions. If a large number

of descriptions known to contain a given pattern are available, it is possible to derive the pattern

from them. An example of the algorithm to do that is presented in pseudo-code, in Listing 4.7.

// uniform statements

1. for all specifications

1.1. for all statements

1.1.1 reduce to triple format (c.f. <S,P,O>)

// create the uQL statement

2. Group statements representing the same step

3. for each predicate on the same group

3.1. ns = number of synonyms found in specifications

3.2. ns2 = number of statements in the next step which refer to this predicate

3.3. if ns > N or ns2 > V

3.3.1. then use the subjects as alternatives (i.e. a|b|...|n)

3.3.2. else use a variable to represent the subjects (e.g. ?v)

3.4. repeat for object

//set weights

4. for all specifications

4.1. for all statements

4.1.1. ps = percentage of specifications that contain this statement

4.1.2. statement.weight = ps

Listing 4.7: Proposal of algorithm to automatically generate uQL from a set of specifications.

4.5. REQUIREMENT PATTERN INFERENCE 91

There are several parameters that can be tuned, namely N or V (c.f. Listing 4.7, line 3.3.).

N corresponds to a number of different terms found to describe the same concept. Hence, N

corresponds to a low number of alternatives (e.g. 4). V corresponds to the number of statements

that in the step n + 1 refer to the terms in step n. Hence, V should correspond to a large

percentage of statements (e.g. 60%).

Defining the weight of the statements is a challenge itself, since finding a meaningful value is

mandatory in order to both achieve a sound approach, and infer meaningful patterns (i.e. reduce

the number of false positives). The process of generating automatic uQL queries was not further

explored, and is left for future work.

4.5.4 Pattern Inference

The pattern inference process is supported by the pattern inference plugin. In this plugin it

is possible to specify (or load) uQL queries, which will compose the pattern catalog. The pat-

tern catalog can then be applied to the knowledge base, in order to infer the patterns therein.

Figure 4.11 shows the plugin interface to specify the patterns. In the left part is presented the

uQL specification interface, where the user can write the uQL queries, and also see the gen-

erated SPARQL. On the right is presented the list of patterns created so far, and also their

corresponding SPARQL.

Figure 4.11: uQL requirement pattern specification user interface.

92 CHAPTER 4. INSTANTIATION OF SCARP

After specifying the queries, the plugin supports the process of automatically applying them to

the knowledge base. As result, are shown not only the inferred patterns, but also their matching

percentage. The plugin interface is shown in Figure 4.12. This interface presentes on the left the

list of available patterns to query. On the right it presents the result of the inference process,

and for each pattern the matching percentage.

Figure 4.12: Requirement pattern inference plugin user interface.

4.6 Requirements to Software Patterns

The requirement to software pattern matching process is composed of two main parts. First,

there is the identification of the requirement and software patterns properties (c.f. Figure 4.13

1) and 2)). Second, there is the analysis process (c.f. Figure 4.13 c)). The analysis process

results in a set of candidate software patterns, selected based on the specified forces.

4.6.1 Concerns, Goals and Forces definition

The requirements to software patterns matching process assumes the definition of the requirement

pattern concerns, software pattern goals and corresponding forces in beforehand (c.f. Figure 4.13

a) and d)).

4.6. REQUIREMENTS TO SOFTWARE PATTERNS 93

Figure 4.13: Requirement pattern to software pattern matching process.

An example of Requirement Pattern to Concern association is the requirement pattern HasShop-

pingCart, containing the Manageable concern, c.f. HasShoppingCart => { Manageable }. An

example of Software Pattern to Goal, is the Proxy software pattern which contains the Delegate

goal, c.f. Proxy => { Delegate }. Finally, an example of forces association, the Manageable

concern has the Separation goal, c.f. Manageable => { Separation }. Similarly, the Delegate

goal has also the Separation concern, c.f. Delegate => { Separation }. The forces association

has been defined c.f. HashShoppingCart => {Manageable => { Separation } } and Proxy

=> { Delegate => { Separation } }. By having both patterns described at the forces level,

the tool is able to perform the matching process, which will identify for a given requirement

pattern and respective concern, which is the corresponding goal. Having identified the goal, the

tool proposes the candidate software patterns, which satisfy the provided requirement patterns.

The tool uses the the matching information in order to perform the process. An ontology was

defined which represents the Requirement patterns, with their associated Concerns and corre-

sponding Forces. The ontology contains also the description of the Software patterns, with their

corresponding Goals and Forces. An excerpt of the defined ontology is presented in Listing 4.8.

For each concept there is a corresponding class (e.g. RequirementPattern, Concern). The re-

lation between the different concepts is done via object properties (e.g. hasGoal, hasConcern).

The forces can be defined as a positive or negative contribution (with hasForceP and hasForceN,

respectively). In Listing 4.8 it is possible to see a simplified version of an excerpt of the ontology

which supports the formalization of the information. In the listing it is possible to see the classes

representing for instance Goal, Concern and Force (see Appending A.5 for the full specification).

It is also possible to see the object properties which identify the relationship between those el-

ements, as for instance hasForceP (for a force with a positive impact), hasForceN (for a force

with negative impact) or hasGoal.

94 CHAPTER 4. INSTANTIATION OF SCARP

Ontology: <http :// www.url.com/mapping >

AnnotationProperty: rdfs:comment

Datatype: xsd:string

ObjectProperty: :hasForceP

ObjectProperty: :hasForceN

ObjectProperty: :hasGoal

ObjectProperty: :hasConcern

Class: :RequirementPattern

Class: :Concern

Class: :Force

Class: :Goal

Class: :SoftwarePattern

Listing 4.8: Excerpt of the ontology supporting the matching process.

4.6.2 Matching Process

The plugin provides a graphical interface to help building the ontology containing the mapping

information, as part of the application setup. Figure 4.14 presents the interface provided. It

is possible to see on the left the input fields to specify the requirement patterns, and for each

requirement pattern the set of concerns. It is also possible to specify for each concern the

corresponding forces and their impact on the concern (i.e. positive or negative). Similarly, on

the right are presented the input fields to specify the software patterns, and for each software

pattern its set of goals. Finally, for each goal the set of forces and their nature. After specifying

this information, in the plugin is generated an ontology (as the one presented in Listing 4.8),

which formalizes the specified information.

In Figure 4.14 it is possible to see that the HasShoppingCart requirement pattern contains the

Editable, Manageable and Processable concerns. For instance the Editable concern, contains

the Versioning and Flexibility positive forces, and Constraint negative force. Regarding the

software patterns, we have the Command, Flyweight, Memento and Proxy software patterns. For

instance the Proxy software pattern has the Delegate concern. The Delegate concern contains

the Decoupling, Separation and Abstraction positive forces, and, Overkill and Efficiency negative

forces. This information is then formalized into the corresponding ontology, and ready to support

the mapping process.

The software pattern inference process, for a given set of requirement patterns (c.f. Perform

matching, in Figure 3.15) is a process composed of two main parts. The process results in the

candidate software patterns, as presented on Figure 4.15.

In Figure 4.15 Part 1, starts by querying the knowledge base in order to identify the concerns

for a given requirement pattern. Having the concerns, it is possible to extract the associated

Forces. Considering the HasShoppingCart pattern, the format of the expected result is as

follows.

4.6. REQUIREMENTS TO SOFTWARE PATTERNS 95

Figure 4.14: Interface to create the Requirement Pattern, Software Pattern, Concern, Goal and

Forces mapping information.

{ HasShoppingCart => { Manageable => { +Separation, ... }, ... }, ... }

Part 2 of the matching process, consists in reaching the suitable software patterns, given a set of

forces. Hence, for the given forces, the suitable goals are inferred, which have matching forces.

Finally, from the goals is possible to achieve the software patterns. The format of the expected

result would be as follows.

{ +Separation => { Delegate => { Proxy, ... },

-Separation => { Abstraction => { Bridge, ... }, ... }

Part 2 of the matching process results in several goals that match the inferred forces. Also, a

goal can be related with several software patterns. An example would be as follows.

Separation => { Delegate, Abstraction }

and

Delegate => { Proxy }, Abstraction => { Bridge }

Hence, a methodology is needed to select the most appropriate pattern to satisfy a given goal.

A matrix was used in order to identify the best match for a given set of patterns (c.f. [4]). The

96 CHAPTER 4. INSTANTIATION OF SCARP

Figure 4.15: Requirement pattern to software pattern process flow.

same approach was used for matching requirement and software patterns. The forces matrix

for the presented example is as depicted in Table 4.1. In the matrix, the positive and negative

relations between forces are represented, respectively, by positive (+P) and negative (-N) values.

PREFIX : <http :// www.url.com/mapping#>

SELECT ?rp ?c ?f ?g ?sp

WHERE {

?rp :hasConcern ?c .

?c :hasForceP ?f .

?g :hasForceP ?f .

?sp :hasGoal ?g

}

PREFIX : <http :// www.url.com/mapping#>

SELECT ?rp ?c ?f ?g ?sp

WHERE {

?rp :hasConcern ?c .

?c :hasForceN ?f .

?g :hasForceP ?f .

?sp :hasGoal ?g

}

Listing 4.9: Queries to identify positive and negative relations between requirement and software

patterns.

The queries in Listing 4.9 support the extraction of the relation between requirement patterns

(?rp), concerns (?c), forces (?f), goals (?g) and software patterns (?sp). This is the information

used to create the forces matrix. Specifically, the first query supports extracting the positive

contributions between goals and concerns, and the second query supports extracting negative

contributions.

The Forces Matrix summarizes the impact of adopting requirement patterns, in order to address

a software pattern (and vice-versa). The matrix is automatically extracted from the formalized

information, due to OWL’s reasoners, by applying the aforementioned queries in Listing 4.9.

uCat’s Architectural Matching plugin, as presented on Figure 4.16, was implemented to perform

the pattern matching process. The interface handles the requests to perform the matching

process, and to display its resulting information. In order to request the execution of the matching

process, the user should select the Match option (depicted on Figure 4.16, on the top). Once

4.6. REQUIREMENTS TO SOFTWARE PATTERNS 97

Table 4.1: Example of forces matrix relating goals to concerns.

Goals

Delegate Abstraction Goal n

Concerns

Manageable (+2, -0) (+0, -1) ...

Editable (+2, -1) (+1, -0) ...

Concern n (+P, -N) (+P, -N) ...

requested, the plugin resorts to the ontology containing the mapping information, and performs

the matching process. From the matching process results the forces matrix, which summarizes

the information regarding the Concerns/Goals contributions.

Figure 4.16 depicts the results of the matching process, for the HasShoppingCart, HasAccount

and HasSearch requirement patterns. The plugin’s user interface is divided in four major vertical

sections. In the first section (from left to right), are presented both the requirement patterns

to handle (inferred in the previous plugin), as well as the mapping information provided so far.

The second section (Forces matrix), presents the resulting forces matrix, which shows for each

concern, the impact on each goal. The third section (Matching result), presents the automatic

inference result, as the most appropriate goal to answer each concern, and the corresponding

software pattern. Finally, the fourth section (Software Patterns) lists the software patterns to

be instantiated, required to handle the inferred requirement patterns.

From the provided mapping information (c.f. Figure 4.14), the plugin was able to generate the

forces matrix. In the matrix, it is possible to see the concerns Editable, Processable, Manageable

and Manageable, as well as their relations with the goals Delegate, Edit, Share and Process. The

mapping information supports also the inference of the values of the impact of each concern on

goals. For instance, the concern Manageable has a positive impact of 2 on the Delegate goal.

It is also possible to see that +2 is the positive contribution with the higher value for this goal,

therefore that goal is the most appropriate one. Similarly, for the Editable concern, the Edit goal

was inferred to be the most appropriate one, with a value of 2, for Processable the Process goal

was inferred with a value of 2, and for the Manageable, Delegate was inferred with a value of 3.

Hence, and in respect to the forces matrix, the most appropriate software pattern to handle the

Manageable concern is the Proxy, for the Editable concern is the Memento, for the Processable

concern is the Command, and finally for the Manageable concern is the Proxy.

This resulting list of patterns, plus the association to the requirement patterns they handle, are

the outputs produced by this plugin. At this point, all the information required in order to start

the pattern instantiation process is gathered. That step is supported by the Prototype plugin,

described in Section 4.7. The user has then the possibility to adjust the suggested solution, and

proceed to the architectural step.

98 CHAPTER 4. INSTANTIATION OF SCARP

Figure 4.16: Architectural mapping plugin user interface.

4.7 Software Pattern Instantiation

The software pattern instantiation process consists in creating and composing concrete software

pattern instances. Taking the inferred patterns from the previous step, candidate solutions are

created.

As described in Secion 3.8, in order to support this instantiation process, four major requirements

must be fulfilled. First, it is required to represent software patterns in an appropriate way to

support their instantiation. Second, there is the need to describe requirement patterns in a

format that can be automatically managed. Third, combining the two previous requirements, it

is needed a process to create concrete pattern instances. Finally, the fourth requirement is to

provide a composition technique able to compose the pattern instances.

4.7.1 Software Pattern Representation

Software patterns can be represented in XMI. Such eases their automated manipulation and

instantiation, according to the first requirement. Since software patterns are typically represented

as UML class diagrams, XMI is the logical selection. As an example, the Proxy pattern depicted

in Figure 4.17, is represented in XMI in Listing 4.10 (see Appendix A.6 for the full list of used

patterns).

4.7. SOFTWARE PATTERN INSTANTIATION 99

Figure 4.17: Proxy software pattern structure (adapted from [41]).

In the presented listing it is possible to see the representation of the structure elements, such as

the class Proxy, or the interface Subject, as well as the relation (Abstraction) between them.

Having this representation, it is now possible to automate the instantiation process, by replacing

the structure elements with concrete values.

<UML:Class xmi.id = ’ID1’ name = ’Proxy ’ visibility = ’public ’

isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’

isAbstract = ’false ’ isActive = ’false ’>

<UML:ModelElement.clientDependency >

<UML:Abstraction xmi.idref = ’ID2’/>

</UML:ModelElement.clientDependency >

</UML:Class >

<UML:Interface xmi.id = ’ID3’ name = ’Subject ’ visibility = ’public ’

isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’

isAbstract = ’false ’/>

<UML:Abstraction xmi.id = ’ID2’

isSpecification = ’false ’>

<UML:ModelElement.stereotype >

<UML:Stereotype xmi.idref = ’ID4’/>

</UML:ModelElement.stereotype >

<UML:Dependency.client >

<UML:Class xmi.idref = ’ID1’/>

</UML:Dependency.client >

<UML:Dependency.supplier >

<UML:Interface xmi.idref = ’ID3’/>

</UML:Dependency.supplier >

</UML:Abstraction >

Listing 4.10: Excerpt of the representation of the Proxy software pattern in XMI.

4.7.2 Software Pattern Definition

The second requirement to support the instantiation process is the definition of software pat-

terns. In this specific context, specifying the software patterns consists in abstracting their

representation into a simplified and computable format, with the objective of easing their usage.

100 CHAPTER 4. INSTANTIATION OF SCARP

The selected approach was to represent software patterns as an API-like format (see Sec-

tion 3.8.1). In Listing 3.3, Listing 4.11 and Listing 4.12 the descriptions, respectively, of the

Proxy Memento and Command software patterns are presented. Both XMI and the API-like

format are required, since the former supports the manipulation of the patterns, and the latter

their specification.

/∗∗

∗ @intent Without v i o l a t i n g encapsu lat ion , capture and e x t e r n a l i z e an ob j e c t ’ s

i n t e r n a l s t a t e so that the ob j e c t can be r e s t o r ed to t h i s s t a t e l a t e r .

∗ @param o r i g i n a t o r Who t r i g g e r s the r eque s t f o r c r e a t i n g s t a t e s .

∗ @param memento Sto re s i n t e r n a l s t a t e o f the Or ig ina to r ob j e c t .

∗ @param car e take r The r e s p on s i b l e f o r the memento ’ s s a f eke ep ing .

∗ @param s t a t e The r ep r e s en t a t i on o f the s t a t e being keep .

∗ @param item The items be long ing to the s t a t e .

∗/

memento(o r i g i n a t o r , memento , care taker , s ta te , item) ;

Listing 4.11: Representation of the Memento software pattern in API-like format.

/∗∗

∗ @intent Encapsulate a r eque s t as an object , thereby l e t t i n g you parameter i ze

c l i e n t s with d i f f e r e n t reques t s , queue or l og reques t s , and support

undoable ope ra t i on s .

∗ @param c l i e n t Who t r i g g e r s the operat i on .

∗ @param r e c e i v e r Knows how to perform the ope ra t i on s a s s o c i a t ed with ca r ry ing out

∗ @param invoker Asks the command to carry out the r eque s t .

∗ @param command Dec la re s an i n t e r f a c e f o r execut ing an operat i on .

∗ @param concreteCommand Implements Execute by invok ing the correspond ing operat ion

on Rece iver .

∗/

command(c l i e n t , r e c e i v e r , invoker , command , concreteCommand) ;

Listing 4.12: Representation of the Command software pattern in API-like format.

4.7.3 Instantiation Process

In the previous step the pattern definition process was presented. The result of the inference

process listed the Proxy, Memento and Command software patterns in order to support the Has-

ShoppingCart requirement pattern. Hence, considering the eCommerce domain, and resorting

to the API-like pattern definition, the parameters for the Proxy pattern are as follows, resulting

in the architecture depicted in Figure 4.18, which supports the third requirement.

• client: System - The system triggers changes in the cart;

• subject: ICart - The interface which defines the cart actions;

• realSubject: Cart - The implementation of the cart;

• proxy: User - The user handles the instance of the cart.

4.7. SOFTWARE PATTERN INSTANTIATION 101

Figure 4.18: Proxy software pattern instantiation.

For the Memento proxy, the parameters are as described next, and the instance depicted in

Figure 4.19.

• originator: Cart - The cart is who needs to keep the states;

• memento: CartMemento - The memento for the cart;

• caretaker: CartCaretaker - The caretaker for the cart state;

• state: CartState - The state for the cart;

• item: Product - The products of the application.

Figure 4.19: Memento software pattern instantiation.

The definition of the parameters for the Command pattern is described next, and the instance

depicted in Figure 4.20.

• client: User - The user will trigger and requests the actions (e.g. checkout);

• receiver: Cart - The cart is who knows what action to perform;

• invoker: User - The user is who asks the process to be performed;

• command: IProcess - The interface to define the class to process;

• concreteCommand: Process - The class which implements the process code.

uCat is able to interpret the aforementioned software pattern representations and definitions

in order to support SCARP. The instantiation process consists in requesting for each pattern

component, a specific name. The plugin provides then the interfaces required to perform such,

102 CHAPTER 4. INSTANTIATION OF SCARP

Figure 4.20: Command software pattern instantiation.

by showing for each required software pattern a) its context (i.e., the requirement pattern in

which it will be integrated), and its content, b) the list of its constituents, i.e., names of the

classes, and corresponding description, and finally c) the user interface input fields to specify the

names of the constituents. The interface to support this process is shown in Figure 4.21.

Figure 4.21: Software pattern instantiation user interface.

In Figure 4.21 it is possible to see that for the first software pattern to support the HasShopping-

Cart requirement pattern (i.e. Proxy), the names for the Proxy, Subject, Client and RealSubject

constituents are requested. The corresponding names provided for those constituents are User,

ICart, System and Cart. Similarly, for the remaining fields were given meaningful names in the

eCommerce domain.

4.7. SOFTWARE PATTERN INSTANTIATION 103

After defining the names, when the user selects the Next option (Figure 4.21 on top), the plugin

creates the internal representation, and extract the fields contained in each constituent.

4.7.4 Composition

The fourth and final requirement of the instantiation process is the composition of the achieved

instances. uCat resorts to overlapping to combine entities represented by the same name. In

the Proxy, Memento and Command patterns, the User class represents the same concept in

all patterns, as the user of the eCommerce application. The same is true for the Cart class.

Thus, classes with the same name can be merged into a single one, composing both patterns

into a single architecture. The overlapping technique occurs at the XMI level, by merging the

information of both XMI files into a single one. As result, is produced the representation of User

represented in Listing 4.13. In the XMI is possible to see that it was added a connection from

User to Cart, and that Cart has two connections, one to CartState, other to CartMemento.

The Cart class represents also the merged information.

<!-- Class User -->

<UML:Class xmi.id = ’id-user’ name = ’User’ ... >

<UML:ModelElement.clientDependency >

<UML:Abstraction xmi.idref = ’id -abstraction -user’/>

</UML:ModelElement.clientDependency >

</UML:Class >

<!-- Class Cart -->

<UML:Class xmi.id = ’id-cart’ ...>

<UML:ModelElement.clientDependency >

<UML:Abstraction xmi.idref = ’id -abstraction -cart’/>

</UML:ModelElement.clientDependency >

</UML:Class >

<!-- User to Cart association -->

<UML:Association xmi.id = ’id -1’ ...>

<UML:Association.connection >

<UML:AssociationEnd xmi.id = ’id -2’ ...>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’id-user’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

<UML:AssociationEnd xmi.id = ’id -cart’ ...>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’id-cart’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

</UML:Association.connection >

</UML:Association >

<!-- Interface ICart -->

<UML:Interface xmi.id = ’id-icart ’ .../>

<!-- User to ICart association -->

<UML:Abstraction xmi.id = ’id -abstraction -user’ ...>

<UML:ModelElement.stereotype >

<UML:Stereotype xmi.idref = ’id-abstraction -stereotype ’/>

104 CHAPTER 4. INSTANTIATION OF SCARP

</UML:ModelElement.stereotype >

<UML:Dependency.client >

<UML:Class xmi.idref = ’id -user’/>

</UML:Dependency.client >

<UML:Dependency.supplier >

<UML:Interface xmi.idref = ’id -icart ’/>

</UML:Dependency.supplier >

</UML:Abstraction >

<!-- Cart to ICart association -->

<UML:Abstraction xmi.id = ’id -abstraction -cart’ ...

<UML:ModelElement.stereotype >

<UML:Stereotype xmi.idref = ’id-abstraction -stereotype ’/>

</UML:ModelElement.stereotype >

<UML:Dependency.client >

<UML:Class xmi.idref = ’id -cart’/>

</UML:Dependency.client >

<UML:Dependency.supplier >

<UML:Interface xmi.idref = ’id -icart ’/>

</UML:Dependency.supplier >

</UML:Abstraction >

Listing 4.13: Excerpt of XMI resulting from composition of Command and Memento software

patterns.

Figure 4.22 depicts the graphical representation of the aforementioned XMI. In the figure it is

possible to see that both pattern instance were merged into a single solution, where the class

User is the connection of both patterns. It is possible to see in gray the entities which were

merged, into the ones highlighted in bold (c.f. User and Cart).

4.7.5 Enhancement

The enhancement process is composed of two phases. In the first phase, the tool adds extra

associations between pattern elements through the stringing operator. In the second phase,

attributes are added to the classes.

The first phase relies in the domain model, in order to extract the possible additional relations

between the classes. The relationship associations are extracted with the query presented in

Listing 4.14. This query extracts the domain model connections of the type CompositionOf,

which give indications for classes which should be connected via an association.

PREFIX : <http :// www.rmsc.com#>

SELECT ?subject ?Object

WHERE { ?subject ?predicate ?object .

FILTER (? predicate rdf:type :TypeOf)

}

Listing 4.14: SPARQL query to extract individuals of the category TypeOf.

4.7. SOFTWARE PATTERN INSTANTIATION 105

Figure 4.22: UML representation of the architecture resulting from the pattern composition

process (with merged entities in gray).

From the domain model, uCat extracts that the entities System and Product are related via the

CompositionOf property. Hence, a connection should be added between those entities. The same

is true for Cart and Product. The resulting architecture of the first step of the improvement

process is presented in Figure 4.23.

The second part of the enhancement process consists in adding attributes to the classes of the

solution. Once again, the domain model is essential in order to extract that information. To

identify which attributes belong to each class, a query to analyze the PropertyOf properties is

used, as presented in Listing 4.15.

106 CHAPTER 4. INSTANTIATION OF SCARP

Figure 4.23: Enhancement of the solution via stringing merging operator.

PREFIX : <http :// www.rmsc.com#>

SELECT ?subject ?object

WHERE { ?subject ?predicate ?object .

FILTER (? predicate rdf:type :PropertyOf)

}

Listing 4.15: SPARQL query to extract individuals of the category PropertyOf.

From the domain model, is possible to extract, for instance, that entities Name, Address, Email,

Username and Password are related with the entity User via PropertyOf, hence they are its

attributes. As result, they are added to the corresponding entity, as presented in Figure 4.24.

Figure 4.24: Excerpt of enhanced solution with additional attributes.

4.7. SOFTWARE PATTERN INSTANTIATION 107

4.7.6 Producing XMI

In order to generate the XMI, a final step of concrete types specification, for the classes attributes,

is required. While the enhancement process has the capability to add attributes to classes form

the information in the domain model, their types must be manually specified. Hence, it remains

for the user to specify the types, in order to generate the final XMI. XMI makes it possible to

link the results of the SCARP process to other MDA tools.

uCat provides a plugin in order to support the types definition. As depicted on Figure 4.25, for

each constituent of each pattern a list of fields is presented, to specify the corresponding types.

For instance, the class User contains the Password field, for which the String type was defined.

Similarly, for the remaining fields the types String for the Username, String for the Address,

Integer for the Age, String for the Name and String for the Email were defined.

Figure 4.25: Types definition plugin user interface.

uCat supports the aforementioned processes, of software patterns interpretation and manipula-

tion, instantiation, composition and enhancement, as well as the types definition. At the end

of the process, the tool is also able to generate the corresponding XMI code, as presented in

Listing 4.16. In the Listing it is possible to see for instance the classes User and Cart, as well

as their relationships. It is also possible to see the relation between System and Product, which

resulted from the enhancement process. The plugin supports also exporting the architecture

to other formats, as for instance Ecore, since uCat provides an internal representation for the

architectures. This way, the plugin can easily be extended to generate other standard formats.

108 CHAPTER 4. INSTANTIATION OF SCARP

<?xml version = ’1.0’ encoding = ’UTF -8’ ?>

<XMI xmi.version = ’1.2’ xmlns:UML = ’org.omg.xmi.namespace.UML’ timestamp =

’Mon Mar 14 14 :55:29 WET 2016’>

<XMI.content >

<UML:Model xmi.id = ’id’ name = ’model ’ isSpecification = ’false ’ isRoot

= ’false ’ isLeaf = ’false ’ isAbstract = ’false ’>

<UML:Namespace.ownedElement >

<UML:Class xmi.id = ’id1’ name = ’Cart’ visibility = ’public ’

isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false’

isAbstract = ’false ’ isActive = ’false ’>

...

</UML:Class >

<UML:Class xmi.id = ’id2’ name = ’System ’ visibility = ’public ’

isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false’

isAbstract = ’false ’ isActive = ’false ’>

...

</UML:Class >

<UML:Class xmi.id = ’id3’ name = ’User’ visibility = ’public ’

isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false’

isAbstract = ’false ’ isActive = ’false ’>

...

</UML:Class >

<UML:Association xmi.id = ’...’ ...>

<UML:Association.connection >

<UML:AssociationEnd xmi.id = ’...’ ...>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’id1’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

<UML:AssociationEnd xmi.id = ’...’ ...>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’id3’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

</UML:Association.connection >

</UML:Association >

</UML:Namespace.ownedElement >

...

</UML:Model >

</XMI.content >

</XMI>

Listing 4.16: Excerpt of the XMI resulting from the SCARP process.

4.8. GENERATION OF OUTPUTS 109

4.8 Generation of Outputs

From the produced XMI it is now possible to generate concrete software outputs. As an example,

two possibilities are described in this section. The first one corresponds to source code, and the

second one to a user interface prototype. These outputs make it possible to perform a preliminary

validation of the solution to be implemented.

4.8.1 Source Code

Generating source code from XMI is one of the possible approaches to operationalize the produced

output. Several tools and approaches, notably the OMG MDA, already propose a solutions to

this problem. For demonstration purposes, it is possible to take the models resulting from the

SCARP, and use a tool to generate source code. Examples of tools able to do that are ArgoUML,

EclipseEMF, Visual Paradigm, among many others.

The resulting XMI was imported into ArgoUML (c.f. Figure 4.26), and the corresponding Java

source code automatically generated. An excerpt of the resulting code is shown in Listing 4.17.

It is possible to see, for instance, in the class User, the attributes Password and Username, as

well as the association with Cart. The objective of SCARP is not to produce final solutions.

Instead, the focus is in generating architectural solutions which are iterated and improved as

part of the software development process, as proposed by the MDA.

Figure 4.26: Representation in ArgoUML of the XMI produced in SCARP.

110 CHAPTER 4. INSTANTIATION OF SCARP

public class User implements ICart {

private String Password;

private String Username;

private String Address;

private String Name;

private String Email;

public Vector myCart;

public Vector myIProcess;

}

public class Cart implements ICart {

private java.util.GregorianCalendar Timestamp;

public Vector myCartMemento;

public Vector myCartState;

public Vector product;

}

public interface ICart {

}

Listing 4.17: Excerpt of the Java code generated by ArgoUML, from the produced XMI.

4.8.2 User Interface Prototypes

The integration of the SCARP process with other model based tools was explored. Specifically,

with the MODUS approach and tool [84]. The MODUS approach, developed during the elab-

oration of this work, supports the automatic generation of UI prototypes from UML structural

models (c.f. class diagrams). Similarly to SCARP, MODUS relies on the domain information, in

order to make several assumptions, and automatically generate meaningful solutions. In practice,

the models resulting from the Architectural Solution step (Figure 3.1, IV), were used as input

for MODUS. As a result, MODUS was able to automatically generate an interface, as depicted

in Figure 4.27.

Figure 4.27: Usage of SCARP outputs in order to support the generation of presentation code.

For this example, an Ecore representation (instead of XMI) was generated, and used as input

for MODUS. MODUS supports the automatic generation of user interface for an eCommerce

application. It is possible to explicitly see in Figure 4.28 the elements contained in the diagram

shown on Figure 4.26. For instance, it is possible to see that pages for user (profile) and shopping

cart (My cart) exist. Furthermore, the user is represented by its username, name, email and

password.

4.9. SUMMARY 111

Figure 4.28: Example of MODUS web page, generated from an output of SCARP.

4.9 Summary

This chapter presented the decisions made in order to support the several steps of SCARP. For

each step, a concrete implementation in terms of technologies, inputs and outputs was presented.

Also, examples of inputs, which lead to the production of a software architecture were presented.

Such architecture can be serialized into several formats, as is the case of XMI. The decisions

were required to support the implementation of uCat, the tool that implements the processes

described in each step of SCARP. Furthermore, uCat has the objective of operationalizing and

automating some of the steps, in order to generate the architectural outputs (c.f. XMI and

Ecore).

The suitability of SCARP to support Model Based User Interface Development is illustrated by

the UI prototypes produced by MODUS. The interoperability and integration of SCARP with

different tools and approaches (c.f. Visual Paradigm, ArgoUML [19], MODUS, etc.), is only

possible resorting to standards. Indeed, SCARP supports exporting the generated data to XMI,

the OMG standard for model interchange, it also supports representing the produced models in

ECORE, which are useful to support a large set of model based tools (c.f. Eclipse EMF [107]),

and which is the input format for the MODUS approach.

112 CHAPTER 4. INSTANTIATION OF SCARP

Chapter 5

Validation

This chapter is presents the validation of SCARP regarding the three following dimensions.

• Viability of the specification process, through assessment of both RUS and RUST;

• Acceptance of both the approach and tool by the users;

• Viability of the pattern inference process.

Two studies were carried out in order to perform the validation. The first study assessed both

the first and second topics. The users were requested to create and interpret RUS specifications,

while using the uCat tool. Their feedback regarding the experience with the tool/language was

collected. The second study addressed the last topic, by requesting different users to write the

same specifications in RUS, and perform pattern inference on those specifications.

The performed studies resulted in publications regarding the achieved results [26, 24, 28].

5.1 Study 1 Description

In the first study, which addressed the expressiveness and overall acceptance of the language, a

set of questions about RUS (which provide also feedback for RUST) and uCat was defined (c.f.

Table 5.1 and 5.2). From the questions a set of tasks for users to perform was extracted. A

task consists in an exercise the user should perform (e.g. create or interpret a specification). By

analyzing the result of the tasks, it was possible to answer the proposed questions. Data was

collected during and at the end of the modeling tasks.

At the end, a questionnaire composed of two parts, and described in Table 5.1 and Table 5.2, was

applied. Note that questions 1 to 3 and question 16 are open (although a numerical answer was

expected), while the remaining questions, up to number 24, were answered in a 7-point Likert

scale (0 meaning low and 7 meaning high). Questions 25 to 30 were answered with text.

113

114 CHAPTER 5. VALIDATION

Table 5.1: Questionnaire - part a).

Question

1 Number of statements which required major

changes in order to be mapped into RUS

2 Number of statements which lost their meaning

3 Number of unsupported statements

16 Minutes spent in adjustments (to match RUS)

Table 5.2: Questionnaire - part b).

Question (low to high)

4 How much sense does the user interface makes

5 How familiar was the terminology

6 How much the tool helps in the specification

7 How easy to use is the RUS

8 How easy to understand is the RUS

9 How much easier is RUS to understand than NL

10 How easy is it to manipulate RUST

11 Is NL easier to use than RUS

12 Is NL easier to understand than RUS

13 Likelihood to adopt RUS

14 How easy is it to understand RUST

15 How clear is the language

17 How close to NL is RUS

18 How easy was it to understand the tool

19 How this tool is preferred over VP

20 How useful and adequate was the output

21 How acceptable are the tools’ limitations

22 How easy to use is the tool

23 How much the user liked the language

24 How much the user liked the tool

The tool evaluation concerns usability aspects. Quesenbery [95] addresses five usability dimen-

sions, as follows.

1. Effective corresponds to how complete and accurately the work is completed;

2. Efficient Corresponds to how quickly the work can be performed;

3. Engaging Corresponds to how well the interface captures the user attention, and how

satisfying is it to use;

4. Error Tolerant Corresponds to how well the application prevents and helps the user recover

from errors;

5. Easy to Learn to how well the application supports the learning process through usage.

These dimmensions are address in this study, in the following manner: 1. is addressed by

questions 1, 19 and 21; 2. by question 17; 3. by questions 4, 13, 23 and 24; 4. by questions 2, 3

and 20; 5. questions 5-12, 14-18 and 22.

5.1. STUDY 1 DESCRIPTION 115

5.1.1 Objectives

The objective of the study was to analyze how RUS performs with real users, and, how uCat

performs at supporting the language. The objectives for RUS, according to Section 3.4.1, were

as follows.

1.1. Provide formalism to use cases with minimal extra costs for the user - such includes for

instance a seamless transition from natural language to RUS, without losing the meaning

or expressiveness of the original statements; furthermore, it is not intended for users to

have a background in formal methods.

1.2. Support the users’ specification needs - RUS should support the users’ use case specification

needs, in order to make SCARP viable; at the same time, improving the specification

process is intended, by encouraging the use of templates (or patterns), by demanding users

to follow the RUS.

1.3. Be easy enough to understand and manipulate according to the users’ needs - if so, the

users will be more likely to adopt it.

As uCat supports RUS, tool specific objectives are somehow related, and were elicited as follows.

2.1. Be easy to learn - this objective corresponds to a tool that is easy to use, and does not

require an extensive adaptation period; it is also evaluated how suitable the interface is

regarding the use of familiar and self explanatory terminology.

2.2. Have a good acceptance - it is evaluated how likely it is that uCat will be able to complement

or even substitute other UML supporting tools, regarding the formalism it provides.

2.3. Provide a good support for the language - the tool must be able to both support and

improve the usage of RUS.

5.1.2 Study Setup

In order to evaluate the expressiveness of the language, a number of tasks was defined (see

Figure 5.1) as described next.

Figure 5.1: RUS validation process.

116 CHAPTER 5. VALIDATION

1. A number of use cases were converted into RUS beforehand, by the authors of the study;

2. The participants were asked to interpret and textually describe the RUS use cases;

3. The textual descriptions were handed to the original use case authors, which evaluated

them;

4. The participants were presented with the original use cases, and asked to point out any

missing information from the RUS version.

The use cases used resulted from a previous unrelated work performed by the participants, in the

context of a software engineering masters, where several functional requirements were described.

The requirements, are described in the form of use cases, related to either social projects’ or a

football tournaments’ management system. From all the specifications, the works with higher

grades were selected. From those works, the use cases with the higher number of steps were

chosen (see Appendix B.1 for the set of selected use cases).

Table 5.3: Excerpt of a RUS use case specification used in the study.

User Input System Response

1 user inserts name

2 system searches tournament

3 system shows tournaments

4 user selects tournament

5 system shows tournament

6 user selects remove

7 system requests confirmation

8 user provides confirmation

9 system removes tournament

10 system informs success

The use case presented in Table 5.3 is one of the use cases used in the study, presented here for

illustration purposed. It describes the process of removing a tournament from a football team

management system. The process consists in a user providing the name of the tournament to

be removed, which the system searches for. The system presents the existing tournaments, from

which the user selects the one to remove, confirms the action, and the system proceeds to remove

it.

In total, 8 distinct use case scenarios were selected (c.f. Appendix B.2), and formalized in RUS

(see Table 5.5 for an excerpt of such descriptions). The process resulted in a set of RUS use cases

for a domain known to the test subjects, while avoiding their contact with the language. Next,

scripts for the participants were created, containing the tasks for each stage and instructions

about how to perform them. Figure 5.2 and 5.3 present the results of the questionnaire.

In order to evaluate the expressiveness of the language and the acceptance of the tool, the same

users were asked to perform a set of additional steps.

5. A new scenario describing textually a system’s functionality was provided to the partici-

pants, which were asked to write the corresponding use case, using the tabular representa-

tion and natural language;

5.1. STUDY 1 DESCRIPTION 117

6. At this point, both the language and the tool were introduced. The users were asked to

convert the use case into RUS, with the tool;

7. A new scenario was presented, and the users asked to write it in RUS, on the tool;

8. The use cases were handed to other users, which interpreted them; each author evaluated

the descriptions’ correctness;

9. A RUS entry was presented, and the users were asked to write the corresponding RUST.

In relevant tasks the time required to perform them was measured. At the end, a questionnaire

was applied.

The scenarios for tasks 5 and 7 concerned a web application context. Three different scenarios

were used: “Upload a model to a repository”, “Download a model from a webpage” and “Register

on a group on a web application”. The scenarios were written in Portuguese as that was the

participants’ native language. The scenarios were translated into english for this work. As an

example the latter scenario was as follows (see Appendix B.1 for all scenarios descriptions):

A user clicks in “groups” link. The system shows the available groups. Next, the user

views the list, and selects one to register to. The user selects “register”, the system

registers the user in the group and shows a success message. If the group is private,

after selecting “register” the system sends a message to the group author (with an

admission request) and shows an information message, instead of a success message.

As it will be described in the next sections, several groups of test subjects were involved in the

study. In all cases the participants were students from an Informatics Engineering course, at

the University of Minho. They had obtained final grades on the 80th percentile in a previous

software engineering course. They all had previous contact with the use cases user input/system

response style, and tabular representation, as proposed by Fowler. The participants performed

the study in an isolated environment and without interaction with each other. None of them had

previous contact either with RUS, the tool or SCARP. To perform the study, each participant

had a computer and a printed script of the study, and individually performed each task. Every

task was previously explained before its execution. The steps were carried out sequentially, and

all the users performed them at the same time.

5.1.3 Addressing the Objectives

Objective 1.1 is addressed by measuring the overall time required by the users in order to adapt to

RUS, and by how correct their specifications are. In tasks 2, 3 and 4, the language acceptance is

measured, and in 6, 7 and 8 the time required by the users. Objective 1.2 is mainly evaluated by

the reports about how the users understood predefined statements. Task 3 measures how able is

RUS to support the use case specifications. Objective 1.3 is evaluated with two approaches. First

by measuring how valid the users’ inputs are, regarding a provided set of RUST entries. Second

by analyzing how the users were able to manipulate RUST and the corresponding required time.

118 CHAPTER 5. VALIDATION

In order to evaluate objective 2.1, the time spent using the tool is measured, as well as the number

of tries required in order to successfully create a use case specification. Evaluation of objective

2.2 relies on the users’ feedback, about the likelihood of adopting the language. Objective 2.3

is measured by the capability of the users to write the use case specification (overall number of

supported statements) and take advantage of the language’s capability (for instance, alternatives

and exceptions). Table 5.4 relates each objective to the set of corresponding tasks. The outputs

produces by tasks 1 and 5 do not contribute directly to the objectives, but are required for the

remaining tasks.

Table 5.4: Study objectives and corresponding tasks.

Objective Task 2 Task 3 Task 4 Task 6 Task 7 Task 8 Task 9 Feedback

1.1 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
1.2 ⇥
1.3 ⇥ ⇥ ⇥ ⇥
2.1 ⇥ ⇥
2.2 ⇥
2.3 ⇥ ⇥ ⇥

5.1.4 Study Validation

A preliminary session was carried out with five participants, to validate the study’s design. The

study itself was performed with the authors of the use case descriptions. All users were able to

perform the study and the data collected was useful for analysis. No major issues were found,

affecting the users’ performance. No questions were also raised regarding the questionnaire,

neither complaints regarding the duration of the study. Nevertheless, a number of adjustments

was identified, which are described in the next section.

5.2 Study 1 Execution

After the validation, the study was applied to a larger set of participants [28]. A more clear

organization of the study (i.e. the stages and objectives) reflects adjustments resulting from the

validation study (c.f. the previous section). Specifically, it is worth noting the separation of the

study in two stages.

STAGE 1 aimed to validate the expressiveness of the language. It addressed three of the main

objectives defined for the approach:

Objective 1 Provide formalism with a minimal effort for the users;

Objective 2 Provide a language which is expressive enough to support use case specifications;

5.2. STUDY 1 EXECUTION 119

Objective 3 Provide a language which is easy to use.

STAGE 2 addresses the tool’s support for RUS. It addressed three more objectives of the

approach (in this case, related specifically to uCat):

Objective 4 Be easy to learn how to use;

Objective 5 Be acceptable as a complement/substitution for other tools;

Objective 6 Provide a good support for the RUS language.

5.2.1 Execution of the study

A group of 18 participants (16 male, 2 female), with ages between 20 and 25 years with a mean of

21, was selected to perform the evaluation stages. Participants were distributed by four sessions.

Each session took about 130 minutes: 30 minutes for presenting the tool and the language, 90

minutes for the study, 10 minutes for the questionnaire. In each session, the participants were

gathered in a room, and asked to perform the scripts individually. No time limits were imposed.

In each session the participants performed both the first and the second stages of the study in

sequence.

5.2.2 Results of the Study

In both stages the participants demonstrated autonomy while performing the tasks. As presented

next, in some steps some questions arose, but all regarding minor issues.

Table 5.6 summarizes the results from the first stage of the study regarding a) whether the use

case descriptions produced in Task 1 were correct (Task 2); and b) whether there were differences

between the Natural Language and the RUS use case descriptions (Task 3). In the second task,

only 15 of the 18 participants answered the questions.

In the second stage of the study, while writing the specifications in natural language was straight-

forward, writing them in the tool generated some questions. Most common questions regarded

input mismatches (for instance, a trailing space in a statement, or how to write a multiple word

entity such as “work plan”). All the questions were easily answered, not affecting the study in a

negative way. An example of a specification, both in natural language and in RUS is presented

in Table 5.5.

An excerpt of a RUS use case produced by a participant is shown in Table 5.7, starting from a

Natural Language use case. It corresponds to the success case for the “Register on a group on

a web application” scenario from Section 5.2.1, and it is a case where the author of the Natural

Language use case considered the RUS version a correct version of the original NL use case.

Figures 5.2 and 5.3 present the questionnaires results up to question 24 (mean value for numeric

answers, and mode for Likert-scale answers, respectively). These results will be discussed next.

120 CHAPTER 5. VALIDATION

Table 5.5: Excerpt of a collected use case and its RUS version.

Original version RUS version

User input System response User input System response

1 inserts project 1 user inserts

identifier project id

2 confirms project existence 2 system confirms project

3 inserts work plan 3 user inserts work plan

4 confirms insertion 4 system confirms

of work plan insertion

The open questions in the questionnaire enabled participants to express their experience. The

first question was: “What became harder by using RUS (over NL)?”. From the participants

which decided to answer the question, three answered that nothing became harder, while eight

referred the need to learn and adjust to the RUS syntax. Six participants answered that it was

to map more complex statements into RUS. On the contrary, when asked “What became easier

by using RUS (over NL)?”, seven participants answered that it was the interpretation, as the

descriptions became simpler. Four participants referred the standardization of the specification,

while three referred that it became easier to create specifications. Three participants stated that

it became easier to create specification (vs Natural Language), and one participant answered

that it was easier to create correct specifications.

Another question asked was: “What did you like in the language?”. Thirteen participants an-

swered that it was its simplicity, two participants referred the standardization of the specifica-

tions, one the interpretation of use cases produced by other authors, another that it speeds up

the specification process, and one mentioned nothing. To the question: “What did you dislike

in the language?”, nine participants answered that there was nothing that they disliked, three

participants reported the need to adapt Natural Language, other three the limited set of key-

words to support statements, a clear indicator that they did not understand RUST. Other two

participants reported the required learning time, and one participant how alternative scenarios

could be specified (although that is an issue related more with the tool).

It was also asked if the users preferred the RUS format (supported by uCat), or another free

text format input tool they knew. Ten participants stated that they preferred RUS because

of the standardization provided by the format, six participants mentioned the lightweight in-

terface, and two the easier way to specify alternatives. One user stated that it becomes closer

to a programming process. When asked the question: “What did you like in the tool?” most

participants (seven), mentioned its simplicity, four the capability to validate the use cases while

specifying them, three the formatted input, and two the representation of the information. One

participant referred the familiar interface, and another the possibility for the tool to be a viable

replacement for other tools. On the contrary, when asked:“What did you dislike in the tool?”

ten participants pointed nothing, three mentioned the restrictions on the specifications format,

and three proposed improvements in the alternative scenarios specification. One referred minor

bugs, and another stated that specifications became harder to read.

5.2. STUDY 1 EXECUTION 121

Figure 5.2: Questionnaire results for numeric questions.

Figure 5.3: Questionnaire result for Likert scale questions.

Table 5.6: RUS evaluation.

Question
p ⇠ ⇥

a) Use case description

is correct
12 2 1

b) Versions are identical 14 4 0

(
√

– correct; ∼ – had issues; × – incorrect)

Table 5.7: Excerpt of use case made by a participant.

User Input System Response

1 user clicks groups

2 system provides the groups

3 user selects group

4 user clicks register

5 system register user

6 system provides

success message

122 CHAPTER 5. VALIDATION

5.2.3 Discussion

Regarding the performed tasks, both the participant’s results and observed behaviors provide

relevant insights. Tasks 1 and 2 provide hints about how the participants were able to correctly

understand the presented RUS. Only two of the descriptions produced by the participants were

considered to have minor issues. One resulted from an interpretation error, where a use case

element (user) was used instead of another (player). The other consisted on a poor description

of the scenario. Participants described the steps of the specification, instead of interpreting the

scenarios. On a positive note, none of the interpretation errors was due to either the language

or the translation process.

The results from Task 3 show that the participants were able to both understand and express

the use cases in RUS without issues, and that the language had enough expressiveness. None

of the users reported missing information, which would lead to changes in the RUS use case

descriptions. In fact, only five participants referred some missing detail; one stated that the

RUS version was more compact, and the remaining stated that both descriptions had the same

information.

From Tasks 4, 5 and 6 it is possible to draw several conclusions. The participants required

an average of 27 seconds per statement (s/s) when creating the tabular Natural Language use

case descriptions. While writing the same description in RUS, the users required an average of

70s/s. That is somehow understandable considering that the users had no previous training, and

therefore needed an adaptation period. However, when writing a description for the second time,

the participants required an average of 52s/s (18s/s less), corresponding to an improvement of

about 25%. A two-sample T-test (for iteration 1 and 2) was applied, for the null hypothesis that

there is no difference between the two populations means. The result, for a confidence level of

95%, states that the mean value of iteration 1 is greater. This clearly indicates that through

practice, the users were able to reduce the time required to write RUS statements.

In Task 7 participants were able to correctly describe the use cases written in RUS. From

the 18 descriptions, just in two were missing details pointed out. These were not related with

the language description, rather with brevity of the users descriptions. This is another positive

indication about the expressiveness of RUS.

The presented results, plus the participants’ feedback, clearly indicate that they were receptive

to SCARP. Participants were able to perform the tasks independently. The formalization of

the use cases was possible with minor overhead, and there was no loss of information in the

process. Only one of the specifications produced in the second stage contained issues. In that

case, the participant clearly did not understand the purpose of the language, as the remaining

specifications were correct. Analysis of the specifications from the third stage shows that, overall,

participants made a correct usage of RUS syntax. All the specifications were valid, and correctly

described the corresponding scenarios. The lack of issues and the participants’ autonomy are

good indicators regarding both the tool and language.

5.2. STUDY 1 EXECUTION 123

The specifications varied in the used verbs, the number of statements, and in the names given

to entities (e.g. the terms search link and searchLink were used by different participants to

refer to a “search link”). For instance, to describe the “Download a model from a webpage”

scenario, (from stage 2), 7 participants used 7 or 8 statements, while the other 3 used 6, 12

and 13. Each scenario presented in Task 8, varied in the number of statements required by

different participants to describe them in RUS. Namely, scenario 1) and 2) varied from 5 to 9

statements, scenario 3) from 7 to 12 statements and scenario 3) from 3 to 9 statements. These

results demonstrate the existence of variability in the descriptions.

Next it is described in more detail how each objective from Section 5.2 relates to the results of

the questionnaire from stage 2.

Objective 1 is related to questions 9, 11, 12 and 16. The answers show that participants

preferred the RUS approach over Natural Language. Several factors contributed to this result (as

presented next), but overall the participants liked the standardization provided by the language.

Objective 2 is related to questions 1, 2, 3 and 22. On questions 1, 2 and 3, on average 1.8

statements (for an average of 14.2 statements) required some kind of adjustment when mapping

into RUS. This result is a good indicator that the language has a good expressiveness. From

question 22, it is possible to conclude that the participants expressed empathy with the language.

The participants considered also that the RUS language is easy to learn and RUST is easy to un-

derstand and manipulate (mode 6, on questions 8 and 14 and 10 respectively), which contributes

to achieve this objective. These answers are in line with the results from the aforementioned

tasks.

Objective 3 is related to questions 7 to 15. From these questions, it is possible to concluded

that the participants considered the tool to be easy to understand and use, even when compared

with Natural Language.

Objective 4 is related to questions 5, 17, 19, 21 and 23. With a mode of 6 for these questions,

the tool had a good acceptance by the participants (being easy to use and learn). Question 23

provides also feedback for the tool, and follows the trend of the other questions.

Objective 5 is related to questions 4, 18 and 20. These questions have modes of 6 and 7. The

results show that participants are highly receptive of using uCat as replacement/complement to

other tools.

Objective 6 is related to questions 6, 19 and 21, which have modes of 5 and 6. This result

shows that the participants consider the tool able to support the language.

Beyond the questionnaire, direct observation during the study supported concluding that the

tool played a relevant role in the specification process. First, by ensuring the correctness of the

specifications, as the tool forces the participants to input valid RUS statements, since only valid

specifications are accepted. Second, the tool provided runtime feedback regarding the statements:

once the user finished writing a statement, it was immediately verified and highlight if incorrect.

124 CHAPTER 5. VALIDATION

Thus, the test subjects not only knew if the specification was valid, but what statements were

invalid.

5.2.4 Summary

Regarding the language, the participants successfully both interpreted it and created new spec-

ifications, even without previous training. Not only were they able to produce specifications in

an acceptable time interval, but practice further reduced the time required to write them. The

tool’s performance results are also positive. It performed well and generated positive feedback,

successfully supporting all the tasks in the study. As a whole, results indicate that the proposed

use cases formalization approach is feasible, and that the tool provides good support for the ap-

proach. It is possible to write use cases, without a major effort and without losing expressiveness,

such that they can be automatically formalized.

Performing the validation study was not only relevant to validate the formalization approach,

but also the supporting tool. It is not only relevant to have tools which support formalization

mechanisms, but it is also important for them to have a good acceptance by the final users.

By successfully validating uCat, it was possible to gather users’ feedback, improve the tool,

and ultimately foster the adaptation of formalization techniques. Results indicate uCat is an

adequate tool to provide support for the specification process required to support the approach.

Study 2 further explores this aspect.

5.3 Study 2 - Pattern Inference Process and Usability

Assessment

The second study was developed in order to access the following aspects:

• OWL’s capability to formalize use cases;

• OWL’s expressiveness to support the rationale required by the patterns inference process;

• SPARQL potential to infer requirement patterns from such knowledge;

• The capability of uQL to specify requirement patterns;

• The usability of the tool.

Furthermore, from that study, a set of requirement patterns, with adjusted percentages, was

extracted.

5.3. STUDY 2 - PATTERN INFERENCE PROCESS AND USABILITY ASSESSMENT 125

5.3.1 Setup of the Experiment

In order to perform the study a group of 21 participants (18 male, 3 female) with an average

age of 24 years, and approximately 2,5 years of experience in specifying use cases was selected.

All were students from a master course. The study was performed as part of a class assignment

during approximately 1,5 hours.

The study started by presenting both the RUS language and the uCat tool (during approximately

20 and 10 minutes, respectively). It was demonstrated how the tool supports the language, by

specifying a use case in the tool (adding a product to the shopping cart). Participants had the

opportunity to interact with uCat and to create themselves a specification, in order to get used

to the tool. This took about 10 minutes. Note that, given their background, all participants

were well versed in using software modeling tools. For this stage participants had to carry out

a single task. They were asked to specify a set of five textual descriptions of usage scenarios for

an eCommerce website in RUS. Each scenario was designed to capture an eCommerce pattern.

Next follows the list of patterns used to create the scenarios (see Appendix B.2 for the scenarios’

specification).

Simple search “Provide users with powerful, yet simple, search mechanisms.” [82];

Catalog pattern “The catalog pattern organizes information about the products sold in a web

site.” [35];

Session “Many objects need access to shared values, but the values are not unique throughout

the system.” [124];

List builder “The users need to build up and manage a list of items” [116].

Shopping basket “A mechanism that keeps track of items selected by the user.” [116].

As an example, the first scenario is as follows:

A user clicks in the ”search” link in the website. Then, the system shows a field where

the user should insert the keyword to search, as well as the search criteria (price, date,

etc.). When the user clicks “ok”, the system performs a search (based in the given

criteria), creates a result list and shows such list to the user. Finally, the user checks

the resulting list.

This task took about 50 minutes to complete. Again no time restrictions were imposed. After

completing the specification, participants answered the System Usability Scale (SUS) question-

naire [12]. The specifications were kept to validate the requirement patterns. To perform the

study, all the participants were gathered in the same room. Each participant had a laptop

and was asked to install uCat. A printed page containing all the usage scenarios and another

containing the SUS questionnaire were printed and handed.

The identification of the requirement patterns occurred in four steps. First, syntactical er-

rors were removed from the specifications, as addressing them is not relevant for the valida-

126 CHAPTER 5. VALIDATION

tion process. Second, each use case specification was analyzed, to identify recurring proper-

ties across the several specifications. For instance, for all users was observed that the first

statement of the use case search scenario could be generalized as follows: “(the) user clicks or

asks for the search, searchLink or search link”. Third, a set of generic enough statements was

wrote with the objective to support the specifications. Such lead, for instance, to the statement

(system) (shows|asks|displays) (?). The set of statements constitutes a requirement pat-

tern. Fourth, the patterns were tested in order to check if they correctly identified the statements

they where specified to identify.

The evaluation process occurred in two steps. First, each pattern was applied to the knowledge

base in order to identify both the success ratio and the false positives. This is useful to understand

if a pattern is identifying the correct knowledge. Second, each pattern was iteratively analyzed

to identify the most relevant statements. The percentages for those statements were adjusted,

and applied again. The results were compared with the previous percentages. The percentage

adjustment process supports tuning the patterns’ percentages, in order to improve the correct

identification ratio, and lower the false positives percentage.

5.3.2 Results of the Experiment

The participants were autonomous while performing the study. They were able to use the tool

and create the specifications without external intervention regarding the specification process.

Example of minor questions that arose during the study are as follows: “should I use a verb

here?”, or, “should I split this specification in two statements?”, or how to perform some action

in the tool: “how do I save the specification?”, or even minor questions related with the scenarios

“should I specify the action of viewing an item?”. All these minor questions were solved, and

the study proceed without issues.

The overall feedback regarding the tool was positive. The participants had previous contact with

modeling tools, and stated that uCat was lighter, since it was faster to open and register user

actions, having a small size and an interface that responded quickly. Users expressed preference

for uCat, over previous used tools. Some participants noted that they would rather use this tool

in the classes as it leads to more standardized specifications.

Regarding the “Perform search in the site” scenario, the specifications were as expected. The

users correctly resorted to the provided syntax and created meaningful specifications. A RUS

specification provided by a participant is as follows:

User Input System Response

1 user clicks in search

2 system shows the search field

3 user inserts the keyword, search criteria

4 system performs search

5 system creates list

6 system shows list

7 user checks list

5.3. STUDY 2 - PATTERN INFERENCE PROCESS AND USABILITY ASSESSMENT 127

It is possible to see that the scenario correctly describes the textual description, and is a correct

RUS specification. All the specifications followed the same formats with similar descriptions.

There were slight differences regarding the names of entities and in the choice of steps, which

was expected and useful in order to evaluate the pattern inference process.

Two issues arose regarding the specifications. First, one test subject was not able to use the

syntax correctly. The test subject did not write the specifications as expected. Second, some test

subjects (as english is not their native language), performed some syntactical errors. Despite the

errors not affecting the process itself, they can affect the inference process.

From all participants, 14 were able to correctly describe the use cases. From the 14 participants,

4 pointed out some issue with the description (not deterrent for the study itself). Regarding the

4 that had issues, two participants pointed out missing descriptions of the alternative scenarios

(despite their being in the specification), one pointed out a missing bit of context information

(it was not stated that the group could be private, according to the aforementioned scenario),

and another misunderstood “information” for “success message”. Hence, the participants overall

produced correct use case specifications for the given scenario.

A SUS questionnaire was applied. It consists of ten questions about a system which are answered

using a 5 point Likert scale (from 1 – Strongly disagree – to 5 – Strongly agree). From the

answers provided, a score is calculated which has been shown to have a strong correlation with

the perceived usability of the user interface being analyzed. uCat scored a value of 74, meaning

that it has higher perceived usability than (approximately) 72% of all products tested [13]. The

corresponding grade is B. Although the individual results of SUS (c.f. Table 5.8) are not as

relevant as the global score value, they provide further details regarding the users’ feedback.

Table 5.8: Detailed SUS results.

Question Mode

I think that I would like to use this system frequently. 3

I found the system unnecessarily complex. 2

I thought the system was easy to use. 4

I think that I would need the support of a technical person to be able to use this system. 2

I found the various functions in this system were well integrated. 3

I thought there was too much inconsistency in this system. 2

I would imagine that most people would learn to use this system very quickly. 4

I found the system very cumbersome to use. 1

I felt very confident using the system. 4

I needed to learn a lot of things before I could get going with this system. 2

128 CHAPTER 5. VALIDATION

5.3.3 Discussion

The lack of issues regarding the use of both the language and the tool is a positive outcome. In

the previous study both the language and the tool were successfully validated (c.f. Section 5.2).

The results from this study are another positive hint regarding the language expressiveness and

tool support.

This study had a shorter training phase than the previous one, but still the participants were

able to correct specifications. This shows that the users were able to quickly learn and make a

correct use of the language.

Regarding the invalid specification produced by one of the participants. That case is taken as an

exception, since it was an isolated case, most likely from not paying attention while the process

was being explained. The user provided specifications as “system creates result list and

shows”. As explained at the beginning of the study, such is not supported in the RUS. Instead,

it was expected a two statement specification, for instance: “system creates result list”

and “system shows result list”. As for the syntactical errors, they can be mitigated. In

order to achieve this a glossary was developed and integrated in the tool. On the one hand it

provides syntactical verification, on the other hand helps to limit the used terms regarding the

specification context.

A set of four requirement patterns was achieved, by analyzing and extracting the similarities

from the use case specifications.

Listing 5.1 presents the simple search pattern (written in uQL) resulting from the described

process (see Appendix B.3 for the applied pattern catalog).

(user) (clicks|asks) (search|search_link|searchLink) 13

(system) (shows|asks|displays) (?) 13

(user) (inserts|enters) (keyword|date|price|criteria) 13

(user) (clicks) (ok) 13

(system) (performs) (search) 12

(system) (creates) (result_list|list|resultlist|result|results) 12

(system) (shows|displays|display|presents) (list|result_list|results) 12

(user) (checks) (list|resulting_list|info|result|results) 12

Listing 5.1: Simple Search requirement pattern, written in uQL.

These patterns went through a fine tuning process. Figure 5.4 depicts the improvement in the

identification ratio of the Catalog pattern, before and after adjusting the percentages. The mean

value of the identification of the Catalog pattern improved from 77% to 80%, while the false

positives decreased approximately 1.5%. This is an indication that queries can be tuned to

better identify the patterns (and reduce false positives). The systematic process of analyzing

the provided specifications, and generating the requirement patterns could be, relatively easily,

automated. Such would allow to automatically deduce a uQL query from a set of specifications.

Furthermore, the larger the number of specifications, the more accurate the queries would be.

5.3. STUDY 2 - PATTERN INFERENCE PROCESS AND USABILITY ASSESSMENT 129

Figure 5.4: Results before and after adjusting the percentages, for the inference of the pattern

catalog.

Figure 5.5: Patterns inference resulting percentages (average values and standard deviation) for

Simple Search, Catalog, Registration and List Builder requirement patterns.

130 CHAPTER 5. VALIDATION

Figure 5.5 presents an overview of the result of applying the final versions of the four patterns

to the use case specifications. In each chart in the figure is represented the average value of the

match percentage for the corresponding pattern, across all the users. Each chart corresponds to

a pattern, respectively “Simple search”, “Catalog”, “Session” and “List Builder”.

An overall analysis of the chart indicates that all patterns have been successfully inferred, with a

match percentage of 80%. The standard deviation, on the upper bound was about 100% match,

and on the lower bound above 50% match. The false positives had an average value under 30%,

standard deviation under 20% for the lower bound and under 40% for the upper bound.

The first chart represents the inference of the “Simple search”. It is possible to see that the

first bar (corresponding to the pattern) clearly indicates the presence of the pattern. The false

positives have relatively low values, being “List builder” the higher. Such is however somehow

expected. The list builder pattern has an overlapping with the “Simple search”, as both patterns

share some steps regarding the production of a list of results. The relatively high value of the “List

Builder” pattern is an indication that the “Simple search” contains part of the “List Builder”.

In the second and fourth charts, for the “Catalog” and “List builder” patterns respectively, the

inference is clear. The “Registration” pattern had a relatively more complex specification than

the other catalogs. As presented, such resulted in a more clear identification of the patterns, and

drastically reduced the false positives.

Despite the variation on the use case descriptions (both in terminology and number of state-

ments), the achieved queries allows to correctly identify the requirement patterns. Indeed, the

requirement patterns were identified with a confidence of (approximately) 80%. That means

that, for the given specifications, in each description that contained a pattern, that pattern was

identified with an 80% or more precision. Regarding false positives, they all had a value under

30%.

5.4 Threats to Validity

While the results provide positive feedback, a number of aspects must be taken into consideration.

With 18 and 21 test subjects in each group a reasonable level of confidence in the results is

attained. Naturally, increasing the sample size would result in more reliable results. It is however

worth noting that SUS in particular is known to provide good results for small sample sizes (5

test subjects is usually considered an acceptable number for early stage evaluations, according

to [76]).

The participants’ background is a difficult issue to address. Ideally, the study should have a

more diverse collection of test subjects. However, that was not easy to achieve. The fact that a

considerable number of participants did not have professional experience, might have affected, for

example, their willingness to accept new tools as the time invested in the tools they currently use

and the cost of adopting new tools is not overly large. On the contrary, the diversity of computers

5.5. SUMMARY 131

used by the participants (e.g. operating systems) might have affected the time measurements

performed on some tasks. Ideally all the participant should have had a similar setup, however

that was beyond control.

Still on the topic of the variability of conditions, and despite the efforts to avoid it, different

sessions were performed at different hours. While some groups performed the tasks in the

morning, other performed them the end of the afternoon. The effects on the study are arguable,

but since some tasks required focus, the fatigue of the participants could have affected them.

Finally, it can be argued that the provided scenario descriptions were too detailed, and close

to the use cases language, making it easy to perform the translation from natural language

to use cases. However, the focus at this stage was on use case specification, not requirements

analysis, and in order for the study to have a viable size, it was decided to write simple and

small statements that the all users could translate in reasonable time. Subjective sentences were

introduced however, as much as possible, to give some room for variations in the specifications.

Indeed, for the same specification, different participants presented specifications with a different

number of lines.

5.5 Summary

This chapter presented the results of two validation studies, performed on the SCARP approach.

Overall, the results of the studies answered a set of questions, namely:

• Is RUS expressive enough to handle requirement specifications?

The study results have provided a good feedback regarding the expressiveness of the lan-

guage.

• Is the proposed knowledge base representation and inference mechanism suitable to support

requirement pattern inference?

It was possible to apply the implemented pattern inference mechanism to the provided

specifications, and successfully infer requirement patterns.

• Is uCat able to support the specification process?

Study results show that uCat performed well in supporting the specifications, with the tool

being used in the studies themselves.

• How is uCat’s usability?

The applied SUS questionnaire had a result value of 74, corresponding to a grade B, which

is an indicator of good usability.

132 CHAPTER 5. VALIDATION

Chapter 6

Case study

This chapter presents the application of SCARP to an example in eCommerce domain. For each

step of the approach, the specific inputs and outputs are presented. SCARP requires two kind of

inputs. On the one hand, there are the reusable inputs, part of the process setup. These inputs

are composed by the domain model, uQL requirement queries catalog, software patterns catalog,

and requirement patterns to software patterns matching information (Sections 6.2 - 6.4). On

the other hand, there are the specific inputs for the solution being developed, composed by the

use case specifications and types definition (Sections 6.5 - 6.6). This demonstration of SCARP,

supported by uCat, has also the purpose of documenting the approach.

6.1 Context

The case study to illustrate the application of SCARP resorts to the eCommerce domain. In

order to assess the viability of SCARP, three major groups of features will be addressed. First,

the features related with products for sale. Second, the users which interact with the system.

Finally, the orders, which represent the users’ intentions to buy a product. An eCommerce

website (Amazon1) was used in order to contextualise the case study, and to identify the main

entities.

Products One of the core features of eCommerce platforms is presenting and selling products.

Hence, the concept of product is required. Figure 6.1 presents the main page of the Amazon

website, presenting several products (c.f. C). It is possible to see that products can be

cataloged by several factors (c.f. A), or highlighted (c.f. B). The process of placing an

order is also related with the products.

Accounts There are features related with users, in order to support the shopping process itself.

1http://www.amazon.co.uk/, last visited on 2016-06-23

133

http://www.amazon.co.uk/

134 CHAPTER 6. CASE STUDY

Figure 6.1: Amazon main page.

Figure 6.2 presents the shopping cart page of the Amazon website, where it is possible to

see the account related features. Such features include for instance the concepts of user

account (c.f. A) and shopping cart (c.f. B).

Figure 6.2: Amazon shopping cart page.

Order The process of buying products results in the production of an order. The order cor-

6.2. DOMAIN MODEL 135

responds to the user request to buy products, which includes the payment and shipping

processes. In Figure 6.2 the action to request an order can be seen (c.f. C), “Proceed to

Checkout”).

6.2 Domain Model

The domain model that was provided to SCARP is specified in Figure 6.4. The diagram shows

several entities related with the user, c.f. User and Seller. Related with the products, the enti-

ties Cart, Product and Order, for instance, are defined. There are also entity specific elements,

such as the existence of attributes as Name, Address and Email.

Regarding the relations between domain entities, the types for each relation category were spec-

ified as follows.

is is contained in TypeOf.

contains is contained in CompositionOf.

has is contained in PropertyOf.

Figure 6.3: Domain model for the eCommerce domain, in uCat.

136 CHAPTER 6. CASE STUDY

6.3 uQL Queries

An example of a pattern catalog (as uQL queries) which can be used to support the pattern

inference process is described next. The catalog is composed of six patterns, which address

different features to be found in the final solution. Presented patterns were extracted from an

existing pattern catalog [123], and specified in uQL in order to be supported by SCARP (c.f.

Chapter 3). The patterns percentages have been manually adjusted, by putting more emphasis

on statements more relevant to the patterns itself.

The first pattern corresponds to support for an account feature, therefore the HasAccount re-

quirement pattern. This pattern represents the feature of supporting the representation of the

user information, which can be later associated with the user credentials. Its description is

presented in Listing 6.1.

(user) (requests) (registration|register) 5

(system) (validates) (user) 10

(system) (creates) (? account) 20

(system) (activates) (? account) 20

(user) (requests) (login) 5

(system) (requests) (? credentials) 10

(user) (provides) (? credentials) 10

(system) (verifies|validates) (? credentials) 10

(system) (creates) (session|user_session) 10

Listing 6.1: “HasAccount” uQL requirement pattern.

The shopping cart feature corresponds to a virtual basket, where the user collects the products

to buy. The basket is associated with the corresponding user, and later used to perform the

purchase process. The corresponding uQL for the HasShoppingCart requirement is presented in

Listing 6.2.

(user) (selects) (? product) 8

(user) (selects) (? details) 8

(system) (reads|fetches) (? details) 8

(system) (validates) (? details) 8

(system) (adds) (? product) 11

(system) (refreshes) (cart|shopping_cart|basket) 8

(system) (calculates) (? amount) 8

(system) (shows) (? amount) 8

(system) (requests) (? value) 8

(user) (provides) (? value) 8

(system) (validates) (? payment) 8

(system) (posts|request) (shipping) 9

Listing 6.2: “HasShoppingCart” uQL requirement pattern.

A catalog of products represents a categorization of the products in a system. Hence, products

can be represented in different aspects, in order to ease the products’ browsing process. This

requirement is represented by the HasCatalog pattern, described in Listing 6.3

6.3. UQL QUERIES 137

(user) (selects) (?) 20

(system) (loads) (?) 20

(system) (creates) (? result) 25

(system) (shows|presents) (? result) 25

(user) (checks|sees) (? result) 10

Listing 6.3: “HasCatalog” uQL requirement pattern.

Details of objects correspond the information associated with the corresponding objects. This

pattern describes the need for a feature which represents object which need to have some kind

of associated information, represented as the HasDetails requirement pattern. The pattern is

described in Listing 6.4.

(user) (selects) (?item) 16

(system) (loads) (?item) 10

(system) (creates) (? result) 18

(system) (processes) (? result) 20

(system) (presents|shows|displays) (? result) 20

(user) (checks|consults|sees) (?item) 16

Listing 6.4: “HasDetails” uQL requirement pattern.

Search features represent the capability to perform a selection of objects existing on a system, by

providing some kind of parameter. This requirement is described as the HasSearch requirement

pattern, presented in Listing 6.5.

(system) (shows) (?) 10

(user) (inputs) (?term) 12

(system) (receives|processes) (?term) 15

(system) (performs) (search|query) 16

(system) (creates|processes) (? result) 16

(system) (presents|shows) (? result) 16

(user) (views|receives) (? result) 15

Listing 6.5: “HasSearch” uQL requirement pattern.

The requirement to highlight objects in a system by giving them some emphasis is represented

as the HasHighlights requirement pattern. Listing 6.6 presents the pattern representation.

(user) (arrives) (?) 18

(system) (reads) (historic) 21

(system) (loads) (?) 21

(system) (creates) (? highlights) 22

(system) (shows) (? highlights) 18

Listing 6.6: “HasHighlights” uQL requirement pattern.

Uploading a file to a system is represented by the HasUpload requirement pattern. The pattern

is presented in Listing 6.7.

138 CHAPTER 6. CASE STUDY

(user) (select) (?item) 20

(system) (retrieves|fetches) (?item) 20

(system) (?) (permissions) 20

(system) (processes) (?item) 20

(user) (downloads) (?item) 20

Listing 6.7: “HasUpload” uQL requirement pattern.

Some platforms support the concept of friendship, in order to associate two users. The

pattern representing the friendship feature, HasFriendship, is presented in Listing 6.8.

(user) (selects) (? profile) 18

(system) (loads|opens) (? profile) 16

(system) (presents|displays|shows) (? profile) 16

(user) (requests) (friendship|connection) 18

(system) (creates|sends) (request) 16

(system) (? notifies) (success) 16

Listing 6.8: “HasFriendship” uQL requirement pattern.

6.4 Software Patterns and Matching Information

Software patterns are inferred from the requirement pattern. This section presents examples

of inputs which support the identification of software patterns. The matching process needs

matching information, which is also presented in this section. The information presented in this

section has been extracted accordingly with the processes described in Chapter 3.

6.4.1 Concerns

A set of concerns must be associated with requirement patterns. In this context, the following

ones were defined.

• Browsable - represents support for browsing a collection of objects;

• Editable - represents support for editing and managing the state of an object (c.f. Sec-

tion 3.7.1);

• Manageable - represents the support to manage access to an object (c.f. Section 3.7.1);

• Processable - represents the support to process an object (c.f. Section 3.7.1);

• Recursive - represents the capability to aggregate information in a recursive way (c.f.

Section 3.7.1);

• Shareable - represents the capability to share objects;

• Viewable - represents the capability to display the information of an object.

6.4. SOFTWARE PATTERNS AND MATCHING INFORMATION 139

These concerns represent attributes extracted from the requirement patterns interpretation. As

consequence, other kinds of concerns could be specified. In order to understand how each of the

requirement patterns is related with the extracted concerns, the description of the requirements

pattern catalog is presented.

The HasAccount pattern corresponds to a user account. In a system, it corresponds to the

representation of the client in the system side. As result, a single instance provides a possible

approach for its representation. The need for a representation of a single information which is

shared through the system justifies the Shareable concern.

The HasShoppingCart requirement pattern contains three concerns. First, and since a shopping

cart represents the items of some user, it must be owned by other class, therefore managed by it,

orManageable. Second, the shopping cart aggregates the information of objects with the ultimate

goal of producing an order. As consequence, its content should be Processable. Finally, objects

within the shopping cart must be managed by the cart itself, therefore the Editable concern.

The HasCatalog pattern corresponds to a catalog, which consists in a set of items needs to be

managed by another entity. Such results in the Manageable concern. The main objective of the

catalog is to provide users means to browse through the items it contains, hence the Browsable

concern.

The HasDetails pattern corresponds to item details, which can be more or less specific. It is

usual to find comments or reviews as part of items descriptions. Such information is commonly

presented in recursive structures, where it is possible to respond to comments. The Recursive

concern was found as result.

The HasSearch pattern corresponds to the support for objects in a system, and has two conse-

quences. On the one hand, there is the need to generate some output from the search process,

hence, the Manageable concern. On the other hand, the result must support inspection to create

a representation, thus the Viewable concern.

The HasHighlights pattern is similar to a user account, as the highlights need only a single

representation shared through the system, hence, Shareable. As is the case with a search feature,

the highlights need to be processed in order to create a representation, hence Viewable.

Table 6.1 summarizes the presented information about requirement patterns, and corresponding

concerns.

6.4.2 Goals

The identification of goals on software patterns is done by analyzing their descriptions. A possible

identification of goals on patterns (according to the patterns’ descriptions) is as follows.

Proxy pattern is associated with Delegate goal. The Proxy pattern delegates the control of

an object to another object.

140 CHAPTER 6. CASE STUDY

Table 6.1: Requirement patterns and corresponding concerns.

Requirement pattern Concern

HasAccount Shareable

HasShoppingCart

Manageable

Processable

Editable

HasCatalog
Manageable

Browsable

HasDetails Recursive

HasSearch
Viewable

Manageable

HasHighlights
Shareable

Viewable

Command pattern is associated with Process goal. The Command pattern supports the

parametrization of requests as objects.

Memento pattern is associated with Edit goal. The Memento pattern keeps the representa-

tion of several states, which can be restored while editing an object.

Iterator pattern is associated with Explore goal. The Iterator pattern provides support to

explore efficiently a collection of objects.

Composite pattern is associated with Compose goal. The Composite pattern supports the

hierarchical composition of objects.

Flyweight pattern is associated with Handle goal. The Flyweight pattern provides a struc-

ture to handle a large set of objects.

Singleton pattern is associated with Unified goal. The Singleton pattern provides support

to define a single (hence, unified) instance of a class.

6.4.3 Forces

The final required input to perform the matching process is the definition of forces (see Sec-

tion 3.7.2). An initial set of forces, inspired in the work by Mairiza [85], was defined as follows.

Abstraction corresponds to the level of abstraction of the structure by providing a simpler

interface.

Aggregation indicates the impact on the support of data structures aggregation.

Computability corresponds to providing support for structures which support computable op-

erations.

6.4. SOFTWARE PATTERNS AND MATCHING INFORMATION 141

Constraint indicates the impact of reduction of flexibility in the solution.

Coupling indicates the impact on the association between two elements.

Decoupling separates two structures (e.g. definition from implementation).

Direction corresponds to the integration of two structures by removing intermediary elements.

Efficiency corresponds to a solution which effectively solves the problem in a meaningful way.

Flexibility indicates the existence of a solution which is flexible in terms, for instance, of im-

plementation, and evolution.

Feeding indicates the capability to provide a continuous feed of data.

Filtering corresponds to the capability to support filtering data.

Indirection introduces an indirection via an intermediary element.

Memory corresponds to the impact in the memory of the solution.

Nesting indicates how well the solution supports nested structures.

Overkill corresponds to the application of a complex solution from which only a subset of

features is used.

Performance corresponds to a solution which performs a good performance when applied.

Simplicity indicates how simple a solution is in terms of structure.

Versioning corresponds to support of different object versions (or states).

The association of the forces with the corresponding concerns and goals is a manual process.

A possible association is as presented in Table 6.2 for concerns, and Table 6.3 for goals. Each

force contains a positive (c.f. +) or negative (c.f. -) nature, regarding the concern or goal

it belongs to. As an example, Abstraction is something required to support the Manageable

concern, while Coupling something to avoid. The nature of the forces in the goals represents

how that force contributes to the goal it belongs to. As an example, while the Explore goal

introduces Indirection, the Unified goal has the contrary effect.

Having presented the reusable inputs for the approach setup, the following sections present the

SCARP process itself.

142 CHAPTER 6. CASE STUDY

Table 6.2: Concerns’ forces.

Concern Force

Manageable

+Abstraction

+Decoupling

+Indirection

-Coupling

-Direction

Processable

+Computability

+Indirection

-Coupling

Editable

+Versioning

+Flexibility

-Constraint

Browsable

+Feeding

+Filtering

+Efficiency

-Constraint

Recursive
+Indirection

+Nesting

Viewable

+Simplicity

+Efficiency

+Performance

-Overkill

Shareable

+Memory

+Efficiency

+Direction

-Overkill

Table 6.3: Goals’ forces.

Goal Force

Delegate

+Efficiency

+Decoupling

+Abstraction

-Performance

-Overkill

Process

+Computability

+Indirection

+Coupling

-Overkill

Edit

+Versioning

+Flexibility

-Efficiency

-Memory

Explore

+Feeding

+Aggregation

+Indirection

+Filtering

+Performance

-Direction

Compose

+Indirection

+Nesting

+Aggregation

-Efficiency

-Simplicity

-Memory

Handle

+Performance

+Indirection

+Efficiency

-Coupling

-Overkill

Unified

+Memory

+Efficiency

+Direction

-Indirection

6.5. REQUIREMENTS 143

6.5 Requirements

Based in the two described features (or requirements) categories, a set of requirements was de-

fined. In order to comply with SCARP, the requirements were described as use cases, resorting to

RUS. The following set of use cases was specified. It is worth mentioning that only requirements

for the front-end of the eCommerce application are being considered.

Register Create a user account, by providing the details to identify a user.

Login The capability to perform login into a user account.

Return home At any moment, the user should be able to see the homepage.

Browse products The capability to browse existing products in the platform.

View product A product contains several details, which the user should be able to view.

Show highlights Highlights represent products that for some reason have a bigger emphasis.

View actions history While browsing through products, the user actions should be logged.

Search product Searching products should be possible (e.g. by their name).

Add product to cart With the objective of purchasing a product, the user should have a

virtual shopping cart.

Checkout The final step of purchasing a product consists in providing the shipping and payment

details, in order to checkout the request.

Figure 6.4 presents the use case diagram containing the described requirements.

6.5.1 Register

The register feature consists in creating a user account. Figure 6.5 presents the use case descrip-

tion in the tabular format. The use case consist in providing a set of details, which are validated

and registered by the system. Such results in the creation of the user account.

144 CHAPTER 6. CASE STUDY

Figure 6.4: Case study’s use case diagram.

Figure 6.5: “Register” use case description.

6.5.2 Login

The login feature describes the process of supporting the user authentication. The actions

required to perform the login process are presented in Figure 6.6. The process to perform the

login consists in providing the login credentials, which are verified against the system information.

6.5. REQUIREMENTS 145

Figure 6.6: “Login” use case description.

6.5.3 Return Home

Since the home page is the starting point for the interactions with the application, the feature to

return to the home page is required. At any moment, the user should be able to easily return to

the main page, as described in Figure 6.7. Returning to the home page consist just in requesting

it. This use case can be represented as an extend of other use cases, but the RUS language does

not support such specification yet.

Figure 6.7: “Return home” use case description.

146 CHAPTER 6. CASE STUDY

6.5.4 Browse Products

Browsing products is the most essential feature in the platform. Figure 6.8 presents the process

required to do such. This use case description presents the products organized by categories.

Figure 6.8: “Browse product” use case description.

6.5.5 View Product

Being a product characterized by its details (e.g. name, price), it is essential for the users to

have the capability to view them. The process of viewing details is as described in Figure 6.9.

The steps consist in selecting a product, which the system presents to the user.

Figure 6.9: “View product” use case description.

6.5. REQUIREMENTS 147

6.5.6 Show Highlights

Products can be advertised, by giving them a special emphasis. In practice, the products are

displayed with a bigger emphasis in some page, when the user enters the platform. The required

steps are presented in Figure 6.10. The process to view the highlighted products starts when the

user arrives the main page, and the system generates the appropriate information.

Figure 6.10: “Show highlights” use case description.

6.5.7 View Actions History

The user should have the possibility to view the actions history, as for instance the viewed

products during the session. The steps required to view the history are described in Figure 6.11.

The process consists in requesting the actions history, which the system will process and shows

the user.

Figure 6.11: “View actions history” use case description.

148 CHAPTER 6. CASE STUDY

6.5.8 Search Product

Searching products is one of the most common features while exploring products in an eCommerce

platform. The steps, as described in Figure 6.12, consist in selecting the appropriate feature,

and providing the keywords that the system will search.

Figure 6.12: “Search product” use case description.

6.5.9 Add Product to Cart

Adding a product to a shopping cart is essential for the buying process. The steps for this process,

as described in Figure 6.13, consists in selecting a product and its corresponding properties. The

system proceeds to update the user information accordingly.

Figure 6.13: “Add product” to cart use case description.

6.6. INDIVIDUALS CLASSIFICATION 149

6.5.10 Checkout

The final step of the buying process consists in the checkout. This process, as described in

Figure 6.14, consists in requesting the checkout operation (from the shopping cart), and the

providing payment information. The system deals with the payment and shipment request

processes.

Figure 6.14: “Checkout” use case description.

6.6 Individuals Classification

The specification of the types for each individual is required to generate the ontology. By

analyzing each one of them it is possible to define a set of types, which are able to aggregate the

entities. The process of defining new types depends on the user’s interpretation, however types

can later be adjusted. The initial set of types defined for the entities is as follows.

Input Describes any entity that supports interaction with the user (e.g. text field, input value).

Action Describes an entity that represents an action to be performed in the system.

Object Describes a generic object.

Process Describes an entity representing, or related to, a process.

Result Describes an entity that represent a resulting output from a process.

150 CHAPTER 6. CASE STUDY

Table 6.4: Types specification.

Individual Type Individual Type

seller User amount Input, Attribute

color Attribute comments Attribute

keywords Input address Attribute

session Object banner Object

email validation Process history Object

login Process list Object

representation Object system Actor

cart Object highlights Object

products Object size Attribute

total Result field Input

password Attribute success Result

search Action name Attribute

main page Object registration Process

shipping Process page Object

payment Input category Attribute

details Input user Actor

checkout Process items Object

email Attribute actions Action

shopping cart Object account Object

product Object username Attribute

homepage Object

Table 6.4 presents the association of entities to types. The types for seller, password, email,

comments, address, system, name and username entities were automatically extracted from the

domain model, and are presented in italic font.

6.7 Requirement Patterns Inference

The requirement patterns catalog was applied to the ontology representing the requirements,

in order to infer existing patterns. As a result, a matching percentage was obtained for each

pattern.

The matching results is as presented in Figure 6.15. The figure presents for each requirement

pattern, how likely is it to exist in the requirements specification.

In order to filter which patterns really exist in the specification, a true positives match percentage

threshold is required. Empirical results (c.f. Chapter 5) have shown that matching percentages

above 50% might be a good indication of true positives. In this case, from all patterns, only

6.7. REQUIREMENT PATTERNS INFERENCE 151

Figure 6.15: Requirement pattern inference result.

HasUpload and HasFriendship have a matching value under 50% (20% and 34%, respectively).

The remaining patterns have a matching value over 50%, therefore these six patterns exist in the

specification. Indeed, for the accepted patterns, the minimum match value corresponds to 70%

for the HasDetails requirement pattern.

6.7.1 Inferred Patterns

Based in the provided specifications of concerns, goals and forces, producing the forces matrix

is possible, which depicts the relation of these elements. Figure 6.16 shows the resulting forces

matrix. In the matrix is highlighted, for each concern, the most relevant contribution, which

defines the most appropriate goal.

In order to create the forces matrix, each concern is compared against each goal, regarding their

forces. For instance, the result of matching the Processable concern against the Process goal

has two positive and one negative matches (c.f. (2,-1)). The positive matches correspond to

Computability and Indirection, which have a positive nature in both the concern and the goal.

The negative match corresponds to the Coupling force, which while unwanted by Processable, is

provided by Process.

Figure 6.17 summarizes the matching result information, associating a software pattern to each

requirement pattern. The resulting set correspond to the software patterns required to instanti-

ate.

152 CHAPTER 6. CASE STUDY

Figure 6.16: Resulting forces matrix.

Figure 6.17: Resulting inferred software patterns, with best matches highligted.

6.8 Produced Solution

Generating the final solution in SCARP requires the prior definition of the parameters for classes.

After the parametrization, a XMI solution is produced.

6.8.1 Parametrization

In order to generate the final solution, the specific names for the software patterns’ elements

need to be provided. For instance, the Proxy software pattern is composed by the proxy,

subject, client and realSubject, as presented in Figure 6.18. uCat provides alongside with

the context in which the pattern is being applied (i.e., theHasShoppingCart requirement pattern),

the objective of the software pattern. Each parameter is also described regarding its role in the

solution.

Figure 6.18: Parametrization of the Proxy pattern, for the HasShoppingCart requirement pat-

tern.

6.8. PRODUCED SOLUTION 153

The parametrization consists in setting specific names for each field. In this case, the proxy

element is the User, since the user will handle the shopping cart, therefore the associated requests.

The subject, being the interface for the cart, is the ICart. Who triggers requests in the shopping

cart (e.g. add and remove products) is the system itself. Finally, the realSubject, which

represents the proxy is the shopping Cart. This process was applied to all the parameters of the

inferred software patterns, as shown in Figure 6.192.

The properties inferred from the domain model require their types definition. Hence, a possible

parametrization is as shown in Figure 6.20. In the figure is possible to see, for each class and

each attribute, an input field to specify the types. For the Product class, the type String was

defined for the Category, Title, Description and Comment, since all these properties can be

described textually. For the Date, a specific Java type was selected, the LocalData. Finally, the

Price, being a numerical value, is represented by a double.

2In order to avoid reducing the font size to an unreadable size, some pattern descriptions are cropped on the

right.

154 CHAPTER 6. CASE STUDY

Figure 6.19: Parametrization of all software patterns.

6.8. PRODUCED SOLUTION 155

Figure 6.20: Types for the inferred properties.

156 CHAPTER 6. CASE STUDY

6.8.2 Solution

The XMI representation resulting from the serialization process was imported into the ArgoUML

tool. After minor adjustments, the resulting diagram is as presented in Figure 6.22. The figure

corresponds to a UML class diagram, resulting from the software pattern instantiation and

composition process. The figure depicts the resulting classes and interfaces (e.g. User, Cart,

Product), as well as the respective relationships. The figure highlights also the set of classes

which support each requirement pattern. For instance, the HasDetails requirement pattern is

supported by the IDetails interface, Comment and FinalComment classes. The figure successfully

shows the existence of architectural structures to support each requirement pattern, in the form

of a software pattern. The final solution is composed of the inferred requirement patterns and

the supporting software patterns, parametrized according to the aforementioned values.

A preliminary study was applied to the resulting architecture. Five participants, all Software

Engineers with a master’s degree, were asked to compare the resulting architecture (c.f. Fig-

ure 6.22) against other five architectural models, manually specified by other participants as part

of another study (see Appendix B.6 for the remaining diagrams). The participants answered a

questionnaire, in a Likert scale, to perform the evaluation of each model, as presented.

1. The model is incomplete.

2. I would add classes to the model.

3. I would add relations to the model.

4. I would use this model as a starting point for the development of the eCommerce business

layer.

5. The model is too complicated.

Figure 6.21: Results of the validation study performed in the generated model.

The results are presented in Figure 6.21, where C corresponds to the model generated by SCARP.

In questions 1 and 2, the model C scored the lowest values. Such means that all other diagrams

need more classes and relationships than C, therefore, it is the most complete. In question 3,

6.8. PRODUCED SOLUTION 157

the participants have shown preference for other models, as is the case of A, B or D. Such is

related with the following question, 5, in which the participants consider the diagram C the most

complex diagram. When asked why they prefer other models, the participants stated that a

longer analysis process would be needed to understand the model, while acknowledging that the

diagram is the most complete. However, they state also that with the other models they have

more flexibility, since the models are simpler. It is worth noting that the participants did not

take part of the SCARP parametrization process.

158 CHAPTER 6. CASE STUDY

Figure 6.22: Resulting architecture from the serialization process, with identification of require-

ment patterns.

6.9. DISCUSSION 159

6.9 Discussion

After the application of this eCommerce case study, there are four considerations to be made.

First, the domain model is an artifact that should be detailed and refined. On the one hand, the

domain model has impact on the final solution, regarding automatic types inference, properties

and attributes information extraction. Hence, it ultimately affects the produced solution. On

the other hand, the domain model can be reused for other projects in SCARP. In consequence,

all the effort put in refining it is reused for other projects.

Second, there is a certain degree of subjectivity in the identification of the concerns and associated

forces. Since this step relies on the interpretation of pattern descriptions, different users will

have different interpretations. As a consequence, different requirement and software patterns

might be identified as part of the final solution. The intent of SCARP is not the generation of

final architectures, but instead presenting a first version to be evolved. Resulting solutions will

be influenced by the decisions made during the process itself, which enables the possibility to

parametrize and adjust the solution according to the users’ needs. The possibility to parametrize

SCARP introduces flexibility in the approach.

Third, the results of the requirement pattern to software pattern matching process depends also

on users’ interpretation. Defining a matching percentage to consider that the pattern really exists

in the specification (i.e., is not a false positive) will affect the resulting patterns. On the one

hand, reducing the percentage, leads to a larger set of patterns, but increases also uncertainty.

On the other hand, increasing the value, while raising certainty, reduces the number of patterns.

Defining the adequate percentage level is a process which might require some tuning before

proceeding with the process, despite the empirical results indications (c.f. Section 5). This

parametrization enables the possibility to explore different architectures, in order to iterate the

produces solutions.

Fourth, the instantiation process is also dependent on users’ interpretations, and directly affects

the resulting architecture, but expertise and reuse could improve the process.

Regarding these considerations, three conclusions can be made. First, there is some degree of

subjectivity involved in the process to take in account, regarding the inputs parametrization.

While introducing variability in the solutions, the parametrization enables flexibility in and

customization of the process. Second, it is worth mentioning that for the presented case study, the

requested features are present in the final solution in the form of software patterns. The transition

from the requirement specification to architectural artifacts is one of SCARP objectives, and it

was demonstrated in this case study. Third, SCARP is an iterative process. When a generated

architecture contains errors, the used inputs should be refined and adjusted in order to solve these

errors, and a new architecture should then be produced. This process results in architectures

which became more refined in each step, this iterative model derives in one final architecture.

Regarding this case study, a set of configuration inputs was specified. It was possible to suc-

cessfully define a set of use cases, in which several requirement patterns were identified, with

160 CHAPTER 6. CASE STUDY

different matching levels. Such illustrates the viability of producing an ontology to represent

requirements, which can also be queried to analyze the formalized information. A set of param-

eters to support the matching process (c.f. concerns, goals and forces) was defined. The inputs

provided successfully supported the transition from requirement to software patterns. The pa-

rameters defined to support the software pattern instantiation process successfully lead to an

initial architecture. It was also possible to achieve a set of architectural artifacts, corresponding

to the initial set of requirements. The artifacts are represented as a unified solution, in a class

diagram.

SCARP supports the generation of software models, from requirements’ specifications. The

produced models are initial solutions which should be iterated. From this step, a MDA process

can proceed, in order to generate several kind of outputs. Specifically, the production of source

code regarding the structural aspects is a viable approach. The behavioral aspects have not

been addressed as part of this work, but the possibility to generate such outputs from the use

cases can be explored. However, the generation of prototype user interfaces was explored, with

MODUS.

MODUS defines a process to generate user interface prototypes from UML class diagrams.

MODUS takes advantage from the domain informations, and by analyzing the entities and rela-

tionships, is able to generate webpages relevant for the specified models. MODUS uses as input a

class diagram (as produced by SCARP), and was also applied to the eCommerce domain. Hence,

in order to generate the user interface prototype, the output of SCARP was provided as input for

MODUS. Figure 6.23 presents the resulting interface, in the form of a web page. In the figure is

possible to see, among others, the created pages for Shopping cart, User account, Products and

Categories.

Figure 6.24 presents a listing of products, where it is possible to see the product names and

prices. These attributes in particular were extracted from the domain model (in Figure 6.4), and

associated with the corresponding Product entity, which resulted in a class representing such

information.

As a final remark, it is worth mentioning that the relevance and impact of the refinement process,

and, impact of the subjectivity (regarding some of the inputs) need to be properly evaluated.

Despite the success of the preliminary study on the quality of the solution, a more extensive

study on the produced solution should be performed. This validation process is out of this

work’s scope, therefore left for future work.

6.9. DISCUSSION 161

Figure 6.23: Main page of the user interface prototype.

162 CHAPTER 6. CASE STUDY

Figure 6.24: Listing of products in the user interface prototype.

6.10. SUMMARY 163

6.10 Summary

This chapter provides support for arguing about the applicability of the SCARP approach with

a specific example. Indeed, resorting to the approach, it was possible to achieve an architectural

prototype, starting from a set of use cases. The inputs provided to support the approach were

also presented (c.f. Figure 3.1). The final result was a prototype architecture, build by composing

software patterns, in order to have a better solution. The generated solution is a model, and

it can be used as input for other model based approaches. As an example it was supplied as

input to the MODUS approach. This resulted in a user interface that supports the produced

architectural model.

164 CHAPTER 6. CASE STUDY

Chapter 7

Conclusions

Different approaches support the software development process. As an example, linear ap-

proaches support development via a sequential process, and iterative approaches present in-

cremental processes. The Model Driven Architecture (MDA) is a software development process

based on models. In the MDA, models are defined and transformed into other models, and

ultimately into source code.

The usage of models makes the MDA an interesting approach. On the one hand, models introduce

formalism in the software development process. Defining software as models instead of informal

formats, make the process more rigorous, and enables the possibility to apply automated analysis

techniques. On the other hand, tools developed around the MDA support the (semi) automatic

transformation of these models, improving the software development process.

Architectural models are successfully used as support for the software development process in the

context of the MDA. Different tools and techniques support their analysis and transformation.

Requirement models, however, do not usually have such kind of support for automation. As

result, requirement models are not integrated as part of the MDA in the same way as software

models.

The transformation of requirement models into architectural models depends on manual pro-

cesses, in order to support the integration in the MDA. Non automated processes are known

to introduce subjectivity in the translation process, and open margin for interpretation errors.

Automation of the transformation of requirements to architectural model is a plausible approach

to mitigate such errors.

This work presented the SCenario bAsed Rapid software Prototyping (SCARP) approach, to sup-

port and improve the integration of requirement models in the MDA process. SCARP defines

a process composed of several steps, in order to automate those transformations. The process

starts with the formalization of requirements (as models), in a language emphasizing both au-

tomation and readability. The emphasis on readability supports the definition of a language

165

166 CHAPTER 7. CONCLUSIONS

both understood by actors (which specify the requirements), and developers (which interpret the

specifications). The emphasis in systematization supports the semi-automatic transformation

of requirement into requirement models, with support for information analysis. The analysis

capabilities support information extraction, such as requirement patterns. These patterns are

used to extract architectural hints, specifically, their association with software patterns. Software

patterns are instantiated and composed in order to create an architectural solution. To support

automate this process a tool, Use Cases Analysis Tool (uCat), was developed. The tool provides

features and interfaces to support all the SCARP steps, namely the requirements specification,

requirement pattern inference and architectural pattern matching, as well as the parametrization

and production of architectural solutions.

With SCARP it is possible to automate the integration of requirement models into the MDA

process. Requirement models are automatically analyzed and formalized, which reduces the

impact of interpretation errors. Furthermore, the formalization language provides a unified

format to specify requirements. Simplifying the resulting specifications, also make them easier

to understand. The transformation from requirements specifications, to requirement patterns,

and consequently to software pattern is also automated in SCARP. The models resulting from

this process are represented in standard formats, fostering the interoperability of SCARP with

other tools. It is worth noting that the presented approach was defined as a comprehensive

process, composed of several steps. In order to perform some of the steps, existing MDA tools

and techniques were adopted. uCat was developed to fill in the gaps.

Besides developing SCARP and uCat, two studies were performed in the context of this work,

in order to validate the acceptance of applying SCARP (and uCat) to the software development

process. The first study focused in the expressiveness of the specification language, and in

uCat’s support of the specification process. The results of the study indicate that the language

is suitable and has a good acceptance by the users. uCat provided also an appropriate support

for the process. In the second study the viability of the requirement pattern inference process

was validated. The results indicate that it is possible to perform pattern inference in requirement

specifications. Furthermore, the patterns are extracted with an associated matching ratio, and

such helps developers to select which patterns to apply. Finally, the usability of the tool was

also addressed using the System Usability Scale (SUS), scoring a value of 74 which corresponds

to a B grade.

This work details also how to put SCARP in practice, by describing the required inputs for

each step of the approach. The outputs resulting from each step and corresponding contribution

to the process were also presented. A specific instantiation of SCARP is presented, though a

case study, in the eCommerce domain. A requirements specification model was created, from

which a set of requirement patterns were extracted. Software patterns were inferred from the

requirement patterns, instantiated and composed, leading to an architectural model. The case

study supports both the viability of the approach and documents how SCARP can be applied.

167

Several contributions result from this work. In specific, the SCARP approach and uCat tool were

implemented, as well as a set of scientific publications. The list of contributions is as follows.

SCARP is the envisaged approach, consisting in a process which integrates requirement models

into the MDA process, by automating the transition of requirement models to architectural

models. The definition of SCARP is the major contribution of this work.

uCat is the tool supporting SCARP. The tool provides support for the requirements specifica-

tion, and the following steps in order to produce architectural models.

“A study on the viability of formalizing use cases.” corresponds to a scientific publica-

tion, which presents the study performed to validate SCARP, as well as a set of preliminary

results. This publication was relevant to support the work in Chapter 3.4.

“Validating an approach to formalize use cases with ontologies.” corresponds to a

publication, which presents the results of the SCARP validation study, performed with

uCat. This publication was relevant for the work presented in Chapter 3.4 and 5.

“Application of ontologies in identifying requirements patterns in use cases.”

corresponds to a publication, which describes an early vision of SCARP, namely regarding

the requirements specification, and proposal for pattern inference. This publication (as

the previous one) further supports the work in Chapter 3.6.

“A survey on software patterns.” corresponds to a survey, which categories software pat-

terns at different levels of abstraction. This categorization was useful to support the work

described in Chapters 3.7 and 4.

The following publications concern indirect support of the presented work, and were produced

during the project.

“A patterns based reverse engineering approach for Java source code.” corresponds

to a publication, which presents an approach to perform software pattern inference from

Java source code. This work was relevant in order to support the requirement pattern

inference process, performed in SCARP, as described in Chapter 3.6.

“MapIt: A model based pattern recovery tool.” corresponds to a publication, which de-

scribes the process of software pattern inference from source code (as the previous one).

This publication further supports the work described in Chapter 3.6.

“Modus: uma metodologia de prototipagem de interfaces baseada em modelos.”

corresponds to a publication, which described MOdel-based Developed User Sys-

tems (MODUS), an approach to produce user interface prototypes from a architectural

model (namely, class diagrams). This work was useful in order to test the expressiveness

of the architectural models produced in SCARP, in support for the work described in

Chapters 6 and 4.

168 CHAPTER 7. CONCLUSIONS

“The modelery: a model-based software development repository” corresponds to a

publication, which describes Models Refinery (Modelery), an online repository of software

artifacts (as architectural models). uCat supports the interaction with Modelery in order

to store and retrieve models from the repository. This publication was relevant for the

work described in Chapter 6.

“The modelery: A collaborative web based repository.” corresponds to a publication,

which further described Modelery. This publication was relevant to support the work

described in Chapter 6.

7.1 Discussion

This work has presented SCARP, an approach to support the integration of requirement models

in the MDA process. SCARP resorts to the requirements formalization in order to produce

requirement models, and support their operationalization. uCat, the supporting tool, was also

presented. The viability of the approach was illustrated by a case study, and supported by the

performed studies.

The implementation of SCARP was made possible by the integration of different approaches

and technologies. The formalization of the requirements was possible resorting to a Controlled

Natural Language (CNL), which is itself a computable format. The computable format which

supports the requirements representation is a knowledge base (specifically, an ontology), which

provides the capability to structure and query knowledge. Finally, both requirement and soft-

ware patterns play an important role in the presented approach. Both their identification and

instantiation is essential to achieve software solutions.

SCARP succeeds in presenting an approach to formalize requirements and supports their au-

tomatic transformation into architectural models. Furthermore, the approach consists in a

parametrized process, which provides the capability to customize the process, in order to ad-

just the produced solutions.

The existence of limitations in SCARP is acknowledged, and some of them worth mentioning.

Knowledge in use cases specification is assumed for both developers and authors of the require-

ment models. This knowledge is essential in order to produce usable specifications, and interpret

them. The same is true for requirement and software patterns. Due to the role of software

patterns in the process, users need to understand its role. Knowledge in software patterns is also

required for the pattern selection process, and helps in the instantiation process. A setup phase

is required, prior to the application of SCARP. More specifically, the domain model, requirement

patterns, software patterns and matching information must be defined in beforehand. SCARP

was designed to support model driven development methodologies. As result, the suitability

for other kind of methodologies (e.g. Agile) was not addressed. Finally, it is acknowledged that

SCARP is a comprehensive process, and not all phases were addressed with the same detail level.

7.1. DISCUSSION 169

7.1.1 Answer to Research Questions

At the beginning of this work, a set of questions were defined in order to guide the research work.

These questions were addressed across this document, and respective answers can be summarized

as follows.

Question 1 Is it possible to have a simple, yet expressive language for use case specification,

with support for automation?

Resorting to the Restricted Use Case Statement (RUS) Controlled Natural Language (CNL),

defining an expressive language was possible. Being RUS a CNL, the language enables the

possibility to perform automatic transformations of the specifications. Despite the simplicity of

RUS specifications, they have shown to be capable of handling several kinds of specifications.

Both existing specifications and textual scenario descriptions were translated into RUS, without

losing information. The two performed studies provide evidence of the viability of RUS.

Question 2 Is it possible to perform software requirement patterns inference over use cases,

more specifically in the knowledge base representing them?

Being proven the viability of formalizing requirement specifications as well as representing them

in a knowledge base, it was possible to develop a requirement pattern inference mechanism. The

performed study shows that requirement patterns were successfully found in the specifications.

Question 3 Can software requirement patterns be used to select a set of architectural patterns

solving them?

A matching process was implemented, in order to select a set of architectural patterns from

requirement patterns. For each requirement pattern, one or more software patterns were iden-

tified and an association was defined. The performed case study further supports this question,

by demonstrating how the inferred software patterns support the generation of an architectural

model.

Question 4 Can a set of architectural patterns be instantiated and combined, within a defined

context, in order to achieve prototype architectures?

An (API-like) format and a process were defined in order to, respectively, represent and instan-

tiate software patterns. Merging pattern instances was possible resorting to well known pattern

merging operators (namely, stringing and overlapping). This result is supported by the case

study, in which a set of software patterns is successfully instantiated and composed into an

architectural model.

In conclusion, it is possible to say that the research questions were successfully addressed during

this work. Evidences, such as studies, case studies and outputs, were given in order to answer

the research questions.

170 CHAPTER 7. CONCLUSIONS

7.1.2 Thesis

The thesis presented in this work is that it is possible to extend the MDA process, including

the requirement models as part of the process. Furthermore, a process to support such, and

automate the process can be achieved.

The presented work successfully supports this thesis. In SCARP, requirements are formalized as

models, and through a systematic process, produce an architectural solution. Furthermore, the

systematization of the process results in its capability to automate the process steps, and (semi)

automatically produce architectural solutions. The implementation of uCat further supports the

thesis. uCat is able to successfully support the automation of SCARP steps. Both the imple-

mentation of the approach and the tool (demonstrated through a case study), and corresponding

validation, were useful to support the presented thesis.

7.2 Future Work

This work was developed within a specific context, with emphasis in the operationalization of

requirement models. Being the MDA a complex and comprehensive process, several improve-

ments can be made. These improvements were left for future work since they were not part of

the scope of the project.

At the moment, the domain model provides information for some steps of the process. The

entities, and three categories of relationships are being taken in to account. It is possible to

define further categories of relationships, and add meaning to certain entities. The domain

models used in the approach, also do not specify the relationships multiplicity. Further exploring

the information in the domain model is proposed as future work.

While the RUS language performed well in the performed validation studies, OWL is a language

capable of handling more complex statements. The extension of RUS in order to support the

specification of more complex statements, for instance supporting causality (e.g. user adds

product to cart) is proposed. As future work is also proposed the improvement of the use

cases syntax, namely support for includes and extends, and further exploration of the already

supported alternative and exception scenarios.

In this work, SCARP was mainly applied to an eCommerce domain (although other domains

are addressed in the validation studies). It remains to apply the presented approach to other

domains, in order to further prove the viability of the approach against other domains.

The focus of SCARP is the production of architectural solutions. The behavioral aspects are not

in the scope of this work, despite their relevance for the final solutions. Hence, the extraction

of behavioral aspects from the use case specifications, and consequent transformation in archi-

tectural models is proposed, in order to complement the outputs currently produced. MODUS

7.2. FUTURE WORK 171

already goes somehow in that direction, but assumes a pre-defined set of domain dependent

behaviors.

The formalization of requirements, as a architectural model, opens several possibilities. One

possible approach is the application of model checking techniques in order to check the consis-

tency of the requirement specifications. Such supports the analysis of requirements, prior to the

generation of the architectural models, in order to increase the quality of the resulting solutions.

The analysis of the formalized requirements is proposed as future work.

Another aspect worth exploring is traceability of requirements and patterns in the produced

models. While this work focused in the direct process of generating architectural models, the

reverse process of extracting requirements from the models is equally relevant. On the one

hand, supports the propagation of changes in the models into the specifications. On the other

hand, supports the analysis of existing solutions, in order to analyze them at a higher level of

abstraction.

In order to further validate SCARP, other aspects should be validated. Since the performed

studies do not cover all the aspects of the approach, performing additional studies would help to

justify the viability of SCARP.

In Chapter 4 was presented a proposal of an algorithm to automatically generate uQL from a set

of specifications. The algorithm can be further analyzed and refined, in order to be concretized.

Such is proposed by applying the algorithm to several publications, and compare the resulting

patterns against both the original specifications, and manually defined patterns.

Finally, the produced architectures details information could be improved. Namely, regarding

the multiplicities, name of relationships and attributes, and separation in packages. On the one

hand, the domain model could be further explored to extract such informations. On the other

hand, the flexibility to store and reuse knowledge generated in SCARP could also be of great

assistance. Additional formats could be specified for the output format of the produced solutions,

in order to support the integration of the outputs with other works.

172 CHAPTER 7. CONCLUSIONS

Appendix A

Inputs and Outputs of SCARP

A.1 Domain model

Pre f i x : dc : <http :// pur l . org /dc/ e lements /1.1/>

Pre f i x : owl : <http ://www.w3 . org /2002/07/ owl#>

Pre f i x : rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

Pre f i x : xml : <http ://www.w3 . org /XML/1998/namespace>

Pre f i x : xsd : <http ://www.w3 . org /2001/XMLSchema#>

Pre f i x : r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#>

Ontology : <http ://www.dm. com>

ObjectProperty : <http ://www.dm. com#conta ins>

Domain :

<http ://www.dm. com#CompositionOf>

ObjectProperty : <http ://www.dm. com#is>

Domain :

<http ://www.dm. com#TypeOf>

ObjectProperty : <http ://www.dm. com#has>

Domain :

<http ://www.dm. com#PropertyOf>

Class : <http ://www.dm. com#TypeOf>

Class : owl : Thing

Class : <http ://www.dm. com#PropertyOf>

Class : <http ://www.dm. com#CompositionOf>

I nd i v i dua l : <http ://www.dm. com#Product>

Types :

173

174 APPENDIX A. INPUTS AND OUTPUTS OF SCARP

owl : Thing

Ind i v i dua l : <http ://www.dm. com#Username>

Types :

owl : Thing

Ind i v i dua l : <http ://www.dm. com#Actor>

Types :

owl : Thing

Ind i v i dua l : <http ://www.dm. com#User>

Types :

owl : Thing

Facts :

<http ://www.dm. com#is> <http ://www.dm. com#Actor>,

<http ://www.dm. com#has> <http ://www.dm. com#Username>

I nd i v i dua l : <http ://www.dm. com#Cart>

Types :

owl : Thing

Facts :

<http ://www.dm. com#conta ins> <http ://www.dm. com#Product>

Listing A.1: Representation of the domain model in OWL.

A.2 RUST Specification

<S> <P> <O> -> Individual: ,<S>,Facts: ,<P> <O>

<S> <P> a <O> -> Individual: ,<S>,Facts: ,<P> <O>

<S> <P> in <O> -> Individual: ,<S>,Facts: ,<P> <O>

<S> <P> in a <O> -> Individual: ,<S>,Facts: ,<P> <O>

<S> <P> in the <O> -> Individual: ,<S>,Facts: ,<P> <O>

<S> <P> the <O> -> Individual: ,<S>,Facts: ,<P> <O>

<S> <P> the <O>+ -> Individual: ,<S>,Facts: ,<P> <O>+

Listing A.2: RUST specification used in this work.

A.3 SPARQL queries

PREFIX : <http :// www.rmsc.com#>

SELECT ?subject ?type

WHERE { ?subject ?predicate ?type .

FILTER (? predicate rdf:type :TypeOf)

}

Listing A.3: SPARQL query to identify individuals related via TypeOf.

PREFIX : <http :// www.rmsc.com#>

SELECT ?subject ?type

WHERE { ?subject ?predicate ?type .

A.4. ONTOLOGY REPRESENTING THE “ADD PRODUCT TO CART” USE CASE. 175

FILTER (? predicate rdf:type :CompositionOf)

}

Listing A.4: SPARQL query to identify individuals related via CompositionOf.

PREFIX : <http :// www.rmsc.com#>

SELECT ?subject ?type

WHERE { ?subject ?predicate ?type .

FILTER (? predicate rdf:type :PropertyOf)

}

Listing A.5: SPARQL query to identify individuals related via PropertyOf.

A.4 Ontology representing the “Add product to cart” use

case.

Prefix: dc: <http :// purl.org/dc/elements /1.1/ >

Prefix: j.0: <http :// www.url.com/Requirements/>

Prefix: owl: <http :// www.w3.org /2002/07/ owl#>

Prefix: rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

Prefix: xml: <http :// www.w3.org/XML /1998/ namespace >

Prefix: xsd: <http :// www.w3.org /2001/ XMLSchema#>

Prefix: rdfs: <http :// www.w3.org /2000/01/ rdf -schema#>

Ontology: <http :// www.url.com/Requirements >

AnnotationProperty: rdfs:comment

Datatype: rdf:PlainLiteral

ObjectProperty: j.0: updates

Annotations:

rdfs:comment "6"

ObjectProperty: j.0: shows

Annotations:

rdfs:comment "2"

SubPropertyOf:

j.0: exception

ObjectProperty: j.0: loads

Annotations:

rdfs:comment "1"

SubPropertyOf:

j.0: alternative

ObjectProperty: j.0: reads

Annotations:

rdfs:comment "4"

ObjectProperty: j.0: exception

176 APPENDIX A. INPUTS AND OUTPUTS OF SCARP

Annotations:

rdfs:comment "-1"

ObjectProperty: j.0: alternative

Annotations:

rdfs:comment "0"

ObjectProperty: j.0: selects

Annotations:

rdfs:comment "3"

ObjectProperty: j.0: adds

Annotations:

rdfs:comment "5"

ObjectProperty: j.0: ends

Annotations:

rdfs:comment "7"

Class: j.0: Data

Class: j.0: Property

Class: j.0: Alternative

Class: j.0: Object

Class: j.0: Actor

Class: j.0: null

Class: j.0: Action

Class: j.0: Attribute

Class: j.0: Exception

Individual: j.0: color

Types:

j.0: Property

Individual: j.0: success

Types:

j.0: Data

Individual: j.0: size

Types:

j.0: Property

Individual: j.0: insuccess

Types:

j.0: null

A.5. MAPPING INFORMATION 177

Individual: j.0: action

Types:

j.0: Action

Individual: j.0: product

Types:

j.0: Attribute

Individual: j.0: system

Types:

j.0: Alternative ,

j.0: Exception ,

j.0: Actor

Facts:

j.0: loads j.0: allProducts ,

j.0: reads j.0:color ,

j.0: shows j.0: insuccess ,

j.0: reads j.0:size ,

j.0: shows j.0: success ,

j.0: updates j.0:cart ,

j.0: adds j.0: product ,

j.0: reads j.0: amount ,

j.0: shows j.0: product

Individual: j.0: amount

Types:

j.0: Attribute

Individual: j.0: user

Types:

j.0: Actor

Facts:

j.0: selects j.0:color ,

j.0: selects j.0: amount ,

j.0: selects j.0:size ,

j.0: selects j.0: product ,

j.0: ends j.0: action

Individual: j.0: allProducts

Types:

j.0: null

Individual: j.0: cart

Types:

j.0: Object

Listing A.6: Representation in OWL of the “Add product to cart” use case.

A.5 Mapping information

Prefix: : <http :// www.url.com/mapping#>

Prefix: owl: <http :// www.w3.org /2002/07/ owl#>

178 APPENDIX A. INPUTS AND OUTPUTS OF SCARP

Prefix: rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

Prefix: xml: <http :// www.w3.org/XML /1998/ namespace >

Prefix: xsd: <http :// www.w3.org /2001/ XMLSchema#>

Prefix: rdfs: <http :// www.w3.org /2000/01/ rdf -schema#>

Prefix: untitled -ontology -62: <http :// www.url.com/mapping#>

Ontology: <http :// www.url.com/mapping >

AnnotationProperty: rdfs:comment

Datatype: xsd:string

ObjectProperty: untitled -ontology -62: hasForce

ObjectProperty: untitled -ontology -62: hasForceP

ObjectProperty: untitled -ontology -62: hasForceN

ObjectProperty: untitled -ontology -62: hasGoal

ObjectProperty: untitled -ontology -62: hasConcern

Class: untitled -ontology -62: RequirementPattern

Class: untitled -ontology -62: Concern

Class: untitled -ontology -62: Force

Class: untitled -ontology -62: Goal

Class: untitled -ontology -62: SoftwarePattern

Individual: untitled -ontology -62: Composite

Annotations:

rdfs:comment "/**

* @intent Compose objects into tree structures to represent part -whole hierarchies. Composite

lets clients treat individual objects and compositions of objects uniformly.

* @param client manipulates objects in the composition through the Component interface.

* @param component defines the interface for the composed objects.

* @param leaf represents a leaf in the composition , without children.

* @param composite represents an element with children of the same type.

*/"^^ xsd:string

Types:

untitled -ontology -62: SoftwarePattern

Facts:

untitled -ontology -62: hasGoal untitled -ontology -62: Compose

Individual: untitled -ontology -62: Overkill

Types:

untitled -ontology -62: Force

Individual: untitled -ontology -62: Performance

Types:

A.5. MAPPING INFORMATION 179

untitled -ontology -62: Force

Individual: untitled -ontology -62: Recursive

Types:

untitled -ontology -62: Concern

Facts:

untitled -ontology -62: hasForceP untitled -ontology -62: Indirection ,

untitled -ontology -62: hasForceP untitled -ontology -62: Nesting

Individual: untitled -ontology -62: Filtering

Types:

untitled -ontology -62: Force

Individual: untitled -ontology -62: Nesting

Types:

untitled -ontology -62: Force

Individual: untitled -ontology -62: Processable

Types:

untitled -ontology -62: Concern

Facts:

untitled -ontology -62: hasForceN untitled -ontology -62: Coupling ,

untitled -ontology -62: hasForceP untitled -ontology -62: Computability ,

untitled -ontology -62: hasForceP untitled -ontology -62: Indirection

Individual: untitled -ontology -62: Abstraction

Types:

untitled -ontology -62: Force

Individual: untitled -ontology -62: HasCatalog

Types:

untitled -ontology -62: RequirementPattern

Facts:

untitled -ontology -62: hasConcern untitled -ontology -62: Manageable ,

untitled -ontology -62: hasConcern untitled -ontology -62: Browseable

Individual: untitled -ontology -62: Decoupling

Types:

untitled -ontology -62: Force

Individual: untitled -ontology -62: Feeding

Types:

untitled -ontology -62: Force

Individual: untitled -ontology -62: Handle

Types:

untitled -ontology -62: Goal

Facts:

untitled -ontology -62: hasForceP untitled -ontology -62: Indirection ,

untitled -ontology -62: hasForceN untitled -ontology -62: Overkill ,

untitled -ontology -62: hasForceP untitled -ontology -62: Efficiency ,

untitled -ontology -62: hasForceP untitled -ontology -62: Performance ,

untitled -ontology -62: hasForceN untitled -ontology -62: Coupling

180 APPENDIX A. INPUTS AND OUTPUTS OF SCARP

Individual: untitled -ontology -62: Viewable

Types:

untitled -ontology -62: Concern

Facts:

untitled -ontology -62: hasForceP untitled -ontology -62: Overkill ,

untitled -ontology -62: hasForceP untitled -ontology -62: Simplicity ,

untitled -ontology -62: hasForceP untitled -ontology -62: Efficiency ,

untitled -ontology -62: hasForceP untitled -ontology -62: Performance

Individual: untitled -ontology -62: Versioning

Types:

untitled -ontology -62: Force

Individual: untitled -ontology -62: HasDetails

Types:

untitled -ontology -62: RequirementPattern

Facts:

untitled -ontology -62: hasConcern untitled -ontology -62: Recursive

Individual: untitled -ontology -62: Memory

Types:

untitled -ontology -62: Force

Individual: untitled -ontology -62: Singleton

Annotations:

rdfs:comment "/**

* @intent Ensure a class only has one instance , and provide a global point of access to it.

* @param singleton creates and encapsulate the single object instance.

*/"^^ xsd:string

Types:

untitled -ontology -62: SoftwarePattern

Facts:

untitled -ontology -62: hasGoal untitled -ontology -62: Unified

Individual: untitled -ontology -62: Shareable

Types:

untitled -ontology -62: Concern

Facts:

untitled -ontology -62: hasForceN untitled -ontology -62: Overkill ,

untitled -ontology -62: hasForceP untitled -ontology -62: Efficiency ,

untitled -ontology -62: hasForceP untitled -ontology -62: Direction ,

untitled -ontology -62: hasForceP untitled -ontology -62: Memory

Individual: untitled -ontology -62: Indirection

Types:

untitled -ontology -62: Force

Individual: untitled -ontology -62: Constraint

Types:

untitled -ontology -62: Force

A.5. MAPPING INFORMATION 181

Individual: untitled -ontology -62: Flexibility

Types:

untitled -ontology -62: Force

Individual: untitled -ontology -62: Simplicity

Types:

untitled -ontology -62: Force

Individual: untitled -ontology -62: Explore

Types:

untitled -ontology -62: Goal

Facts:

untitled -ontology -62: hasForceP untitled -ontology -62: Aggregation ,

untitled -ontology -62: hasForceP untitled -ontology -62: Performance ,

untitled -ontology -62: hasForceP untitled -ontology -62: Filtering ,

untitled -ontology -62: hasForceP untitled -ontology -62: Feeding ,

untitled -ontology -62: hasForceN untitled -ontology -62: Indirection ,

untitled -ontology -62: hasForceP untitled -ontology -62: Indirection

Individual: untitled -ontology -62: Separation

Types:

untitled -ontology -62: Force

Individual: untitled -ontology -62: Command

Annotations:

rdfs:comment "/**

* @intent Encapsulate a request as an object , thereby letting you parameterize clients with

different requests , queue or log requests , and support undoable operations.

* @param client Who triggers the operation.

* @param receiver Knows how to perform the operations associated with carrying out.

* @param invoker Asks the command to carry out the request.

* @param command Declares an interface for executing an operation.

* @param concreteCommand Implements Execute by invoking the corresponding operation on

Receiver.

*/"^^ xsd:string

Types:

untitled -ontology -62: SoftwarePattern

Facts:

untitled -ontology -62: hasGoal untitled -ontology -62: Process

Individual: untitled -ontology -62: Direction

Types:

untitled -ontology -62: Force

Individual: untitled -ontology -62: Process

Types:

untitled -ontology -62: Goal

Facts:

untitled -ontology -62: hasForceP untitled -ontology -62: Computability ,

untitled -ontology -62: hasForceP untitled -ontology -62: Indirection ,

untitled -ontology -62: hasForceN untitled -ontology -62: Overkill ,

untitled -ontology -62: hasForceP untitled -ontology -62: Coupling

182 APPENDIX A. INPUTS AND OUTPUTS OF SCARP

Individual: untitled -ontology -62: Edit

Types:

untitled -ontology -62: Goal

Facts:

untitled -ontology -62: hasForceN untitled -ontology -62: Memory ,

untitled -ontology -62: hasForceP untitled -ontology -62: Flexibility ,

untitled -ontology -62: hasForceN untitled -ontology -62: Efficiency ,

untitled -ontology -62: hasForceP untitled -ontology -62: Versioning

Individual: untitled -ontology -62: Browseable

Types:

untitled -ontology -62: Concern

Facts:

untitled -ontology -62: hasForceN untitled -ontology -62: Constraint ,

untitled -ontology -62: hasForceP untitled -ontology -62: Feeding ,

untitled -ontology -62: hasForceP untitled -ontology -62: Filtering ,

untitled -ontology -62: hasForceP untitled -ontology -62: Efficiency

Individual: untitled -ontology -62: Computability

Types:

untitled -ontology -62: Force

Individual: untitled -ontology -62: Unified

Types:

untitled -ontology -62: Goal

Facts:

untitled -ontology -62: hasForceP untitled -ontology -62: Memory ,

untitled -ontology -62: hasForceP untitled -ontology -62: Direction ,

untitled -ontology -62: hasForceN untitled -ontology -62: Indirection ,

untitled -ontology -62: hasForceP untitled -ontology -62: Efficiency

Individual: untitled -ontology -62: Delegate

Types:

untitled -ontology -62: Goal

Facts:

untitled -ontology -62: hasForceN untitled -ontology -62: Overkill ,

untitled -ontology -62: hasForceP untitled -ontology -62: Decoupling ,

untitled -ontology -62: hasForceN untitled -ontology -62: Efficiency ,

untitled -ontology -62: hasForceP untitled -ontology -62: Abstraction ,

untitled -ontology -62: hasForceP untitled -ontology -62: Efficiency

Individual: untitled -ontology -62: Sharing

Types:

untitled -ontology -62: Force

Individual: untitled -ontology -62: Compose

Types:

untitled -ontology -62: Goal

Facts:

untitled -ontology -62: hasForceN untitled -ontology -62: Efficiency ,

untitled -ontology -62: hasForceP untitled -ontology -62: Aggregation ,

untitled -ontology -62: hasForceN untitled -ontology -62: Memory ,

untitled -ontology -62: hasForceN untitled -ontology -62: Simplicity ,

A.5. MAPPING INFORMATION 183

untitled -ontology -62: hasForceP untitled -ontology -62: Nesting ,

untitled -ontology -62: hasForceP untitled -ontology -62: Indirection

Individual: untitled -ontology -62: HasHighlights

Types:

untitled -ontology -62: RequirementPattern

Facts:

untitled -ontology -62: hasConcern untitled -ontology -62: Viewable ,

untitled -ontology -62: hasConcern untitled -ontology -62: Shareable

Individual: untitled -ontology -62: Proxy

Annotations:

rdfs:comment "/**

* @intent Provide a surrogate or placeholder for another object to control access to it.

* @param client Who triggers the request.

* @param subject Defines the common interface for RealSubject and Proxy.

* @param realSubject Defines the real object that the proxy represents.

* @param proxy Interface which handles the request.

*/"^^ xsd:string

Types:

untitled -ontology -62: SoftwarePattern

Facts:

untitled -ontology -62: hasGoal untitled -ontology -62: Delegate

Individual: untitled -ontology -62: Coupling

Types:

untitled -ontology -62: Force

Individual: untitled -ontology -62: Flyweight

Annotations:

rdfs:comment "/**

* @intent Use sharing to support large numbers of fine -grained objects efficiently.

* @param client Who triggers the request.

* @param flyweightFactory Creates and manages flyweight objects.

* @param flyweight The class of the instances to be managed.

* @param concreteFlyweight Extension of the concrete instances.

* @param unsharedConcreteFlyweight A flyweight not shared.

*/"^^ xsd:string

Types:

untitled -ontology -62: SoftwarePattern

Facts:

untitled -ontology -62: hasGoal untitled -ontology -62: Handle

Individual: untitled -ontology -62: Aggregation

Types:

untitled -ontology -62: Force

Individual: untitled -ontology -62: Iterator

Annotations:

rdfs:comment "/**

* @intent Provide a way to access the elements of an aggregate objectsequentially without

exposing its underlying representation.

* @param client requests the iterator.

184 APPENDIX A. INPUTS AND OUTPUTS OF SCARP

* @param iterator defines the interface to access the and traverse elements.

* @param concreteIterator implements the iterator.

* @param aggregate defines the interface for creating iterator objects.

* @param concreteAggregate implements the aggregate interface.

*/"^^ xsd:string

Types:

untitled -ontology -62: SoftwarePattern

Facts:

untitled -ontology -62: hasGoal untitled -ontology -62: Explore

Individual: untitled -ontology -62: Efficiency

Types:

untitled -ontology -62: Force

Individual: untitled -ontology -62: Concurrency

Types:

untitled -ontology -62: Force

Individual: untitled -ontology -62: HasShoppingCart

Types:

untitled -ontology -62: RequirementPattern

Facts:

untitled -ontology -62: hasConcern untitled -ontology -62: Editable ,

untitled -ontology -62: hasConcern untitled -ontology -62: Manageable ,

untitled -ontology -62: hasConcern untitled -ontology -62: Processable

Individual: untitled -ontology -62: Manageable

Types:

untitled -ontology -62: Concern

Facts:

untitled -ontology -62: hasForceN untitled -ontology -62: Coupling ,

untitled -ontology -62: hasForceP untitled -ontology -62: Indirection ,

untitled -ontology -62: hasForceN untitled -ontology -62: Indirection ,

untitled -ontology -62: hasForceP untitled -ontology -62: Abstraction ,

untitled -ontology -62: hasForceP untitled -ontology -62: Decoupling

Individual: untitled -ontology -62: HasAccount

Types:

untitled -ontology -62: RequirementPattern

Facts:

untitled -ontology -62: hasConcern untitled -ontology -62: Shareable

Individual: untitled -ontology -62: Memento

Annotations:

rdfs:comment "/**

* @intent Without violating encapsulation , capture and externalize an object?s internal state

so that the object can be restored to this state later.

* @param originator Who triggers the request for creating states.

* @param memento Stores internal state of the Originator object.

* @param caretaker The responsible for the memento?s safekeeping.

* @param state The representation of the state being keep.

* @param item The items belonging to the state.

*/"^^ xsd:string

A.6. XMI REPRESENTATION OF SOFTWARE PATTERNS. 185

Types:

untitled -ontology -62: SoftwarePattern

Facts:

untitled -ontology -62: hasGoal untitled -ontology -62: Edit

Individual: untitled -ontology -62: Editable

Types:

untitled -ontology -62: Concern

Facts:

untitled -ontology -62: hasForceN untitled -ontology -62: Constraint ,

untitled -ontology -62: hasForceP untitled -ontology -62: Versioning ,

untitled -ontology -62: hasForceP untitled -ontology -62: Flexibility

Individual: untitled -ontology -62: HasSearch

Types:

untitled -ontology -62: RequirementPattern

Facts:

untitled -ontology -62: hasConcern untitled -ontology -62: Viewable ,

untitled -ontology -62: hasConcern untitled -ontology -62: Manageable

Listing A.7: Ontology representing the matching information.

A.6 XMI representation of software patterns.

<?xml version = ’1.0’ encoding = ’UTF -8’ ?>

<XMI xmi.version = ’1.2’ xmlns:UML = ’org.omg.xmi.namespace.UML ’ timestamp = ’Mon Dec 14

22:48:26 WET 2015’>

<XMI.header > <XMI.documentation >

<XMI.exporter >ArgoUML (using Netbeans XMI Writer version 1.0) </XMI.exporter >

<XMI.exporterVersion >0.34(6) revised on $Date: 2010 -01 -11 22:20:14 +0100 (Mon , 11 Jan

2010) $ </XMI.exporterVersion >

</XMI.documentation >

<XMI.metamodel xmi.name="UML" xmi.version ="1.4"/ > </ XMI.header >

<XMI.content >

<UML:Model xmi.id = ’-64--88-1-65-- c06f953 :151 a294185c : -8000:0000000000000 B72 ’

name = ’modeloSemTitulo ’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’

isAbstract = ’false ’>

<UML:Namespace.ownedElement >

<UML:Class xmi.id = ’-64--88-1-65-- c06f953 :151 a294185c : -8000:0000000000000 B73 ’

name = ’Client ’ visibility = ’public ’ isSpecification = ’false ’ isRoot = ’false ’

isLeaf = ’false ’ isAbstract = ’false ’ isActive = ’false ’/>

<UML:Class xmi.id = ’-64--88-1-65-- c06f953 :151 a294185c : -8000:0000000000000 B74 ’

name = ’Receiver ’ visibility = ’public ’ isSpecification = ’false ’ isRoot = ’false ’

isLeaf = ’false ’ isAbstract = ’false ’ isActive = ’false ’/>

<UML:Association xmi.id = ’-64--88-1-65-- c06f953 :151 a294185c : -8000:0000000000000 B75 ’

name = ’’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’ isAbstract =

’false ’>

<UML:Association.connection >

<UML:AssociationEnd xmi.id = ’-64--88-1-65-- c06f953 :151 a294185c

: -8000:0000000000000 B76 ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’false ’ ordering

= ’unordered ’

186 APPENDIX A. INPUTS AND OUTPUTS OF SCARP

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-64--88-1-65-- c06f953 :151 a294185c : -8000:0000000000000

B73 ’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

<UML:AssociationEnd xmi.id = ’-64--88-1-65-- c06f953 :151 a294185c

: -8000:0000000000000 B77 ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’true ’ ordering =

’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-64--88-1-65-- c06f953 :151 a294185c : -8000:0000000000000

B74 ’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

</UML:Association.connection >

</UML:Association >

<UML:Class xmi.id = ’-64--88-1-65-- c06f953 :151 a294185c : -8000:0000000000000 B78 ’

name = ’Invoker ’ visibility = ’public ’ isSpecification = ’false ’ isRoot = ’false ’

isLeaf = ’false ’ isAbstract = ’false ’ isActive = ’false ’/>

<UML:Interface xmi.id = ’-64--88-1-65-- c06f953 :151 a294185c : -8000:0000000000000 B79 ’

name = ’Command ’ visibility = ’public ’ isSpecification = ’false ’ isRoot = ’false ’

isLeaf = ’false ’ isAbstract = ’false ’/>

<UML:Class xmi.id = ’-64--88-1-65-- c06f953 :151 a294185c : -8000:0000000000000 B7A ’

name = ’ConcreteCommand ’ visibility = ’public ’ isSpecification = ’false ’

isRoot = ’false ’ isLeaf = ’false ’ isAbstract = ’false ’ isActive = ’false ’>

<UML:ModelElement.clientDependency >

<UML:Abstraction xmi.idref = ’-64--88-1-65-- c06f953 :151 a294185c

: -8000:0000000000000 B81 ’/>

</UML:ModelElement.clientDependency >

</UML:Class >

<UML:Association xmi.id = ’-64--88-1-65-- c06f953 :151 a294185c : -8000:0000000000000 B7B ’

name = ’’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’ isAbstract =

’false ’>

<UML:Association.connection >

<UML:AssociationEnd xmi.id = ’-64--88-1-65-- c06f953 :151 a294185c

: -8000:0000000000000 B7C ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’false ’ ordering

= ’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-64--88-1-65-- c06f953 :151 a294185c : -8000:0000000000000

B7A ’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

<UML:AssociationEnd xmi.id = ’-64--88-1-65-- c06f953 :151 a294185c

: -8000:0000000000000 B7D ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’true ’ ordering =

’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-64--88-1-65-- c06f953 :151 a294185c : -8000:0000000000000

A.6. XMI REPRESENTATION OF SOFTWARE PATTERNS. 187

B74 ’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

</UML:Association.connection >

</UML:Association >

<UML:Association xmi.id = ’-64--88-1-65-- c06f953 :151 a294185c : -8000:0000000000000 B7E ’

name = ’’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’ isAbstract =

’false ’>

<UML:Association.connection >

<UML:AssociationEnd xmi.id = ’-64--88-1-65-- c06f953 :151 a294185c

: -8000:0000000000000 B7F ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’false ’ ordering

= ’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-64--88-1-65-- c06f953 :151 a294185c : -8000:0000000000000

B78 ’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

<UML:AssociationEnd xmi.id = ’-64--88-1-65-- c06f953 :151 a294185c

: -8000:0000000000000 B80 ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’true ’ ordering =

’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Interface xmi.idref = ’-64--88-1-65-- c06f953 :151 a294185c

: -8000:0000000000000 B79 ’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

</UML:Association.connection >

</UML:Association >

<UML:Abstraction xmi.id = ’-64--88-1-65-- c06f953 :151 a294185c : -8000:0000000000000 B81 ’

isSpecification = ’false ’>

<UML:ModelElement.stereotype >

<UML:Stereotype xmi.idref = ’-64--88-1-65-- c06f953 :151 a294185c

: -8000:0000000000000 B82 ’/>

</UML:ModelElement.stereotype >

<UML:Dependency.client >

<UML:Class xmi.idref = ’-64--88-1-65-- c06f953 :151 a294185c : -8000:0000000000000 B7A

’/>

</UML:Dependency.client >

<UML:Dependency.supplier >

<UML:Interface xmi.idref = ’-64--88-1-65-- c06f953 :151 a294185c : -8000:0000000000000

B79 ’/>

</UML:Dependency.supplier >

</UML:Abstraction >

<UML:Stereotype xmi.id = ’-64--88-1-65-- c06f953 :151 a294185c : -8000:0000000000000 B82 ’

name = ’realize ’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’

isAbstract = ’false ’>

<UML:Stereotype.baseClass >Abstraction </UML:Stereotype.baseClass >

</UML:Stereotype >

</UML:Namespace.ownedElement >

</UML:Model >

188 APPENDIX A. INPUTS AND OUTPUTS OF SCARP

</XMI.content >

</XMI >

Listing A.8: XMI representation of the Command software pattern.

<?xml version = ’1.0’ encoding = ’UTF -8’ ?>

<XMI xmi.version = ’1.2’ xmlns:UML = ’org.omg.xmi.namespace.UML ’ timestamp = ’Wed Jun 01

14:24:03 WEST 2016’>

<XMI.header > <XMI.documentation >

<XMI.exporter >ArgoUML (using Netbeans XMI Writer version 1.0) </XMI.exporter >

<XMI.exporterVersion >0.34(6) revised on $Date: 2010 -01 -11 22:20:14 +0100 (Mon , 11 Jan

2010) $ </XMI.exporterVersion >

</XMI.documentation >

<XMI.metamodel xmi.name="UML" xmi.version ="1.4"/ > </ XMI.header >

<XMI.content >

<UML:Model xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 E77 ’

name = ’modeloSemTitulo ’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’

isAbstract = ’false ’>

<UML:Namespace.ownedElement >

<UML:Class xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 E78 ’

name = ’Client ’ visibility = ’public ’ isSpecification = ’false ’ isRoot = ’false ’

isLeaf = ’false ’ isAbstract = ’false ’ isActive = ’false ’/>

<UML:Interface xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 E79 ’

name = ’Component ’ visibility = ’public ’ isSpecification = ’false ’ isRoot = ’false ’

isLeaf = ’false ’ isAbstract = ’false ’/>

<UML:Class xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 E7A ’

name = ’Composite ’ visibility = ’public ’ isSpecification = ’false ’ isRoot = ’false ’

isLeaf = ’false ’ isAbstract = ’false ’ isActive = ’false ’>

<UML:ModelElement.clientDependency >

<UML:Abstraction xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 E7B ’/>

</UML:ModelElement.clientDependency >

</UML:Class >

<UML:Abstraction xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 E7B ’

isSpecification = ’false ’>

<UML:ModelElement.stereotype >

<UML:Stereotype xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 E7C ’/>

</UML:ModelElement.stereotype >

<UML:Dependency.client >

<UML:Class xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 E7A

’/>

</UML:Dependency.client >

<UML:Dependency.supplier >

<UML:Interface xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000

E79 ’/>

</UML:Dependency.supplier >

</UML:Abstraction >

<UML:Stereotype xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 E7C ’

name = ’realize ’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’

isAbstract = ’false ’>

<UML:Stereotype.baseClass >Abstraction </UML:Stereotype.baseClass >

</UML:Stereotype >

A.6. XMI REPRESENTATION OF SOFTWARE PATTERNS. 189

<UML:Class xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 E7D ’

name = ’Leaf ’ visibility = ’public ’ isSpecification = ’false ’ isRoot = ’false ’

isLeaf = ’false ’ isAbstract = ’false ’ isActive = ’false ’>

<UML:ModelElement.clientDependency >

<UML:Abstraction xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 E81 ’/>

</UML:ModelElement.clientDependency >

</UML:Class >

<UML:Association xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 E7E ’

name = ’’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’ isAbstract =

’false ’>

<UML:Association.connection >

<UML:AssociationEnd xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 E7F ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’false ’ ordering

= ’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000

E7A ’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

<UML:AssociationEnd xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 E80 ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’true ’ ordering =

’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Interface xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 E79 ’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

</UML:Association.connection >

</UML:Association >

<UML:Abstraction xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 E81 ’

isSpecification = ’false ’>

<UML:ModelElement.stereotype >

<UML:Stereotype xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 E7C ’/>

</UML:ModelElement.stereotype >

<UML:Dependency.client >

<UML:Class xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 E7D

’/>

</UML:Dependency.client >

<UML:Dependency.supplier >

<UML:Interface xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000

E79 ’/>

</UML:Dependency.supplier >

</UML:Abstraction >

<UML:Association xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 E83 ’

name = ’’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’ isAbstract =

’false ’>

<UML:Association.connection >

190 APPENDIX A. INPUTS AND OUTPUTS OF SCARP

<UML:AssociationEnd xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 E84 ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’false ’ ordering

= ’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000

E78 ’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

<UML:AssociationEnd xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 E85 ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’true ’ ordering =

’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Interface xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 E79 ’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

</UML:Association.connection >

</UML:Association >

</UML:Namespace.ownedElement >

</UML:Model >

</XMI.content >

</XMI >

Listing A.9: XMI representation of the Composite software pattern.

<?xml version = ’1.0’ encoding = ’UTF -8’ ?>

<XMI xmi.version = ’1.2’ xmlns:UML = ’org.omg.xmi.namespace.UML ’ timestamp = ’Wed Jun 01

14:56:06 WEST 2016’>

<XMI.header > <XMI.documentation >

<XMI.exporter >ArgoUML (using Netbeans XMI Writer version 1.0) </XMI.exporter >

<XMI.exporterVersion >0.34(6) revised on $Date: 2010 -01 -11 22:20:14 +0100 (Mon , 11 Jan

2010) $ </XMI.exporterVersion >

</XMI.documentation >

<XMI.metamodel xmi.name="UML" xmi.version ="1.4"/ > </ XMI.header >

<XMI.content >

<UML:Model xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:000000000000128D’

name = ’modeloSemTitulo ’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’

isAbstract = ’false ’>

<UML:Namespace.ownedElement >

<UML:Class xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:000000000000128E’

name = ’Client ’ visibility = ’public ’ isSpecification = ’false ’ isRoot = ’false ’

isLeaf = ’false ’ isAbstract = ’false ’ isActive = ’false ’/>

<UML:Class xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:000000000000128F’

name = ’FlyweightFactory ’ visibility = ’public ’ isSpecification = ’false ’

isRoot = ’false ’ isLeaf = ’false ’ isAbstract = ’false ’ isActive = ’false ’/>

<UML:Interface xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000001290 ’

name = ’Flyweight ’ visibility = ’public ’ isSpecification = ’false ’ isRoot = ’false ’

isLeaf = ’false ’ isAbstract = ’false ’/>

<UML:Class xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000001291 ’

A.6. XMI REPRESENTATION OF SOFTWARE PATTERNS. 191

name = ’ConcreteFlyweight ’ visibility = ’public ’ isSpecification = ’false ’

isRoot = ’false ’ isLeaf = ’false ’ isAbstract = ’false ’ isActive = ’false ’>

<UML:ModelElement.clientDependency >

<UML:Abstraction xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:000000000000129C’/>

</UML:ModelElement.clientDependency >

</UML:Class >

<UML:Class xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000001292 ’

name = ’UnsharedConcreteFlyweight ’ visibility = ’public ’ isSpecification = ’false ’

isRoot = ’false ’ isLeaf = ’false ’ isAbstract = ’false ’ isActive = ’false ’>

<UML:ModelElement.clientDependency >

<UML:Abstraction xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:000000000000129E’/>

</UML:ModelElement.clientDependency >

</UML:Class >

<UML:Association xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000001293 ’

name = ’’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’ isAbstract =

’false ’>

<UML:Association.connection >

<UML:AssociationEnd xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000001294 ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’false ’ ordering

= ’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:000000000000128E’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

<UML:AssociationEnd xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000001295 ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’true ’ ordering =

’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:000000000000128F’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

</UML:Association.connection >

</UML:Association >

<UML:Association xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000001296 ’

name = ’’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’ isAbstract =

’false ’>

<UML:Association.connection >

<UML:AssociationEnd xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000001297 ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’false ’ ordering

= ’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:000000000000128E’/>

192 APPENDIX A. INPUTS AND OUTPUTS OF SCARP

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

<UML:AssociationEnd xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000001298 ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’true ’ ordering =

’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000001291 ’/ >

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

</UML:Association.connection >

</UML:Association >

<UML:Association xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000001299 ’

name = ’’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’ isAbstract =

’false ’>

<UML:Association.connection >

<UML:AssociationEnd xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:000000000000129A’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’false ’ ordering

= ’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:000000000000128E’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

<UML:AssociationEnd xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:000000000000129B’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’true ’ ordering =

’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000001292 ’/ >

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

</UML:Association.connection >

</UML:Association >

<UML:Abstraction xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:000000000000129C’

isSpecification = ’false ’>

<UML:ModelElement.stereotype >

<UML:Stereotype xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:000000000000129D’/>

</UML:ModelElement.stereotype >

<UML:Dependency.client >

<UML:Class xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000001291 ’/ >

</UML:Dependency.client >

<UML:Dependency.supplier >

<UML:Interface xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000001290 ’/ >

A.6. XMI REPRESENTATION OF SOFTWARE PATTERNS. 193

</UML:Dependency.supplier >

</UML:Abstraction >

<UML:Stereotype xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:000000000000129D’

name = ’realize ’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’

isAbstract = ’false ’>

<UML:Stereotype.baseClass >Abstraction </UML:Stereotype.baseClass >

</UML:Stereotype >

<UML:Abstraction xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:000000000000129E’

isSpecification = ’false ’>

<UML:ModelElement.stereotype >

<UML:Stereotype xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:000000000000129D’/>

</UML:ModelElement.stereotype >

<UML:Dependency.client >

<UML:Class xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000001292 ’/ >

</UML:Dependency.client >

<UML:Dependency.supplier >

<UML:Interface xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000001290 ’/ >

</UML:Dependency.supplier >

</UML:Abstraction >

<UML:Association xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:00000000000012A0 ’

name = ’flyweights ’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’

isAbstract = ’false ’>

<UML:Association.connection >

<UML:AssociationEnd xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:00000000000012A1 ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’false ’ ordering

= ’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:000000000000128F’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

<UML:AssociationEnd xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:00000000000012A2 ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’true ’ ordering =

’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Interface xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000001290 ’/ >

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

</UML:Association.connection >

</UML:Association >

</UML:Namespace.ownedElement >

</UML:Model >

</XMI.content >

194 APPENDIX A. INPUTS AND OUTPUTS OF SCARP

</XMI >

Listing A.10: XMI representation of the Flyweight software pattern.

<?xml version = ’1.0’ encoding = ’UTF -8’ ?>

<XMI xmi.version = ’1.2’ xmlns:UML = ’org.omg.xmi.namespace.UML ’ timestamp = ’Wed Jun 01

14:22:51 WEST 2016’>

<XMI.header > <XMI.documentation >

<XMI.exporter >ArgoUML (using Netbeans XMI Writer version 1.0) </XMI.exporter >

<XMI.exporterVersion >0.34(6) revised on $Date: 2010 -01 -11 22:20:14 +0100 (Mon , 11 Jan

2010) $ </XMI.exporterVersion >

</XMI.documentation >

<XMI.metamodel xmi.name="UML" xmi.version ="1.4"/ > </ XMI.header >

<XMI.content >

<UML:Model xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 D66 ’

name = ’modeloSemTitulo ’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’

isAbstract = ’false ’>

<UML:Namespace.ownedElement >

<UML:Class xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 D67 ’

name = ’ConcreteAggregate ’ visibility = ’public ’ isSpecification = ’false ’

isRoot = ’false ’ isLeaf = ’false ’ isAbstract = ’false ’ isActive = ’false ’>

<UML:ModelElement.clientDependency >

<UML:Abstraction xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 D72 ’/>

</UML:ModelElement.clientDependency >

</UML:Class >

<UML:Class xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 D68 ’

name = ’ConcreteIterator ’ visibility = ’public ’ isSpecification = ’false ’

isRoot = ’false ’ isLeaf = ’false ’ isAbstract = ’false ’ isActive = ’false ’>

<UML:ModelElement.clientDependency >

<UML:Abstraction xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 D74 ’/>

</UML:ModelElement.clientDependency >

</UML:Class >

<UML:Interface xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 D69 ’

name = ’Aggregate ’ visibility = ’public ’ isSpecification = ’false ’ isRoot = ’false ’

isLeaf = ’false ’ isAbstract = ’false ’/>

<UML:Class xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 D6A ’

name = ’Client ’ visibility = ’public ’ isSpecification = ’false ’ isRoot = ’false ’

isLeaf = ’false ’ isAbstract = ’false ’ isActive = ’false ’/>

<UML:Interface xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 D6B ’

name = ’Iterator ’ visibility = ’public ’ isSpecification = ’false ’ isRoot = ’false ’

isLeaf = ’false ’ isAbstract = ’false ’/>

<UML:Association xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 D6C ’

name = ’’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’ isAbstract =

’false ’>

<UML:Association.connection >

<UML:AssociationEnd xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 D6D ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’false ’ ordering

= ’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

A.6. XMI REPRESENTATION OF SOFTWARE PATTERNS. 195

<UML:Class xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000

D6A ’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

<UML:AssociationEnd xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 D6E ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’true ’ ordering =

’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Interface xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 D69 ’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

</UML:Association.connection >

</UML:Association >

<UML:Association xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 D6F ’

name = ’’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’ isAbstract =

’false ’>

<UML:Association.connection >

<UML:AssociationEnd xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 D70 ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’false ’ ordering

= ’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000

D6A ’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

<UML:AssociationEnd xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 D71 ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’true ’ ordering =

’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Interface xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 D6B ’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

</UML:Association.connection >

</UML:Association >

<UML:Abstraction xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 D72 ’

isSpecification = ’false ’>

<UML:ModelElement.stereotype >

<UML:Stereotype xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 D73 ’/>

</UML:ModelElement.stereotype >

<UML:Dependency.client >

<UML:Class xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 D67

’/>

</UML:Dependency.client >

<UML:Dependency.supplier >

196 APPENDIX A. INPUTS AND OUTPUTS OF SCARP

<UML:Interface xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000

D69 ’/>

</UML:Dependency.supplier >

</UML:Abstraction >

<UML:Stereotype xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 D73 ’

name = ’realize ’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’

isAbstract = ’false ’>

<UML:Stereotype.baseClass >Abstraction </UML:Stereotype.baseClass >

</UML:Stereotype >

<UML:Abstraction xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 D74 ’

isSpecification = ’false ’>

<UML:ModelElement.stereotype >

<UML:Stereotype xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 D73 ’/>

</UML:ModelElement.stereotype >

<UML:Dependency.client >

<UML:Class xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 D68

’/>

</UML:Dependency.client >

<UML:Dependency.supplier >

<UML:Interface xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000

D6B ’/>

</UML:Dependency.supplier >

</UML:Abstraction >

<UML:Association xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 D76 ’

name = ’’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’ isAbstract =

’false ’>

<UML:Association.connection >

<UML:AssociationEnd xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 D77 ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’false ’ ordering

= ’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000

D68 ’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

<UML:AssociationEnd xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 D78 ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’true ’ ordering =

’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000

D67 ’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

</UML:Association.connection >

</UML:Association >

<UML:Association xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 D79 ’

name = ’’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’ isAbstract =

’false ’>

A.6. XMI REPRESENTATION OF SOFTWARE PATTERNS. 197

<UML:Association.connection >

<UML:AssociationEnd xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 D7A ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’false ’ ordering

= ’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000

D67 ’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

<UML:AssociationEnd xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 D7B ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’true ’ ordering =

’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000

D68 ’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

</UML:Association.connection >

</UML:Association >

</UML:Namespace.ownedElement >

</UML:Model >

</XMI.content >

</XMI >

Listing A.11: XMI representation of the Iterator software pattern.

<?xml version = ’1.0’ encoding = ’UTF -8’ ?>

<XMI xmi.version = ’1.2’ xmlns:UML = ’org.omg.xmi.namespace.UML ’ timestamp = ’Mon Dec 14

22:10:00 WET 2015’>

<XMI.header > <XMI.documentation >

<XMI.exporter >ArgoUML (using Netbeans XMI Writer version 1.0) </XMI.exporter >

<XMI.exporterVersion >0.34(6) revised on $Date: 2010 -01 -11 22:20:14 +0100 (Mon , 11 Jan

2010) $ </XMI.exporterVersion >

</XMI.documentation >

<XMI.metamodel xmi.name="UML" xmi.version ="1.4"/ > </ XMI.header >

<XMI.content >

<UML:Model xmi.id = ’-64--88-1-65--67 b626f9 :151 a280f3ec : -8000:00000000000010FC ’

name = ’modeloSemTitulo ’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’

isAbstract = ’false ’>

<UML:Namespace.ownedElement >

<UML:Class xmi.id = ’-64--88-1-65--67 b626f9 :151 a280f3ec : -8000:00000000000010FD ’

name = ’Originator ’ visibility = ’public ’ isSpecification = ’false ’ isRoot = ’false

’

isLeaf = ’false ’ isAbstract = ’false ’ isActive = ’false ’/>

<UML:Class xmi.id = ’-64--88-1-65--67 b626f9 :151 a280f3ec : -8000:00000000000010FE ’

name = ’Memento ’ visibility = ’public ’ isSpecification = ’false ’ isRoot = ’false ’

isLeaf = ’false ’ isAbstract = ’false ’ isActive = ’false ’/>

<UML:Class xmi.id = ’-64--88-1-65--67 b626f9 :151 a280f3ec : -8000:00000000000010FF ’

name = ’Caretaker ’ visibility = ’public ’ isSpecification = ’false ’ isRoot = ’false ’

198 APPENDIX A. INPUTS AND OUTPUTS OF SCARP

isLeaf = ’false ’ isAbstract = ’false ’ isActive = ’false ’/>

<UML:Class xmi.id = ’-64--88-1-65--67 b626f9 :151 a280f3ec : -8000:0000000000001100 ’

name = ’State ’ visibility = ’public ’ isSpecification = ’false ’ isRoot = ’false ’

isLeaf = ’false ’ isAbstract = ’false ’ isActive = ’false ’/>

<UML:Class xmi.id = ’-64--88-1-65--67 b626f9 :151 a280f3ec : -8000:0000000000001101 ’

name = ’Item ’ visibility = ’public ’ isSpecification = ’false ’ isRoot = ’false ’

isLeaf = ’false ’ isAbstract = ’false ’ isActive = ’false ’/>

<UML:Association xmi.id = ’-64--88-1-65--67 b626f9 :151 a280f3ec : -8000:0000000000001102 ’

name = ’’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’ isAbstract =

’false ’>

<UML:Association.connection >

<UML:AssociationEnd xmi.id = ’-64--88-1-65--67 b626f9 :151 a280f3ec

: -8000:0000000000001103 ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’false ’ ordering

= ’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-64--88-1-65--67 b626f9 :151 a280f3ec

: -8000:00000000000010FD ’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

<UML:AssociationEnd xmi.id = ’-64--88-1-65--67 b626f9 :151 a280f3ec

: -8000:0000000000001104 ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’true ’ ordering =

’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-64--88-1-65--67 b626f9 :151 a280f3ec

: -8000:00000000000010FE ’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

</UML:Association.connection >

</UML:Association >

<UML:Association xmi.id = ’-64--88-1-65--67 b626f9 :151 a280f3ec : -8000:0000000000001105 ’

name = ’’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’ isAbstract =

’false ’>

<UML:Association.connection >

<UML:AssociationEnd xmi.id = ’-64--88-1-65--67 b626f9 :151 a280f3ec

: -8000:0000000000001106 ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’false ’ ordering

= ’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-64--88-1-65--67 b626f9 :151 a280f3ec

: -8000:00000000000010FF ’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

<UML:AssociationEnd xmi.id = ’-64--88-1-65--67 b626f9 :151 a280f3ec

: -8000:0000000000001107 ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’true ’ ordering =

’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

A.6. XMI REPRESENTATION OF SOFTWARE PATTERNS. 199

<UML:Class xmi.idref = ’-64--88-1-65--67 b626f9 :151 a280f3ec

: -8000:00000000000010FE ’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

</UML:Association.connection >

</UML:Association >

<UML:Association xmi.id = ’-64--88-1-65--67 b626f9 :151 a280f3ec : -8000:0000000000001108 ’

name = ’’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’ isAbstract =

’false ’>

<UML:Association.connection >

<UML:AssociationEnd xmi.id = ’-64--88-1-65--67 b626f9 :151 a280f3ec

: -8000:0000000000001109 ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’false ’ ordering

= ’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-64--88-1-65--67 b626f9 :151 a280f3ec

: -8000:00000000000010FD ’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

<UML:AssociationEnd xmi.id = ’-64--88-1-65--67 b626f9 :151 a280f3ec

: -8000:000000000000110A’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’true ’ ordering =

’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-64--88-1-65--67 b626f9 :151 a280f3ec

: -8000:0000000000001100 ’/ >

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

</UML:Association.connection >

</UML:Association >

<UML:Association xmi.id = ’-64--88-1-65--67 b626f9 :151 a280f3ec : -8000:000000000000110B’

name = ’’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’ isAbstract =

’false ’>

<UML:Association.connection >

<UML:AssociationEnd xmi.id = ’-64--88-1-65--67 b626f9 :151 a280f3ec

: -8000:000000000000110C’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’false ’ ordering

= ’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-64--88-1-65--67 b626f9 :151 a280f3ec

: -8000:0000000000001100 ’/ >

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

<UML:AssociationEnd xmi.id = ’-64--88-1-65--67 b626f9 :151 a280f3ec

: -8000:000000000000110D’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’true ’ ordering =

’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-64--88-1-65--67 b626f9 :151 a280f3ec

200 APPENDIX A. INPUTS AND OUTPUTS OF SCARP

: -8000:0000000000001101 ’/ >

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

</UML:Association.connection >

</UML:Association >

<UML:Association xmi.id = ’-64--88-1-65--67 b626f9 :151 a280f3ec : -8000:000000000000110E’

name = ’’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’ isAbstract =

’false ’>

<UML:Association.connection >

<UML:AssociationEnd xmi.id = ’-64--88-1-65--67 b626f9 :151 a280f3ec

: -8000:000000000000110F’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’false ’ ordering

= ’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-64--88-1-65--67 b626f9 :151 a280f3ec

: -8000:00000000000010FE ’/>

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

<UML:AssociationEnd xmi.id = ’-64--88-1-65--67 b626f9 :151 a280f3ec

: -8000:0000000000001110 ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’true ’ ordering =

’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-64--88-1-65--67 b626f9 :151 a280f3ec

: -8000:0000000000001100 ’/ >

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

</UML:Association.connection >

</UML:Association >

</UML:Namespace.ownedElement >

</UML:Model >

</XMI.content >

</XMI >

Listing A.12: XMI representation of the Memento software pattern.

<?xml version = ’1.0’ encoding = ’UTF -8’ ?>

<XMI xmi.version = ’1.2’ xmlns:UML = ’org.omg.xmi.namespace.UML ’ timestamp = ’Mon Dec 14

22:52:40 WET 2015’>

<XMI.header > <XMI.documentation >

<XMI.exporter >ArgoUML (using Netbeans XMI Writer version 1.0) </XMI.exporter >

<XMI.exporterVersion >0.34(6) revised on $Date: 2010 -01 -11 22:20:14 +0100 (Mon , 11 Jan

2010) $ </XMI.exporterVersion >

</XMI.documentation >

<XMI.metamodel xmi.name="UML" xmi.version ="1.4"/ > </ XMI.header >

<XMI.content >

<UML:Model xmi.id = ’-64--88-1-65--1265bbf9 :151 a2b0c5f4 : -8000:0000000000000865 ’

name = ’modeloSemTitulo ’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’

isAbstract = ’false ’>

<UML:Namespace.ownedElement >

<UML:Class xmi.id = ’-64--88-1-65--1265bbf9 :151 a2b0c5f4 : -8000:0000000000000866 ’

A.6. XMI REPRESENTATION OF SOFTWARE PATTERNS. 201

name = ’Client ’ visibility = ’public ’ isSpecification = ’false ’ isRoot = ’false ’

isLeaf = ’false ’ isAbstract = ’false ’ isActive = ’false ’/>

<UML:Interface xmi.id = ’-64--88-1-65--1265bbf9 :151 a2b0c5f4 : -8000:0000000000000867 ’

name = ’Subject ’ visibility = ’public ’ isSpecification = ’false ’ isRoot = ’false ’

isLeaf = ’false ’ isAbstract = ’false ’/>

<UML:Class xmi.id = ’-64--88-1-65--1265bbf9 :151 a2b0c5f4 : -8000:0000000000000868 ’

name = ’RealSubject ’ visibility = ’public ’ isSpecification = ’false ’ isRoot = ’

false ’

isLeaf = ’false ’ isAbstract = ’false ’ isActive = ’false ’>

<UML:ModelElement.clientDependency >

<UML:Abstraction xmi.idref = ’-64--88-1-65--1265bbf9 :151 a2b0c5f4

: -8000:000000000000086A’/>

</UML:ModelElement.clientDependency >

</UML:Class >

<UML:Class xmi.id = ’-64--88-1-65--1265bbf9 :151 a2b0c5f4 : -8000:0000000000000869 ’

name = ’Proxy ’ visibility = ’public ’ isSpecification = ’false ’ isRoot = ’false ’

isLeaf = ’false ’ isAbstract = ’false ’ isActive = ’false ’>

<UML:ModelElement.clientDependency >

<UML:Abstraction xmi.idref = ’-64--88-1-65--1265bbf9 :151 a2b0c5f4

: -8000:000000000000086C’/>

</UML:ModelElement.clientDependency >

</UML:Class >

<UML:Abstraction xmi.id = ’-64--88-1-65--1265bbf9 :151 a2b0c5f4 : -8000:000000000000086A’

isSpecification = ’false ’>

<UML:ModelElement.stereotype >

<UML:Stereotype xmi.idref = ’-64--88-1-65--1265bbf9 :151 a2b0c5f4

: -8000:000000000000086B’/>

</UML:ModelElement.stereotype >

<UML:Dependency.client >

<UML:Class xmi.idref = ’-64--88-1-65--1265bbf9 :151 a2b0c5f4

: -8000:0000000000000868 ’/ >

</UML:Dependency.client >

<UML:Dependency.supplier >

<UML:Interface xmi.idref = ’-64--88-1-65--1265bbf9 :151 a2b0c5f4

: -8000:0000000000000867 ’/ >

</UML:Dependency.supplier >

</UML:Abstraction >

<UML:Stereotype xmi.id = ’-64--88-1-65--1265bbf9 :151 a2b0c5f4 : -8000:000000000000086B’

name = ’realize ’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’

isAbstract = ’false ’>

<UML:Stereotype.baseClass >Abstraction </UML:Stereotype.baseClass >

</UML:Stereotype >

<UML:Abstraction xmi.id = ’-64--88-1-65--1265bbf9 :151 a2b0c5f4 : -8000:000000000000086C’

isSpecification = ’false ’>

<UML:ModelElement.stereotype >

<UML:Stereotype xmi.idref = ’-64--88-1-65--1265bbf9 :151 a2b0c5f4

: -8000:000000000000086B’/>

</UML:ModelElement.stereotype >

<UML:Dependency.client >

<UML:Class xmi.idref = ’-64--88-1-65--1265bbf9 :151 a2b0c5f4

: -8000:0000000000000869 ’/ >

</UML:Dependency.client >

<UML:Dependency.supplier >

202 APPENDIX A. INPUTS AND OUTPUTS OF SCARP

<UML:Interface xmi.idref = ’-64--88-1-65--1265bbf9 :151 a2b0c5f4

: -8000:0000000000000867 ’/ >

</UML:Dependency.supplier >

</UML:Abstraction >

<UML:Association xmi.id = ’-64--88-1-65--1265bbf9 :151 a2b0c5f4 : -8000:000000000000086E’

name = ’’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’ isAbstract =

’false ’>

<UML:Association.connection >

<UML:AssociationEnd xmi.id = ’-64--88-1-65--1265bbf9 :151 a2b0c5f4

: -8000:000000000000086F’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’false ’ ordering

= ’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-64--88-1-65--1265bbf9 :151 a2b0c5f4

: -8000:0000000000000866 ’/ >

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

<UML:AssociationEnd xmi.id = ’-64--88-1-65--1265bbf9 :151 a2b0c5f4

: -8000:0000000000000870 ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’true ’ ordering =

’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Interface xmi.idref = ’-64--88-1-65--1265bbf9 :151 a2b0c5f4

: -8000:0000000000000867 ’/ >

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

</UML:Association.connection >

</UML:Association >

<UML:Association xmi.id = ’-64--88-1-65--1265bbf9 :151 a2b0c5f4 : -8000:0000000000000871 ’

name = ’’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’ isAbstract =

’false ’>

<UML:Association.connection >

<UML:AssociationEnd xmi.id = ’-64--88-1-65--1265bbf9 :151 a2b0c5f4

: -8000:0000000000000872 ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’false ’ ordering

= ’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-64--88-1-65--1265bbf9 :151 a2b0c5f4

: -8000:0000000000000869 ’/ >

</UML:AssociationEnd.participant >

</UML:AssociationEnd >

<UML:AssociationEnd xmi.id = ’-64--88-1-65--1265bbf9 :151 a2b0c5f4

: -8000:0000000000000873 ’

visibility = ’public ’ isSpecification = ’false ’ isNavigable = ’true ’ ordering =

’unordered ’

aggregation = ’none ’ targetScope = ’instance ’ changeability = ’changeable ’>

<UML:AssociationEnd.participant >

<UML:Class xmi.idref = ’-64--88-1-65--1265bbf9 :151 a2b0c5f4

: -8000:0000000000000868 ’/ >

</UML:AssociationEnd.participant >

A.6. XMI REPRESENTATION OF SOFTWARE PATTERNS. 203

</UML:AssociationEnd >

</UML:Association.connection >

</UML:Association >

</UML:Namespace.ownedElement >

</UML:Model >

</XMI.content >

</XMI >

Listing A.13: XMI representation of the Proxy software pattern.

<?xml version = ’1.0’ encoding = ’UTF -8’ ?>

<XMI xmi.version = ’1.2’ xmlns:UML = ’org.omg.xmi.namespace.UML ’ timestamp = ’Wed Jun 01

14:09:56 WEST 2016’>

<XMI.header > <XMI.documentation >

<XMI.exporter >ArgoUML (using Netbeans XMI Writer version 1.0) </XMI.exporter >

<XMI.exporterVersion >0.34(6) revised on $Date: 2010 -01 -11 22:20:14 +0100 (Mon , 11 Jan

2010) $ </XMI.exporterVersion >

</XMI.documentation >

<XMI.metamodel xmi.name="UML" xmi.version ="1.4"/ > </ XMI.header >

<XMI.content >

<UML:Model xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 C63 ’

name = ’modeloSemTitulo ’ isSpecification = ’false ’ isRoot = ’false ’ isLeaf = ’false ’

isAbstract = ’false ’>

<UML:Namespace.ownedElement >

<UML:Class xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 C64 ’

name = ’Singleton ’ visibility = ’public ’ isSpecification = ’false ’ isRoot = ’false ’

isLeaf = ’false ’ isAbstract = ’false ’ isActive = ’false ’>

<UML:Classifier.feature >

<UML:Attribute xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 C65

’

name = ’instance ’ visibility = ’public ’ isSpecification = ’false ’ ownerScope =

’instance ’

changeability = ’changeable ’ targetScope = ’instance ’>

<UML:StructuralFeature.multiplicity >

<UML:Multiplicity xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 C66 ’>

<UML:Multiplicity.range >

<UML:MultiplicityRange xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 C67 ’

lower = ’1’ upper = ’1’/>

</UML:Multiplicity.range >

</UML:Multiplicity >

</UML:StructuralFeature.multiplicity >

<UML:StructuralFeature.type >

<UML:Class xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000

C68 ’/>

</UML:StructuralFeature.type >

</UML:Attribute >

<UML:Operation xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 C69

’

name = ’getInstance ’ visibility = ’public ’ isSpecification = ’false ’ ownerScope

= ’instance ’

isQuery = ’false ’ concurrency = ’sequential ’ isRoot = ’false ’ isLeaf = ’false ’

204 APPENDIX A. INPUTS AND OUTPUTS OF SCARP

isAbstract = ’false ’>

<UML:BehavioralFeature.parameter >

<UML:Parameter xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 C6A ’

name = ’return ’ isSpecification = ’false ’ kind = ’return ’>

<UML:Parameter.type >

<UML:Class xmi.idref = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1

: -8000:0000000000000 C68 ’/>

</UML:Parameter.type >

</UML:Parameter >

</UML:BehavioralFeature.parameter >

</UML:Operation >

</UML:Classifier.feature >

</UML:Class >

<UML:Class xmi.id = ’-84-26-39-97-10 a9aaf0 :1550 c12bec1 : -8000:0000000000000 C68 ’

name = ’Object ’ visibility = ’public ’ isSpecification = ’false ’ isRoot = ’false ’

isLeaf = ’false ’ isAbstract = ’false ’ isActive = ’false ’/>

</UML:Namespace.ownedElement >

</UML:Model >

</XMI.content >

</XMI >

Listing A.14: XMI representation of the Singleton software pattern.

Appendix B

Inputs and outputs regarding the

validation studies

B.1 Specifications selected for the first study

This appendix presents the specifications used for the first study. It is worth mentioning that

the original specifications were described in Portuguese, the native language of the participants.

B.1.1 Use cases

Table B.1: Modify players information.

User System

1 Lists players

2 Selects player

3 Presents player information

4 Performs changes

5 Submits changes

6 Validates changes

7 Informs success

205

206 APPENDIX B. INPUTS AND OUTPUTS REGARDING THE VALIDATION STUDIES

Table B.2: Cancel a tournament.

User System

1 Inserts name of the tournament to cancel

2 Searches tournament

3 Presents list of tournaments with matching names

4 Selects desired tournament

5 Presents tournament information

6 Selects remove option

7 Asks removal confirmation

8 Confirms tournament removal

9 Removes tournament

10 Informs success of removal

Exception: No results (Step 2)

a 1 Informs that no matching tournaments were found

Exception: No confirmation (Step 6)

b 1 Informs of removal cancel

Table B.3: Check donative information.

User System

1 Informs donator information

2 Verified donator

3 Asks donator information

4 Informs donative to donative to check

5 Verifies donative

6 Provides donative information

Table B.4: Remove a user.

User System

1 inserts username

2 verifies username

3 inserts password

4 verifies password

5 user is removed

Table B.5: Mark donative as used.

User System

1 selects donative to mark as used

2 verifies if donative exists

3 asks for selected donative to be marked as used

4 marks donative as used

5 informs that donative was marked as used

Table B.6: Change a project.

User System

1 presets list of projects

2 selects project

3 provides information to change

4 validates new information

5 register changes in the system

B.1. SPECIFICATIONS SELECTED FOR THE FIRST STUDY 207

Table B.7: Allocate items to a certain project phase.

User System

1 presents list of all project phases

2 presents list of items available

3 selects the phase to which add items

4 selects which item to allocate

5 selects the quantity to allocate

6 allocates the quantity of items to the project phase

Table B.8: Check a job information.

User System

1 asks for job information

2 verifies if job has started

3 presents job information

B.1.2 Textual descriptions

“Search a product” scenario description

A user clicks in the ”search” link in the website. Then, the system shows a field

where the user should insert the keyword to search, as well as the search criteria

(price, date, etc.). When the user clicks “ok”, the system performs a search (based

in the given criteria), creates a result list and shows such list to the user. Finally, the

user checks the resulting list.

“Upload a model to a repository” scenario description

A user clicks in “new model” link. Then, the website shows a page with several

fields to fill, specifically name, description, image and file. The user fills those fields,

and clicks in “submit”. The system registers the fields, uploads the model, and shows

a success message. If any of the fields is missing, an error message is shown, and the

process finishes.

“Download a model from a webpage” scenario description

A user clicks in “models” link. The system shows a list of modes. Then, the user

browses the list, and selects the desired model. The user selects “download”, the

system processes the requests, and starts the download. If the model is private, after

selecting “open”, the system sends a message to the model’s author (with a request to

view the model), and shows an informative message to the user, instead of a success

message.

208 APPENDIX B. INPUTS AND OUTPUTS REGARDING THE VALIDATION STUDIES

B.2 Scenario descriptions selected for the second study

“List products from category and open details” scenario description

A user clicks in a category. The system filters the products by the category, and

creates a new list which will then present to the user. The use might then check the

result, from which will select one. The system will then retrieve the product details,

and present them to the user. Finally, the user checks the product.

“Registration and sign in” scenario description

The user clicks in register. The system will then present a form where it requests

the username, the password and the email. The user will then provide such informa-

tions, that the system will verify. If the informations are valid, the system will also

create the register. The user will next click in login, and the system will request both

the username and password. After validating those informations, the system creates

a new session, and presents a success message.

“Check historic” scenario description

The user starts by clicking in historic. The system will the load the items that

the user have viewed, and creates a list with such informations. Next, the system

shows the list to the user, which can check it.

B.3 Requirement patterns catalog

Based in the patterns described in [123], a requirements pattern catalog is presented. The intent

is presented alongside each pattern.

B.3.1 Simple Search

The Simple Search requirement pattern is described as: “Offer a search functionality consisting

of a search label, a keyword and a filter”.

(user) (clicks|asks) (search|search_link|searchLink) 13

(system) (shows|asks|displays) (?) 13

(user) (inserts|enters) (keyword|date|price|criteria) 13

(user) (clicks) (ok) 13

(system) (performs) (search) 12

(system) (creates) (result_list|list|resultlist|result|results) 12

(system) (shows|displays|display|presents) (list|result_list|results) 12

(user) (checks) (list|resulting_list|info|result|results) 12

Listing B.1: uQL Simple Search requirement pattern.

B.3. REQUIREMENT PATTERNS CATALOG 209

B.3.2 Catalog

The Catalog requirement pattern is described as: “A catalog class to be a product collection”.

(user) (clicks) (category) 22

(system) (filters|performs) (products) 7

(system) (creates) (list|new_list) 10

(system) (shows|presents|displays) (list|product_list|results) 5

(user) (checks) (list|result|results) 5

(user) (selects|clicks) (product|result) 5

(system) (retrieves) (?info) 15

(system) (presents|shows) (?info) 15

(user) (checks) (product) 16

Listing B.2: uQL Catalog requirement pattern.

B.3.3 Registration

The Registration requirement pattern is described as: “Offers users a registration after first use

of the data to avoid reenter the same information”.

(user) (clicks) (register|register_link|registerLink) 12

(system) (presents|displays|shows) (form) 8

(system) (requests|asks|presents) (username|password|email) 8

(user) (provides|enters|inserts) (?data) 8

(system) (verifies|validates) (?data) 8

(system) (creates) (register|user) 8

(user) (clicks) (login|loginLink|login_link) 8

(system) (requests|asks) (username|password) 8

(user) (inserts|provides|enters) (username|password) 8

(system) (verifies|validates) (information|informations|info) 8

(system) (creates) (session|new_session) 8

(system) (presents|displays|shows) (success_message|successmessage|successMessage|message) 8

Listing B.3: uQL Registration requirement pattern.

B.3.4 List Builder

The List Builder requirement pattern is described as: “Present the total list and provide editing

functionality on selected items”.

(user) (clicks|asks) (search|search_link|searchLink) 20

(system) (shows|asks|displays) (?) 10

(user) (inserts|enters) (keyword|date|price|criteria) 20

(user) (clicks) (ok) 10

(system) (performs) (search) 10

(system) (creates) (result_list|list|resultlist|result|results) 10

(system) (shows|displays|display|presents) (list|result_list|results) 15

210 APPENDIX B. INPUTS AND OUTPUTS REGARDING THE VALIDATION STUDIES

(user) (checks) (list|resulting_list|info|result|results) 15

Listing B.4: uQL List Builder requirement pattern.

B.4. SOFTWARE PATTERNS CATALOG 211

B.4 Software patterns catalog

The presented catalog is based in [41], and described according to the unified template produced

as part of the survey regarding software patterns [27]. The template is composed of the fields

presented in Figure B.1.

Pattern name and classification The pattern name and category;

Intent The problem it tries to solve;

Also known as Alternative names;

Motivation The reason for this pattern to exist;

Applicability When is this pattern applicable;

Structure A generic implementation of the pattern;

Participants A list of constituents of the pattern;

Collaborations How the pattern interacts with other components;

Consequences Consequences of using this pattern;

Implementations Guidelines for implementing the pattern;

Sample code Pseudocode to illustrate the pattern (not applicable in this context);

Known uses Examples where the pattern is known to be used;

Related patterns Patterns related with this one;

Forces Side effects of applying this pattern. Differs from consequences by its specificity;

Example resolved An example implementation.

Figure B.1: Software patterns template.

B.4.1 Proxy

Pattern name and classification Proxy, structural design pattern.

Intent Provide a surrogate or placeholder for another object to control access to it.

Also known as Surrogate.

Motivation One reason for controlling access to an object is to defer the full cost of its creation

and initialization until we actually need to use it.

Applicability Proxy is applicable whenever there is a need for a more versatile or sophisticated

reference to an object than a simple pointer.

Structure (Figure B.2).

Participants Proxy - maintains a reference that lets the proxy access the real subject; Subject

- defines the common interface for RealSubject and Proxy so that a Proxy can be used

anywhere a RealSubject is expected; RealSubject - defines the real object that the proxy

represents.

212 APPENDIX B. INPUTS AND OUTPUTS REGARDING THE VALIDATION STUDIES

Figure B.2: Proxy pattern structure.

Collaborations Proxy forwards requests to RealSubject when appropriate, depending on the

kind of proxy.

Consequences The Proxy pattern introduces a level of indirection when accessing an object.

Implementations Overloading the member access operator in C++; using

doesNotUnderstand in Smalltalk; Proxy doesn’t always have to know the type of

real subject.

Known uses NEXTSTEP uses proxies as local representatives for objects that may be dis-

tributed. The usage of proxies in Smalltalk to access remote objects is known. Provide

side-effects on method calls and access control with ”Encapsulators” is possible resorting

to the proxy pattern.

Related patterns Adapter, Decorator.

Forces Efficiency, Decoupling, Separation, Abstraction, Efficiency, Overkill.

Example resolved (Figure B.3)

Figure B.3: Proxy pattern instance.

B.4.2 Command

Pattern name and classification Command, behavioral design pattern.

Intent Encapsulate a request as an object, thereby letting you parameterize clients with different

requests, queue or log requests, and support undoable operations.

B.4. SOFTWARE PATTERNS CATALOG 213

Also known as Action, Transaction.

Motivation Sometimes it’s necessary to issue requests to objects without knowing anything

about the operation being requested or the receiver of the request.

Applicability The Command pattern can be used when the parameterization of objects by

an action to perform is required; when specifying, queueing, and executing requests at

different times; supporting undo; support logging changes so that they can be reapplied in

case of a system crash; structuring a system around high-level operations built on primitives

operations.

Structure (Figure B.4)

Figure B.4: Command pattern structure.

Participants Command - declares an interface for executing an operation; ConcreteCommand

- defines a binding between a Receiver object and an action and implements Execute by

invoking the corresponding operation(s) on Receiver; Client - creates a ConcreteCommand

object and sets its receiver; Invoker - asks the command to carry out the request; Receiver

- knows how to perform the operations associated with carrying out a request.

Collaborations The client creates a ConcreteCommand object and specifies its receiver. An

Invoker object stores the ConcreteCommand object. The invoker issues a request by call-

ing Execute on the command. When commands are undoable, ConcreteCommand stores

state for undoing the command prior to invoking Execute. The ConcreteCommand object

invokes operations on its receiver to carryout the request.

Consequences Command decouples the object that invokes the operation from the one that

knows how to perform it. Commands are first-class objects, they can be manipulated and

extended like any other object. Commands can be assembled into a composite command.

In general, composite commands are an instance of the Composite pattern. It’s easy to

add new Commands, because existing classes don’t have to be changed.

Implementations: A command can have a wide range of abilities, as supporting undo and redo,

avoiding error accumulation in the undo process. A possible implementation is by using

C++ templates.

Known uses Command pattern appears in the THINK class library. Unidraw’s command

objects are unique in that they can behave like messages. The implementation of functors,

objects that are functions, in C++ is possible.

Related patterns Composite, Memento, Prototype.

214 APPENDIX B. INPUTS AND OUTPUTS REGARDING THE VALIDATION STUDIES

Forces Separation, Computability, Indirection.

Example resolved (Figure B.5)

Figure B.5: Command pattern instance.

B.4.3 Memento

Pattern name and classification Memento, behavioral design pattern.

Intent Without violating encapsulation, capture and externalize an object’s internal state so

that the object can be restored to this state later.

Also known as Token.

Motivation Sometimes it’s necessary to record the internal state of an object. This is required

when implementing checkpoints and undo mechanisms that let users back out of tentative

operations or recover from errors.

Applicability Use the Memento pattern when a snapshot of (some portion of) an object’s state

must be saved sot hat it can be restored to that state later. A direct interface to obtaining

the state would expose implementation. Details and break the object’s encapsulation.

Structure (Figure B.6)

Figure B.6: Memento pattern structure.

Participants Memento stores internal state of the originator object, protects against access by

objects other than the originator. Originator creates a memento containing a snapshot of

its current internal state. Caretaker is responsible for the memento’s safekeeping. Never

operates on or examines the contents of a memento.

Collaborations A caretaker requests a memento from an originator, holds it for a time, and

passes it back to the originator. Mementos are passive.

B.4. SOFTWARE PATTERNS CATALOG 215

Consequences Preserving encapsulation boundaries. It simplifies the Originator class. Using

mementos might be expensive. Supports defining narrow and wide interfaces. There are

hidden costs in caring for mementos.

Implementations When implementing mementos two considerations must be taken in account,

namely language support, and storing incremental changes.

Known uses Unidraw’s support for connectivity through its CSolver class. The QOCA

constraint-solving toolkit stores incremental information in mementos.

Related patterns Command, Iterator,

Forces Separation, Flexibility, Versioning.

Figure B.7: Memento pattern instance.

Example resolved

B.4.4 Iterator

Pattern name and classification: Iterator, behavioral design pattern.

Intent Provide a way to access the elements of an aggregate objects sequentially without ex-

posing its underlying representation.

Also known as Cursor.

Motivation An aggregate object such as a list should give you a way to access its elements

without exposing its internal structure.

Applicability The Iterator pattern can be used to access an aggregate object’s contents without

exposing its internal representation, to support multiple traversals of aggregate objects, to

provide a uniform interface for traversing different aggregate structures (that is, to support

polymorphic iteration).

Structure (Figure B.8)

Participants Iterator - defines an interface for accessing and traversing elements. ConcreteIt-

erator - implements the Iterator interface. Keeps track of the current position in the

traversal of the aggregate. Aggregate - defines an interface for creating an Iterator object.

ConcreteAggregate - implements the Iterator creation interface to return an instance of the

proper ConcreteIterator.

216 APPENDIX B. INPUTS AND OUTPUTS REGARDING THE VALIDATION STUDIES

Figure B.8: Iterator pattern structure.

Collaborations A ConcreteIterator keeps track of the current object in the aggregate and can

compute the succeeding object in the traversal.

Consequences The Iterator pattern supports variations in the traversal of an aggregate. It-

erators simplify the Aggregate interface. More than one traversal can be pending on an

aggregate.

Implementations A fundamental issue is deciding which party controls the iteration, the it-

erator or the client that uses the iterator. The iterator is not the only place where the

traversal algorithm can be defined. It can be dangerous to modify an aggregate while

you’re traversing it. The minimal interface to Iterator consists of the operations First,

Next, IsDone, and CurrentItem. Iterators may have privileged access.

Known uses Smalltalk uses iterators implicitly. Polymorphic iterators are provided by the

ET++ container classes. ObjectWindows 2.0 provides a class hierarchy of iterators for

containers.

Related patterns Composite, Factory Method, Memento.

Forces Feeding, Aggregation, Indirection, Filtering, Performance, Direction.

Example resolved (Figure B.9).

Figure B.9: Iterator pattern instance.

B.4. SOFTWARE PATTERNS CATALOG 217

B.4.5 Composite

Pattern name and classification Composite, structural design pattern.

Intent Compose objects into tree structures to represent part-whole hierarchies.

Also known as N/A

Motivation The key to the Composite pattern is an abstract class that represents both primi-

tives and their containers.

Applicability Represent part-whole hierarchies of objects. Ignore the difference between com-

positions of objects and individual objects. Treat all objects in the composite structure

uniformly.

Structure (Figure B.10)

Figure B.10: Composite pattern structure.

Participants Component - declares the interface for objects in the composition, implements

default behavior for the interface common to all classes, declares an interface for accessing

and managing its child components, and, optionally defines an interface for accessing a

component’s parent in the recursive structure. Leaf - represents leaf objects in the com-

position, has no children, and defines behavior for primitive objects in the composition.

Composite - defines behavior for components having children, stores child components,

and implements child-related operations in the Component interface. Client - manipulates

objects in the composition through the Component interface.

Collaborations Clients use the Component class interface to interact with objects in the com-

posite structure.

Consequences Defines class hierarchies consisting of primitive objects and composite objects.

Makes the client simple. Makes it easier to add new kinds of components. Can make the

design overly general.

Implementations Explicit parent references. Sharing components. Maximizing the Compo-

nent interface. Declaring the child management operations. Declaring the child manage-

218 APPENDIX B. INPUTS AND OUTPUTS REGARDING THE VALIDATION STUDIES

ment operations. Child ordering. Caching to improve performance.

Known uses Examples of the Composite pattern can be found in almost all object-oriented

systems. The original View class of Smalltalk Model/View/Controller was a Composite,

and nearly every user interface toolkit or framework has followed in its steps. The RTL

Smalltalk compiler framework uses the Composite pattern extensively. Another example of

this pattern occurs in the financial domain, where a portfolio aggregates individual assets.

Related patterns Command, Chain of Responsibility , Decorator, Flyweight, Iterator, Visitor.

Forces Indirection, Nesting, Aggregation, Efficiency, Simplicity, Memory.

Example resolved (Figure B.11)

Figure B.11: Composite pattern instance.

B.4.6 Flyweight

Pattern name and classification Proxy, structural design pattern.

Intent Use sharing to support large numbers of fine-grained objects efficiently.

Also known as N/A

Motivation Some applications could benefit from using objects throughout their design, but a

naive implementation would be prohibitively expensive.

Applicability The Flyweight pattern’s effectiveness depends heavily on how and where it’s

used. Should be applied when all of the following are true: an application uses a large

number of objects, storage costs are high because of the sheer quantity of objects, most

object state can be made extrinsic, many groups of objects may be replaced by relatively

few shared objects once extrinsic state is removed, the application doesn’t depend on

object identity. Since flyweight objects may be shared, identity tests will return true for

conceptually distinct objects.

Structure (Figure B.12)

B.4. SOFTWARE PATTERNS CATALOG 219

Figure B.12: Flyweight pattern structure.

Participants Flyweight - declares an interface through which flyweights can receive and act on

extrinsic state. ConcreteFlyweight - implements the Flyweight interface and adds storage

for intrinsic state, if any. A ConcreteFlyweight object must be sharable. Any state it

stores must be intrinsic, i.e., it must be independent of the ConcreteFlyweight object’s

context. UnsharedConcreteFlyweight - not all Flyweight subclasses need to be shared.

The Flyweight interface enables sharing but doesn’t enforce it. It’s common for Unshared-

ConcreteFlyweight objects to have ConcreteFlyweight objects as children at some level

in the flyweight object structure. FlyweightFactory - creates and manages flyweight ob-

jects, ensures that flyweights are shared properly. When a client requests a flyweight,

the FlyweightFactory object supplies an existing instance or creates one, if none exists.

Client - maintains a reference to flyweight(s), and computes or stores the extrinsic state of

flyweight(s).

Collaborations State that a flyweight needs to function must be characterized as either intrinsic

or extrinsic. Clients should not instantiate ConcreteFlyweights directly.

Consequences Flyweights may introduce run-time costs associated with transferring, finding,

and/or computing extrinsic state, especially if it was formerly stored as intrinsic state. The

more flyweights are shared, the greater the storage savings. The Flyweight pattern is often

combined with the Composite pattern to represent a hierarchical structure as a graph with

shared leaf nodes.

Implementations Removing extrinsic state. Managing shared objects.

Known uses The concept of flyweight objects was first described and explored as a design tech-

nique in InterViews 3.0. ET++ uses flyweights to support look-and-feel independence. For

each widget class there is a corresponding Layout class (e.g., ScrollbarLayout, Menubar-

Layout, etc.). The Layout objects are created and managed by Look objects.,

Related patterns Composite, State, Strategy.

Forces Efficiency, Decoupling, Abstraction, Performance, Overkill

Example resolved (Figure B.13)

220 APPENDIX B. INPUTS AND OUTPUTS REGARDING THE VALIDATION STUDIES

Figure B.13: Flyweight pattern instance.

B.4.7 Singleton

Pattern name and classification Singleton, creational design pattern.

Intent Ensure a class only has one instance, and provide a global point of access to it.

Also known as N/A

Motivation It’s important for some classes to have exactly one instance. For instance, although

there can be many printers in a system, there should be only one printer spooler.

Applicability There must be exactly one instance of a class, and it must be accessible to clients

from a well-known access point. When the sole instance should be extensible by subclassing,

and clients should be able to use an extended instance without modifying their code.

Structure (Figure B.14)

Figure B.14: Singleton pattern structure.

Participants Singleton - defines an Instance operation that lets clients access its unique in-

stance. Instance is a class operation (that is, a class method in Smalltalk and a static

member function in C++). May be responsible for creating its own unique instance.

Collaborations Clients access a Singleton instance solely through Singleton’s Instance opera-

tion.

Consequences Controlled access to sole instance. Reduced name space. Permits refinement of

operations and representation. Permits a variable number of instances. More flexible than

class operations.

Implementations Ensuring a unique instance. Subclassing the Singleton class.

B.5. REQUIREMENT PATTERN TO SOFTWARE PATTERNMATCHING INFORMATION221

Known uses An example of the Singleton pattern in Smalltalk-80 is the set of changes to the

code, which is ChangeSet current. The InterViews user interface toolkit uses the Singleton

pattern to access the unique instance of its Session and WidgetKit classes, among others.

Related patterns Abstract Factory, Builder, Prototype.

Forces Performance, Indirection, Efficiency, Coupling, Overkill.

Example resolved (Figure B.15)

Figure B.15: Singleton pattern instance.

B.5 Requirement Pattern to Software Pattern Matching

Information

<?xml version ="1.0"? >

<!DOCTYPE rdf:RDF [

<!ENTITY untitled -ontology -62 "http :// www.url.com/mapping #" >

<!ENTITY owl "http :// www.w3.org /2002/07/ owl#" >

<!ENTITY xsd "http :// www.w3.org /2001/ XMLSchema #" >

<!ENTITY rdfs "http :// www.w3.org /2000/01/ rdf -schema #" >

<!ENTITY rdf "http :// www.w3.org /1999/02/22 -rdf -syntax -ns#" >

]>

<rdf:RDF xmlns ="http :// www.url.com/mapping #"

xml:base="http :// www.url.com/mapping"

xmlns:untitled -ontology -62=" http :// www.url.com/mapping #"

xmlns:rdf="http :// www.w3.org /1999/02/22 -rdf -syntax -ns#"

xmlns:owl="http :// www.w3.org /2002/07/ owl#"

xmlns:xsd="http :// www.w3.org /2001/ XMLSchema #"

xmlns:rdfs="http :// www.w3.org /2000/01/ rdf -schema#">

<owl:Ontology rdf:about ="http :// www.url.com/mapping"/>

<!--

///

//

// Object Properties

//

///

-->

<!-- http :// www.url.com/mapping#hasConcern -->

<owl:ObjectProperty rdf:about ="& untitled -ontology -62; hasConcern "/>

222 APPENDIX B. INPUTS AND OUTPUTS REGARDING THE VALIDATION STUDIES

<!-- http :// www.url.com/mapping#hasForce -->

<owl:ObjectProperty rdf:about ="& untitled -ontology -62; hasForce "/>

<!-- http :// www.url.com/mapping#hasForceN -->

<owl:ObjectProperty rdf:about ="& untitled -ontology -62; hasForceN "/>

<!-- http :// www.url.com/mapping#hasForceP -->

<owl:ObjectProperty rdf:about ="& untitled -ontology -62; hasForceP "/>

<!-- http :// www.url.com/mapping#hasGoal -->

<owl:ObjectProperty rdf:about ="& untitled -ontology -62; hasGoal"/>

<!--

///

//

// Classes

//

///

-->

<!-- http :// www.url.com/mapping#Concern -->

<owl:Class rdf:about ="& untitled -ontology -62; Concern"/>

<!-- http :// www.url.com/mapping#Force -->

<owl:Class rdf:about ="& untitled -ontology -62; Force"/>

<!-- http :// www.url.com/mapping#Goal -->

<owl:Class rdf:about ="& untitled -ontology -62; Goal"/>

<!-- http :// www.url.com/mapping#RequirementPattern -->

<owl:Class rdf:about ="& untitled -ontology -62; RequirementPattern "/>

<!-- http :// www.url.com/mapping#SoftwarePattern -->

<owl:Class rdf:about ="& untitled -ontology -62; SoftwarePattern "/>

<!--

///

//

// Individuals

//

///

-->

<!-- http :// www.url.com/mapping#Abstraction -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Abstraction">

<rdf:type rdf:resource ="& untitled -ontology -62; Force"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Aggregation -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Aggregation">

<rdf:type rdf:resource ="& untitled -ontology -62; Force"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Browseable -->

B.5. REQUIREMENT PATTERN TO SOFTWARE PATTERNMATCHING INFORMATION223

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Browseable">

<rdf:type rdf:resource ="& untitled -ontology -62; Concern"/>

<hasForceN rdf:resource ="& untitled -ontology -62; Constraint "/>

<hasForceP rdf:resource ="& untitled -ontology -62; Efficiency "/>

<hasForceP rdf:resource ="& untitled -ontology -62; Feeding"/>

<hasForceP rdf:resource ="& untitled -ontology -62; Filtering "/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Command -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Command">

<rdf:type rdf:resource ="& untitled -ontology -62; SoftwarePattern "/>

<rdfs:comment rdf:datatype ="& xsd;string ">/**

* @intent Encapsulate a request as an object , thereby letting you parameterize clients

with different requests , queue or log requests , and support undoable operations.

* @param client Who triggers the operation.

* @param receiver Knows how to perform the operations associated with carrying out.

* @param invoker Asks the command to carry out the request.

* @param command Declares an interface for executing an operation.

* @param concreteCommand Implements Execute by invoking the corresponding operation on

Receiver.

*/</rdfs:comment >

<hasGoal rdf:resource ="& untitled -ontology -62; Process"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Compose -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Compose">

<rdf:type rdf:resource ="& untitled -ontology -62; Goal"/>

<hasForceP rdf:resource ="& untitled -ontology -62; Aggregation "/>

<hasForceN rdf:resource ="& untitled -ontology -62; Efficiency "/>

<hasForceP rdf:resource ="& untitled -ontology -62; Indirection "/>

<hasForceN rdf:resource ="& untitled -ontology -62; Memory"/>

<hasForceP rdf:resource ="& untitled -ontology -62; Nesting"/>

<hasForceN rdf:resource ="& untitled -ontology -62; Simplicity "/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Composite -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Composite">

<rdf:type rdf:resource ="& untitled -ontology -62; SoftwarePattern "/>

<rdfs:comment rdf:datatype ="& xsd;string ">/**

* @intent Compose objects into tree structures to represent part -whole hierarchies. Composite

lets clients treat individual objects and compositions of objects uniformly.

* @param client manipulates objects in the composition through the Component interface.

* @param component defines the interface for the composed objects.

* @param leaf represents a leaf in the composition , without children.

* @param composite represents an element with children of the same type.

*/</rdfs:comment >

<hasGoal rdf:resource ="& untitled -ontology -62; Compose"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Computability -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Computability">

<rdf:type rdf:resource ="& untitled -ontology -62; Force"/>

</owl:NamedIndividual >

224 APPENDIX B. INPUTS AND OUTPUTS REGARDING THE VALIDATION STUDIES

<!-- http :// www.url.com/mapping#Concurrency -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Concurrency">

<rdf:type rdf:resource ="& untitled -ontology -62; Force"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Constraint -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Constraint">

<rdf:type rdf:resource ="& untitled -ontology -62; Force"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Coupling -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Coupling">

<rdf:type rdf:resource ="& untitled -ontology -62; Force"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Decoupling -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Decoupling">

<rdf:type rdf:resource ="& untitled -ontology -62; Force"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Delegate -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Delegate">

<rdf:type rdf:resource ="& untitled -ontology -62; Goal"/>

<hasForceP rdf:resource ="& untitled -ontology -62; Abstraction "/>

<hasForceP rdf:resource ="& untitled -ontology -62; Decoupling "/>

<hasForceP rdf:resource ="& untitled -ontology -62; Efficiency "/>

<hasForceN rdf:resource ="& untitled -ontology -62; Efficiency "/>

<hasForceN rdf:resource ="& untitled -ontology -62; Overkill"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Direction -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Direction">

<rdf:type rdf:resource ="& untitled -ontology -62; Force"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Edit -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Edit">

<rdf:type rdf:resource ="& untitled -ontology -62; Goal"/>

<hasForceN rdf:resource ="& untitled -ontology -62; Efficiency "/>

<hasForceP rdf:resource ="& untitled -ontology -62; Flexibility "/>

<hasForceN rdf:resource ="& untitled -ontology -62; Memory"/>

<hasForceP rdf:resource ="& untitled -ontology -62; Versioning "/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Editable -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Editable">

<rdf:type rdf:resource ="& untitled -ontology -62; Concern"/>

<hasForceN rdf:resource ="& untitled -ontology -62; Constraint "/>

<hasForceP rdf:resource ="& untitled -ontology -62; Flexibility "/>

<hasForceP rdf:resource ="& untitled -ontology -62; Versioning "/>

</owl:NamedIndividual >

B.5. REQUIREMENT PATTERN TO SOFTWARE PATTERNMATCHING INFORMATION225

<!-- http :// www.url.com/mapping#Efficiency -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Efficiency">

<rdf:type rdf:resource ="& untitled -ontology -62; Force"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Explore -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Explore">

<rdf:type rdf:resource ="& untitled -ontology -62; Goal"/>

<hasForceP rdf:resource ="& untitled -ontology -62; Aggregation "/>

<hasForceP rdf:resource ="& untitled -ontology -62; Feeding"/>

<hasForceP rdf:resource ="& untitled -ontology -62; Filtering "/>

<hasForceN rdf:resource ="& untitled -ontology -62; Indirection "/>

<hasForceP rdf:resource ="& untitled -ontology -62; Indirection "/>

<hasForceP rdf:resource ="& untitled -ontology -62; Performance "/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Feeding -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Feeding">

<rdf:type rdf:resource ="& untitled -ontology -62; Force"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Filtering -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Filtering">

<rdf:type rdf:resource ="& untitled -ontology -62; Force"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Flexibility -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Flexibility">

<rdf:type rdf:resource ="& untitled -ontology -62; Force"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Flyweight -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Flyweight">

<rdf:type rdf:resource ="& untitled -ontology -62; SoftwarePattern "/>

<rdfs:comment rdf:datatype ="& xsd;string ">/**

* @intent Use sharing to support large numbers of fine -grained objects efficiently.

* @param client Who triggers the request.

* @param flyweightFactory Creates and manages flyweight objects.

* @param flyweight The class of the instances to be managed.

* @param concreteFlyweight Extension of the concrete instances.

* @param unsharedConcreteFlyweight A flyweight not shared.

*/</rdfs:comment >

<hasGoal rdf:resource ="& untitled -ontology -62; Handle"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Handle -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Handle">

<rdf:type rdf:resource ="& untitled -ontology -62; Goal"/>

<hasForceN rdf:resource ="& untitled -ontology -62; Coupling"/>

<hasForceP rdf:resource ="& untitled -ontology -62; Efficiency "/>

<hasForceP rdf:resource ="& untitled -ontology -62; Indirection "/>

<hasForceN rdf:resource ="& untitled -ontology -62; Overkill"/>

<hasForceP rdf:resource ="& untitled -ontology -62; Performance "/>

226 APPENDIX B. INPUTS AND OUTPUTS REGARDING THE VALIDATION STUDIES

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#HasAccount -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; HasAccount">

<rdf:type rdf:resource ="& untitled -ontology -62; RequirementPattern "/>

<hasConcern rdf:resource ="& untitled -ontology -62; Shareable "/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#HasCatalog -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; HasCatalog">

<rdf:type rdf:resource ="& untitled -ontology -62; RequirementPattern "/>

<hasConcern rdf:resource ="& untitled -ontology -62; Browseable "/>

<hasConcern rdf:resource ="& untitled -ontology -62; Manageable "/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#HasDetails -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; HasDetails">

<rdf:type rdf:resource ="& untitled -ontology -62; RequirementPattern "/>

<hasConcern rdf:resource ="& untitled -ontology -62; Recursive "/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#HasHighlights -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; HasHighlights">

<rdf:type rdf:resource ="& untitled -ontology -62; RequirementPattern "/>

<hasConcern rdf:resource ="& untitled -ontology -62; Shareable "/>

<hasConcern rdf:resource ="& untitled -ontology -62; Viewable "/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#HasSearch -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; HasSearch">

<rdf:type rdf:resource ="& untitled -ontology -62; RequirementPattern "/>

<hasConcern rdf:resource ="& untitled -ontology -62; Manageable "/>

<hasConcern rdf:resource ="& untitled -ontology -62; Viewable "/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#HasShoppingCart -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; HasShoppingCart">

<rdf:type rdf:resource ="& untitled -ontology -62; RequirementPattern "/>

<hasConcern rdf:resource ="& untitled -ontology -62; Editable "/>

<hasConcern rdf:resource ="& untitled -ontology -62; Manageable "/>

<hasConcern rdf:resource ="& untitled -ontology -62; Processable "/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Indirection -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Indirection">

<rdf:type rdf:resource ="& untitled -ontology -62; Force"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Iterator -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Iterator">

<rdf:type rdf:resource ="& untitled -ontology -62; SoftwarePattern "/>

<rdfs:comment rdf:datatype ="& xsd;string ">/**

* @intent Provide a way to access the elements of an aggregate objects sequentially without

B.5. REQUIREMENT PATTERN TO SOFTWARE PATTERNMATCHING INFORMATION227

exposing its underlying representation.

* @param client requests the iterator.

* @param iterator defines the interface to access the and traverse elements.

* @param concreteIterator implements the iterator.

* @param aggregate defines the interface for creating iterator objects.

* @param concreteAggregate implements the aggregate interface.

*/</rdfs:comment >

<hasGoal rdf:resource ="& untitled -ontology -62; Explore"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Manageable -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Manageable">

<rdf:type rdf:resource ="& untitled -ontology -62; Concern"/>

<hasForceP rdf:resource ="& untitled -ontology -62; Abstraction "/>

<hasForceN rdf:resource ="& untitled -ontology -62; Coupling"/>

<hasForceP rdf:resource ="& untitled -ontology -62; Decoupling "/>

<hasForceP rdf:resource ="& untitled -ontology -62; Indirection "/>

<hasForceN rdf:resource ="& untitled -ontology -62; Indirection "/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Memento -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Memento">

<rdf:type rdf:resource ="& untitled -ontology -62; SoftwarePattern "/>

<rdfs:comment rdf:datatype ="& xsd;string ">/**

* @intent Without violating encapsulation , capture and externalize an object?s internal state

so that the object can be restored to this state later.

* @param originator Who triggers the request for creating states.

* @param memento Stores internal state of the Originator object.

* @param caretaker The responsible for the memento?s safekeeping.

* @param state The representation of the state being keep.

* @param item The items belonging to the state.

*/</rdfs:comment >

<hasGoal rdf:resource ="& untitled -ontology -62; Edit"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Memory -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Memory">

<rdf:type rdf:resource ="& untitled -ontology -62; Force"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Nesting -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Nesting">

<rdf:type rdf:resource ="& untitled -ontology -62; Force"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Overkill -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Overkill">

<rdf:type rdf:resource ="& untitled -ontology -62; Force"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Performance -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Performance">

<rdf:type rdf:resource ="& untitled -ontology -62; Force"/>

228 APPENDIX B. INPUTS AND OUTPUTS REGARDING THE VALIDATION STUDIES

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Process -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Process">

<rdf:type rdf:resource ="& untitled -ontology -62; Goal"/>

<hasForceP rdf:resource ="& untitled -ontology -62; Computability "/>

<hasForceP rdf:resource ="& untitled -ontology -62; Coupling"/>

<hasForceP rdf:resource ="& untitled -ontology -62; Indirection "/>

<hasForceN rdf:resource ="& untitled -ontology -62; Overkill"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Processable -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Processable">

<rdf:type rdf:resource ="& untitled -ontology -62; Concern"/>

<hasForceP rdf:resource ="& untitled -ontology -62; Computability "/>

<hasForceN rdf:resource ="& untitled -ontology -62; Coupling"/>

<hasForceP rdf:resource ="& untitled -ontology -62; Indirection "/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Proxy -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Proxy">

<rdf:type rdf:resource ="& untitled -ontology -62; SoftwarePattern "/>

<rdfs:comment rdf:datatype ="& xsd;string ">/**

* @intent Provide a surrogate or placeholder for another object to control access to it.

* @param client Who triggers the request.

* @param subject Defines the common interface for RealSubject and Proxy.

* @param realSubject Defines the real object that the proxy represents.

* @param proxy Interface which handles the request.

*/</rdfs:comment >

<hasGoal rdf:resource ="& untitled -ontology -62; Delegate"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Recursive -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Recursive">

<rdf:type rdf:resource ="& untitled -ontology -62; Concern"/>

<hasForceP rdf:resource ="& untitled -ontology -62; Indirection "/>

<hasForceP rdf:resource ="& untitled -ontology -62; Nesting"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Separation -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Separation">

<rdf:type rdf:resource ="& untitled -ontology -62; Force"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Shareable -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Shareable">

<rdf:type rdf:resource ="& untitled -ontology -62; Concern"/>

<hasForceP rdf:resource ="& untitled -ontology -62; Direction "/>

<hasForceP rdf:resource ="& untitled -ontology -62; Efficiency "/>

<hasForceP rdf:resource ="& untitled -ontology -62; Memory"/>

<hasForceN rdf:resource ="& untitled -ontology -62; Overkill"/>

</owl:NamedIndividual >

B.5. REQUIREMENT PATTERN TO SOFTWARE PATTERNMATCHING INFORMATION229

<!-- http :// www.url.com/mapping#Sharing -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Sharing">

<rdf:type rdf:resource ="& untitled -ontology -62; Force"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Simplicity -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Simplicity">

<rdf:type rdf:resource ="& untitled -ontology -62; Force"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Singleton -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Singleton">

<rdf:type rdf:resource ="& untitled -ontology -62; SoftwarePattern "/>

<rdfs:comment rdf:datatype ="& xsd;string ">/**

* @intent Ensure a class only has one instance , and provide a global point of access to it.

* @param singleton creates and encapsulate the single object instance.

*/</rdfs:comment >

<hasGoal rdf:resource ="& untitled -ontology -62; Unified"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Unified -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Unified">

<rdf:type rdf:resource ="& untitled -ontology -62; Goal"/>

<hasForceP rdf:resource ="& untitled -ontology -62; Direction "/>

<hasForceP rdf:resource ="& untitled -ontology -62; Efficiency "/>

<hasForceN rdf:resource ="& untitled -ontology -62; Indirection "/>

<hasForceP rdf:resource ="& untitled -ontology -62; Memory"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Versioning -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Versioning">

<rdf:type rdf:resource ="& untitled -ontology -62; Force"/>

</owl:NamedIndividual >

<!-- http :// www.url.com/mapping#Viewable -->

<owl:NamedIndividual rdf:about ="& untitled -ontology -62; Viewable">

<rdf:type rdf:resource ="& untitled -ontology -62; Concern"/>

<hasForceP rdf:resource ="& untitled -ontology -62; Efficiency "/>

<hasForceP rdf:resource ="& untitled -ontology -62; Overkill"/>

<hasForceP rdf:resource ="& untitled -ontology -62; Performance "/>

<hasForceP rdf:resource ="& untitled -ontology -62; Simplicity "/>

</owl:NamedIndividual >

</rdf:RDF >

Listing B.5: OWL matching information.

230 APPENDIX B. INPUTS AND OUTPUTS REGARDING THE VALIDATION STUDIES

B.6 Diagrams used in the validation of the produced solu-

tion

Figure B.16: Diagram A.

Figure B.17: Diagram B.

B.6. DIAGRAMS USED IN THE VALIDATION OF THE PRODUCED SOLUTION 231

Figure B.18: Diagram D.

Figure B.19: Diagram E.

232 APPENDIX B. INPUTS AND OUTPUTS REGARDING THE VALIDATION STUDIES

Figure B.20: Diagram F.

Bibliography

[1] Christopher Alexander. The timeless way of building, volume 1. Oxford University Press,

1979.

[2] Marcelo Arenas and Jorge Pérez. Querying semantic web data with sparql. In Proceedings

of the thirtieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database

systems, PODS ’11, pages 305–316, New York, NY, USA, 2011. ACM.

[3] C. Arora, M. Sabetzadeh, L. Briand, F. Zimmer, and R. Gnaga. Automatic checking

of conformance to requirement boilerplates via text chunking: An industrial case study.

In Empirical Software Engineering and Measurement, 2013 ACM / IEEE International

Symposium on, pages 35–44, Oct 2013.

[4] Len Bass, Bonnie John, and Jesse Kates. Achieving usability through software architecture.

Technical Report CMU/SEI-2001-TR-005, Software Engineering Institute, Carnegie Mellon

University, Pittsburgh, PA, 2001.

[5] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunningham, Mar-

tin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, et al. Manifesto

for agile software development. 2001.

[6] Herbert D Benington. Production of large computer programs. In ICSE, volume 87, pages

299–310, 1987.

[7] Robert Biddle, James Noble, and Ewan D. Tempero. Essential use cases and responsibil-

ity in object-oriented development. In Computer Science 2002, Twenty-Fifth Australasian

Computer Science Conference (ACSC2002), Monash University, Melbourne, Victoria, Jan-

uary/February 2002, pages 7–16, 2002.

[8] Kurt Bittner. Use Case Modeling. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 2002.

[9] B. Boehm and H. In. Identifying quality-requirement conflicts. IEEE Software, 13(2):25–35,

Mar 1996.

[10] B.W. Boehm. A spiral model of software development and enhancement. Computer,

21(5):61–72, May 1988.

233

234 BIBLIOGRAPHY

[11] Pierre Bourque and Richard E. Fairley, editors. Guide to the Software Engineering Body

of Knowledge - SWEBOK v3.0. IEEE CS, 2014 version edition, 2014.

[12] John Brooke. SUS-a quick and dirty usability scale. Usability evaluation in industry,

189(194):4–7, 1996.

[13] John Brooke. SUS: a retrospective. Journal of Usability Studies, 8(2):29–40, 2013.

[14] Aleksandar Bulajic, Radoslav Stojic, and Samuel Sambasivam. The generalized require-

ment approach for requirement validation with automatically generated program code.

Interdisciplinary Journal of Information, Knowledge, and Management, 9, 2014.

[15] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.

Pattern-oriented software architecture: a system of patterns. John Wiley & Sons, Inc., New

York, NY, USA, 1996.

[16] J. C. Campos and M. D. Harrison. Systematic analysis of control panel interfaces using

formal tools. In XVth International Workshop on the Design, Verification and Specification

of Interactive Systems (DSV-IS 2008), number 5136 in Lecture Notes in Computer Science,

pages 72–85. Springer-Verlag, July 2008.

[17] Lawrence Chung, Julio Cesar, and Sampaio Prado Leite. Non-functional requirements in

software engineering, 1999.

[18] Lawrence Chung and Brian A. Nixon. Dealing with non-functional requirements: Three

experimental studies of a process-oriented approach. In Proceedings of the 17th Interna-

tional Conference on Software Engineering, ICSE ’95, pages 25–37, New York, NY, USA,

1995. ACM.

[19] Software Freedom Conservancy. ArgoUML website, http://argouml.tigris.org/, July

2011.

[20] Larry L Constantine and Lucy AD Lockwood. Software for use: a practical guide to the

models and methods of usage-centered design. Pearson Education, 1999.

[21] Rui Couto, António Manuel Nestor Ribeiro, and José Francisco Creissac Freitas de Campos.

The modelery: a model-based software development repository. IJWIS, 11(2):205–225,

2015.

[22] Rui Couto, Antonio Nestor Ribeiro, and José Creissac Campos. Mapit: A model based

pattern recovery tool. In Model-Based Methodologies for Pervasive and Embedded Software,

8th International Workshop, MOMPES 2012, Essen, Germany, September 4, 2012. Revised

Papers, pages 19–37, 2012.

[23] Rui Couto, Antonio Nestor Ribeiro, and José Creissac Campos. A patterns based reverse

engineering approach for java source code. In 35th Annual IEEE Software Engineering

Workshop, SEW 2012, Heraclion, Crete, Greece, October 12-13, 2012, pages 140–147,

2012.

http://argouml.tigris.org/

BIBLIOGRAPHY 235

[24] Rui Couto, Antonio Nestor Ribeiro, and José Creissac Campos. Application of ontologies in

identifying requirements patterns in use cases. In Proceedings 11th International Workshop

on Formal Engineering approaches to Software Components and Architectures, FESCA

2014, Grenoble, France, 12th April 2014., pages 62–76, 2014.

[25] Rui Couto, Antonio Nestor Ribeiro, and José Creissac Campos. The modelery: A collabo-

rative web based repository. In Computational Science and Its Applications - ICCSA 2014 -

14th International Conference, Guimarães, Portugal, June 30 - July 3, 2014, Proceedings,

Part VI, pages 1–16, 2014.

[26] Rui Couto, Antonio Nestor Ribeiro, and José Creissac Campos. A study on the viability

of formalizing use cases. In 9th International Conference on the Quality of Information

and Communications Technology, QUATIC 2014, Guimaraes, Portugal, September 23-26,

2014, pages 130–133, 2014.

[27] Rui Couto, António Nestor Ribeiro, and José Creissac Campos. A survey on software

patterns. Technical report, HASLab INESC TEC and Universidade do Minho, 2016.

[28] Rui Couto, Antonio Nestor Ribeiro, and José Creissac Campos. Validating an ap-

proach to formalize use cases with ontologies. In Proceedings of the 13th International

Workshop on Formal Engineering Approaches to Software Components and Architectures,

FESCA@ETAPS 2016, Eindhoven, The Netherlands, 3rd April 2016., pages 1–15, 2016.

[29] Rodrigo Cezario da Silva and Fabiane Barreto Vavassori Benitti. Padrões de escrita de

requisitos: um mapeamento sistemático da literatura. In Anais do WER11 - Workshop em

Engenharia de Requisitos, Rio de Janeiro-RJ, Brasil, Abril 28-29, 2011, 2011.

[30] Rodrigo Cezario da Silva and Fabiane Barreto Vavassori Benitti. Sers: Uma ferramenta de

apoio ao reuso de requisitos. Technical report, Universidade do Vale do Itajáı, 2011.

[31] Deva Kumar Deeptimahanti and Ratna Sanyal. Semi-automatic generation of UML mod-

els from natural language requirements. In Proceeding of the 4th Annual India Software

Engineering Conference, ISEC 2011, Thiruvananthapuram, Kerala, India, February 24-27,

2011, pages 165–174, 2011.

[32] Diego Dermeval, Jssyka Vilela, IgIbert Bittencourt, Jaelson Castro, Seiji Isotani, Patrick

Brito, and Alan Silva. Applications of ontologies in requirements engineering: a systematic

review of the literature. Requirements Engineering, pages 1–33, 2015.

[33] Christof Ebert. Putting requirement management into praxis: dealing with nonfunctional

requirements. Information and Software Technology, 40(3):175 – 185, 1998.

[34] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami. The linguistic approach to the natural

language requirements quality: benefit of the use of an automatic tool. In Software Engi-

neering Workshop, 2001. Proceedings. 26th Annual NASA Goddard, pages 97–105, 2001.

236 BIBLIOGRAPHY

[35] Eduardo B Fernandez, Yi Liu, and RouYi Pan. Patterns for internet shops. Procs. of

PLoP, 2001.

[36] Kevin Forsberg and Harold Mooz. The relationship of system engineering to the project

cycle. In INCOSE International Symposium, volume 1, pages 57–65. Wiley Online Library,

1991.

[37] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley, 2002.

[38] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Language.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 3 edition, 2003.

[39] X. Franch, C. Quer, S. Renault, C. Guerlain, and C. Palomares. Managing Requirements

Knowledge, chapter Constructing and Using Software Requirement Patterns, pages 95–116.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[40] Xavier Franch. Software requirement patterns. In Proceedings of the 2013 International

Conference on Software Engineering, pages 1499–1501. IEEE Press, 2013.

[41] E. Gamma. Design Patterns: Elements of Reusable Object-oriented Software. Addison-

Wesley Professional Computing Series. Addison-Wesley, 2004.

[42] Shalini Ghosh, Daniel Elenius, Wenchao Li, Patrick Lincoln, Natarajan Shankar, and Wil-

fried Steiner. Automatically extracting requirements specifications from natural language.

arXiv preprint arXiv:1403.3142, 2014.

[43] Gabriella Gigante, Francesco Gargiulo, and Massimo Ficco. A semantic driven approach

for requirements verification. In David Camacho, Lars Braubach, Salvatore Venticinque,

and Costin Badica, editors, Intelligent Distributed Computing VIII, volume 570 of Studies

in Computational Intelligence, pages 427–436. Springer International Publishing, 2015.

[44] Arda Goknil, Ivan Kurtev, and Klaas Berg. A metamodeling approach for reasoning about

requirements. In Proceedings of the 4th European conference on Model Driven Architecture:

Foundations and Applications, ECMDA-FA ’08, pages 310–325, Berlin, Heidelberg, 2008.

Springer-Verlag.

[45] Arda Goknil, Ivan Kurtev, Klaas van den Berg, and Jan-Willem Veldhuis. Semantics of

trace relations in requirements models for consistency checking and inferencing. Software

and Systems Modeling, 10:31–54, 2011. 10.1007/s10270-009-0142-3.

[46] Daniel Gross and Eric Yu. From non-functional requirements to design through patterns.

Requirements Engineering, 6:18–36, 2000.

[47] Thomas R. Gruber. Ontolingua: A mechanism to support portable ontologies. Technical

report, Stanford University, 1992.

[48] Y. G. Guéhéneuc. Ptidej: Promoting Patterns with Patterns. In proceedings of the 1st

ECOOP workshop on Building a System using Patterns. Springer-Verlag, July 2005.

BIBLIOGRAPHY 237

[49] David Harel and Rami Marelly. Specifying and executing behavioral requirements: The

play-in/play-out approach. Software and System Modeling, 2:2003, 2002.

[50] Glen Hart, Martina Johnson, and Catherine Dolbear. Rabbit: developing a control natural

language for authoring ontologies. In Proceedings of the 5th European semantic web con-

ference on The semantic web: research and applications, ESWC’08, pages 348–360, Berlin,

Heidelberg, 2008. Springer-Verlag.

[51] Jeff Heflin, James Hendler, and Sean Luke. Shoe: A knowledge representation language

for internet applications. Technical report, University of Maryland, 1999.

[52] S Hekmatpour. Experience with evolutionary prototyping in a large software project.

SIGSOFT Softw. Eng. Notes, 12(1):38–41, January 1987.

[53] Axel Hoffmann, Thomas Schulz, Holger Hoffmann, Silke Jandt, Alexander Roßnagel, and

Jan Marco Leimeister. Towards the use of software requirement patterns for legal require-

ments. In 2nd International Requirements Engineering Efficiency Workshop (REEW) 2012,

2012.

[54] Axel Hoffmann, Matthias Söllner, and Holger Hoffmann. Twenty software requirement

patterns to specify recommender systems that users will trust. In 20th European Conference

on Information Systems (ECIS), 2012.

[55] Matthew Horridge and Sean Bechhofer. The owl api: A java api for owl ontologies. Semantic

Web, 2(1):11–21, 2011.

[56] Matthew Horridge, Nick Drummond, John Goodwin, Alan L. Rector, Robert Stevens, and

Hai Wang. The manchester OWL syntax. In Proceedings of the OWLED*06 Workshop on

OWL: Experiences and Directions, Athens, Georgia, USA, November 10-11, 2006, 2006.

[57] Matthew Horridge and Peter F. Patel-schneider. P.f.: Manchester syntax for owl 1.1. In

In: OWLED 2008, 4th international workshop OWL: Experiences and Directions (2008)

Live Extraction 1223, 2008.

[58] Haibo Hu, Y Dan, Y Chunxiao, F Chunlei, and L Ren. Detecting interactions between

behavioral requirements with owl and swrl. World Academy of Science, Engineering and

Technology, 72:330–336, 2011.

[59] Heyuan Huang, Shensheng Zhang, Jian Cao, and Yonghong Duan. A practical pattern

recovery approach based on both structural and behavioral analysis. Journal of Systems

and Software, 75(2):69 – 87, 2005. Software Engineering Education and Training.

[60] Elizabeth Hull, Ken Jackson, and Jeremy Dick. Requirements engineering. Springer Science

& Business Media, 2010.

[61] Ivar Jacobson, M Christerson, P Jonsson, and G Overgaard. Object-Oriented Software

Engineering - A Use Case Driven Approach. Addison-Wesley, 1992.

238 BIBLIOGRAPHY

[62] Apache Jena. semantic web framework for java, 2007.

[63] Jens B. Jørgensen, Simon Tjell, and João M. Fernandes. Formal requirements modelling

with executable use cases and coloured petri nets. Innovations in Systems and Software

Engineering, 5(1):13–25, 2009.

[64] J. Jurkiewicz and J. Nawrocki. Automated events identification in use cases. Information

and Software Technology, 58(0):110 – 122, 2015.

[65] M. Kamalrudin and J. Grundy. Generating essential user interface prototypes to validate

requirements. In Automated Software Engineering (ASE), 2011 26th IEEE/ACM Interna-

tional Conference on, pages 564 –567, nov. 2011.

[66] Peter D Karp, Vinay K Chaudhri, and Jerome Thomere. Xol: An xml-based ontology

exchange language, 1999.

[67] Michael Kifer and Georg Lausen. F-logic: A higher-order language for reasoning about

objects, inheritance, and scheme. In Proceedings of the 1989 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’89, pages 134–146, New York, NY, USA,

1989. ACM.

[68] Dae-Kyoo Kim and Lunjin Lu. Inference of design pattern instances in uml models via

logic programming. In Engineering of Complex Computer Systems, 2006. ICECCS 2006.

11th IEEE International Conference on, pages 10 pp.–, 2006.

[69] Damir Kirasić and Danko Basch. Ontology-based design pattern recognition. In Proceed-

ings of the 12th international conference on Knowledge-Based Intelligent Information and

Engineering Systems, Part I, KES ’08, pages 384–393, Berlin, Heidelberg, 2008. Springer-

Verlag.

[70] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model Driven Ar-

chitecture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 2003.

[71] Holger Knublauch, Matthew Horridge, Mark A Musen, Alan L Rector, Robert Stevens,

Nick Drummond, Phillip W Lord, Natalya Fridman Noy, Julian Seidenberg, and Hai Wang.

The protege owl experience. In OWLED, 2005.

[72] Petr Kroha. Preprocessing of requirements specification. In Database and Expert Systems

Applications, 11th International Conference, DEXA 2000, London, UK, September 4-8,

2000, Proceedings, pages 675–684, 2000.

[73] Tobias Kuhn. The understandability of owl statements in controlled english. Semantic

Web, 4(1), 3 2013.

[74] Lee W Lacy. OWL: representing information using the Web Ontology Language. Trafford

Publishing, 2005.

BIBLIOGRAPHY 239

[75] Mathias Landhäußer, Sven J. Körner, and Walter F. Tichy. From requirements to UML

models and back: how automatic processing of text can support requirements engineering.

Software Quality Journal, 22(1):121–149, 2014.

[76] James R. Lewis. Sample sizes for usability studies: Additional considerations. Tech. Report

54.711, IBM, 1992, October 1992.

[77] Ke Li. Towards semi-automation in requirements elicitation: mapping natural language

and object-oriented concepts. In RE05, pages 5–7, 2005.

[78] Liwu Li. A semi-automatic approach to translating use cases to sequence diagrams. In

Technology of Object-Oriented Languages and Systems, 1999. Proceedings of, pages 184–

193, Jul 1999.

[79] Xiaoshan Li, Zhiming Liu, Jifeng He, and Quan Long. Generating a prototype from

a uml model of system requirements. In R.K. Ghosh and Hrushikesha Mohanty, editors,

Distributed Computing and Internet Technology, volume 3347 of Lecture Notes in Computer

Science, pages 255–265. Springer Berlin Heidelberg, 2005.

[80] Horst Lichter, Matthias Schneider-Hufschmidt, and Heinz Züllighoven. Prototyping in

industrial software projects—bridging the gap between theory and practice. In Pro-

ceedings of the 15th International Conference on Software Engineering, ICSE ’93, pages

221–229, Los Alamitos, CA, USA, 1993. IEEE Computer Society Press.

[81] Dong Liu. Automating Transition from Use Cases to Class Model. PhD thesis, University

of Calgary, 2003.

[82] Fernando Lyardet, Gustavo Rossi, and Daniel Schwabe. Patterns for adding search capa-

bilities to web information systems. In EuroPLoP, pages 189–202, 1999.

[83] Robert MacGregor and Raymond Bates. The loom knowledge representation language.

Technical report, DTIC Document, 1987.

[84] Marina Machado, José Campos, and Rui Couto. Modus: uma metodologia de prototipagem

de interfaces baseada em modelos. In INFORUM 2015, number 1 in 7, pages 17–32, 2015.

[85] Dewi Mairiza, Didar Zowghi, and Nur Nurmuliani. Towards a catalogue of conflicts among

non-functional requirements. In ENASE 2010 - Proceedings of the Fifth International

Conference on Evaluation of Novel Approaches to Software Engineering, Athens, Greece,

July 22-24, 2010, pages 20–29, 2010.

[86] Dewi Mairiza, Didar Zowghi, and Nurie Nurmuliani. Managing conflicts among non-

functional requirements. In Australian Workshop on Requirements Engineering. University

of Technology, Sydney, 2009.

[87] G. S. Anandha Mala and G. V. Uma. Automatic construction of object oriented design

models [UML diagrams] from natural language requirements specification. In PRICAI

240 BIBLIOGRAPHY

2006: Trends in Artificial Intelligence, 9th Pacific Rim International Conference on Arti-

ficial Intelligence, Guilin, China, August 7-11, 2006, Proceedings, pages 1155–1159, 2006.

[88] Stephen J. Mellor and Marc Balcer. Executable UML: A Foundation for Model-Driven

Architectures. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[89] Enrico Motta. An overview of the ocml modelling language. In the 8th Workshop on

Methods and Languages. Citeseer, 1998.

[90] Martin O’Connor, Samson Tu, Csongor Nyulas, Amar Das, and Mark Musen. Querying the

semantic web with swrl. In Proceedings of the 2007 international conference on Advances

in rule interchange and applications, RuleML’07, pages 155–159, Berlin, Heidelberg, 2007.

Springer-Verlag.

[91] OMG. MDA Guide Version 1.0.1. http://www.omg.org/cgi-bin/doc?omg/03-06-01.

pdf, June 2003.

[92] S.P. Overmyer, L. Benoit, and R. Owen. Conceptual modeling through linguistic analysis

using lida. In Software Engineering, 2001. ICSE 2001. Proceedings of the 23rd International

Conference on, pages 401–410, May 2001.

[93] C. Palomares, C. Quer, X. Franch, S. Renault, and C. Guerlain. A catalogue of func-

tional software requirement patterns for the domain of content management systems. In

Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC ’13, pages

1260–1265, New York, NY, USA, 2013. ACM.

[94] Roger S Pressman. Software engineering: a practitioner’s approach. Palgrave Macmillan,

2005.

[95] Whitney Quesenbery. Dimensions of usability: Defining the conversation, driving the

process. In UPA 2003 Conference, 2003.

[96] Ghulam Rasool, Patrick Maeder, and Ilka Philippow. Evaluation of design pattern recovery

tools. Procedia Computer Science, 3(0):813 – 819, 2011. World Conference on Information

Technology.

[97] K. Roher and D. Richardson. Sustainability requirement patterns. In Requirements Pat-

terns (RePa), 2013 IEEE Third International Workshop on, pages 8–11, July 2013.

[98] Doug Rosenberg and Matt Stephens. Use Case Driven Object Modeling with UMLTheory

and Practice. Apress, Berkely, CA, USA, 2nd edition, 2013.

[99] Approved September. Ieee standard glossary of software engineering terminology. Office,

121990(1):1, 1990.

[100] Nija Shi and R.A. Olsson. Reverse engineering of design patterns from java source code.

In Automated Software Engineering, 2006. ASE ’06. 21st IEEE/ACM International Con-

ference on, pages 123–134, Sept 2006.

http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf

BIBLIOGRAPHY 241

[101] V. Simko, D. Hauzar, P. Hnetynka, T. Bures, and F. Plasil. Formal verification of annotated

textual use-cases. The Computer Journal, sep 2014.

[102] Evren Sirin, Blazej Bulka, and Michael Smith. Terp: Syntax for owl-friendly sparql queries.

In OWLED, 2010.

[103] Michal Smialek and Wiktor Nowakowski. From Requirements to Java in a Snap: Model-

Driven Requirements Engineering in Practice. Springer, 2015.

[104] Barry Smith. Ontology. In Luciano Floridi, editor, Blackwell Guide to the Philosophy of

Computing and Information, pages 155–166. Blackwell, 2003.

[105] Amina Souag, Camille Salinesi, Ral Mazo, and Isabelle Comyn-Wattiau. A security ontol-

ogy for security requirements elicitation. In Frank Piessens, Juan Caballero, and Nataliia

Bielova, editors, Engineering Secure Software and Systems, volume 8978 of Lecture Notes

in Computer Science, pages 157–177. Springer International Publishing, 2015.

[106] Miroslaw Staron. Adopting Model Driven Software Development in Industry – A Case

Study at Two Companies, pages 57–72. Springer Berlin Heidelberg, Berlin, Heidelberg,

2006.

[107] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse

Modeling Framework 2.0. Addison-Wesley Professional, 2nd edition, 2009.

[108] Kalaivani Subramaniam, Dong Liu, Behrouz Homayoun Far, and Armin Eberlein. UCDA:

use case driven development assistant tool for class model generation. In Proceedings of

the Sixteenth International Conference on Software Engineering & Knowledge Engineering,

Banff, pages 324–329, 2004.

[109] Sara Tena, David Dı́ez, Paloma Dı́az, and Ignacio Aedo. Standardizing the narrative of

use cases: A controlled vocabulary of web user tasks. Information & Software Technology,

55(9):1580–1589, 2013.

[110] S. Tiwari, S.S. Rathore, S. Gupta, V. Gogate, and A. Gupta. Analysis of use case require-

ments using sfta and sfmea techniques. In Engineering of Complex Computer Systems

(ICECCS), 2012 17th International Conference on, pages 29–38, July 2012.

[111] Saurabh Tiwari and Atul Gupta. Does increasing formalism in the use case template help?

In Proceedings of the 7th India Software Engineering Conference, ISEC ’14, pages 6:1–6:10,

New York, NY, USA, 2014. ACM.

[112] MinhTu Ton That, Salah Sadou, Flavio Oquendo, and Isabelle Borne. Composition-

centered architectural pattern description language. In Khalil Drira, editor, Software Ar-

chitecture, volume 7957 of Lecture Notes in Computer Science, pages 1–16. Springer Berlin

Heidelberg, 2013.

242 BIBLIOGRAPHY

[113] P. Tonella and G. Antoniol. Object oriented design pattern inference. In Software Mainte-

nance, 1999. (ICSM ’99) Proceedings. IEEE International Conference on, pages 230–238,

1999.

[114] I. Tounsi, M. H. Kacem, A. H. Kacem, and K. Drira. An approach for soa design patterns

composition. In 2015 IEEE 8th International Conference on Service-Oriented Computing

and Applications (SOCA), pages 219–226, Oct 2015.

[115] L. Valente and B. Feijo. Extending use cases to support activity design in pervasive mo-

bile games. In Computer Games and Digital Entertainment (SBGAMES), 2014 Brazilian

Symposium on, pages 193–201, Nov 2014.

[116] Martijn van Welie. welie.com, April 2015.

[117] Pablo Martin Vera. Component based model driven development: An approach for cre-

ating mobile web applications from design models. International Journal of Information

Technologies and Systems Approach (IJITSA), 8(2):80–100, 2015.

[118] K. Wiegers and J. Beatty. Software Requirements. Developer Best Practices. Pearson

Education, 2013.

[119] Karl Wiegers and Joy Beatty. Software Requirements. Microsoft Press, third edition, 2013.

[120] Stephen Withall. Software requirement patterns. Pearson Education, 2007.

[121] SherifM. Yacoub and HanyH. Ammar. Uml support for designing software systems as a

composition of design patterns. In Martin Gogolla and Cris Kobryn, editors, UML 2001

The Unified Modeling Language. Modeling Languages, Concepts, and Tools, volume 2185

of Lecture Notes in Computer Science, pages 149–165. Springer Berlin Heidelberg, 2001.

[122] S.M. Yacoub and H.H. Ammar. Pattern-oriented Analysis and Design: Composing Patterns

to Design Software Systems. Addison-Wesley, 2004.

[123] Li Yan. E-Commerce Patterns. PhD thesis, Carleton University, 2004.

[124] Joseph Yoder and Jeffrey Barcalow. Architectural patterns for enabling application secu-

rity. Urbana, 51:61801, 1998.

[125] Tao Yue, Lionel C. Briand, and Yvan Labiche. atoucan: An automated framework to

derive UML analysis models from use case models. ACM Trans. Softw. Eng. Methodol.,

24(3):13, 2015.

[126] Roberto Zen. Gherkin and Cucumber. PhD thesis, University of Trento, 2013.

	Página 1
	Página 1
	Introduction
	Context
	Problem
	Proposal
	Thesis
	Research Questions
	Objectives

	Contributions
	Document Structure

	Background
	The Model Driven Architecture Framework
	The MDA process
	Discussion

	Simplified Languages With Support for Automation
	Use Cases
	Natural Language Processing
	Computable Formats
	Intermediary Languages
	Annotation
	Operationalization Approaches
	Discussion

	Representation of Requirements on Knowledge Bases
	Ontologies
	Ontology Languages
	Knowledge Base Analysis
	Web Ontology Language
	Discussion

	Knowledge Inference Mechanism
	Inference in OWL
	Available OWL Tools
	Discussion

	Software Patterns
	Patterns
	Requirement Patterns
	Patterns Categorization
	Pattern Inference
	Software Pattern Instantiation
	Discussion

	Software Pattern Composition Process
	Composition Techniques
	Discussion

	From Requirement Patterns to Software Patterns
	Selecting Patterns for Requirements
	Relating Requirements
	Forces
	Discussion

	Similar Approaches and Supporting Tools
	Requirements Based Approaches
	Supporting Tools
	Discussion

	Summary

	The SCARP Approach
	Automation of a Model based Process
	MDA and the Proposed Approach
	The Entities and Workflows Framework

	SCARP Overview
	SCARP Parametrization
	Domain Model Specification
	Patterns catalogs

	Use Cases Specification
	RUS
	RUST

	OWL Generation
	Requirements Patterns
	Pattern Inference

	Software Patterns
	Goals and Concerns
	Forces
	Matching Process

	Architectural Solution
	Software Pattern Definition
	Instantiation Process
	Pattern Composition
	Solution Enhancement
	Solution Validation
	Serialization

	Code
	Summary

	Instantiation of SCARP
	uCat Tool
	Domain Model Specification
	Use Case Specification
	Entities Extraction

	Ontology Creation
	Types Definition
	OWL Ontology Generation

	Requirement Pattern inference
	Data Query Mechanism
	Pattern Specification
	uQL
	Pattern Inference

	Requirements to Software Patterns
	Concerns, Goals and Forces definition
	Matching Process

	Software Pattern Instantiation
	Software Pattern Representation
	Software Pattern Definition
	Instantiation Process
	Composition
	Enhancement
	Producing XMI

	Generation of Outputs
	Source Code
	User Interface Prototypes

	Summary

	Validation
	Study 1 Description
	Objectives
	Study Setup
	Addressing the Objectives
	Study Validation

	Study 1 Execution
	Execution of the study
	Results of the Study
	Discussion
	Summary

	Study 2 - Pattern Inference Process and Usability Assessment
	Setup of the Experiment
	Results of the Experiment
	Discussion

	Threats to Validity
	Summary

	Case study
	Context
	Domain Model
	uQL Queries
	Software Patterns and Matching Information
	Concerns
	Goals
	Forces

	Requirements
	Register
	Login
	Return Home
	Browse Products
	View Product
	Show Highlights
	View Actions History
	Search Product
	Add Product to Cart
	Checkout

	Individuals Classification
	Requirement Patterns Inference
	Inferred Patterns

	Produced Solution
	Parametrization
	Solution

	Discussion
	Summary

	Conclusions
	Discussion
	Answer to Research Questions
	Thesis

	Future Work

	Appendices
	Inputs and Outputs of SCARP
	Domain model
	RUST Specification
	SPARQL queries
	Ontology representing the ``Add product to cart'' use case.
	Mapping information
	XMI representation of software patterns.

	Inputs and outputs regarding the validation studies
	Specifications selected for the first study
	Use cases
	Textual descriptions

	Scenario descriptions selected for the second study
	Requirement patterns catalog
	Simple Search
	Catalog
	Registration
	List Builder

	Software patterns catalog
	Proxy
	Command
	Memento
	Iterator
	Composite
	Flyweight
	Singleton

	Requirement Pattern to Software Pattern Matching Information
	Diagrams used in the validation of the produced solution

