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Abstract 

The wettability control has been showed as an important parameter for several systems and 

applications on the biomedical field. Once the surface wettability has crucial influence in protein 

adsorption and cell adhesion. Here, the focus was on the technology development based on the 

advanced control of wettability in surfaces, tuning directly the surface characteristics or modifying 

surfaces by coating with hydrophobic microparticles (HmP). Superhydrophobic (SH) surfaces can 

be achieved combining low surface energy and hierarchical topography at nano/microscale. A 

simple method was developed to prepare SH surfaces, using diatomaceous earth (DE) that was 

able to confer the desired hierarchical topography. SH surfaces were obtained by further 

fluorosilanization of surfaces that decreased surface energy. The wettability of surfaces could be 

modified by plasma treatment in a controlled way. Using masks only specific areas were exposed 

to plasma, allowing to perform hydrophilic/superhydrophobic patterning on surfaces. Planar SHS 

of polystyrene (PS) with hydrophilic paths or square spots were developed to engineer devices for 

cellular studies. Paths worked as channels to drive cell culture medium flows without using walls 

for liquid confinement. Controlling liquid flows on planar surfaces, a cell culture flow system was 

developed based on the open fluidics concept. The pertinence of the system was showed by 

studying the effect of shear stress stimuli combined with bone morphogenic protein (specifically 

BMP-2) stimulation in the osteogenic differentiation of C2C12 myoblast cells. A synergistic effect 

of these stimuli combination was found on the osteoblast differentiation. Using similar SH surafces 

of PS but with hydrophilic squared spots, a hanging drop system (HDS) for the production and 

culturing of human adipose-derived stem cell (hASC) spheroids under co-culture conditions with 

different cell types was engineered. The co-culture with Saos-2 cells indicated that the spheroid 

production and hASC differentiation into an early osteogenic phenotype can be obtained in a one-

step procedure. 

By coating liquid droplets with HmP, which were produced by the fluorosilanization of DE, liquid 

marbles (LM) were produced. Here, the use of LM was showed for high-throughput drug screening 

on anchorage-dependent cells. To provide the required cell adhesion sites inside the liquid 

environment of LM, surface-modified poly(L-lactic acid) microparticles are used. By injecting the 

chemical agent in study and monitoring color changes inside of LM, cytotoxic screening tests were 

performed. The presence of viable cells was assessed by injecting AlamarBlue reagent, which 

changed its color from blue to red in presence of viable cells. The developed method was validated 



Biomedical Devices Engineered Based On The Control Of The Surface Wettability 

 
 

VIII 
 

by directly comparing with a standardized method used for cytotoxicity assessment. Inspired by 

LM, a novel class of hydrophobic hydrogels, which can free-float on the surface of different aqueous 

media, was created by coating conventional hydrogels with a layer of HmP. It was demonstrated 

that floating hydrogel-based devices could be developed for pH sensing on liquid surfaces. Such as 

the floating systems preserved the intrinsic biocompatibility of the core hydrogels, floating tissue 

constructs were also microengineered. 

On this work, different biomedical devices could be engineered just based on the control of the 

surface wettability. These devices have high potential to achieve widespread use, namely for 

applications in sensing, drug screening, fabrication of 3D microtissues for tissue engineering, and 

biomedicine. 
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Resumo 

O controlo da molhabilidade mostra-se como um importante parâmetro em vários sistemas e 

aplicações na área biomédica. Uma vez que a molhabilidade de superfícies tem grande influência 

na adsorção de proteínas e adesão celular. Aqui, o foco caiu sobre o desenvolvimento de tecnologia 

baseada no controlo da molhabilidade de superfícies, manipulando diretamente as características 

da superfície ou cobrindo superfícies com micropartículas hidrofóbicas (mPH). Superfícies 

superhidrofóbicas (SSH) podem ser obtidas combinando baixa energia de superfície com 

topografia à escala nano/micrométrica. Foi desenvolvido um método simples para preparação de 

SSH, usando terra de diatomáceas (TD) para conferir a topografia desejada e posterior reação 

química na superfície com um fluorosilano que diminuiu a energia de superfície. A molhabilidade 

destas superfícies pôde ser alterada de uma forma controlada e seletiva por tratamento de plasma 

e usando máscaras, permitindo a criação de padrões hidrófilicos/superhidrofóbicos nas 

superfícies. SSH de poliestireno com padrões hidrófilicos com a forma de tiras ou quadrados foram 

desenvolvidas para a construção de dispositivos para uso em estudos celulares. As tiras hidrófilicas 

funcionaram como canais capazes de conduzir o escoamento do meio de cultura sem o uso de 

paredes físicas. Tendo o controlo do escoamento de fluidos em superfícies planas, um sistema 

para cultura celular foi desenvolvido sob o conceito de fluídica aberta. A pertinência deste sistema 

foi mostrada pelo estudo do efeito combinado, da tensão de corte do escoamento com a presença 

de uma proteína morfogénica do osso (BMP-2), na diferenciação osteogénica de mioblastos 

C2C12. Tendo sido encontrado um efeito de sinergia entre os dois estímulos na diferenciação. 

Usando SSH mas com quadrados hidrófilicos, um sistema de gota suspensa foi desenvolvido para 

a produção e cultura de esferoides de células estaminais humanas extraídas de gordura (hASC) 

em condições de co-cultura com diferentes tipos de células. A co-cultura com células Saos-2 

indicou que se pode, num só passo, produzir e diferenciar esferoides de hASC numa fase inicial 

do fenótipo osteogénico. 

Cobrindo uma gota de líquido com mPH – produzidas através de reação química à superfície da 

TD com um fluorosilano – produziram-se “berlindes líquidos” (BL). Aqui, foi mostrado o uso destes 

BL para a análise do efeito de fármacos sobre células aderentes. Para fornecer os pontos de 

adesão essenciais às células usaram-se micropartículas de ácido poliláctico no interior dos BL. 

Injetando os agentes químicos em análise e monitorizando a mudança de cor no interior dos BL 

foram realizados testes de rastreio de citotoxicidade. A existência de células viáveis foi determinada 



Biomedical Devices Engineered Based On The Control Of The Surface Wettability 

 
 

X 
 

através do uso do reagente AlamarBlue, que muda a sua cor de azul para vermelho na presença 

de células viáveis. O método desenvolvido foi validado por comparação com um método 

padronizado usado em análises de citotoxicidade. Inspirado nos BL, uma nova classe de hidrogéis 

hidrofóbicos foi criada cobrindo hidrogéis convencionais com uma camada de mPH, mostrando 

estes a capacidade de flutuar sobre meio aquoso. Com base neste hidrogéis foram criados 

dispositivos flutuantes para monitorizar o pH na superfície de um líquido. Como a 

biocompatibilidade intrínseca do hidrogel base usado se manteve, construções de tecidos celulares 

flutuantes foram também criadas. 

Neste trabalho, diferentes dispositivos biomédicos foram construídos apenas com base no controlo 

da molhabilidade de superfícies. Os dispositivos mostraram um elevado potencial para várias 

aplicações como monitorização, análise de fármacos e construção de tecidos celulares para 

engenharia de tecidos.  
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Chapter 2.  The Potential of Liquid Marbles for Biomedical Applications: A 
Critical Review 

45 

Figure 2.1: (A) A LM resting on a glass slide, and (B) a LM floating on the surface of 
glycerol. Adapted with permission from Ref. [60]. Copyright 2015 American Chemical 
Society. (C) LM under compression: small and medium deformation, and breakage point 
– immediately before LM rupture. Adapted from Ref. [66] with permission from Elsevier. 
(D) Image of a LM and view of a cross section of the LM coated with a fluorescein O-

methacrylate based powder. Adapted with permission from Ref. [33]. Copyright 2015 
American Chemical Society. (E) Peanut and doughnut shapes of a rotating marble. 
Adapted with permission from Macmillan Publishers Ltd: NATURE ref. [1], copyright 
2001. 
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Figure 2.2: (A) Images of a LM moving vertically and horizontally driven by a magnet 
bar. Adapted from Ref. [84] with permission of the Royal Society of Chemistry. (B) LM 
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exposed to UV radiation and after several minutes of exposition the LM collapsed. 
Adapted with permission from Ref. [96]. Copyright 2014 American Chemical Society. (C) 
Schematic illustration of remote manipulation of a chloroform (CHCl3) marble in water 
using a near-infrared laser. Adapted with permission from Ref. [99]. Copyright 2016 
American Chemical Society. 
Figure 2.3: (A) Phase-contrast and fluorescence microscopy images presenting the 
morphology of embryoid bodies produced using LM. (B) Schematic illustration of the 
method for high-throughput drug screening. (C) Blood typing by injecting antibodies into 
blood marbles. (D) Illustration of a proposed device for “on-line” detection and for sample 
encapsulation based on magnetic LM. Adapted from Refs. [102], [76], [100] and [81], 
respectively, with permission of John Wiley & Sons. (E) Scheme of the developed 
procedure for cryopreservation of mammalian cells. Adapted with permission from Ref. 
[104]. Copyright 2015 American Chemical Society. 
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SECTION II – EXPERIMENTAL SECTION 83 

Chapter 3. Materials and Methods 85 

Figure 3.1:  Schematic representation for preparation of photocrosslinked GelMA 
hydrogel. (i) Reaction of gelatin and methacrylic anhydride for grafting of methacryloyl 
substitution groups. The modification occurs at primary amine and hydroxyl groups. The 
RGD domains are illustrated as red segments along the GelMA chains, and their chemical 
structure is depicted within the inset. (ii) Representative reactions during the 
photocrosslinking of GelMA to form hydrogel networks. Free radicals are generated from 
photoinitiators, which initiate the chain polymerization of the methacryloyl substitutions. 
Propagation occurs between methacryloyl groups located on the same chain and on 
different chains. Termination occurs between two propagating chains or between one 
propagating chain and a second radical. Chain transfers and many other minor reactions 
are not shown, for clarity. Adapted from Ref. [8] with permission from Elsevier. 

87 

Figure 3.2:  Illustration of the possible general route for PFDTS silanization reaction on 
the different substrate surfaces. 

93 

Figure 3.3:  The behavior of colored fluid injected into the flow in laminar, transitional 
and turbulent regimes in a pipe. 
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SECTION III – DEVELOPMENT OF BIOMEDICAL DEVICES BASED ON THE 
ADVANCED CONTROL OF WETTABILITY IN DIFFERENT SURFACES 

105 

Chapter 4. Superhydrophobic Surfaces Engineered Using Diatomaceous 
Earth 

107 

Figure 4.1: SEM images of glass substrate before (A1) and after coating with DE (A2-
4). Magnification images from both diatomaceous silica microskeleton (A3) and the 
nanotexture on their surface (A4). SEM images of polystyrene substrate before (B1) and 
after coating with DE (B2). 
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Figure 4.2: Optical profilometry images of the unmodified glass surface (A) and the 
glass substrate surface after the coating with DE (B). Images show an area of 0.9 mm × 
1.2 mm (Magnification 5×). 
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Figure 4.3: The chemical modification of the DE coated glass surface performed by a 
fluorosilane transform the initial superhydrophilic substrate (see water profile A1) to 
superhydrophobic one (see water profile B1). The chemical modification was confirmed 
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by XPS analysis: the F1s spectra of the two samples are presented in A2 and B2, 
respectively. 
Figure 4.4: The polystyrene obtained from Petri dishes is a hydrophobic material (see 
the inset image A). After surface modification with hydrophobic DE particles the 
polystyrene becomes superhydrophobic (see the inset image B). 

119 

Figure 4.5: Influence of Argon plasma treatment time on the WCA of the initial SH 
surface using the glass substrate. 

119 

Figure 4.6: XPS F1s spectra comparison between the different samples: unmodified 
glass (G1), glass substrate coated with DE (G2), DE coated glass chemical modified with 
PFDTS (G3) and DE/PFDTS modified glass after Argon plasma treatment (G4). 

121 

Figure 4.7: Hydrophilic patterns with different shapes and able to confine liquid 
volumes can be imprinted on the SH glass surfaces (A1–A3), suck as on the SH 
polystyrene surfaces (B1-B2). Surfaces with channel-like patterns can be used as 
platforms to produce material gradients (A4). The patterns on surface was produced by 
Argon plasma treatment using masks with the desired shapes. 

122 

Chapter 5. Open Fluidics: A Cell Culture Flow System Developed Over 
Wettability Contrast-Based Chips 

129 

Figure 5.1: (A) Preparation of superhydrophobic (SH) platforms patterned with strips of 
wettable regions: first, several strips of stickers in a pristine polystyrene (PS) substrate 
were glued; second, the increase in roughness was achieved by a phase separation 
method such as illustrated by SEM images, and consequently inducing an increase of 
the surface hydrophobicity proven by the higher water contact angle showed on the 
images of the water droplets profiles; then the polystyrene superhydrophobic (PS-SH) 
surface was chemically modified through a fluorosilanization process obtaining a 
fluorinated superhydrophobic (F-SH) surface, confirmed by EDS analysis with the 
appearing of both fluorine and silicon peaks, from the fluorosilane molecule; finally, 
wettable and transparent channel-shaped paths surrounded by a SH surface were 
obtained by removing the stickers. (B) Water contact angle monitoring over time of PS, 
PS-SH and F-SH surfaces submerged on cell culture medium with 10% of FBS for up to 
48 hours. 

138 

Figure 5.2: (A) Schematic representation of the home-made setup to perform the dye 
injection method to assess the flow regime – laminar, transition or turbulent flow. A 
syringe pump was used to control the dye injection rate and the results were recorded 
by video using a digital camera. (B) Representative video frame for each one of the water 
flow rates studied here and respective intensity profile of the dye dispersion in two distinct 
areas of the channel, represented by the lines (i) and (ii). Arrows on images indicate fluid 
flow direction. 

140 

Figure 5.3: (A) Schematic representation of the home-made setup of a cell culture flow 
(CCF) systems based on planar superhydrophobic platforms with hydrophilic paths 
patterned on its surface. The CCF system comprised a peristaltic pump, a pulsation 
dampener for channel to prevent the pulsatile flow, tubes for connection and a SH 

platform of four parallel channels. The liquid flow in each independent channel was 
applied in a closed loop circulation. The SH platform was placed in a sealed incubation 
chamber to ensure the sterility of the system during the cell culture studies. (B) Using 
glass needles, cell culture medium was fed and extracted from each of the four 
independent channels patterned on the chip. Cells were previously adhered to the 
hydrophilic paths and a continuous physical stimulus was applied by the continuous flow 
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of cell culture medium over cells. (C) Paths hydrophilicity was increased by air plasma 
treatment, the selective exposure of the channels area to plasma was achieved using a 
stencil mask. (D) Paths hydrophilicity was precisely controlled by controlling the exposure 
time of pristine PS paths to the air plasma treatment. (E) Increasing paths hydrophilicity 
demonstrated to improve cell attachment that allowed cells to hold fluid flow conditions. 
Images comparing C2C12 adhered cells on both pristine PS and plasma-treated 
channels cultured in static conditions and under fluid flow conditions at low flow rate (0.5 
mL/min) for up to 48 hours. Images are a combination of visible microscopy and 
fluorescence microscopy, where the fluorescent staining of cell nuclei (DAPI) is presented 
in blue.  Arrows on images indicate fluid flow direction. 
Figure 5.4: (A) Cell confluence determined by the percentage of area that was occupied 
by cells, upon 48h of culture under static conditions and using different fluid flow rates. 
(B) Cell densities for the different studied conditions. (C) Images illustrating confluence, 
density and morphology of C2C12 cells under static culture conditions and under shear 
stress conditions provided by cell culture medium flow over the cells (48h of culture). 
Magnified images for each of the studied conditions are also showed. Cells were stained 
with DAPI on its nuclei and with Phalloidin on its filamentous actin. Arrows on images 
indicate fluid flow direction. Bars with * present values that are statistically different 
comparing with the other conditions for p < 0.05. 
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Figure 5.5: Different combinations between mechanical (shear stress) and biochemical 
(BMP-2) stimuli were tested for static and dynamic conditions. Static condition consisted 
in to perform cell culture on the open channels for 48 hours and dynamic conditions 
consisted in 24 hours of initial static cell culture followed by 24 hours of cell culture under 
a constant flow of cell culture medium. Schematic representation of the used 
experimental protocol, comparison of the ALP activity levels between both static and 
dynamic conditions and representative imagens of microscopy are presented for each 
combination of stimuli. On images the violet staining indicates ALP activity. (A) Regular 
cell culture medium was used to study the isolated effect of the shear stress stimulus on 
the ALP activity of the C2C12 cells. (B) Supplemented medium with BMP-2 was used 
during the 48 hours of cell culture for both static and dynamic conditions. (C) 
Supplemented medium with BMP-2 was used only in the first 24 hours of cell culture for 
both conditions. (D) To compare the potency of the mechanical and biochemical stimuli 
on ALP activity levels, supplemented medium with BMP-2 was used in the first 24 hours 
of cell culture for the dynamic condition and during the 48 hours of cell culture for the 
static condition. Arrows on images indicate fluid flow direction. Bar values with * are 
statistically different comparing with the static conditions for p < 0.05. 
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Chapter 6. Hanging Drop Platform for Stem Cell 3D Spheroids Production 
and Characterization under Co-Culture Conditions 

157 

Figure 6.1: (A) Preparation of superhydrophobic (SH) platforms patterned with arrays 
of wettable regions: first, an array of stickers in a pristine polystyrene (PS) substrate was 
made; then, a roughness increasing was achieved by in situ deposition of PS such as 
illustrated by SEM images, and consequently inducing an increase of the surface 
hydrophobicity at the macroscopic level proven by the water contact angle images; finally, 
wettable transparent spots surrounded by a SH surface were obtained by removing the 
stickers. (B) Schematic representation of the procedure for the production of spheroids 
of cells 2 in co-culture conditions of cells 1 on the developed platform: addition of a 
suspension of cells 1 into the wettable spots by pipetting; after overnight incubation, 

167 



Biomedical Devices Engineered Based On The Control Of The Surface Wettability 

 
 

XXV 
 

during which cells 1 adhered onto the surface, a cell suspension of cells 2 was dispensed 
in each single spot over the previously adhered cells 1; then, the platform was rotated 
180° to create a hanging-drop setup; finally, the spheroids of cells 2 were left to 
aggregate for 3 days in indirect co-culture contact with the adhered cells. 
Figure 6.2: (A) Size distribution of the obtained hASC spheroids after 3 days of culture, 
either in single cell culture or co-culture, is shown for the tested conditions. (B) Shape 
characterization of spheroids taking in account the roundness parameter. (C) 
Transmitted light microscopy images of the spheroids acquired from the top of the 
developed platform, through the transparent spot. Nuclei (DAPI)/cytoskeleton F-actin 
(phalloidin-TRITC) staining was performed in the cells adhered to the pristine PS spot 
above the respective spheroid. 
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Figure 6.3: (A) Quantification of the DNA content per spheroid for each of the studied 
conditions at day 3. (B) Alkaline phosphatase (ALP) activity in each spheroid for the 
different tested conditions. (C) Images of spheroids obtained from the different co-
cultures before and after ALP staining. More intense purple color indicates enhanced ALP 
activity. 
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Figure 6.4: (A) Schematic representation of the procedure for the on-chip AlamarBlue 
assay using the developed platform: by touching with the medium droplets containing 
the spheroid on a second SH platform with empty wettable spots spheroids were 
transferred; on the harvesting step, spheroids and adhered cell layers were separated in 
two different chips allowing the independent processing of both; on the chip with 
spheroids, the excess of medium was removed from each spot and an AlamarBlue 
solution was dispensed, ensuring the same volume per spot; after incubation, an image 
from the chip was collected and processed to measure the red channel intensity, 
calculating this way the cell viability ratio. (B) After 8 hours of incubation, the obtained 
results for on-chip AlmarBlue assay for each of the tested conditions are present on the 
image, then after image processing the cell viability ratio was calculate taking as 
reference the respective control condition, α-MEM or M199. 
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Figure 6.S1: Investigation of cell detachment from cell layer adhered to the PS above 
of the respective spheroid. (A) SaOs-2 cell layer adhered to the PS, being the SaOs-2 cells 
tagged with a red lipophilic staining before cell adhesion. (B) hASC spheroid formed in 
the SH surfaces in indirect co-cultures with Saos-2 cell line. hASC were tagged with a 
green lipophilic staining before the co-culture procedure. hASCs and the SaOs-2 cell line 
were pre-stained with 20mM 1,1′-Dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine 
perchlorate (Dil; Sigma, USA) and  3,3′-Dioctadecyloxacarbocyanine perchlorate (Dio; 

Sigma, USA), respectively. Cells were trypsinized and resuspended in 2 μM cell dye in 

serum-free medium for 10 min at 37 ºC and washed with PBS prior to their seeding, 
performed such as described in experimental section. Images of the monolayer and 
spheroid were acquired using a reflected fluorescent light microscope (Axio Imager Z1, 
Zeiss). 
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Chapter 7. Liquid Marbles for High-Throughput Biological Screening of 
Anchorage-Dependent Cells 

183 

Figure 7.1: Schematic representation of the proposed method for liquid marbles usage 
on high-throughput drug screening. First, a defined volume of cell suspension with 
modified PLLA microparticles was dispensed over a hydrophobic powder bed. After to 
coat the liquid droplet with the hydrophobic powder, the produced liquid marbles were 
incubated for 24 hours. Then, taking advantage of the ability to inject liquids inside the 
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liquid marbles maintaining its integrity, chemical agents (drugs) to be tested can be 
injected. After a new incubation period, AlmarBlue reagent can be injected to monitor 
cell viability by color change inside of the liquid marbles. The measurement of the color 
intensity was performed by image processing/analysis of pictures of the liquid marbles 
and a heat map with the results can be obtained. 
Figure 7.2: (A) SEM image of diatomaceous earth that was used to produce the 
hydrophobic powder. Scale bar is 5 µm. (B) Cytotoxicity test of the hydrophobic powder 
using the L929 cell line was accessed by MTS assay. As positive and negative controls 
latex rubber and tissue culture polystyrene coverslips were used, respectively. 
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Figure 7.3: (A) Liquid marbles with distinct sizes produced from liquid droplets with the 
following volumes: 5, 7.5, 10, 20, 30 and 40 µL. Scale bar is 1 mm. (B) Optical 
microscopy image of PLLA microparticles that were dispersed in the core of the liquid 
marbles to provide anchorage sites for cell adhesion. Scale bar is 100 µm. 
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Figure 7.4: L929 cell response upon encapsulation in liquid marbles without (w/out) 
or with (w/) PLLA microparticles inside the core. (A) DNA quantification per liquid marble 
at different incubation periods, namely 0, 24 and 48 hours. (B) Optical density values of 
MTS assay at 490 nm for liquid marbles without (w/out) or with (w/) PLLA microparticles 
after 48 hours of incubation. (C) SEM image of modified PLLA microparticles with 
adhered L929 cells on surface after 24 hours of incubation. 
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Figure 7.5: (A) An image sequence to show that it is possible to remove or inject liquid 
on liquid marbles without destroy its structure. I- Two liquid marbles with the same 
volume were produced. II- Partial volume of the blue liquid marble was withdrawn. III- 
The removed volume in the previous step was injected on the yellow liquid marble. IV- 
The liquid marble structures remain stable after manipulation. (B) Several liquid marbles 
can be produced to test different conditions during cell culture, showing their ability to 
be used as high-throughput drug screening devices. 
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Figure 7.6: Relationship between Fe3+ concentration and the relative DNA amount 
ratio. LM injected only with PBS were used as the reference. The measurement was 
performed after 48 hours of cell culture, 24 hours without Fe3+ and more 24 hours of 
culture in contact with the cytotoxic agent. 
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Figure 7.7: Relationship between Relative Cell Viability (RCV) ratio and Fe3+ 
concentration determined using two different methods. A non-destructive method by 
image processing of pictures from LM using a conventional digital camera is compared 
with a standard destructive MTS assay. A representative picture of LM is show for each 
condition. No significant differences were found between the two methods for all Fe3+ 
concentrations analyzed. 

201 

Figure 7.S1: Liquid marbles (LM) with distinct sizes produced from liquid droplets with 
the following volumes: 5, 7.5, 10, 20, 30 and 40 µL. The average value of blue color 
intensity was determined by ImageJ for each LM, the whole area of each LM was used 
for the determination. The mean value of all six values was calculated as well as the 
respective standard deviation. 
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Figure 7.S2: LM corresponding to the different studied concentrations are present in 
four replicates. The average value of red color intensity was determined by ImageJ for 
each LM, the whole area of each LM was used for the determination. The mean value of 
the four values of each condition was calculated as well as the respective standard 
deviation. 
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Chapter 8. Hydrophobic Hydrogels: Toward Construction of Floating 
(Bio)microdevices 

209 

Figure 8.1: (a) SEM image of DE microparticles. (b) Formula of PFDTS used for 
hydrophobic treatment of DE. (c) XPS analysis of the pristine DE and PFDTS-DE 
microparticles. (d-f) Water contact angle measurements of cross-linked GelMA, GelMA 
coated with pristine DE microparticles, and GelMA coated with hydrophobic PFDTS-DE 
microparticles. (g-i) Confocal fluorescence micrographs showing the GelMA, PFDTS-DE 
microparticles, and GelMA coated with PFDTS-DE microparticles. GelMA was stained in 
green with fluorescein, and the PFDTS-DE microparticles were stained in red with 
rhodamine. (j-l), Photographs showing a water droplet (dyed in blue) on top of a 
hydrophobic GelMA hydrogel block. The GelMA structure was placed on (j) a glass slide 
and (k, l) a pool of water. 

216 

Figure 8.2: (a-b) Representative images of the floating performance of hydrophobic 
GelMA hydrogel spheres prepared under different conditions at time 0 and after 5 days 
in water. (c) Definition of the portion exposed in the air, d1, the portion submerged under 
water, d2, and the ratios of d1/d2 in three particular cases. (d-f) Plots of d1/d2 ratios 
versus floating time in water for hydrophobic hydrogels obtained under different UV cross-
linking conditions for 4%, 6%, and 8% GelMA, respectively. (g-i) Plots of the swelling ratio 
of the hydrophobic hydrogels obtained under different UV cross-linking conditions for 4%, 
6%, and 8% GelMA, respectively. (j-l) Plots of the percentage of PFDTS-DE coating area 
on the hydrophobic hydrogels obtained under different UV cross-linking conditions for 4%, 
6%, and 8% GelMA, respectively. 

220 

Figure 8.3: (a) Schematic representation of the method to produce the hydrophobic 
hydrogels encapsulation pH-sensing microbeads. (b) Side views of the floating pH meters 
at pH 5-9, where the red channel intensities of the devices were plotted against pH 
values. (c) Time-lapse photographs showing the color change of a slab of floating pH 
meter when a pellet of sodium hydroxide was dropped at the left side of the water 
container. The progressive pH increase along the long axis of the device was quantified 
from the standard curve. (d) Bottom view of the floating device at 1 min post addition of 
sodium hydroxide and when the pH of the medium became homogenous. 
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Figure 8.4: (a) The floating hydrogels could be directed to move on the surface of water 
using electrostatic forces, for example a charged plastic pen. (b) The floating hydrogels 
with different shapes could be manipulated and self-assemble in different configurations 
on the surface of water. 
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Figure 8.5: (a-h) Live/dead analysis of fibroblasts encapsulated inside the floating 
hydrophobic hydrogel blocks at days 0, 3, 7, and 10. Live cells are indicated in green 
and dead cells in red. (i) Fluorescence micrograph showing floating assembly of three 
hydrogel blocks encapsulating fibroblasts (red) on the sides and endothelial cells (green) 
in the center. (j, k) Magnified views showing the interface between the two adjacent blocks 
encapsulating the two cell populations. 

227 

Figure 8.S1: Schematic diagram showing the preparation procedure of hydrophobic 
GelMA hydrogels. 

235 

Figure 8.S2: Schematic showing fabrication process of pH-sensing resin microbeads.  
First a pH-sensitive dye, Bromothymol Blue, was dissolved in deionized water; then the 
dye solution was added into a beaker containing anion exchange resin microbeads; after 
stirring for 2 h for dye adsorption, pH-sensing microbeads could be obtained. 
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Figure 8.S3: (a, b) SEM images and (c, d) size distributions of the DE particles (a, c) 
before and (b, d) after PFDTS modification. Most DE particles were in the size range of 
3.2-10.5 µm, while most PFDTS-DE particles fell in the size range of 3.6-10.6 µm. 

236 

Figure 8.S4: Photograph showing the repellency of the hydrophobic hydrogel following 
slow insertion into a pool of water, indicated by the convex meniscus. The PFDTS-DE 
microparticles were dyed with rhodamine in red for better visualization. 
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Figure 8.S5: Photograph showing a GelMA hydrogel block without coating of PFDTS-
DE microparticles sank to the bottom of a water container. 
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Figure 8.S6: Fluorescence micrographs showing the PFDTS-DE microparticles on the 
surface of the GelMA hydrogel (a) before and (b) after immersion in water. 
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Figure 8.S7: Photograph showing the mirror-like effect of the hydrophobic hydrogel 
partially submerged in water. The PFDTS-DE microparticles were dyed with rhodamine 
in red for better visualization. 
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Figure 8.S8:  Swelling behavior of pristine GelMA blocks at different time points. (a)-(c) 
are corresponding to the GelMA blocks prepared with 4%, 6%, and 8% of the GelMA 
solution. The different colored curves represent GelMA blocks with different UV 
crosslinking time. 
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Figure 8.S9: Stability of the hydrophobic particles on the GelMA blocks in different pH 
solutions. The hydrophobic particles show increased retention ability on the GelMA 
surface with increasing pH values in the whole. 
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Figure 8.S10: Quantitative analysis of the floating ability of the hydrophobic GelMA 
hydrogels prepared under different conditions versus time in (a-c) DMEM and (d-f) DMEM 
supplemented with FBS. 
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Introduction to the Thesis Format 

This thesis is organized in 4 sections that include a total of 9 chapters. The first section provides 

the general introduction to the thesis. The second section corresponds to the experimental methods 

and materials used. The third section shows the experimental results obtained in the context of 

this thesis and their discussion, focusing on the development of biomedical devices based on the 

advanced control of the wettability of different surfaces. The fourth section finalizes this thesis with 

concluding remarks. 

The chapters of this thesis are all based on peer-reviewed papers published or submitted for 

publication. Each thesis chapter is presented in manuscript form containing: abstract, introduction, 

materials and methods, results and discussion, conclusions and acknowledgements. A list of 

relevant references is also provided as a subsection within each chapter. The contents of each 

chapter is described below in more detail. 

 

 

Section I. General Introduction 

Chapter 1 – Recent Advances on Open Fluidic Systems for Biomedical Applications: 

A Review 

This chapter reviews the recent advances on open fluidics field, highlighting the specific 

characteristics of this technology comparing with traditional microfluidics. Additionally, the 

description of several applications on the biomedical field using open fluidic devices is provided. 
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Chapter 2 – The Potential of Liquid Marbles for Biomedical Applications: A Critical 

Review 

On this chapter, the liquid marble characteristics and manipulation methods to handle with these 

structures are reviewed. Then, the reported applications for the liquid marbles on the biomedical 

field are described. Finalizing, a critical discussion on the potential of liquid marbles for new 

biomedical applications is performed based on published information about this topic.  

 

 

Section II. Experimental Section 

Chapter 3 – Materials and Methods 

A list of the materials used and methods applied to obtain the results described further on is 

provided. 

 

 

Section III. Development of Biomedical Devices Based on the 

Advanced Control of Wettability in Different Surfaces  

Chapter 4 – Superhydrophobic Surfaces Engineered Using Diatomaceous Earth 

This chapter aims to demonstrate that superhydrophobic surfaces can be engineered: using 

diatomaceous earth to achieve a micro/nanoscale hierarchical topography on the surface; and 

performing a fluorosilanization process to obtain a surface with low surface energy. Additionally, it 

was showed that the wettability of the superhydrophobic surface can be modified by plasma 

treatment in a controlled way, allowing to pattern hydrophilic features with different geometries. 
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Chapter 5 – Open Fluidics: A Cell Culture Flow System Developed Over Wettability 

Contrast-Based Chips 

In this chapter, an original cell culture flow system based on the open fluidics concept was 

proposed. The system was developed using a planar superhydrophobic platform with hydrophilic 

paths on its surface. The paths worked as channels to drive cell culture medium flows without 

using physical walls for liquid confinement. The validation of the proposed concept was performed 

by studying the effect of the shear stress stimulus in the osteogenic differentiation of C2C12 

myoblast cells. 

Chapter 6 – Hanging Drop Platform for Stem Cell 3D Spheroids Production and 

Characterization under Co-Culture Conditions 

Using a similar platform to chapter 5 by with hydrophilic square shapes on its surface, a hanging 

drop system based on a superhydrophobic (SH) platform was proposed for the production and 

culturing of human adipose-derived stem cell (hASC) spheroids under co-culture conditions. 

Chapter 7 – Liquid Marbles for High-Throughput Biological Screening of Anchorage-

Dependent Cells 

In this chapter, stable liquid marbles produced by coating liquid droplets with hydrophobic powder 

were presented. The hydrophobic powder consisted in diatomaceous earth modified by a 

fluorosilanization process and it was obtained during the development of the work reported on 

chapter 4. The use of liquid marbles for high-throughput drug screening on anchorage-dependent 

cells was proposed. 

Chapter 8 – Hydrophobic Hydrogels: Toward Construction of Floating 

(Bio)microdevices 

Inspired by the liquid marbles of chapter 7, a novel class of hydrophobic hydrogels that can free-

float on the surface of different aqueous media by coating conventional hydrogels with a layer of 
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hydrophobic microparticles. These floating hydrogel-based devices were developed for pH sensing 

applications on liquid surfaces and to engineering of floating tissue constructs. 

 

 

Section IV. Concluding Remarks 

Chapter 9 – Conclusions and Future Perspectives 

This chapter finalizes the thesis by summarizing its major conclusions. 
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1.1. Abstract 

Microfluidics has become an important tool to engineer microenvironments with high precision. 

Once, microfluidics comprises devices and methods for controlling and manipulating fluids at 

submillimeter scale. This type of technologies has shown significant impact in several scientific 

fields, namely chemistry, biotechnology, engineering or cell biology. Here, we reviewed an 

emergent topic in the microfluidics field that is the open fluidics. 

Open fluidic systems are characterized for present a higher air/liquid interface comparing with 

traditional microfluidics, presenting at least one area of the device open to air. Unique advantages 

are offered by open fluidic devices due to its singular architectures, such as simplicity of fabrication, 

easy to clean, and enhanced functionality and accessibility for liquid handling. Furthermore, these 

systems do not present the typical issues of traditional microfluidics, such as the risk of channel 

clogging and the occurrence of flow perturbation due to bubbles. Open fluidic platforms can 

assume different designs that were allocated in two groups, physical confinement and wettability-

contrast confinement. Physical confinement group comprises: platforms combining both open and 

traditional microfluidics; open channels with rectangular and triangular cross-section; suspended 

microfluidics; and the use of narrow edge of a solid surface for fluid confinement. Second group 

covers: (super)hydrophilic/(super)hydrophobic patterned surfaces; paper-based microfluidics; and 

microfluidic devices based on textiles. Related with these different platforms, device characteristics, 

manufacturing techniques and fluid transport/manipulation methods were reviewed. 

Finalizing this work, several recent applications on the biomedical field that were developed based 

on open fluidics were revised. 
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1.2. Introduction 

The precise control of volume and manipulation of fluids is very important for several scientific 

fields, for example in chemistry, biotechnology, engineering or cell biology.[1-3] Microfluidic 

technology has become an important tool to engineer environments with high control of the 

studying conditions.[3, 4] Generally, microfluidics alludes to devices and methods for controlling 

and manipulating fluids at submillimeter scale.[2, 4] This technology has been presented as an 

attractive candidate to replace traditional experimental approaches, especially in the biomedical 

field.[5] 

The most popular approach for manufacturing microfluidic devices consisted in using “soft 

lithography” of poly-dimethylsiloxane (PDMS), contributing largely for the technological 

development of this field.[3, 5] Using this technique, structures with a micrometer resolution are 

easily molded from a hard master into PDMS.[6] Additionally, PDMS present valuable 

characteristics such as low cost, optical transparency, elasticity, permeability to gasses and ease 

of use, presenting high fidelity reproducing molds.[5, 7] This combination allowed both the 

miniaturization and the parallelization of processes in compact devices, saving reagents and 

consequently costs.[3, 8] Owing to the ease fabrication and flexibility of these devices, several kinds 

of functional microfluidic elements were described on literature, namely sensors, mixers, 

separators, dispensers, pumps, valves, etc.[1, 6, 7] Furthermore, different techniques for both 

fluids and particles manipulation in microfluidics have been developed, using electrical, magnetic, 

optical, capillary and mechanical force.[1, 2] 

However for biomedical research, some concerns about the use of PDMS were raised. It was found 

the leaching of uncrosslinked oligomers from PDMS that can be toxic for cells.[9, 10] Due to the 

hydrophobic properties and permeability of this material, the absorption of hydrophobic small 

molecules by the PDMS was showed.[11, 12] Additionally, the permeability to water vapor can 
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result in rapid evaporation, being this issue more relevant in static no-flow experiments.[10, 13] 

Nevertheless, these drawbacks of PDMS can be mitigated, demanding additional device 

preparation.[7] Recently, alternative materials to PDMS were been explored, namely thermoplastics 

(polystyrene – PS, cyclic olefin copolymer – COC, polymethyl methacrylate – PMMA, and 

polycarbonate – PC), paper, wax and textiles.[5] 

Associated to the microfluidic technology arose new concepts such as the lab-on-a-chip and organ-

on-a-chip concept. Lab-on-a-chip concept postulates the fully integration in a single chip of several 

microfluidic components and procedures with a goal of miniaturizing chemical and biological 

processes.[1, 14] While, organ-on-a-chip refers to complex microengineered systems aiming to 

mimic physiological key features of specific human organs and tissues and their interactions.[15] 

[16] Other concept that emerged on the microfluidics field was the open microfluidics. Here, we 

reviewed the technological advances on this topic, namely device characteristics, manufacturing 

techniques and recent applications on the biomedical field. On this review, for a matter of accuracy, 

we use the expression “open fluidics”, once we included also devices at the millimeter scale. 

 

1.3. Open fluidics  

Open fluidic systems are characterized for present at least one area of the device open to air, 

comprising systems such as droplets on surfaces or open fluidic channels.[17, 18] Unique 

advantages are offered by the open fluidics, such as simplicity of fabrication, easy to clean, 

enhanced functionality and accessibility for liquid handling.[19-21] These systems can also 

overcome typical issues of traditional microfluidics, such as the risk of channel clogging and the 

occurrence of flow perturbation due to bubbles.[20, 22] Open fluidic platforms can assume 

different geometries that we divided in two groups, physical confinement and wettability-contrast 

confinement. In the first group, the fluid is confined and manipulated using channels with 
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rectangular or triangular shape without one side; channels formed by opposing two vertical walls; 

or using the narrow edge of a solid surface. The wettability-contrast confinement comprises 

(super)hydrophilic areas patterned on (super)hydrophobic surfaces, using flat solid surfaces. On 

this group, we also included paper-based microfluidics and systems in which fluid flows were driven 

by hydrophilic textile fibers on a supporting (super)hydrophobic surface. 

1.3.1. Physical confinement 

Some platforms combining both traditional and open microfluidics were developed, aiming to take 

advantage of a synergistic effect from the combination of both technologies in a single device.[23-

28] This combination brought benefits to the systems, for example the accessibility was increased 

and gas bubbles were eliminated due to the open section, and the impact of evaporation was 

minimized for the use of the closed section.[24, 27] These closed-open platforms consisted in 

parallel microchannels of PDMS that the ceiling was partially removed in the middle[24] or in the 

end of the channels – Figure 1.1A and B.[23] Simpler, an open access microfluidic platform where 

the parallel channels culminated in an open reservoir instead a tubing system was also reported, 

allowing to directly manipulate the fluid in the system with a micropipette.[27] In the channel 

sections without ceiling, the fluid flow remained confined to the open-microchannels due to the 

high surface tension of the liquid-air interface and to the hydrophobicity of the top surface of the 

walls.[23, 24] On this topic of closed-open microfluidics, Keenan et al. reported the construction 

of a microfluidic gradient generator.[25] The system was able to produce soluble gradients by 

injecting picoliter amounts of fluid, from a closed microchannel system, into an open reservoir. 

Further on, we present the application of this gradient generator in neutrophil desensitization 

studies.[26] 

Regarding to microfluidic systems fully open based on a physical fluid confinement, the most 

common geometry of the channels is a rectangular cross-section with one open side.[29-37] 
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Several reports studying the wetting phenomenon and the fluid transport dynamics on this open 

rectangular microchannels can be found for different materials, namely silicon,[29, 30, 33]  SU-

8,[31] quartz,[32] and PDMS.[37] It was found that a large variety of wetting morphologies can be 

observed.[29, 30] Generally, the wetting behavior was dependent of both the ratio between width 

and depth of the channel[29, 31, 32, 37] and the wetting properties of the underlying material.[29, 

33] Similarly, various wetting morphologies were also observed in open triangular cross-section 

channels, being dependent of the wedge angle of the channel and the liquid contact angle with the 

substrate.[38] Berthier et al. presented the open triangular cross-section such as an interesting 

solution for capillary actuation of whole blood in the point-of-care systems domain.[39] These 

studies aimed to determine the appropriate parameters to accomplish spontaneous capillary flows, 

avoiding the use of costly actuation systems.[20, 32, 39, 40] 

Other promising type of open channels are channels devoid of floor and ceiling, being the liquid 

supported by two opposite vertical walls, that were named “suspended microfluidics” – Figure 

1.1C.[19, 21, 41] These systems showed the ability to generate spontaneous capillary flows in a 

precise, simple and robust way. The suspended channels were easily constructed using PDMS 

through soft lithography[19]  and thermoplastics such as COC and PMMA using milling.[21, 41] 

Based on this technology, Casavant et al. created arrays of suspended microdots for the study of 

cell growth and cell invasion toward a source chemoattractant.[19] It was highlighted the potential 

of these suspended microfluidic devices for high-throughput multiplexed screening applications 

with cells in 3D matrices. 

Davey and Neild reported an innovative open fluidic channel that consisted in a straight open 

channel defined by a narrow strip of a solid surface – Figure 1.1D.[17] They used the edge of a 

glass slide to confine the fluid, achieving a similar effect to the liquid confinement provided by a 

(super)hydrophilic pattern on a (super)hydrophobic flat surface – topic developed ahead.[17] The 
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flow on the channel was induced by a syringe pump in push–pull mode, such as often used in 

traditional microfluidics. It was observed that the use of hydrophobic needles on the input and 

hydrophilic needles on the output increased the stability of the systems.[17, 42] Additionally, it was 

possible to produce a stable fluid flow with a flow rate of 500 µL.min-1 in channels of 1 mm width 

and 30 mm length.[17] The channel length showed to be important for the stability of the system, 

occurring channel dewetting for a length of 40 mm.[42] Using the same strategy for liquid 

confinement, Tan and Neild created a Y-junction open fluidic channel – Figure 1.1E.[43] A system 

with two branches with 1 mm width merging into a main channel with also 1 mm width was 

constructed by 3D printing. Using this system, it was studied the mixing of two fluids and for high 

flow rates (>300 µL.min-1) the fluid mixing occurred faster than expected for molecular 

diffusion.[43] However, taking advantage from the air/fluid interface be exposed, a rapid mixing of 

the fluids could be induced by simply blowing an air jet horizontally to the Y-junction. Being the 

developed device proposed as an efficient mixer able to integrate complex systems, combining 

open and closed microfluidics.[43] 
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Figure 1.1: (A) Cross-sectional lengthways and upper view of closed-open-closed channel. Adapted from Ref. [24] 

with permission of the Royal Society of Chemistry. (B) Open fluidic device combining both traditional and open 

microfluidics, named as channel section and canal section in the image, respectively. Adapted from Ref. [23] with 

permission of the Royal Society of Chemistry. (C) Suspended flow between two vertical and parallel walls and an 

example of a suspended channel in a PMMA plate. Adapted from Ref. [21] with permission of Springer. (D) Schematic 

representation of a straight open channel defined by a narrow strip of a solid surface. The flow was produced by the 

pressure difference between inlet and outlet in the open fluidic channel. Flow was confined to the exposed hydrophilic 

region and by the thickness of the glass slide. Adapted from Ref. [42] with permission of AIP Publishing. (E) Schematic 

representation of the Y-junction open microchannel manufactured with two 1 mm wide branches merging into a 1 mm 

main channel. Fluid was infused and mixed where the branches met and then the flow was extracted at the end of the 

main channel. Air was blown horizontally to the Y-junction channel to help in cases where passive mixing cannot be 

achieved. Adapted from Ref. [43] with permission of AIP Publishing. 
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1.3.2. Wettability-contrast confinement 

Flat surfaces can be used as platforms to engineer open fluidic systems, where the fluid 

confinement is made by chemical barriers, acting like virtual walls.[44] These non-physical walls 

consist in chemical patterns created on the top of a substrate, originating (super)hydrophilic areas 

bounded by the (super)hydrophobic substrate. Similarly to the effect of the edge of a solid surface, 

a fluid on a flat surface can be retained due to the large contact angle hysteresis at the 

(super)hydrophilic/(super)hydrophobic boundary. 

By definition hydrophilic surfaces present a water contact angle (WCA) lower than 90° and the 

hydrophobic surfaces present a higher WCA. Concerning to extreme water repellency phenomena, 

superhydrophilic surfaces are completely wettable by water, presenting a WCA lower than 5° and 

a high surface energy. Superhydrophobic surfaces are characterized for totally repel water, 

presenting a static WCA greater than 150° and low surface energy.[45, 46] These extreme 

phenomena are only possible by combining both surface chemistry (surface free energy) and 

roughness. Increasing the roughness of a substrate with high surface energy typically increases 

the apparent hydrophilicity of the surface, whereas increasing the roughness of a substrate with 

low surface energy usually increases the apparent hydrophobicity of the surface.[47, 48] 

Additionally, air trapping that may occur on surface roughness is also essential to reach 

superhydrophobicity.[47] 

There are several methods for the production of superhydrophobic surfaces that were compiled in 

different reviews.[46, 48-53] Referring just some of these methods, superhydrophobic surfaces 

can be produced by covalent layer-by-layer assembly of amine-reactive polymers;[54, 55] by UV-

initiated radical polymerization of a hydrophobic monomer;[56-58] by the deposition of self-

assembled monolayers of hydrophobic molecules in micro/nanostructured surfaces;[59-62] by 

polymer precipitation through a phase separation method in a smooth surface;[63-65] by drop-



Chapter 1 – Recent Advances on Open Fluidic Systems for Biomedical Applications: A Review 

 
 

12 
 

casting onto a sandpaper using a fluoroacrylic copolymer solution;[66] by vapor deposition of 

fluorosilane molecules in micro/nanostructured surfaces or by immersion within the fluorosilane 

solution.[67-71] 

Regarding to the fabrication of surfaces with (super)hydrophobic/(super)hydrophilic patterning, 

there are also several methods of production.[45, 72, 73] Some examples of the patterning 

strategies are: protect the wettable areas that should remain untreated using an adhesive mask or 

an inkjet-printed sacrificial layer prior to the hydrophobization process;[71, 74-78] using a 

photomask or a stencil mask or a sacrificial protective coating, perform the selective exposing of 

the (super)hydrophobic surface to a surface treatment such as  UV[79, 80] or UV/ozone[81, 82] 

or plasma treatment;[67, 83] direct writing of the desired pattern by laser on the 

(super)hydrophobic surface;[84, 85] using printing techniques, perform the deposition of 

molecules that suffer oxidative self-polymerization or lipid solutions onto (super)hydrophobic 

surfaces originating the desired (super)hydrophilic patterns.[56, 69] 

Based on the control of the wettability contrast on surfaces, it was showed the possibility to hold 

fluids[58, 67, 79, 86-89] and direct liquid flows on flat surfaces.[59, 64, 65, 90-92] By studying 

water condensation on hydrophilic stripes bounded by a hydrophobic substrate, it was showed that 

water could assume a cylindrical shape highly defined.[86] For small volumes, these water stripes 

were characterized for to be stable and homogenous. However, for an apparent contact angle on 

the substrate higher than 90°, the fluid stripes become unstable and a single bulge per stripe 

arose. Then, increasing the water volume the bulges in neighboring channels coalesced.[83, 86, 

93] Working below these critical volume in order to avoid instability, gradients of different materials 

could be produced in an easy and fast way by capillary flow in a fluid stripe, promising for diagnosis, 

cell study and drug screening applications.[67, 74, 75] Similar path designs and also non-straight 

paths have been used such as channels to drive continuous fluid streams, but using 
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superhydrophobic delimitations instead hydrophobic.[64, 65, 91] Particularly, Dong et al. showed 

to precisely control the separation of a liquid flow from a solid edge, by simultaneously regulating 

the position of wettability boundary and the flow inertia – Figure 1.2E.[92] In detail, the separation 

was achieved in different positions by moving the (super)hydrophilic/superhydrophobic dividing 

line at the solid edge. Interestingly, tit was suggested that this strategy can be very useful for 

firefighting or irrigation applications.[92] 

Besides the stripe shape, other geometric shapes such as squares, circles, triangles or hexagons 

can be patterned on surfaces – Figure 1.2A. These platforms revealed high potential for droplet-

array production for high-throughput assessments.[80, 81, 89] High-density of arrays of single 

droplets can be produced and assessed independently, due to the extreme wettability contrast that 

ensures the physical separation between very close droplets.[58, 87] Additionally, it was showed 

that arrays of thousands of droplets can be produced in a single step by rolling a droplet across 

the patterned surface or dipping this surface into an aqueous solution.[58, 77, 87] Owing to the 

high contrast in the wettability created on substrate, the water was naturally removed from the 

superhydrophobic delimitations and filled the superhydrophilic spots, being this phenomena called 

discontinuous dewetting – Figure 1.2B.[58, 87] 

Remarkably, using customized shapes for surface patterning, Hancock et al. showed to be able to 

create tailored 3D droplets at the macro- and microscales – Figure 1.2C.[88] Being suggested that 

the use of this technology to pattern surfaces with microparticles and cells, controlling spatial 

differences in surface concentration, such as sine waves, linear and spiral gradients.[88] 

A technology that may include in the open fluidic category, specifically in the wettability-contrast 

confinement group, is the paper-based microfluidics. We will not develop on this topic, once several 

review papers can be found in literature.[94-100] Some hydrophobization and patterning methods 

described before are also used on paper-based microfluidics and liquid confinement is based on 
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wettability contrast. However on the majority of the paper-based platforms, the fluid is not on the 

top of the substrate surface but absorbed in the porous structure of paper. 

Other interesting category of devices, which may include in open fluidics, are the microfluidic 

devices based on textiles. These devices can assume a completely flat architecture with 

(super)hydrophilic patterns printed on a (super)hydrophobic textile background, similarly to paper-

based microfluidics, or fabricated using hydrophilic yarn on the top of a non-wettable support.[96, 

101-106] For example, Xing et al. reported a microfluidic platform able to drive liquid flows using 

a hydrophilic cotton yarn sewn into a superhydrophobic textile platform – Figure 1.2D .[106] With 

this device, continuous flows easily controllable were achieved, by the combination of surface 

tension-induced Laplace pressure and capillarity presented in the fibrous structure. Similarly, 

Yildirim et al. engineered fiber surfaces to produce microfluidic devices using superhydrophilic 

polymeric fibers.[107] However, the liquid spread spontaneously on the exterior of the fibers, 

contrary to textile hydrophilic fibers. These fiber surfaces showed suitable for the construction of 

mechanically robust and flexible, lightweight and inexpensive microfluidic devices.[107] 
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Figure 1.2: (A) Microarrays of water droplets with different geometries formed on superhydrophilic/superhydrophobic 

patterned surfaces. Scale bars: 1 mm. Adapted from Ref. [87] with permission of the Royal Society of Chemistry. (B) 

Representation of the discontinuous dewetting method used for the formation of arrays of microdroplets. Adapted from 

Ref. [58] with permission of John Wiley & Sons. (C) Droplets formed by pipetting fluid onto sine wave, wedge, staircase, 

and spiral hydrophilic areas previously created by patterning. Scale bars: 3 mm. Adapted from Ref. [88] with 

permission of John Wiley & Sons. (D) A multi-inlet–single-outlet design on a textile platform using a hydrophilic cotton 

yarn sewn into the platform. Scale bars: 5 mm. Adapted from Ref. [106] with permission of the Royal Society of 

Chemistry. (E) Schematic representation of a nozzle mounted on the top surface of an aluminum plate with a 

superhydrophobic/ (super)hydrophilic stripe patterning. The water pumped though the nozzle was able to travel along 

the (super)hydrophilic stripe until separation from the solid edge at the (super)hydrophilic/superhydrophobic dividing 

line. Adapted with permission from Ref. [92]. Copyright 2015 American Chemical Society.  
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1.3.3. Fluid transport/manipulation in open fluidics 

Different methods had been reported for transport/manipulation of fluids in open fluidic systems, 

which can be done passively (using capillary action) and actively (providing energy to the system). 

Passive approaches for actuation and control of fluids have aroused great interest, since they allow 

fully automated operation with low-cost. Yang et al. studied the dynamics of capillary-driven liquid 

flow in grooved channels with two different geometries: rectangular and curved cross-section.[32] 

The hydrophilic channels were created in a hydrophobic substrate and water/glycerol mixtures 

presenting different surface tension and viscosity were tested. It was found that the flow velocity of 

the tested fluids increased with decreasing the channel width, being independent from cross-

section geometry.[32] On the other hand, Feng and Rothstein showed to be possible to construct 

open microchannels that just allow fluid flow in one direction.[108] The unidirectional spontaneous 

flow was achieved by decorating the interior of linear channels with an array of angled fin-like-

structures in both side walls – Figure 1.3C. This behavior was explained by the direction-dependent 

Laplace pressure induced by these structures on the channel, allowing the capillary spreading of 

the fluid only in the predefined direction.[108] Regarding to open fluidic devices based on 

wettability-contrast confinement, Ghosh et al. presented a wettability patterning method to produce 

open microfluidic paths that were able to induce on-chip liquid movement, by overcoming viscous 

and gravity forces – Figure 1.3A.[79] Wedge-shaped patterns were used to produce 

superhydrophilic paths embedded on a superhydrophobic background. Driving capillary forces 

were responsible for the liquid movement and increased linearly with the wedge angle along of the 

paths.[79] Complex liquid manipulations such as liquid metering, merging, dispensing, and droplet 

splitting were achieved by patterning complex designs using the wedge-shaped patterns as the 

basic building blocks. For example, using a planar superhydrophobic surface with superhydrophilic 
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wedge paths arranged radially and dispensing droplets on the central spot, the droplets were rapidly 

and equally split amongst the different paths.[79] 

There are some methods used for liquid manipulation in closed microchannels that can also be 

applied to open fluidics, namely electrowetting[28, 30, 38] and pressure driven flow.[17, 42, 43, 

65, 92] Using electrowetting actuation, the advancing and receding of liquid stripes in both 

rectangular and triangular grooved microchannels were actively controlled – Figure 1.3B.[30, 38] 

Owing to the electrowetting effect, the apparent contact angle of liquid could be reversibly tuned 

and consequently the liquid movement induced. These movements were controlled by adjusting 

the frequency and amplitude of the applied voltage. This liquid activity showed to be capillarity 

driven and dependent of apparent contact angle, liquid viscosity and groove geometry.[30, 38] 

Using a platform combining both closed and open microfluidics, Wang and Jones have showed 

that water droplets can also be manipulated by electrowetting actuation.[28] 

Similarly to the traditional microfluidics, the pressure driven flows in open fluidic systems are 

usually induced by mechanical pumps.[17, 42, 43, 65, 92] However, Vourdas et al. presented an 

innovative toll for actuation and valving in open fluidics using pressure – Figure 1.3D.[36] By 

applying pressure at the rear face (backpressure) of porous and hydrophobic fluidic walls, that 

initially were sticky, the walls became slippery. Thus, controlling the backpressure, the gas pockets 

at the liquid-solid interface that influence wall stickiness were controlled. Consequently, the 

manipulation of liquid volumes became possible in an open channel with rectangular cross-section, 

but may applicable to other cross-section geometries.[36] 
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Figure 1.3: (A) Transport of liquid up along an inclined superhydrophilic wedge-shaped path. Water was able to move 

up along to an elevation of 9 mm. Deign of the photomasking template used for path patterning. Adapted from Ref. 

[79] with permission of the Royal Society of Chemistry. (B) Image of liquid stripes in triangular grooves during 

electrowetting. The corresponding applied voltage is given at the bottom of each stripe. Adapted with permission from 

Ref. [38]. Copyright 2015 American Chemical Society. (C) Schematic illustrations and images of an open channel that 

allowed only unidirectional spontaneous flow by decorating the interior of the channel with an array of angled fin-like-

structures in both side walls. Adapted from Ref. [108] with permission from Elsevier. (D) Schematic illustration of the 

valve architecture and operation. The channel with porous and hydrophobic walls accommodated the liquid and then 

a gas flow was applied at the adjacent channels. The backpressure increases and consequently the gas pockets at 

the liquid-solid interface, inducing the wall slippery and inciting the liquid movement. Adapted from Ref. [36] with 

permission of the Royal Society of Chemistry. 
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1.4. Open fluidic platforms for biomedical applications 

The high functionality and flexibility typical of open fluidics have been translated on the development 

of several applications using these platforms, focusing on the biomedical field applications here. 

1.4.1. Metabolite extraction 

Open fluidic platforms have been reported for metabolite extraction applications using different 

architectures. Barkal et al. created an open platform that allowed microbial culture and posteriorly 

the solvent extraction of the metabolites in a single device.[109] Teardrop-shaped open microfluidic 

channels were micromilled in PS using a CNC micromilling machine. On the larger area of the 

channel a grooved circular well was used for cell culture and the opposite end of the channel was 

used to dispense the extraction solvent using a micropipette. With this design the flow of organic 

solvent were directed over the aqueous culture area by spontaneous capillarity (analogous to 

wedge-shaped paths presented by Ghosh et al.),[79] originating a stable biphasic interface. 

Additionally, it was showed that the efficiency of processes was enhanced once the devices allowed 

the production of arrays and also compatibility with the use of a multichannel pipette. Taking 

advantage from the features of these teardrop-shaped open channels, it was suggested their 

applicability for screening analysis of biological samples such as blood, saliva, mucus, extracellular 

matrix components, etc.[109]   

Based on suspended microfluidics, Casavant et al. created an alternative metabolite extraction 

platform using a multilayer biphasic system to recover metabolites from cell culture.[19] As the 

capillarity flow method can also generate flow in open systems with immiscible liquid interfaces, 

the ability of an immiscible solvent to flow in a suspended microfluidic system over an aqueous 

liquid was showed. A two level microsystem was developed for contacting extraction solvents with 

cell culture medium from cells in culture and performing the extraction of molecules secreted by 

cells.[19]   
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1.4.2. Hydrogel production 

Such as described before, it was possible to create tailored 3D droplets at the macro- and 

microscales using hydrophilic patterns with customized shapes on hydrophobic substrates.[88] 

Taking this technology as the base, hydrogels with controlled 3D topography at the macro- and 

microscale were synthesized by photocrosslinking shaped droplets of prepolymer solution, using 

UV light. It was confirmed that the created hydrogels retained with high fidelity the 3D shape 

imposed to the prepolymer droplets.[88]   

Patel et al. presented a simple approach to micro-manufacture arrays of bio-adhesive hydrogels 

using a sandwiching method to achieve the ionic gelation of a prepolymer solution.[110] First, a 

gelatin-based solution was poured onto a PDMS microwell mold. Then, using a hydrophobic glass 

slide as carrier, a hanging droplet of silicate nanoparticle solution was formed. Finally, by precise 

alignment between PDMS platform and glass slide carrier and sandwiching both, the diffusion 

between two solutions occurred and the microgels formed, may containing encapsulated 

cells.[110] By a similar sandwiching method but using flat surfaces with superhydrophobic-

hydrophilic micropatterns, alginate hydrogels with defined sizes and shapes were quickly 

produced.[111] The size and shape were defined by specific patterns on the flat surfaces, likewise 

to the tailored 3D hydrogels. The droplet formation on micropatterns was performed through 

discontinuous dewetting (described before), decreasing the time required for the microarray 

platform preparation. Arrays of adhered hydrogels were obtained by performing the sandwiching 

step with the carrier of alginate droplets over the carrier of calcium chloride droplets. On the other 

hand, using the carrier of calcium chloride droplets on top position, freestanding hydrogel particles 

were produced.[111] Additionally, these hydrogel particles showed potential for tissue engineering 

applications, once they were able to encapsulate live cells and present magnetic properties, by 

incorporating magnetic beads. 
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1.4.3. Gradients generation 

Methods for generating gradients of chemicals, materials, biological molecules or cells have 

showed high importance in biotechnology, materials science and cell biology.[112] Several 

applications have been reported, namely in diagnostics, material screening and fundamental 

biological studies, for example mimicking cellular and tissue microenvironments.[74, 89, 112, 

113] Open fluidic devices revealed to be very useful to generate soluble and microparticle 

concentration gradients, gradient hydrogels or molecular gradient for chemotaxis studies. 

Simple gradient generation methods based on (super)hydrophilic/(super)hydrophobic patterned 

surfaces were engineered. Hancock et al. developed a gradient technique employing an 

inexpensive hydrophilic/hydrophobic-patterned platform and passive mechanisms (surface tension 

and diffusion) – Figure 1.4A.[74] This platform was created by coating a glass slide using a 

hydrophobic spray commercially available and protecting with an adhesive mask the desired area 

that should remain untreated and hydrophilic. After removing the rectangular-shaped mask, a fluid 

stripe confined to the hydrophilic area was produced. In one end of this stripe, a droplet of a second 

solution was dispensed using a micropipette. On this step, a concentration gradient of the second 

fluid into the first fluid was generated by diffusion – Figure 1.4A. The developed method allowed to 

generate both soluble and microparticle gradients.[74] Additionally, using this bench-top technique, 

gradient biomaterials were produced by crosslinking gradients of prepolymer solutions. As proof-

of-concept, concentration gradients of encapsulated cells and with a 3D spatial distribution in the 

biomaterials were produced.[75] Other example of an open fluidic platform, using wettability-

contrast confinement, able to generate gradients was developed by Efremov et al..[89] In detail, 

an array platform of hydrophilic spots was created and operated in one of two modes of use: arrays 

of droplets with one droplet per hydrophilic spot; or liquid paths formed by neighboring droplets 
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that were merged over the hydrophobic boundaries using a pipette tip. By injecting a solution on 

these liquid paths, concentration gradients of chemicals or cells were generated – Figure 1.4C.[89] 

Other interesting concept for gradient generation in hydrogels is the multi-gradient hydrogels.[34] 

These multi-gradient hydrogels were manufactured layer by layer, using a rectangular grooved open 

channel – Figure 1.4B. Each layer could present a different gradient of particles, soluble factors, 

materials properties or polymer concentrations. It was proposed that the multiple gradients in 

biomaterials can create more relevant microenvironments for cellular studies, for example 

mimicking simple systems for studying co-cultures.[34]    

Using an open access microfluidic device, briefly described before, concentration gradients were 

produced for the study of cell migration during chemotaxis.[27] Taking advantage from the direct 

access to the open reservoir where the parallel microchannels culminated, stable gradients were 

generated by passive diffusion using a micropipette – Figure 1.4D. After dispensing the 

chemoattractant molecules in the reservoir, the gradient equilibration in the channels occurred fast 

due to the small dimensions of channels. Then, the cellular response of cells seeded on the 

opposite end of the microchannels was monitored. As gradients were generated by a passive 

method, shear forces usually present in traditional microfluidic devices were avoided. This feature 

was important to prevent cell damage and confounding cellular response originated by shear 

forces.[27] 

By combining closed and open microfluidics, other microfluidic gradient generator was also 

engineered.[26] The gradient was created by injecting the chemoattractant in precise amounts into 

an open reservoir, in which human neutrophils were previously seeded and allowed to settle and 

attach – Figure 1.4E. Then, parameters such as cell migration and morphology were quantitatively 

examined. Besides the study of human neutrophils, the developed gradient generator could have 

potential application for assays with neurons, immune cells or embryonic stem cells.[26] 
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Figure 1.4: (A) Images of the droplet coalescence with a fluid stripe and gradient generation of the second fluid into 

the first fluid over time. Adapted from Ref. [75] with permission from Elsevier. (B) Protocol for production of multi-

gradient hydrogels through a layer by layer methodology, using a rectangular grooved open channel. Channel was 

prewet and a droplet of a second fluid was added, generating a gradient. The solutions were left to achieve the desired 

uniformity and this gradient precursor solutions were photocrosslinked. The process was repeated several times until 

obtain the multi-gradient and layered hydrogel. Adapted from Ref. [34] with permission of the Royal Society of 

Chemistry. (C) Concentration gradients in liquid channels with different geometries produced using an array of 

hydrophilic spots. Adapted from Ref. [89] with permission of John Wiley & Sons. (D) The open microfluidic device for 

studying gradient sensing and cell migration. Owing to the direct access to the open reservoir where the parallel 

microchannels culminated, stable gradients were generated by passive diffusion using a micropipette. Then, the 

cellular response of cells seeded on the cell port in the opposite end of the microchannels was monitored. Adapted 

from Ref. [27] with permission of the Royal Society of Chemistry. (E) 3D schematic of the device showing the open 

architecture of the cell culture/gradient chamber, where soluble gradients were generated by injecting picoliter 

amounts of fluid, from a closed microchannel system, into an open reservoir. Adapted from Ref. [26] with permission 

of the Royal Society of Chemistry. 
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1.4.4. Cell culture on chip 

One of the major advantages that open fluidics brings to cell culture is the direct accessibility, 

allowing for example single-cell manipulation and probing using a micropipette.[23] Open fluidic 

platforms have given a high contribution on the development of array production using materials, 

molecules and cells for high-throughput screening application, namely using platforms based on 

the wettability-contrast confinement.[58, 78, 81, 85, 114] The usage of 

superhydrophilic/superhydrophobic patterned surfaces made possible the development of 

simplistic methods, for example, for producing ultrahigh-density cell microarrays.[114] The ability 

to control the arrangement and geometry of surface patterning allowed to create patterns of several 

different cell types on the same substrate to study cell-cell communication.[115] The method was 

based on a parallel formation of several cell-containing microreservoirs on the cell 

seeding/adhesion step that were confined by the wettability contrast between hydrophilic regions 

and superhydrophobic boundaries. Then, with the several cell types adhered to the platform, the 

platform was submerged in cell culture medium and cell response to the neighboring cells 

monitored.[115] 

On a single platform, several different conditions can be tested simultaneously and separately in a 

tiny space, which allows saving time, materials and costs. It was showed that different 

combinations of nanostructured multilayered films were produced using layer by layer methodology 

in a single chip for fast high-throughput screening. In situ examination of the morphological, 

physicochemical, and biological properties of the multilayered films was performed on the 

developed microarray chip.[78] The opposite can also be done: first, to perform cell seeding into 

the hydrophilic spots and then add the reagents in study to the cell droplet array. The reagent 

addition can be done one by one using a micropipette or simultaneously using the sandwiching 

method described before.[58, 85] The carrier of the reagents in study, such as drugs or transfection 
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mixtures, can be prepared using a noncontact ultralow volume dispenser with the equivalent 

geometry to the geometry of cell carrier.[58]  

These new tools, which some are virtually accessible to anyone, showed high potential to be used 

in fields such as regenerative medicine/tissue engineering, diagnosis, cellular biology and drug 

discovery. 

1.4.5. Hanging-drop systems 

There is high interest for 3D cell spheroids, owing to their great potential for cell therapy, drug 

discovery and tissue engineering applications. Thus, the interest for developing new tools for cell 

spheroid production has been increasing. Some reported platforms for the production of these 3D 

cellular structures are based on open fluidics, namely using hydrophilic/superhydrophobic 

patterned surfaces.[77, 116-119] Generally, droplets with cells in suspension were placed on the 

hydrophilic spots – Figure 1.5A. Then, the platform was immediately turned upside-down, taking 

advantage of the high adhesiveness between droplets and spots for maintaining the droplets on 

the platform surface. Due to the gravity effect, the cells in suspension on the droplets aggregated 

to create cell spheroids. The spheroid size and morphology were precisely controlled by adjusting 

the droplet size and cellular density.[116, 118, 119] Additionally, it was showed that these same 

hanging droplet platforms allowed to produce arrays of cell spheroids for high-throughput drug 

screening tests.[77, 117, 119] This category of platforms presented several advantages over the 

conventional hanging droplet methods, namely the use of reduced volume for cell growth, direct 

accessibility that allowed easy cell culture medium change and the addition of drugs or other 

molecules, and both suitability and robustness for combinatorial high-throughput drug screening 

analysis.[77, 117] 

Alternatively, other open fluidic platforms for hanging droplet cell culture were developed based on 

the suspended microfluidics concept. One example is a two-well hanging droplet platform, 
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consisting in a larger well for cell culture and a smaller well for liquid manipulation by pipette that 

were interconnected – Figure 1.5B.[18] The device was produced using PS by CNC milling. As the 

liquid manipulation was performed in an adjacent well to cell culture well, lower shear stress was 

experienced by cells during fluid exchange. This asymmetric two-well droplet system opened the 

possibility for performing long-term culture with minimal disturbance to the cell culture conditions, 

using shear-sensitive or non-adherent cells. In order to demonstrate the platform versatility, co-

culture experiments were also performed, testing both direct and indirect co-culture conditions.[18] 

Other example of a suspended microfluidic system for hanging droplet cell culture was presented 

by Birchler et al..[22] This system consisted in a PDMS platform with circular areas for hanging 

droplets and interconnected thought channels for liquid circulation – Figure 1.5C. Combining the 

developed open fluidic platform with a fluorescence-activated cell sorting (FACS) device, specific 

single cells could be directly loaded into defined culturing compartments of the platform in an 

automatic and precise way. Through this combination, cells were directly sorted into a ready-to-use 

platform without unnecessary manipulation.[22] 
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Figure 1.5: (A) Images of the chips with the cell suspensions and then immediately turned upside-down. By the 

gravity effect, the cells in suspension aggregated, originating cell spheroids. Adapted with permission from Ref. [77]. 

Copyright 2014 American Chemical Society. (B) Schematic illustration of the two-well hanging droplet device and 

operation of a filled device containing cells (in red), when fluid is removed or added through the adjacent well to cell 

culture well with minimal disturbance to the culture. . Adapted from Ref. [18] with permission of the Royal Society of 

Chemistry. (C) Image of the hanging-drop PDMS platform with circular areas for containing cell droplets and 

interconnected thought channels for liquid circulation. Adapted with permission from Ref. [22]. Copyright 2016 

American Chemical Society. 
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1.4.6. Perfusion system for cell culture 

Applying the open fluidic concept, a fluidic system was created to improve long-term in vitro 

culturing and monitoring of organotypic brain slices.[120] The platform was built using PC by 

micromilling and was constituted of two levels. The bottom level contained fluidic structures with 

channels and a circular chamber aligned with the culturing area, where the culture medium was 

perfused. Medium perfusion was controlled through a syringe pump connected to the channels, 

allowing a constant supply of nutrients and waste removal to the system. The upper level consisted 

in a hole to accommodate a porous membrane insert in the culturing area, where the slices of 

tissue were placed. Due to the continuous perfusion of cell culture medium, the brain slices were 

cultured for longer periods with reduced handling of the tissues during culturing and the in vivo-like 

environment could be better mimicked.[120] 

 

1.5. Summary 

This review deals with an emerging topic related with microfluidics, specifically the open fluidics. 

The recent advanced on the field and the several applications associated to the biomedical field 

were described here. 

Open fluidic systems are characterized for present a higher air/liquid interface comparing with 

traditional microfluidics. Open fluidics offer intrinsic advantages to its architecture, such as 

simplicity of fabrication, easy to clean, enhanced functionality and accessibility for liquid handling. 

Additionally, these systems overcame usual problems of traditional microfluidics, namely the risk 

of channel clogging and the occurrence of flow perturbation due to bubbles. Open fluidic platforms 

can assume different architecture that were divided in two groups: physical confinement and 

wettability-contrast confinement. 
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In the first group, platforms combining both open and traditional microfluidics and open channels 

with rectangular and triangular cross-section were presented. The suspended microfluidic concept, 

a promising technology in open fluidics topic, was described and valuable applications of this type 

of platforms were reviewed. Finalizing this group, other innovative concept was advanced, the liquid 

flows confined and controlled for a narrow strip of a solid surface. 

Regarding to wettability-contrast confinement, platforms with (super)hydrophilic patterns bounded 

by a (super)hydrophobic substrate, paper-based microfluidics and  microfluidic devices based on 

textiles were included on this topic. A briefly description of basic concepts related with surface 

wettability was performed. Several techniques to produce superhydrophobic surfaces and 

(super)hydrophobic/(super)hydrophilic patterning were listed. Hydrodynamic conditions and 

phenomena to reach stable flows or precise fluid manipulation on these patterned platforms were 

discussed. On paper-based microfluidics, we did not develop the topic what concern production 

and applications, once several specialized review can be found. Lastly, some microfluidic devices 

based on textiles were presented. Then, several methods for fluid transport and manipulation in 

open fluids devices were also reviewed here, namely capillary-driven liquid flow, unidirectional 

spontaneous flow, electrowetting actuation and pressure driven flow. 

Finalizing this review, we revised the several applications on the biomedical field that were 

developed based on open fluidic platforms. These reported applications included: metabolite 

extraction, hydrogel production, gradient generation, microarray systems, hanging-drop systems 

and perfusion systems for cell culture.   
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2.1. Abstract 

Liquid marbles (LM) are freestanding droplets covered by micro/nanoparticles with 

hydrophobic/hydrophilic properties which enable to manipulate the marbles like a soft solid. This 

soft solid has being presented as an alternative approach to conventional superhydrophobicity. 

Widely range of applications were found for LM in different scientific fields, but just very recently in 

the biomedical field. 

Here, we reviewed the LM properties, namely shell structure, LM shape, evaporation, floatability 

and robustness. Additionally, we also described the several methods for LM manipulation that allow 

remote control of marbles, using magnetic, electrostatic and gravitational forces, ultraviolet and 

infrared radiation, and LM self-propulsion. Then, we described the biomedical applications found 

for the LM. Very distinctive applications have being reported, namely diagnostic assays, cell culture, 

drug screening and cryopreservation of mammalian cells. Finally, a critical view of the LM potential 

for biomedical applications was presented, suggesting some possible advances on this emergent 

field. 
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2.2. Introduction 

Liquid marbles (LM) consist in liquid droplets coated with a hydrophobic powder, according 

Aussillous and Quéré that reported for the first time this concept.[1] LM production is achieved by 

simply rolling a liquid droplet over hydrophobic micro or nanoparticles. Being the encapsulated 

material protected by the hydrophobic shell, thus preventing the physical contact between the liquid 

and the external environment.[1-4] However, it was also reported that hydrophilic particles can be 

used on LM production, specifically graphite and carbon black.[5, 6] LM make easy the 

manipulation of liquids that combined with other intrinsic properties justify the growing interest of 

the scientific community.  

Widely range of applications were found for LM, such as oil adsorption and separation,[7, 8] pH 

and gas sensing,[9-13] chemical reactions,[14, 15] synthesizing microparticles,[16] revealing 

water pollution on the water/vapor interface[17] and manipulation of small amounts of liquids 

(micro-reactors, micro-pumps).[14, 18, 19] The LM use in cosmetics has been also suggested, 

due to the non-oily feel imparted to skin by marbles.[20] Several studies and applications for LM 

have been published in different scientific fields, but just very recently in the biomedical field. 

Some excellent reviews on LM field exist in literature. The scopes of these reviews cover general 

properties, manipulation and applications of LM.[2-4, 21-25] However on this review, the aim was 

to focus on the emerging field of LM in biomedical applications. Based on the most recent progress, 

we intended to show how the properties and manipulation of LM were explored in applications 

development on the biomedical field. This review is finalized with a critical view of the latent 

potential of LM for new applications on the referred field. Therefore, this paper is composed by 

three sections: (a) compilation of the LM properties and the developed methodologies for LM 

manipulation, (b) illustration of the most recent progress in the biomedical applications for the LM, 
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and (c) discussion of the LM potential for new biomedical applications based on the recent progress 

on the LM field. 

 

2.3. Liquid marbles 

2.3.1. Properties 

2.3.1.1. Shell structure 

LM are non-stick droplets covered by micro and/or nanometrically scale particles with hydrophobic 

(and few hydrophilic) properties which enable to manipulate the marbles like a soft solid – Figure 

2.1A. This soft solid is regarded as an alternative approach to superhydrophobicity, once also 

inhibits the wetting of liquid droplets on solid surfaces. The original superhydrophobicity concept 

postulated that the anti-wetting properties were achieved by physical and/or chemical modification 

of a solid surface.[26-28] In the case of LM the approach is opposite, the modification is performed 

on the liquid droplet interface with the external environment instead of the supporting surface. Due 

to the non-wetting/non-sticking property, LM present very low friction with a wide diversity of solid 

and liquid supports. This low-friction characteristic allows LM to move easily and reveals to be 

crucial on both manipulation and development of numerous LM applications.[14, 24, 29, 30] 

Hydrophobic particles can be loosely fixed over flat surfaces to prepare moldable superhydrophobic 

surfaces.[31] For the case of LM, it was reported that the encapsulating layer of particles can 

present a structure from a loosely packed monolayer to a multilayer structure. Generally, LM 

coating has a non-uniform thickness, consisting in an arrangement of mono- and multilayers of 

particles – Figure 2.1D.[32, 33] Morphologically, LM wall presents significant roughness and 

porosity in appearance and is composed by particle aggregates separated by liquid region spacing 

(liquid clearings) – Figure 2.1D.[33-35] Due to these features the air is entrapped on LM shell 

creating “air pockets”, providing an analogous outcome to the “lotus effect” on rough surfaces.[3, 
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36] The air pockets give also to the LM the interesting ability to float in liquids – Figure 2.1B.[30, 

34, 37] The absence of direct contact between the encapsulated fluid and both solid and liquid 

supports was experimentally confirmed.[34] However, it was clearly demonstrated that the powder 

shell coating LM is permeable for gases, allowing their use in gas sensing and biological 

applications (reviewed ahead).[12, 13, 38-41]  

2.3.1.2. Liquid marble shape: static, rolling and floating conditions 

The shape of LM is determined by the equilibrium between the effects of gravity and surface 

tension.[2, 3] As marbles are soft, they deform in a way to minimize their potential energy. 

Increasing their size, LM tend to lower their center of mass and consequently increase the contact 

area with the supporting surface.[42] Wherein, small LM present a quasi-spherical shape, due to 

the negligible effect of gravity. However, in large LM the gravity force predominates on the shape 

formation, originating marbles with flattened puddle shapes.[1, 33] The classification of small and 

large is performed by comparison to the capillary length, being classified small marbles the ones 

that present a height significantly less than the double of the capillary length.[4, 21]  

Due to the very low friction between the LM and the supporting surface, LM can easily move down 

a tilted substrate.[1] On this movement LM do not slide but roll, and larger marbles roll more slowly 

comparing with smaller LM.[42, 43] Moreover, it was shown that rotating marbles can deform into 

doughnut and peanut shapes, due to the centrifugal force influence combined with LM coating 

flexibility – Figure 2.1E.[1, 2] 

Recently, Ooi et al. proposed a model to characterize the deformation of LM floating in a liquid 

surface.[44] A floating oblate spheroid model was developed from the floating solid sphere 

model.[45] Additionally, they reported that the developed model is different than the model 

proposed by Whyman and Bormashenko, for a sessile droplet resting on a solid surface.[46] This 

was justified by the fact that for the floating LM case a deformation occurs in both the marble and 
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the liquid surface. These models may important for improve the models of LM evaporation, since 

the exposed surface area to air may change for the different cases. 

2.3.1.3. Evaporation phenomenon 

The evaporation of LM is one of the most important parameters for long term applications, because 

with the evaporation LM lose their shape and collapse.[23, 24, 47] Several works have been 

reported studying the evaporation in LM, analyzing the effect of different types and layer 

organization of coating particles.[5, 48-54] The encapsulated liquid is also important, and as 

expected for more volatile liquids the evaporation rate is higher.[54]  

Dandan and Erbil reported that graphite-coated LM presented lower evaporation rates comparing 

with bare water droplets in the same conditions, presenting the LM a lifetime twice longer than the 

water droplets.[5] However using hydrophobic polytetrafluoroethylene microparticles (µPTFE) on 

the water-air interface of LM, the water marbles just presented 5 to 35% more of lifetime than of 

the pure water droplets.[49] Bhosale et al. compared µPTFE with fumed silica nanoparticles 

chemically modified with two different hydrophobic molecules: hexamethyldisilazane and 

dimethyldichlorosilane.[50] The obtained results showed that the water diffusion through LM shell 

was not related with the particle size. Instead, the authors suggested that the higher resistance to 

water loss of LM coated with hexamethyldisilazane-modified nanoparticles may be attributed to the 

lower aggregation of this particles. Recently, Laborie et al. also suggested that the rate of water 

evaporation is independent of the particle size.[52] However, unlike Bhosale et al., they associated 

the slower drying of LM with the presence of multilayer coatings and they suggested that the 

multilayers may be formed by aggregates of nanoparticles. This work indicated that LM covered 

with a monolayer of hydrophobic particles dried faster than bare liquid droplets. On the other hand, 

multilayer coated LM dried slower than water droplets. Being the evaporation rate of LM dependent 
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of the ratio between shell thickness and the LM diameter.[52] Ooi et al. also suggested that the 

coating density could be the main factor driving the liquid evaporation process in LM.[54] 

Despite the several studies on this subject, it seems necessary more studies to fully understand 

the relationship between the evaporation behavior in LM and the coating structure. 

2.3.1.4. Floating ability 

In literature several works studying and exploring the ability of LM to float can be found – Figure 

2.1B. [9, 11, 17, 34, 37, 44, 49, 55-63] Taking advantage from this LM property, applications 

were developed on sensors field for pH-sensing[9-11, 56-58] and to reveal water pollution,[17] and 

also on development of floating self-propelling devices.[59, 60] Generally, pH-sensing LM were 

coated with pH-responsive particles that change their wettability from hydrophobic to hydrophilic 

with pH variations. These LM usually exhibit long-term stability floating in solutions with a pH above 

or below a defined value. With the addition of an acid[56, 57] or a base[9, 11, 58, 63] to the 

supporting liquid, the LM immediately disintegrate due to the increase of the coating hydrophilicity. 

The pH changes can be visually detected by LM destruction and/or by colorant release. For the 

detection of water pollution the mechanism is similar, but instead of a change on LM shell the 

alteration occurs on the supporting liquid. As an example of this application, LM were able to 

successfully recognize the water contamination by organic compounds.[17] With these 

contaminants, the water surface tension decreased and the floating LM lost their integrity, revealing 

the water contamination without water sampling. On the same area of responsive floating LM to 

external stimuli, Nakai et al. reported a thermoresponsive LM that lost their integrity when the 

temperature increased and reached 46.5 °C.[64] This temperature corresponded to the melting 

point of the material used for the LM coating. The authors suggested that these marbles can be 

used for chemical reactions between the LM interior and the supporting liquid, being the reaction 

triggered by heating. 
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2.3.1.5. Robustness/Elasticity 

Understanding the mechanical robustness of LM is very important for designing of applications that 

involve the transportation and manipulation of LM. This robustness comprise the capability of 

marbles to resist to deformation, pressure and impact. 

In static conditions, the resistance to deformation and pressure could be assessed by quasi-static 

compression methods, showing the LM high elasticity – Figure 2.1C.[65, 66] For small mechanical 

compression, Asare-Asher et al. reported that LM could sustain a purely elastic deformation of up 

to 30% of their original size, using potassium chloride solution encapsulated by polyethylene 

microparticles (53-75 µm) – Figure 2.1C.[66] The elastic properties of LM are attributed to 

interfacial forces, namely to the capillary interactions between the colloidal particles coating the 

marbles.[67, 68] The same elastic behavior was found with LM under compression conditions and 

during the noncoalescent collisions of LM.[67, 68] Using high mechanical compression, Liu et al. 

studied the critical pressure before LM rupture, attributing this rupture to the poor coverage of 

particles on marble surface when highly stretched.[69] They found that the mechanical robustness 

of marbles was influenced by the hydrophobicity and size of the coating particles. 

Regarding to particles hydrophobicity, Liu et al. found that particles with a water contact angle 

(WCA) of 118° created more robust LM comparing with particles presenting 145°.[69] They 

attributed this result to the fact that the WCA of particles was closer to 90°, because at this WCA 

particles are more strongly bound to the liquid surface.[4, 69] This explanation was corroborated 

from other works that demonstrated experimentally the higher mechanical robustness of a particle 

layer at the liquid-air interface with a WCA of 90°.[70] Zang et al. also confirmed this results, 

showing that a coating using particles with properties in limit of the hydrophobic to hydrophilic 

regime presented the highest mechanical robustness for LM.[71] For this study, silica-based 

nanoparticles (~20 nm) with different relative SiOH content and a WCA in the range of 80–135° 
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were used.[70-72] However, Zhou et al. found higher mechanical stability for the LM produced 

using particles with a WCA of 132°, from a studied WCA range of 84–132°.[73] For the coating, 

acetylated cellulose powders (average size of ~40 µm) with different degrees of acetylation were 

used. This unexpected result may be owing to the very irregular shape of the coating powders.[73] 

Once the theoretical explanation for the WCA of 90° such as the best for the highest LM robustness 

is based on particles with smooth and spherical shape,[4] this explanation may do not fit in the 

specific case of Zhou et al.. More meticulous studies aiming this subject are indispensable. 

As previously mentioned, it was reported that the particle size also plays an important role regarding 

to marble robustness. Several reports stated that smaller particles make more stable LM.[33, 37] 

[50, 69] It has been found that nanoparticles behave like an “elastic membrane”, creating very 

robust marbles in comparison with microparticle coatings.[50, 69] A possible explanation is that 

increasing the particles size also increase the liquid clearings on the layer of particles, weakening 

the LM shell.[33-35, 69] Besides the opposite effect obtained from the use of nanoparticles that 

enable a more uniform deposition, the nanoparticles can create a better network between particles 

based on the attraction imposed by lateral capillary forces.[50, 69, 74]   

The mechanical robustness of LM surprisingly allow procedures such as inject and extract liquid 

from the LM core without destroy them.[47, 75, 76] Bajwa et al. reported a deeply study to 

characterize the behavior and the operational limits of LM upon liquid exchange via external inflow 

and outflow.[75] They reported that with the liquid injection a swirl motion on the marble surface 

occurred. Increasing injection flow rate the shear forces increased, consequently also the swirl 

motion and at high swirl rates LM robustness decreased. However, for moderate levels of swirl an 

enhanced on the robustness was observed. Larger marbles showed to take more liquid before 

disruption comparing with smaller marbles. It was also reported that the liquid can be removed 

and re-injected from the LM core and the marbles regained their spherical shape and non-wetting 
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behavior. With these extraction-injection cycles, the LM were weakening and disrupted after three 

cycles.[75] Finally, the authors showed be possible simultaneously inject and extract the liquid 

from the LM, thus being possible to use the marbles for perfusion experiments at low flow rates. 

 
Figure 2.1: (A) A LM resting on a glass slide, and (B) a LM floating on the surface of glycerol. Adapted with permission 

from Ref. [60]. Copyright 2015 American Chemical Society. (C) LM under compression: small and medium 

deformation, and breakage point – immediately before LM rupture. Adapted from Ref. [66] with permission from 

Elsevier. (D) Image of a LM and view of a cross section of the LM coated with a fluorescein O-methacrylate based 

powder. Adapted with permission from Ref. [33]. Copyright 2015 American Chemical Society. (E) Peanut and doughnut 

shapes of a rotating marble. Adapted with permission from Macmillan Publishers Ltd: NATURE ref. [1], copyright 2001.  

 

2.4. Liquid marbles manipulation 

Due to the removal of the liquid-solid interaction into a solid-solid interface, LM are non-stick 

droplets presenting an extremely low friction with the supporting surface, and consequently small 

forces for LM manipulation are required. Several different manipulation strategies have been 

reported, namely using magnetic, electrostatic and gravitational forces. Recently, the use of 

ultraviolet and infrared irradiation and self-propelling marbles were also reported. 
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2.4.1. Magnetic 

One of the most common means for manipulation of LM is the use of magnetic forces. Its popularity 

is owed to the simplicity of use and the remote control (no physical contact required) – Figure 

2.2A.[7, 14, 24, 25, 29, 30, 77-84] There is two means for using magnetic response on LM: a 

magnetic coating[80, 83, 84] or a magnetic content.[77, 82] 

For the coating, the used particles are hydrophobic nanoparticles of iron (Fe3O4)[29, 80] or 

synthesized nano/microparticles combining iron and other materials.[7, 83, 84] Fundamentally, 

the iron is used to confer superparamagnetic properties to the coating particles, making possible 

the LM manipulation by using an external magnetic field – Figure 2.2A. Since the hydrophobic 

coating powder can be manipulated, these magnetic marbles allowed the hydrophobic coating to 

open and to close reversibly and also the controllable merging of two marbles.[14, 29] Marbles 

with magnetic coating also roll and do not slide on a solid surface, after a moving permanent 

magnet.[14] 

By taking advantage of the LM feature of being opened and closed reversibly, it was possible to 

have directly access and added a second liquid to the marble core, producing a bicomponent LM 

suitable for chemical reactions.[14] This LM feature also allowed to perform optical detection with 

a reflection mode that enabled to probe chemical reactions taking place within marbles.[79] By 

exploring the easy manipulation of magnetic LM, Zhao et al. proposed to integrate different 

processes in a single device – Figure 2.3D. Using the magnetism, the LM could be moved along 

of the proposed device, opening the marble electrochemical measurements were carried out by 

introducing an electrode probe inside of LM and combined with optical detection.[81] Recently, it 

was also proposed a device to magnetically actuate in floating LM, aiming the transport of aqueous 

solution with minimal volume loss for digital microfluidic applications.[82] 
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2.4.2. Electrostatic 

It was showed that LM can also be deformed, moved and change their wettability when exposed 

to an electric field.[2, 85-91] Aussillous and Quéré showed for the first time that LM can be moved 

by the effect of an electrostatic field, where this field was reached by simply rubbing a stick of 

Teflon on a fabric.[2] By using electrostatic interactions, it was also showed that a liquid droplet 

can be spontaneously coated with hydrophobic particles, resulting in multi-layered LM.[87] By 

exposing LM to an electric field provided by the plates of a capacitor, LM could be activated being 

observed LM deformation[88] and performed controlled movement.[89, 90] Similar behavior was 

also reported for “Janus” marbles, droplets composed of two hemispheres characterized by 

presenting different physical and/or chemical properties. It was showed that “Janus” marbles 

could be rotated with an electric field due to the difference in electric properties of the particles 

used for the coating, in this case Teflon and carbon black that are dielectric and semiconductor 

particles respectively.[91] 

2.4.3. Gravitational 

The simplest ways to provide movement to LM is allowing it to roll down an inclined plane, during 

which gravitational potential energy is transformed into kinetic energy conducting to a descending 

movement.[24, 92] The speed acquired by the LM is influenced by the inclination angle, surface 

tension, viscosity and Bond number.[24, 42] Smaller marbles roll more faster comparing with 

larger LM.[42, 43] Two marbles can be merged in a controlled way under the action of gravity.[93] 

[94] Based on this method, Castro el al. presented a 3D printed platform for continuous production 

of “Janus” and composite LM.[94] The marbles were produced through the coalescence of two 

LM with different coatings and the process control was performed by adjusting the inclination angle 

of the designed platform. The authors suggested that the developed device has potential application 
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for surface engineering with innovative functionality for drug therapies, particles-based barcode 

biomarkers and smart membranes.[94] 

2.4.4. Ultraviolet and infrared radiation 

Similarly to the pH-responsive coatings of LM reviewed earlier, the wettability of some special LM 

coatings can be changed by optical irradiation, without any physical contact. Using photoresponsive 

material as the coating material, it was reported that the LM rupture can be remotely controllable 

by using ultraviolet (UV) radiation – Figure 2.2B.[30, 95, 96] Smart LM were created using a 

coating of particles that simultaneously were magnetic and pH-responsive, whose hydrophilicity 

increases when protonated.[30] A photoacid generator within the coating particles was used and 

when irradiated with UV light generated high concentration of H+ that caused the coating particles 

to become hydrophilic, breaking the LM. Nakai et al. presented a similar photo-responsive LM, but 

using spiropyran powder to coat water droplets.[95] With UV exposure an isomerization process 

occurred on the coating material, originating a more hydrophilic coating. The authors reported to 

obtain LM that were stable for more than a week in dark and humid conditions, but when exposed 

to UV radiation the LM burst. Another UV-responsive LM was created by Tan et al., by using 

hydrophobized titanium dioxide as the coating particles – Figure 2.2B.[96] In this case with UV 

light, hydrophilic hydroxyl groups were formed on coating surface, due to the well-studied 

photoresponsive behavior of titanium dioxide. 

Other way to perform a remote control of LM is by using a near-infrared (NIR) laser– Figure 

2.2C.[97-99] For one of the reported examples, the marbles were coated with carbon nanotubes 

and fullerene, which present high absorbance in the NIR region. Upon NIR irradiation, the LM 

immediately disintegrated due to the transformation of NIR energy into heat.[97] However, Paven 

et al. developed a more advanced system that allowed to drive floating LM using simply a NIR laser 

or sunlight.[98] Comparing with other external stimuli namely pH and temperature, the light-driven 
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transportation of LM showed advantages such as the control of the timing, position, area, direction 

and velocity. Important parameters for the use of these NIR-responsive LM suggested by the 

authors in delivery and release of materials.[98] Chu et al. also reported to have high control 

manipulating LM with a NIR laser, but using chloroform marbles submerged in water – Figure 

2.2C.[99] Due to the conversion of NIR energy into heat, vapor bubbles were formed inside of the 

LM. Controlling the laser irradiation on the marble surface, marbles were able to ascend, 

horizontally move and suspend in water. Authors suggested the applicability of this system for 

constructing smart micro-reactors, micro-engines or micro-robots in aqueous environment.[99] 

2.4.5. Self-propulsion 

Taking advantage of LM ability to float, manipulations have been proposed to create self-propelling 

marbles.[59, 60] LM containing aqueous ethanol solutions were placed on the water surface and 

they revealed autonomous motion. This motion is explained by the Marangoni solutocapillary effect 

that happen due to the ethanol evaporation and posterior condensation on the water surface. The 

ethanol diffusion onto the supporting water generates a gradient of surface tension, impelling 

motion to the floating object.[59, 60] It was found that the lifetime of self-propulsion increased with 

LM volume and ethanol concentration,[59] but the motion velocity revealed to be independent of 

the marble volume.[60] 
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Figure 2.2: (A) Images of a LM moving vertically and horizontally driven by a magnet bar. Adapted from Ref. [84] 

with permission of the Royal Society of Chemistry. (B) LM exposed to UV radiation and after several minutes of 

exposition the LM collapsed. Adapted with permission from Ref. [96]. Copyright 2014 American Chemical Society. (C) 

Schematic illustration of remote manipulation of a chloroform (CHCl3) marble in water using a near-infrared laser. 

Adapted with permission from Ref. [99]. Copyright 2016 American Chemical Society. 

 

2.5. Biomedical applications 

Due to their peculiar properties and versatility in the design, LM are very promising candidates to 

be valuable in the biomedical field. Very recently, this new direction on LM applications started to 

be explored, such as demonstrated by some reports that can be found in literature.[47, 61, 76, 

81, 100-105] These few works reported very distinctive applications, namely diagnostic assays, 

cell culture, drug screening and cryopreservation of mammalian cells – Figure 2.3. 
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2.5.1. Diagnostic assays 

Due to their small dimensions, the use of LM as miniature reactors has awakened high interest for 

the miniaturization of chemical processes. Such micro-reactors offer significant advantages namely 

in reducing the use of chemical reagents and solvents, providing a well-confined micro-environment 

and a versatile and cost-effective platform. Taking benefit from these LM characteristics, several 

potential applications have been successfully exploited for chemiluminescence reactions, acid–

base reactions,[14] nanocomposite synthesis,[16] polymerizations,[106] silver mirror 

reactions,[15] and heterogeneous catalytic reactions.[18] An obvious use of LM in the biological 

area is also the miniaturization of processes for biological reactions and diagnostic assays. 

The use of LM as micro-bioreactors for rapid blood typing was demonstrated – Figure 2.3C.[100] 

The “blood marbles” were produced by rolling blood droplets over hydrophobic powder of 

precipitated calcium carbonate. Sets of three marbles were prepared for each single test, one 

marble for each one of the three antibody solutions (Anti-A, Anti-B and Anti-D). After injecting on 

the respective LM the antibody solution, the ABO and Rh blood grouping was determined by 

monitoring the occurrence or not of a haemagglutination reaction. The occurrence of this reaction 

resulted in a two phase separation inside of the marbles, finding clearly a light-red and a dark-red 

color zone. The dark zone was consequence of a precipitation of the agglutinated red blood cells 

to the bottom of the LM, indicating the presence of the respective antigen. In contrast, the detection 

of no separation indicated the absence of the corresponding antigen. From the combined analysis 

of the results obtained for each one of the three antibodies, the blood grouping was determined – 

Figure 2.3C. Blood type assessment is a mandatory step before a blood transfusion to avoid the 

fatal consequences of incompatibility. Besides the low-cost and disposability of the technique, the 

authors also claimed that the test can be performed without any special medical facilities and with 

reduced biohazard due to the encapsulation of the blood samples.[100] 
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Zhao et al. also reported the applicability of LM as suitable platforms for biological assays.[81] They 

established a new method for the quantitative detection of dopamine in LM based on 

electrochemical measurements. The authors proposed that this technique can be useful on the 

diagnosis of neurological disorders in brain functions.[81] Besides this application, a glucose assay 

based on a colorimetric method was reported. Using magnetic particles for marbles production, 

authors took advantage of the magnetic opening feature of magnetic LM to perform both 

measurements. The dopamine detection was performed by immersing a miniaturized electrode in 

the liquid of the partially opened marble. For the glucose assay, the measure was achieved through 

the optical absorbance of the liquid in the fully opened LM by transmission mode. Beyond the 

measurement methods, an integrated approach was proposed for the LM production and analysis 

using potentially a single device, introduced briefly before – Figure 2.3D.[81] The magnetic 

actuation system was envisioned as the way to manipulate (move, open and close) the LM along 

all of the integrated processes. Complementarily to the electrochemical detection and the 

transmission-mode optical detection, it was proposed to integrate on the device a reflection-mode 

optical detection and an encapsulation process performed by infra-red heat-induced. Using wax-

based particles in LM preparation, a uniform film surrounding the LM content could be formed by 

heating. For instance, this encapsulation step allows the samples preservation after analysis for 

follow-up assessment or biobanking and archiving.[81] 

2.5.2. Cell culture 

A well-known and explored property of LM are the gas permeable nature of their shell, demonstrate 

in several reports related with gas sensing and gas reactions.[12, 13, 38-40, 106] The gas 

permeability is a vital feature for LM application in cell culture, allowing oxygen and carbon dioxide 

exchange between cell culture medium and surrounding environment. Tian and co-workers 

demonstrated that LM provided a suitable environment for cell culture by culturing aerobic 



Chapter 2 – The Potential of Liquid Marbles for Biomedical Applications: A Critical Review 

 

62 
 

microorganisms.[41] Besides this work, other 3D bioreactors based on LM have been reported, 

namely for formations of cancer cell spheroids (CCS),[47] embryoid bodies (EB),[101, 102] 

olfactory ensheathing cell spheroids[61] and for in vitro maturation of sheep oocytes.[103] 

CCS cultured in vitro are postulated as capable to mimic the in vivo physiology of tumors more 

realistically than 2D cell cultures.[107-109] These cell spheroids were produced by simply 

inoculating hepatocellular carcinoma cells in LM.[47] The necessary cell aggregation for CCS 

formation occurred due to intrinsic characteristics of LM: the confined volume that promoted a 

higher intercellular interaction; and their non-adhesive shell that discouraged cell adhesion. 

Following the same rationale, the use of these 3D bioreactors for EB formation was also reported, 

since pluripotent embryonic stem cells tend to form aggregates – Figure 2.3A.[101] LM are 

presented as a facile and highly efficient means for in vitro production of EB. Additionally to EB 

formation, it was reported that the LM offered a suitable micro-environment to induce 

spontaneously (without using growth factors) the EB differentiation into functional 

cardiomyocytes.[102] The authors emphasized that this technology would be highly beneficial to 

provide a continuous source of cardiomyocytes for regenerative medicine applications, drug 

discovery and safety testing.[102]  

Floating LM may be employed to produce spheroids of olfactory ensheathing cells.[61] The choice 

for these LM was justified by the fact that floating LM allowed better handling and minimized the 

effect of evaporation, since the LM were placed over a  liquid bath that increased the humidity. 

Furthermore using floating LM, the effect of gravity that forces cell aggregation at the LM bottom 

was minimized, due to the motion of the marble over the surface of the supporting liquid improving 

the mixing process inside the LM. This revealed to be crucial to obtain identical size spheroids. In 

complementary work, it was shown that LM can also be used for co-culture trials.[61] Olfactory 

ensheathing cells were co-cultured with Schwann cells or astrocytes cells. On the liquid 
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environment provided by LM, the olfactory ensheathing cells were able to replicate their normal 

behavior of surrounding other cells, because the cells could freely associate with the other cell 

types.[61] 

Recently, LM were presented as suitable micro-bioreactors to induce the maturation of oocytes in 

vitro.[103] Furthermore, it was suggested that LM have high potential for other applications in 

reproductive biology, such as in oocyte fertilization and individual embryo culture. The reduced 

reagent consumption and low potential for contamination that LM provide have been pointed as 

valuable characteristics.[103] 

The use of LM was present as a valuable alternative to the hanging drop method that is the most 

common method used for these reviewed applications.[47, 61, 101-103] 

2.5.3. Drug screening 

Taking advantage from the fact that LM allow the injection and extraction of controlled volumes of 

liquid without disrupting their structure, Oliveira et al. showed that LM could be used for high-

throughput drug screening – Figure 2.3B.[76] Simultaneously, the liquefied environment in the LM 

was designed to accommodate the culture of anchorage-dependent cells that require a physical 

support to adhere and be able to proliferate. To accomplish this goal, microparticles were 

introduced in the liquid environment, providing the indispensable cell anchorage sites for cell 

adhesion.[76] After preparing the LM with a mixture of cells and micropaticles followed by an 

incubation period for cell adaptation, a drug/chemical agent was injected on the produced micro-

bioreactors. Through the injection of a reagent that the color change against a specific cellular 

response, several conditions could be analyzed and compared. Due to the fact that the LM were 

translucent,[76] the monitoring the color change of the LM was possible. The color monitoring was 

performed by collecting images of the LM, and then the global information was obtained by image 

processing – Figure 2.3B. Such technology would have impact in high-throughput drug screening 
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under 3D cell culture environments, where results can be obtained through colorimetric-based and 

non-destructive measurements.[76] 

2.5.4. Cryopreservation of mammalian cells 

One very interesting and promising application for LM is their application in cryopreservation of 

mammalian cells – Figure 2.3E. Serrano et al. presented LM as a successful alternative tool to the 

conventional methods for the cryopreservation of a mammalian cell line, without using any 

cryopreservant agents.[104] Most of these agents cause cytotoxic effects requiring to be use at low 

concentrations, namely dimethyl sulfoxide and glycerol.[110, 111] Two procedures inspired on the 

conventional protocols were used: the rapid freezing by immersion in liquid nitrogen and slow 

cooling up to -80 °C using a standard freezing container. LM were prepared by rolling droplets of 

highly concentrated cell suspension (prepared on fetal bovine serum) over poly(tetrafluoroethylene) 

powder.[104] Then LM were maintained in frozen conditions for 15 days. After the thawing 

procedure, the integrity of the LM was confirmed to be intact and the following cellular parameters 

were evaluated: viability, morphology, proliferation, size, complexity, and cell cycle – Figure 2.3E. 

Droplet volume and cell concentration showed to be the critical factors for using the LM successfully 

on this application. The authors found a safe range of work:  5–30 μL for the droplet volume and 

(0.5−2) × 105 cells μL−1 for cell concentration. Accomplishing these limits, LM showed to reach 

the same level of performance of standard freezing procedures for all the evaluated cellular 

parameters.[104] 



Chapter 2 – The Potential of Liquid Marbles for Biomedical Applications: A Critical Review 

 

65 
 

 
Figure 2.3: (A) Phase-contrast and fluorescence microscopy images presenting the morphology of embryoid bodies 

produced using LM. (B) Schematic illustration of the method for high-throughput drug screening. (C) Blood typing by 

injecting antibodies into blood marbles. (D) Illustration of a proposed device for “on-line” detection and for sample 

encapsulation based on magnetic LM. Adapted from Refs. [102], [76], [100] and [81], respectively, with permission 

of John Wiley & Sons. (E) Scheme of the developed procedure for cryopreservation of mammalian cells. Adapted with 

permission from Ref. [104]. Copyright 2015 American Chemical Society. 

 

2.6. Critical analysis: the potential of liquid marbles for biomedical 

applications  

The LM present a high versatility such as shown in the several applications already reported in 

literature, mainly on the chemistry field. Some of these applications can be just adapted or may 

inspire new applications for biomedical purposes. The majority of the reported data concerning 

evaporation, floatability and robustness of LM was obtained using water as the encapsulated liquid. 
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Similar data should be obtained for cell culture medium and human body fluids, because the 

surface tension for these fluids is different from water.[100, 112, 113] Being the surface tension 

of the encapsulated liquid one of the crucial parameters that influence LM behavior,[2, 3] specific 

studies are required to find the appropriated materials to encapsulate these fluids. 

LM present high potential for application in the development of co-culture models to mimic in vivo 

environments, because they can ensure a compartmentalized 3D cell culture environment.[107-

109] This application for the LM started to be explored by Vadivelu et al., where they studied the 

interaction of olfactory ensheathing cells with Schwann cells and with astrocytes. Reporting that 

olfactory ensheathing cells wrapped the other cells, behavior that was observed for the first 

time.[61] We believe that other co-culture models can be created using the same method by mixing 

different cell types in one LM. Alternatively, we also envisage that in the first stage different 3D cell 

structures (spheroids or cell/microparticle aggregates) can be produced in separated LM. Then, 

by the coalescence of two or more marbles into a larger one, the produced 3D structures can be 

co-culture in the same confined environment.[93, 94] Other opportunity is to perform indirect co-

culture of cells, using a connecting tube between two LM with different cell types in culture and 

study the paracrine signaling on cellular response. A similar scheme was reported by Bormashenko 

et al., where they connected two different LM with a capillary tube to build a micro-pump powered 

by the differences on the surface tension between two different marbles.[19] 

Other more complex and revolutionary co-culture scheme can be to produce capsules with cells 

inside generated from LM. Specifically the idea is that LM spontaneously become capsules through 

a chemical or physical process that promotes the merging between the coating particles creating 

a membrane.[15, 18, 114] Incubating different cell types on these capsules, a kind of “organoid” 

structures can be produced and the biochemical communication between them can be study, 

ensuring that the capsule membrane is permeable to both nutrients and cellular metabolites. Such 
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kind of compartmentalization of cellular microenvironments were performed before using the layer-

by-layer technology.[115, 116] “Organoids” produced with LM could be then cultured together in 

the same culture well or integrated in a fluidic system, following the same rationale of the “organ-

on-a-chip”.[117, 118] Chin et al. already reported a process to produce stable liquid capsules from 

LM, promoting an interfacial polymerization by vaporization of ethyl-2cyanoacrylate.[114] Other 

works showed that the coating particles of LM can be part of chemical reactions happing inside of 

the marbles, performing a role as catalytic particles[18] or reactive substrates.[15] However, these 

solutions are not suitable to be used in cell culture, but we believe that similar processes can be 

found by combining different biocompatible materials. 

Having in mind the suggestion of Zhao et al. for the integration of several processes in a single 

device and using the magnetism for LM manipulation,[81] a similar device can be developed for 

biomedical applications. We propose the development of an advanced high-throughput system for 

cytotoxic analysis of drugs and materials. The system may incorporate the several steps for this 

kind of assessment: production of magnetic LM with cells; incubation of cells for the formation of 

cell spheroids or 3D cell/microparticle aggregates;[47, 61, 76, 101, 102] optical morphology 

assessment of the 3D cell structures; drug/material supply by injection or direct access to the LM 

core;[14, 47, 75, 76] cellular response assessment by colorimetric methods or electrochemical 

measurements; [76, 81] by on-line analysis of results, a sorting of LM can be performed; then 

using the selected LM, the cells can be maintained in culture on the same platform or moved for 

other environment by LM burst; cells from the selected conditions can also be used in more 

powerful methods of cell evaluation such as flow cytometry.[104] We believe that almost all of 

these processes can be fully automatized on the proposed device. Besides the application in high-

throughput analysis, such proposed platform could also find application in diagnostic assays. 
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Inspired by the LM, Oliveira et al. created a novel concept termed “hydrophobic hydrogels”, 

consisting into coat hydrogels with hydrophobic particles.[105] They found that similarly to LM the 

created hydrogels could float. Based on this ability, floating (bio)microdevices were developed for  

different applications, namely optical pH sensing, microengineering of self-assembling floating 

hydrogels and construction of engineered biological tissues.[105] A step forward on this technology 

can be the use of these floating hydrogels to create in vitro skin tissue, once this tissue prefer the 

air-liquid interface. Possibly, a stratified structure similar to skin tissue can be obtained by 

encapsulating cells on the hydrogel and other cell type cultured on the hydrogel top at the air-liquid 

interface. To culture cells on the hydrogel top, the surface should be free of hydrophobic particles 

and can be achieved by controlling the covered hydrogel surfaces in the coating process. 

Based on the published knowledge about LM, we believe that several applications on the 

biomedical field can be reported soon. Some applications seem more straightforward to reach, for 

example the development of the LM as a cryopreservation tool directed to especial sensitive cells 

such as pluripotent stem cells.[104, 119] Other applications should be more difficult to reach, 

such as some of the suggested applications presented here in this section. 

 

2.7. Summary  

This review deals with the recent advanced on LM field and the emerging applications on the 

biomedical area, showing the natural evolution of some applications from other scientific fields to 

the biomedical engineering. 

The most recent advances on the LM properties and manipulation were reviewed. The interfacial 

characteristics of LM were largely explained, namely the shell structure that present primordial 

influence on the LM properties. This relationship between the coating and the LM capabilities was 

described, specifically for the capability of LM to deform and float. The evaporation phenomenon 
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and robustness were elucidated, because are features with high importance for long term 

applications such as occasionally required on the biological and biomedical fields. The 

manipulation of LM is also a critical issue on this field to avoid contaminations. However, several 

methods have being reported for LM handling without direct actuation over the marbles. The 

remote manipulation can be performed by magnetic, electrostatic or gravitational forces and even 

by using UV or NIR light. 

The biomedical applications found for the LM were reviewed, in a perspective how the LM 

properties and manipulation methods were explored for this aim. Applications on diagnosis, drug 

screening, cell culture and cryopreservation were described. Finalizing, a critical view of the LM 

potential for biomedical applications was presented, suggesting some possible advances on this 

emerging area. 
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Chapter 3 

 

Materials and Methods 

This chapter aims to detail and add relevant information that is not present in the experimental 

sections of the different chapters (chapters 4 to 8) of this thesis, regarding to some critical materials 

and methods used during the development of such works. 
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3.1. Production of poly (L-lactic acid) microparticles  

Poly (L-lactic acid) (PLLA) microparticles were produced by emulsion solvent evaporation 

technique.[1-5] 1 g of PLLA (Mw1600–2400, 70% crystallinity, Polysciences, Germany) was 

dissolved in 20 mL of methylene chloride (CH2Cl2) to obtain a 5% w/V transparent solution of 

PLLA/CH2Cl2. This solution was added under agitation to 100 mL of 0.5% w/v polyvinyl alcohol. 

The resulting solution was stirred for 2 days at room temperature (RT) to evaporate the organic 

solvent. The produced PLLA microparticles were collected by filtration and washed several times 

with distilled water. Ultimately, microparticles were subsequently frozen at −80 °C and lyophilize 

for 3 days. The surface of PLLA microparticles was modified by plasma treatment technique. PLLA 

microparticles were placed inside the plasma reactor chamber fitted with a radio frequency 

generator. Air was used as the working atmosphere. After the pressure of the chamber had 

stabilized to ∼0.2 mbar, a glow discharge plasma was created by controlling the electrical power 

at 30V of electrical potential difference. Microparticles were treated for 5min. The sample was 

removed from the chamber and a gentle mixing was employed in order to maximize the PLLA 

surface exposition to plasma treatment. This procedure was repeated three times to apply a total 

plasma reaction time of 15 min. A total of 450 mg of PLLA plasma-treated microparticles were 

sterilized by UV radiation for 30 min and then immersed in 30 mL of 0.02 M acetic acid containing 

1200 μg of collagen I for 4 h at RT. A mild shaking was employed every hour. Ultimately, 

microparticles were collected and washed three times with sterile phosphate buffer saline (PBS). 

 

3.2. Synthesis of gelatin methacryloyl 

Gelatin methacryloyl (GelMA) prepolymer was synthesized by reaction of gelatin with methacrylic 

anhydride (MA) – Figure 3.1(i).[6, 7] Type A porcine skin gelatin was dissolved at 10% (w/v) into 

Dulbecco’s phosphate buffered saline (DPBS; GIBCO) at 60 °C under vigorous stirring. MA was 
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added at a rate of 0.5 mL/min to the gelatin solution, until the target concentration of 8 % (v/v) 

was reached and then allowed to react for 2 h. Following a 2× dilution with additional warm (40 

°C) DPBS to stop the reaction, the mixture was dialyzed against distilled water using 12–14 kDa 

cutoff dialysis membrane for 1 week at 40 °C. The solution was lyophilized for 1 week to generate 

a white porous foam and stored at − 80 °C until further use. GelMA polymer and 1% (w/v) 

photoinitiator (Irgacure 2959) were dissolved in DPBS at 60 °C, for further use in the preparation 

of photocrosslinked GelMA hydrogel – Figure 3.1(ii). 

 
Figure 3.1:  Schematic representation for preparation of photocrosslinked GelMA hydrogel. (i) Reaction of gelatin and 

methacrylic anhydride for grafting of methacryloyl substitution groups. The modification occurs at primary amine and 

hydroxyl groups. The RGD domains are illustrated along the GelMA chains, and their chemical structure is depicted 
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within the inset. (ii) Representative reactions during the photocrosslinking of GelMA to form hydrogel networks. Free 

radicals are generated from photoinitiators, which initiate the chain polymerization of the methacryloyl substitutions. 

Propagation occurs between methacryloyl groups located on the same chain and on different chains. Termination 

occurs between two propagating chains or between one propagating chain and a second radical. Chain transfers and 

many other minor reactions are not shown, for clarity. Adapted from Ref. [8] with permission from Elsevier. 

 

3.3. Production of superhydrophobic (SH) surfaces with hydrophilic 

patterns 

Two different procedures were used to produce SH surfaces in this the thesis: using DE to produce 

a SH surface over different substrates, namely glass and PS (chapter 4); and using a phase 

separation methodology to produce SH surfaces of fully constituted of PS (chapters 5 and 6). 

In chapter 4, a simple strategy was adopt to produce the SH surfaces: using DE to achieve a 

micro/nanoscale hierarchical topography on the substrate surface; and, performing a 

fluorosilanization process to obtain a surface with low surface energy. In the specific case of glass 

substrate, the following sequence of steps was performed: the substrate was coated with DE; DE 

was bound to the glass by melting superficially the substrate (the ensemble was heated at 675 °C 

for 1.5 hours); finally, the fluorosilanization process was performed. However, for the case of PS 

substrate the employed procedure was: first, the fluorosilanization process was performed in the 

loosely microparticles of DE; then, the substrate was coated with the fluorinated DE; and finally, 

the ensemble was heated at 90 °C for 20 minutes and cooled always under pressure, ensuring a 

strong binding between the fluorinated DE and the PS substrate. Additionally, hydrophilic features 

with different geometries were patterned on the SH surfaces, using an appropriated stencil mask 

for the selective exposure of the desired surface areas to plasma treatment. 

In chapter 5 and 6, PS superhydrophobic surfaces were produced by a phase separation method, 

which is a simple, fast and inexpensive method.[9, 10] Using a mixture of a good solvent and a 
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non-solvent of PS, a controlled precipitation of PS was performed on the smooth surface of PS 

substrates.[11-13] The PS precipitation on the surface led to the formation of a micro/nanoscale 

roughness on the surface explained by the following mechanism: the mixture of a solvent and a 

non-solvent of polystyrene formed both poor and rich polymeric phases. In the poor phase, polymer 

nuclei were formed by precipitation. The rich phase aggregated around these nuclei in order to 

decrease surface tension. During polymer precipitation within the rich PS phase, a continuous 

deposition of spheres on the surface took place.[9, 14-16] The patterning of wettable features on 

this SH surfaces was performed by protecting the desired areas with adhesive masks before the 

phase separation procedure. The adhesive masks consisted in stickers of polyvinyl chloride (PVC) 

that were glued in the pristine PS substrates.[17, 18] In chapter 5, these PVC stickers had the 

shape of strips with 30 mm x 2 mm and were placed with a spacing of 4 mm. However, in chapter 

6, stickers with a square shape with 2 mm x 2 mm separated by 2 mm were used. These PVC 

stickers were removed using tweezers, immediately before SH surface use and only after all the 

modification procedures of PS surface being performed. 

 

3.4. Surface modification by plasma treatment 

In this work, the plasma treatment was used with three different objectives: (i) to produce 

hydrophilic patterns on the superhydrophobic surfaces engineered using DE (chapter 4); (ii) to 

prepare the SH surface of PS for the flurosilanization process (chapter 5)[19-21]; and, (iii) to 

increase hydrophilicity of wettable paths created on the same SH surfaces (chapter 5). 

In chapter 4, Argon plasma treatment was performed over the fluorosilanated surfaces of both 

glass and PS substrates with entrapped DE. With this treatment, it is believed that the 

fluorosilanated surfaces experienced a similar process to the one reported for fluoropolymers 

(specifically, polytetrafluoroethylene (PTFE) and tetrafluoroethylene–perfluoroalkyl vinylether 
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copolymer (PFA)) treated with Argon plasma.[22-24] In these cases, both defluorination and 

oxidation occurred on the fluoropolymer surfaces, being showed that CF2 carbons were changed 

by CF, CH2, C=O, and C–O carbons in the PFA surface.[24] It was suggested that oxygen functional 

groups were formed by the combination of argon plasma irradiation and air exposure. Specifically, 

radicals were produced by the plasma irradiation on the fluoropolymers surface. Then, these 

radicals were quickly changed into peroxy radicals by contacting the air.[23] This modification on 

fluoropolymers surface led to an increase on surface hydrophilicity, confirmed by the decrease in 

water contact angle (WCA). Here, similar results were observed: by XPS analysis was determined 

that the relative content of CF carbons decreased and C−H, C−O, and O=C−O carbons increased 

with plasma treatment; and, the WCA of the fluorosilanated surfaces decreased steadily down to 

the hydrophilic regime by increasing the exposure time to the Argon plasma treatment (chapter 4). 

In chapter 5, both superhydrophobic PS and smooth PS surfaces were oxidized by air plasma 

treatment. On this process, the oxidation is produced by radical reactions between the polymer 

chain backbones and atomic oxygen in plasma, generating oxygen-based functional groups.[25] 

Specifically, the –OH groups formed on the superhydrophobic PS surface were important for the 

covalent binding with the silane molecule in the flurosilanization process.[26] On the smooth PS 

surface, the aim was to increase the hydrophilicity of the wettable paths that could be reached by 

the introduction of these oxygen-based functional groups in the surface.[25, 26] The PS 

hydrophilicity was precisely controlled by adjusting the exposure time to the air plasma treatment. 

On this step, the plasma treatment was confined to the wettable paths by selective exposure of the 

desired area to plasma using a stencil mask. 
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3.5. Surface chemical modification of different materials by 

flurosilanization  

Besides the hydrophobization method used to produce the SH surfaces of PS, the chemical 

modification of different material surfaces was performed to increase hydrophobicity, using 

1H,1H,2H,2H-Perfluorodecyltriethoxysilane (PFDTS, 97%). This chemical modification was 

performed in the created glass substrates with entrapped DE (chapter 4), in the loosely 

microparticles of DE (chapters 4, 7 and 8), and in the SH surfaces of PS (chapter 5). In this last 

case, the aim was to increase hydrophobicity and change the surface chemistry with the objective 

to increase the surface resistance to protein adsorption. 

The preparation of the substrates for the chemical modification was different for each material. For 

the case of glass substrates with DE and after the sintering process, the samples were washed 

with ethanol in an ultrasound bath for 15 minutes to remove DE excess. Then, the substrates were 

immediately immersed in a PDTS solution at 1% in ethanol for up to 48 hours. In the case of the 

loosely microparticles of DE, two different procedures were used for the preparation of the DE 

powder. Initially, in chapter 4, the DE microparticles were heated at 600 ºC for 1 hour. Then, in 

chapters 7 and 8, based on literature [27] an alternative procedure was adopted and the DE was 

dried at 190 °C under vacuum for at least 2 h. In both procedures, the aim was to promote water 

desorption and expose more silanol groups on the surface of DE microparticles for an efficient 

flurosilanization process. After this drying step, by mixing DE (1 g) with PFDTS solution (10 mL at 

1% v/v) prepared in deionized water a DE suspension was prepared, the mixture was left to react 

overnight. By filtration it was separated the solid phase from the liquid. For both cases the glass 

substrates with DE and the loosely microparticles of DE and after the flurosilanization process, the 

samples were dried in air and heated to 220˚C for 5 min to ensure the complete PFDTS hydrolysis 

and condensation, thus forming a stable fluorosilanated layer on the silica surface.[28] Additionally, 
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the chemically modified DE microparticles were washed with 20 mL of ethanol to remove any 

silane that may not bind to the surface. After drying, a hydrophobic powder was obtained. In the 

case of the SH surfaces of PS (chapter 5), the preparation of the substrates for the flurosilanization 

process consisted in to submit the samples to a plasma treatment for 30 seconds at 30W and 0.1-

0.2 mbar (Plasma Prep5, Gala Instruments). Then, the substrates were immersed in a PDTS 

solution at 1% in ethanol for up to 48 hours. These chemically modified substrates were washed 

with absolute ethanol to remove the unreacted PFDTS. Specifically in this case, the stickers on the 

surfaces were just removed after all these procedures to ensure that the regions covered by the 

stickers remained untreated and transparent, crucial to obtain SH surfaces with the wettable paths. 

Generally, the silanization reaction follows the sequence: hydrolysis of triethoxyl groups into 

trihydroxyl groups and then polycondensation of the hydroxyl groups with the surface hydroxyls 

groups from the substrate surface.[29] The general mechanism for this chemical reaction is 

illustrated in Figure 3.2. However, this reaction is complex and several reaction routes may be 

involved.[29-31] For example, various interfacial processes may be possible, namely covalent 

binding to the substrate surface, lateral polymerization of adsorbed silane molecules or three-

dimensional polymerization. Overall, the kinetics of the silanization reaction is crucial to manage 

the layer formation process, being dependent of the type of the reactive group/element bound to 

Si in the silane molecule (usually an alkoxy group or chloride), their number, and experimental 

conditions. 
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Figure 3.2:  Illustration of the possible general route for PFDTS silanization reaction on the different substrate 

surfaces. 

 

To confirm the chemical modifications on the different substrate surfaces, both energy-dispersive 

X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) analysis were performed. 

 

3.6. Characterization of the fluid flows on the planar chips with 

hydrophilic paths 

Fluid flow can be classified to three regimes which is laminar, transitional and turbulent regime. 

Laminar regime is a regime where the flow is characterized by smooth streamlines and highly 

ordered fluid motion. Turbulent is a regime where flow is characterized by velocity oscillations, 

highly disordered fluid motion and eddies. Transitional regime prevails between these two limits 

where the flow oscillates between laminar and turbulent before it becomes completely turbulent. 

The transitional from laminar to turbulent flow depends on several parameters, namely surface 

roughness, geometry, surface temperature, flow velocity, and type of fluid, midst others. However, 

Osborne Reynolds discovered that the flow regime is essentially dependent of the ratio between 
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inertial forces – which are proportional to the fluid density and the square of the fluid velocity – 

and viscous forces in the fluid, called as the Reynolds number.[32] 

Thus, the laminar flow is characterized by a small or moderate Reynolds numbers, meaning that 

the viscous forces are large enough to suppress fluctuations and to keep an ordered fluid motion. 

Regarding the turbulent flow, the inertial forces overlap the viscous force, resulting that the viscous 

force cannot avoid the spontaneous and rapid oscillations of the fluid. These different flow regimes 

can be assessed experimentally, such as performed by Osborne Reynolds – Figure 3.3. By injecting 

dye streaks into the flow in a glass pipe, Reynolds observed that the dye streak forms a straight 

and smooth line at low velocities when the flow is laminar. However, some dye dispersion may 

observed due to molecular diffusion. While for turbulent flow, by injecting the dye into the flow, the 

dye disperses by the rapid mixing of fluid particles from adjacent layers and the dye line breaks 

into entangled dye filaments throughout the main flow.  

 
Figure 3.3:  The behavior of colored fluid injected into the flow in laminar, transitional and turbulent regimes in a 

pipe. 

 

Basically, the first step of the experiment consists into establish a laminar flow, by controlling the 

flow rate. Then, by slowly increase the flow rate, the dye streak is monitored, recording the flow 

pattern changings and volumetric flow rate. Inspired by the Reynolds experiment, the flow regime 

for different flow rates was assessed for the liquid streams flowing over the hydrophilic paths 

patterned on the SH surfaces, in Chapter 5. 
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3.7. In vitro biological studies 

In this thesis, several different cell types were used for the different experimental works, namely 

C2C12 cell line (mouse myoblasts), human stem cells derived from the adipose tissue (hASC), 

L929 cell line (mouse fibroblasts), Saos-2 cell line (human osteoblast-like cells), human umbilical 

venous endothelial cells (HUVEC), and human dermal fibroblasts (ATCC). C2C12, L929 and Saos-

2 cell lines and ATCC cells were cultured and expanded in Dulbecco’s Modified Essential Medium 

(DMEM) with 10% (v/v) of fetal bovine serum (FBS) and 1% (v/v) of antibiotic/antimycotic (ATB). 

Human abdominal subcutaneous adipose tissue was used to isolate hASC.[33-36] The 

undifferentiated cells were cultured and expanded under basal condition, using Minimum Essential 

alpha Medium (α-MEM) with 10% (v/v) of FBS and 1% (v/v) of ATB, until passages 2 and 3. For 

experimental assays, the hASCs were used in passages 3 to 5. In chapter 6, the HUVEC cells were 

cultured and expanded in medium 199 (M199) with 20% (v/v) FBS, 1% (v/v) ATB and 1% (v/v) 

Glutamax, supplemented with heparin (100 μg/mL) and endothelial cell growth supplement (50 

μg/mL; ECGS). In chapter 8, pristine HUVECs were obtained from ATCC whereas GFP-positive 

HUVECs were obtained in-lab, which were cultured in Endothelial Cell Growth Medium (ECGM, 

Lonza). For all cell types, the cell culture media were exchanged every 2-3 days. 

In chapter 5, 35 µL of cell suspension of C2C12 at a density of 5x105 cells.mL-1 were dispensed in 

each path of the chip, previously coated with fibronectin protein (EMD Millipore). After overnight 

incubation for cell adhesion, assays were performed to study the effect of mechanical stimulus 

(flow shear stress) combined with bone morphogenic protein (specifically BMP-2) stimulation on 

the osteogenic differentiation of C2C12 myoblast cells. In static conditions, cells were culture for 

48 hours on the paths of the chip. The dynamic conditions consisted in 24 hours of initial static 

cell culture followed by 24 hours of cell culture under a constant flow of cell culture medium. In 

both conditions the cell culture medium was exchanged after 24 hour of culture. The cell culture 
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medium was supplemented with 200 ng.mL-1 of BMP-2 (Invitrogen). Two different times of contact 

between cells and the supplemented medium were tested, namely 24 or 48 hours. 

 In chapter 6, cell suspensions of different cell types (L929, Saos-2 and HUVEC cells) were 

dispensed in each wettable spot of the chips. For each cell type, a cell suspension at a cellular 

density of 2.5x105 cells.mL-1 was prepared with the respective cell culture medium (DMEM for L929 

and Saos-2; M199 for HUVEC). Then, a volume of 5 μL of cell suspension was dispensed per spot. 

To promote cell adhesion, cell suspension droplets were left in the wettable spots for 4 hours. 

Then, the non-adhered cells were removed by washing the spots with fresh culture medium and 

the chips with adhered cells were incubated overnight. The wettable spots later used for the 

formation of cell spheroids without co-culture were left empty during this step. After remove cell 

culture medium from wettable spots, a 7.5 μL droplet of hASC cell suspension at a cell density of 

3.33x105 cells.mL-1 was dispensed in each spot of the chips, which were rapidly turned 180º, 

acquiring a hanging drop configuration for spheroid formation. For the co-cultures with adhered 

L929 and Saos-2, α-MEM medium with the previously described formulation was used to prepare 

hASC cell suspension. For the co-culture with adhered HUVEC, the hASC cell suspension was 

prepared using M119 medium with reduced content of FBS (from 20% to 10% (v/v)), to have 

comparable conditions between the different tested co-cultures. As control conditions, spheroids 

were formed and cultured in cell-free wettable spots, using both cell culture media (α-MEM and 

M199 with 10% (v/v) FBS) separately. Thus, hASC cells were cultured in the hanging drop 

configuration for 72h, promoting spheroids formation and growth in presence (or absence, in the 

case of controls) of a layer of cell lines. 

Regarding to chapter 7, in the scope of the in vitro biocompatibility assessment, indirect cytotoxicity 

tests using extracts of the hydrophobic powder being studied were performed based on ISO/EN 

10993 part 5 guidelines, using L929 cells.[37-39] After sterilization by autoclaving, 4 g of 
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hydrophobic powder were incubated in 20 mL of DMEM culture medium for 48 hours to extract 

possible leachable from the hydrophobic powder. After the extraction and filtering, the extraction 

fluid was used to culture L929 cells for 48 hours, the cells were previously adhered on the wells of 

a 6-well tissue culture plate. A MTS colorimetric assay was performed to assess cell metabolic 

activity and consequently the cytotoxicity of the different materials comparing with controls. After 

confirm that the hydrophobic powder was non-cytotoxicity for cells, droplets of the L929 cell 

suspension – with Poly(L-lactic acid) (PLLA) microparticles on the same suspension – were 

dispensed one by one over a hydrophobic powder layer. Thus, by rolling the droplets over the 

hydrophobic powder, liquid marbles (LM) with encapsulated cells were produced. Additionally, to 

access the PLLA microparticles effect over cell behavior, LM with or without PLLA microparticles 

in the cell suspension were produced. Cell metabolic activity and proliferation assessment were 

performed by MTS colorimetric and DNA quantification assays, respectively. 

In chapter 8, cell suspensions of ATCC and HUVEC were prepared at concentration of 1×106 

cells.mL-1, using GelMA prepolymer solution in PBS. The photo-cross-linking of these prepolymer 

solutions was performed by UV light for 60 seconds. The floating hydrogels encapsulating ATCC or 

HUVEC were produced with a parallelepiped shape, using in-house made poly(methyl 

methacrylate) (PMMA) stencil masks to control the initial shape of GelMA solution exposed to UV 

light. Only after to give the desired shape to the hydrogels, the coating with hydrophobic powder 

was performed. These floating hydrogels encapsulating ATCC or HUVEC were cultured in their 

respective medium for up to 10 days. Cell viability was monitorized by staining them with the 

Live/Dead kit at days 0, 3, 7, and 10. 
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3.8. AlamarBlue assay performed in situ 

The alamarBlue assay is quantitative with respect to time and dose, assessing the ability of 

metabolically active cells to convert the reagent into a colorimetric indicator. As the reagent has a 

nontoxic nature, long-term exposure to cells without negative impact is allowed.  These alamarBlue 

features are valuable for viability and cytotoxicity assays. This assay uses the natural reducing 

power of living cells to convert resazurin (the active compound in alamarBlue reagent) into the 

molecule resorufin, being nontoxic and cell permeable compounds. Resazurin presenting a blue 

color is reduced into resorufin, which produces a very bright red color. Viable cells continuously 

convert resazurin to resorufin, thereby generating a quantitative measure of viability and 

cytotoxicity. 

In Chapter 6, alamarBlue reagent was directly used on-chip to assess spheroid cell viability, by 

dispensing the reagent in each spot of the chip. Regarding Chapter 7, the alamarBlue reagent was 

placed in direct contact with cells, by injecting the reagent in each liquid marble. In both cases and 

after incubation, color images were took using a digital camera. Using the ImageJ software, the 

images were split in the three channels: red, green and blue. On the 8 bit red channel, the red 

intensity was measured manually by defining on the image the area of interest for each testing 

condition. Conditions without cells were used as background for red intensity determination. By 

subtracting the red intensity value of background to the red intensity value for each testing 

condition, the effective red intensity for each studied condition was determined. The red intensity 

value was measured using the ImageJ software. Then, by dividing the red intensity value of each 

condition for the reference value (control without cells), the cell viability ratio was determined. 

 

 

 



 
 

Chapter 3 – Materials and Methods 

99 

 

3.9. References  

1. Bodmeier, R.; Mcginity, J. W., Solvent selection in the preparation of poly(dl-lactide) 

microspheres prepared by the solvent evaporation method. International Journal of Pharmaceutics 

1988, 43, 179-186. 

2. Correia, C. R.; Sher, P.; Reis, R. L.; Mano, J. F., Liquified chitosan-alginate multilayer 

capsules incorporating poly(l-lactic acid) microparticles as cell carriers. Soft Matter 2013, 9, 2125-

2130. 

3. Correia, C. R.; Reis, R. L.; Mano, J. F., Multilayered hierarchical capsules providing cell 

adhesion sites. Biomacromolecules 2013, 14, 743-751. 

4. Bodmeier, R.; Mcginity, J. W., Polylactic acid microspheres containing quinidine base and 

quinidine sulfate prepared by the solvent evaporation method .3. Morphology of the microspheres 

during dissolution studies. Journal of Microencapsulation 1988, 5, 325-330. 

5. Hamoudeh, M.; Fessi, H.; Salim, H.; Barbos, D., Holmium-loaded plla nanoparticles for 

intratumoral radiotherapy via the tmt technique: Preparation, characterization, and stability 

evaluation after neutron irradiation. Drug Development and Industrial Pharmacy 2008, 34, 796-

806. 

6. Van den Bulcke, A. I.; Bogdanov, B.; De Rooze, N.; Schacht, E. H.; Cornelissen, M.; 

Berghmans, H., Structural and rheological properties of methacrylamide modified gelatin 

hydrogels. Biomacromolecules 2000, 1, 31-38. 

7. Nichol, J. W.; Koshy, S. T.; Bae, H.; Hwang, C. M.; Yamanlar, S.; Khademhosseini, A., Cell-

laden microengineered gelatin methacrylate hydrogels. Biomaterials 2010, 31, 5536-5544. 

8. Yue, K.; Trujillo-de Santiago, G.; Alvarez, M. M.; Tamayol, A.; Annabi, N.; Khademhosseini, 

A., Synthesis, properties, and biomedical applications of gelatin methacryloyl (gelma) hydrogels. 

Biomaterials 2015, 73, 254-271. 



 
 

Chapter 3 – Materials and Methods 

100 

 

9. Tan, S. X.; Xie, Q. D.; Lu, X. Y.; Zhao, N.; Zhang, X. L.; Xu, J., One step preparation of 

superhydrophobic polymeric surface with polystyrene under ambient atmosphere. Journal of 

Colloid and Interface Science 2008, 322, 1-5. 

10. Fan, Z. P.; Liu, W. L.; Wei, Z. J.; Yao, J. S.; Sun, X. L.; Li, M.; Wang, X. Q., Fabrication of 

two biomimetic superhydrophobic polymeric surfaces. Applied Surface Science 2011, 257, 4296-

4301. 

11. Oliveira, N. M.; Neto, A. I.; Song, W. L.; Mano, J. F., Two-dimensional open microfluidic 

devices by tuning the wettability on patterned superhydrophobic polymeric surface. Applied Physics 

Express 2010, 3. 

12. Aruna, S. T.; Binsy, P.; Richard, E.; Basu, B. J., Properties of phase separation method 

synthesized superhydrophobic polystyrene films. Applied Surface Science 2012, 258, 3202-

3207. 

13. Wang, Y.; Liu, Z. M.; Han, B. X.; Sun, Z. Y.; Zhang, J. L.; Sun, D. H., Phase-separation-

induced micropatterned polymer surfaces and their applications. Advanced Functional Materials 

2005, 15, 655-663. 

14. Erbil, H. Y.; Demirel, A. L.; Avci, Y.; Mert, O., Transformation of a simple plastic into a 

superhydrophobic surface. Science 2003, 299, 1377-1380. 

15. Yuan, Z. Q.; Chen, H.; Tang, J. X.; Chen, X.; Zhao, D. J.; Wang, Z. X., Facile method to 

fabricate stable superhydrophobic polystyrene surface by adding ethanol. Surface & Coatings 

Technology 2007, 201, 7138-7142. 

16. Zhao, N.; Xu, J.; Xie, Q. D.; Weng, L. H.; Guo, X. L.; Zhang, X. L.; Shi, L. H., Fabrication of 

biomimetic superhydrophobic coating with a micro-nano-binary structure. Macromolecular Rapid 

Communications 2005, 26, 1075-1080. 



 
 

Chapter 3 – Materials and Methods 

101 

 

17. Oliveira, M. B.; Neto, A. I.; Correia, C. R.; Rial-Hermida, M. I.; Alvarez-Lorenzo, C.; Mano, 

J. F., Superhydrophobic chips for cell spheroids high-throughput generation and drug screening. 

Acs Applied Materials & Interfaces 2014, 6, 9488-9495. 

18. Oliveira, M. B.; Luz, G. M.; Mano, J. F., A combinatorial study of nanocomposite hydrogels: 

On-chip mechanical/viscoelastic and pre-osteoblast interaction characterization. Journal of 

Materials Chemistry B 2014, 2, 5627-5638. 

19. Lima, A. C.; Puga, A. M.; Mano, J. F.; Concheiro, A.; Alvarez-Lorenzo, C., Free and 

copolymerized gamma-cyclodextrins regulate the performance of dexamethasone-loaded dextran 

microspheres for bone regeneration. Journal of Materials Chemistry B 2014, 2, 4943-4956. 

20. Lima, A. C.; Song, W. L.; Blanco-Fernandez, B.; Alvarez-Lorenzo, C.; Mano, J. F., Synthesis 

of temperature-responsive dextran-ma/pnipaam particles for controlled drug delivery using 

superhydrophobic surfaces. Pharmaceutical Research 2011, 28, 1294-1305. 

21. Puga, A. M.; Lima, A. C.; Mano, J. F.; Concheiro, A.; Alvarez-Lorenzo, C., Pectin-coated 

chitosan microgels crosslinked on superhydrophobic surfaces for 5-fluorouracil encapsulation. 

Carbohydrate Polymers 2013, 98, 331-340. 

22. Golub, M. A.; Lopata, E. S.; Finney, L. S., X-ray photoelectron-spectroscopy study of argon-

plasma-treated fluoropolymers. Langmuir 1994, 10, 3629-3634. 

23. Kim, S. R., Surface modification of poly(tetrafluoroethylene) film by chemical etching, 

plasma, and ion beam treatments. Journal of Applied Polymer Science 2000, 77, 1913-1920. 

24. Inagaki, N.; Narushima, K.; Yamamoto, T., Surface modification of tetrafluoroethylene-

perfluoroalkyl vinylether copolymer (pfa) by plasmas for copper metallization. Journal of Applied 

Polymer Science 2002, 85, 1087-1097. 



 
 

Chapter 3 – Materials and Methods 

102 

 

25. Johansson, B. L.; Larsson, A.; Ocklind, A.; Ohrlund, A., Characterization of air plasma-

treated polymer surfaces by esca and contact angle measurements for optimization of surface 

stability and cell growth. Journal of Applied Polymer Science 2002, 86, 2618-2625. 

26. North, S. H.; Lock, E. H.; Cooper, C. J.; Franek, J. B.; Taitt, C. R.; Walton, S. G., Plasma-

based surface modification of polystyrene microtiter plates for covalent immobilization of 

biomolecules. Acs Applied Materials & Interfaces 2010, 2, 2884-2891. 

27. Zhuravlev, L. T., The surface chemistry of amorphous silica. Zhuravlev model. Colloids and 

Surfaces a-Physicochemical and Engineering Aspects 2000, 173, 1-38. 

28. Xiu, Y. H.; Zhu, L. B.; Hess, D. W.; Wong, C. P., Preparation of superhydrophobic silica 

thin films for antistiction of mems devices using a novel sol-gel process. 57th Electronic 

Components & Technology Conference, 2007 Proceedings 2007, 1135-1142. 

29. Liu, Y.; Li, Y. M.; Li, X. M.; He, T., Kinetics of (3-aminopropyl)triethoxylsilane (aptes) 

silanization of superparamagnetic iron oxide nanoparticles. Langmuir 2013, 29, 15275-15282. 

30. Gooding, J. J.; Ciampi, S., The molecular level modification of surfaces: From self-

assembled monolayers to complex molecular assemblies. Chemical Society Reviews 2011, 40, 

2704-2718. 

31. Aissaoui, N.; Bergaoui, L.; Landoulsi, J.; Lambert, J. F.; Boujday, S., Silane layers on silicon 

surfaces: Mechanism of interaction, stability, and influence on protein adsorption. Langmuir 

2012, 28, 656-665. 

32. Reynolds, O., An experimental investigation of the circumstances which determine whether 

the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. 

Philosophical Transactions of the Royal Society of London 1883, 174, 935-982. 



 
 

Chapter 3 – Materials and Methods 

103 

 

33. Rada, T.; Reis, R. L.; Gomes, M. E., Distinct stem cells subpopulations isolated from human 

adipose tissue exhibit different chondrogenic and osteogenic differentiation potential. Stem Cell 

Reviews and Reports 2011, 7, 64-76. 

34. Rada, T.; Gomes, M. E.; Reis, R. L., A novel method for the isolation of subpopulations of 

rat adipose stem cells with different proliferation and osteogenic differentiation potentials. Journal 

of Tissue Engineering and Regenerative Medicine 2011, 5, 655-664. 

35. Mihaila, S. M.; Frias, A. M.; Pirraco, R. P.; Rada, T.; Reis, R. L.; Gomes, M. E.; Marques, 

A. P., Human adipose tissue-derived ssea-4 subpopulation multi-differentiation potential towards 

the endothelial and osteogenic lineages. Tissue Engineering Part A 2013, 19, 235-246. 

36. Strioga, M.; Viswanathan, S.; Darinskas, A.; Slaby, O.; Michalek, J., Same or not the same? 

Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal 

cells. Stem Cells and Development 2012, 21, 2724-2752. 

37. Gomes, M. E.; Reis, R. L.; Cunha, A. M.; Blitterswijk, C. A.; de Bruijn, J. D., 

Cytocompatibility and response of osteoblastic-like cells to starch-based polymers: Effect of several 

additives and processing conditions. Biomaterials 2001, 22, 1911-1917. 

38. Salgado, A. J.; Coutinho, O. P.; Reis, R. L., Novel starch-based scaffolds for bone tissue 

engineering: Cytotoxicity, cell culture, and protein expression. Tissue Engineering 2004, 10, 465-

474. 

39. Barile, F. A.; Dierickx, P. J.; Kristen, U., In-vitro cytotoxicity testing for prediction of acute 

human toxicity. Cell Biology and Toxicology 1994, 10, 155-162. 

 

 

  



 
 

Chapter 3 – Materials and Methods 

104 

 

 



 
 

 

 

 

SECTION III – DEVELOPMENT OF BIOMEDICAL DEVICES 
BASED ON THE ADVANCED CONTROL OF WETTABILITY IN 

DIFFERENT SURFACES  

 

 

Chapter 4. Superhydrophobic Surfaces Engineered Using Diatomaceous 
Earth 

 

Chapter 5. Open Fluidics: A Cell Culture Flow System Developed Over 
Wettability Contrast-Based Chips 

  

Chapter 6. Hanging Drop Platform for Stem Cell 3D Spheroids 
Production and Characterization under Co-Culture Conditions 

 

Chapter 7. Liquid Marbles for High-Throughput Biological Screening of 
Anchorage-Dependent Cells 

  

Chapter 8. Hydrophobic Hydrogels: Toward Construction of Floating 
(Bio)microdevices 

 

 
 
 

 



 
 

 

 

  



 
 

Chapter 4 – Superhydrophobic Surfaces Engineered Using Diatomaceous Earth 

107 

 

 

Chapter 4 

 

Superhydrophobic Surfaces Engineered Using Diatomaceous 

Earth 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on the following publication: 

Nuno M. Oliveira; Rui L. Reis; João F. Mano; Superhydrophobic Surfaces Engineered Using Diatomaceous Earth. 

ACS Applied Materials & Interfaces 2013, 5, 4202−4208.  



 
 

Chapter 4 – Superhydrophobic Surfaces Engineered Using Diatomaceous Earth 

108 

 

4.1. Abstract  

We present a simple method to prepare superhydrophobic surfaces using siliceous exoskeleton of 

diatoms, a widespread group of algae. This makes diatomaceous earth an accessible and cheap 

natural material. A micro/nanoscale hierarchical topography was achieved by coating a glass 

surface with diatomaceous earth, giving rise to a superhydrophilic surface. Superhydrophobic 

surfaces were obtained by a further surface chemical modification through fluorosilanization. The 

wettability of the superhydrophobic surface can be modified by Argon plasma treatment in a 

controlled way by exposure time variation. The chemical surface modification by fluorosilanization 

and posterior fluorinated SH surface modification by plasma treatment was analyzed by X-ray 

photoelectron spectroscopy. Using appropriated hollowed masks only specific areas on the surface 

were exposed to plasma permitting to pattern hydrophilic features with different geometries on the 

superhydrophobic surface. We showed that the present strategy can be also applied in other 

substrates, including thermoplastics, enlarging the potential applicability of the resulting surfaces.  
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4.2. Introduction 

In general, superhydrophobic (SH) surfaces are defined as surfaces with a static water contact 

angle (WCA) higher than 150˚.[1, 2] These surfaces have attracted much interest in both 

fundamental and applied research. Different applications for SH surfaces were proposed including 

in self-cleaning, antifouling, anti-adhesion, microfluidic systems and high-throughput screening 

devices.[2-7] The inspiration to produce artificial SH surfaces comes from nature. The most well 

know example of a natural SH surface is the Lotus leaf.[8] Hierarchical surface topographies at 

micro/nanoscale such as those found on Lotus leaves are critically important for this effect. The 

superhydrophobicity includes a combination of multiscale roughness and a low surface energy of 

the materials used.[9] Many techniques and strategies to mimic that hierarchical surface 

topography were developed, including: lithography, polymer reconformation, template method, sol-

gel processing, or layer-by-layer methods.[2] One of these strategies involved the spin-coating of a 

glass slide with a mixture of micro and nanoparticles of silica prepared by sol-gel.[10] Tsai and 

coworkers also reported a similar strategy to produce SH surfaces through successive Langmuir-

Blodgett depositions of micro/nanoparticles on a glass slide surface;[11] after silica deposition, 

the silanization of the particulate films decreased the surface energy, allowing to obtain a SH 

surface. Different sizes and number of layers of micro-silica particles were tested. It was 

demonstrated that the superhydrophobicity increased with the increase of the silica particle size. 

Other interesting strategy to produce SH surfaces is using natural structures as templates that 

exhibit the necessary hierarchical structure. Sun et al have developed a method to produce SH 

surfaces using a natural lotus leaf as template.[12] They were able to replicate the topography of 

the lotus leaf by polymer casting, using poly(dimethylsiloxane). The resulting lotus-leaf-like 

substrate has the same superhydrophobic characteristics of the original lotus leaf. Biomimetic SH 
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polystyrene films were also obtained by replicating the surface pattern of a natural taro leaf, another 

superhydrophobic natural surface.[13] 

These two strategies to produce SH surfaces inspired us to develop a new approach to generate 

such kind of surfaces. We propose the use of silica-based structures already available in nature to 

create the necessary hierarchical topography. We hypothesize that these structures can be used 

directly on the surface and not as templates. The proof-of-principle will be based on the use of 

Diatomaceous Earth (DE) to produce the SH surfaces. Diatomaceous or diatoms are unicellular 

algae and widely spread in both fresh water and seawater playing a crucial role in the earth’s 

carbon cycle.[14, 15] Other very appreciated characteristic of diatomaceous is their amazing silica 

microskeleton and the biomineralization mechanisms associated with its formation. Diatoms are 

taken as a model for some research works on nanoscacle self-assembly and biomimetics.[16, 17] 

The sedimented dead diatoms on the bottom of lakes or sea are called DE or diatomite.[15] The 

exoskeletons of diatoms are microstructures with nanotextures on their surface and are constituted 

mostly by amorphous silica. The use of these microstructures to coat smooth surfaces should 

enable to create a hierarchical structure eliciting extreme wettability properties. We will explore the 

possibility to create superhydrophobic surfaces by treating such substrates with fluorosilanes. 

Simpson and D’Urso have a patent with the idea to produce a superhydrophobic powder using 

DE.[18] They refer the possibility to use the powder to make superhydrophobic surfaces. On this 

patent it was proposed that to use a polymer in solution as a binder to adhere the DE particles to 

the surface. The substrate surface can be coated with superhydrophobic DE particles by painting, 

dipping or spraying. On this work, we propose to use the intrinsic characteristics of the substrate 

to promote the binding with DE particles. That can be performed by melting superficially the 

substrate to get a DE layer locked on its surface. Through this method we believe that a more 

robust SH surface can be obtained, because DE particles will be trapped and not only deposited 
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on the surface. We explore also the possibility to change the SH surface wettability in a controlled 

way and to print patterns on the surface. These possibilities make possible to use the patterned 

substrates both open microfluidic and high-throughput screening applications.[3, 4]  

 

4.3. Materials and Methods 

4.3.1. Materials processing 

Glass substrates with 2.5 × 2.5 cm were prepared using glass microscope slides. The substrates 

were cleaned with detergent, acetone, ethanol and deionized water to remove any surface 

contaminant and dried in air. A DE suspension was prepared by mixing 1 g of DE (Food-Grade 

Fossil Shell Fluor® from Perma-Guard, Inc; kindly supplied by Agrogreen Canada Inc., Ontario, 

Canada) in 4 mL of water, followed constant stirring. 500 µL of the DE suspension were dropped 

on the top of each substrate. Then the substrates with the DE suspension were heated in a furnace 

under air atmosphere for 1.5 hours at 675 ˚C to obtain a sintered DE film on the surface. The 

samples were cooled slowly until room temperature and washed with ethanol in an ultrasound bath 

for 15 minutes to remove DE excess. The washed substrates were immersed in a 1H,1H,2H,2H-

Perfluorodecyltriethoxysilane (PFDTS) (from Aldrich Chemistry) solution at 1% in ethanol for 48 

hours. Subsequently the samples were dried in air and heated to 220˚C for 5 min to promote 

silane hydrolysis and condensation, thereby forming a stable fluorosilanated layer on the DE 

surface.  

We also used polystyrene (PS) as the substrate instead of glass, to demonstrate that the proposed 

methodology can be also used at low temperature. Substrates with 2.5 × 2.5 cm were prepared 

by cutting PS Petri dishes. The substrates were washed with ethanol in an ultrasound bath for 15 

minutes and dried in air. Then over the substrates a 2 millimeter-thick layer of PFDTS modified DE 

was placed. The substrates with DE were heated at 90 ºC for 20 minutes and enforcing a pressure 
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of 30 × 105 N.m-2. The ensemble was heated and cooled always under pressure. To perform the 

process a hydraulic press with heating/cooling platens was used. After cooling the DE excess on 

PS surface was removed washing the surface with ethanol, which was then dried in air. The used 

DE to coat PS substrates was previously chemically modified with PFDTS. First, DE was heated at 

600 ºC for 1 hour to promote water desorption and expose more silanol groups on diatom surface. 

A DE suspension was prepared by mixing 1 g of DE with 10 mL of a 1% PFDTS solution prepared 

in deionized water, the mixture was left to react overnight. Both solid and liquid phases were 

separated by filtration. After dried in air, the solid phase was heated at 220˚C for 5 min to promote 

silane hydrolysis and condensation. The chemically modified DE was washed with 20 mL of ethanol 

to remove any unreacted silane. After dried the PFDTS modified DE was used to perform surface 

modification onto the PS substrates.  

 4.3.2. Surface modification by plasma treatment 

Surface treatments using a plasma reactor Plasma Prep 5 (Gala Instrument GmbH, Bad 

Schwalbach, Germany) were performed in the diatom coated glass samples with fluorine. Argon 

gas was used and the pressure in the reactor chamber was controlled in the range 0.1-0.2 mbar. 

The treatment was performed using a radio frequency source (13.56 MHz) and a power of 30 W 

for different time periods. 

4.3.3. Surface morphology characterization 

The morphology of the samples was analyzed using a NanoSEM-FEI Nova 200 Scanning Electron 

Microscope (FEG/SEM; FEI Company, Hillsboro, OR, USA). All specimens were pre-coated with a 

conductive layer of gold. The surface topography of the samples at lower magnification was 

assessed by a non-contact optical profiling technique using an interferometer profiler (WYKO-Veeco, 

model NT1100; Veeco, Tucson, AZ, USA) equipped with the WycoVision®32 analytical software 

package. The surface of both unmodified glass substrate and DE modified glass substrate was 
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analyzed. For each sample, five different regions with 0.9 × 1.2 mm2 were measured to determine 

topographic roughness parameters, namely average roughness (Ra) and root-mean-squared (RMS) 

roughness (Rq). 3D images from both surfaces to show roughness distribution were obtained 

applying a filter for noise reduction. The water contact angle (WCA) was analyzed for the different 

samples: unmodified glass slides (G1), glass coated with diatoms (G2), diatom coated glass 

modified by fluorosilane (G3) and after Argon plasma treatment performed on fluorinated samples 

(G4). WCA was also determined in the produced surfaces using PS substrates.  The WCA was 

measured in a OCA 15+ goniometer from DataPhysics Corporation (San Jose, CA, USA) at room 

temperature. The static WCA was measured by a sessile drop method with a 6 µl water droplet. 

Using the same method, the WCA hysteresis was determined using a liquid injection rate of 0.3 

µl.s-1, changing the drop volume between 5 and 8 µl.  

4.3.4. Chemical characterization 

The chemical composition of the PFDTS modified DE particles was analyzed on a NanoSEM-FEI 

Nova 200 Scanning Electron Microscope (FEG/SEM; FEI Company, Hillsboro, OR, USA), equipped 

with an EDAX-Pegasus X4M energy dispersive spectrometer. Energy-dispersive X-ray spectroscopy 

(EDS) analysis were performed at an accelerating voltage of 15 keV, using conventional ZAF 

correction procedure integrated on the EDAX- Pegasus software. 

The surface chemistry composition of glass samples was analyzed by X-ray photoelectron 

spectroscopy (XPS) using a Thermo Scientific K-Alpha ESCA instrument (Thermo VG Scientific, East 

Grinstead, UK) equipped with monochromatic Al (Kα) X-ray source operating at 1486.6 eV. Due to 

non conductor nature of samples it was necessary to use a low energy flood gun (electrons in the 

range 0-14 eV) and a low energy Argon ions gun to minimize surface charging. Photoelectrons 

were collected from a take-off angle of 90º relative to sample surface. The measurements were 

performed in a Constant Analyzer Energy mode (CAE) with 100 eV pass energy for survey spectra 
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and 30 eV pass energy for high resolution spectra. Charge referencing was carried out by setting 

lower binding energy C1s photo peak at 285.0 eV C1s hydrocarbon peak. Using the standard 

Scofield photoemission cross sections, surface elemental composition was determined. 

 

4.4. Results and Discussion 

The wetting behavior of a surface is dependent on both surface topography and surface chemistry. 

We used DE to generate a rough topography on smooth glass. The initial substrate was glass 

microscope slide that presents a smooth surface – see Figure 4.1A1. The glass is hydrophilic, 

having a WCA of 31.3 ± 2.6˚. The glass was coated by DE suspension and then was heated until 

675 ˚C to induce the agglomeration and stabilization of the diatom layer over the glass surface. 

Substrates were then cleaned in an ultrasound bath to eliminate the non-sintered fraction of DE.  

 
Figure 4.1: SEM images of glass substrate before (A1) and after coating with DE (A2-4). Magnification images from both 

diatomaceous silica microskeleton (A3) and the nanotexture on their surface (A4). SEM images of polystyrene substrate 

before (B1) and after coating with DE (B2). 
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After the cleaning process we obtained a glass with a sintered diatom layer on the surface – see 

Figure 4.1A2. The DE layer provided roughness to the surface at the microscale level complemented 

with a nanotexture given by the diatom surface morphology – see Figure 4.1A3 and 4.1A4.  

To characterize the changes on surface roughness, the surface topography was analyzed by optical 

profilometry – Figure 4.2. The glass surface is clearly smooth at the sub-micrometer level – see 

Figure 4.2A. After coating with DE we clearly see a roughness at the microscale level that seems 

homogenous throughout all the analyzed area – Figure 4.2B. Unmodified glass surface presented 

an average roughness (Ra) of 4.2 ± 0.5 nm and the DE coated glass surface exhibited a Ra of 3.0 

± 0.2 µm. On the Figure 4.2B, a representative profilometry of surface with a 1 mm2 was presented. 

On this area, if smaller areas are selected and compared between them these areas present similar 

morphology. Therefore a homogenous DE coating on substrate surface was achieved at a sub-

millimeter level. 

 

 
Figure 4.2: Optical profilometry images of the unmodified glass surface (A) and the glass substrate surface after the 

coating with DE (B). Images show an area of 0.9 mm × 1.2 mm (Magnification 5×). 

 

The resulting modified surface has superhydrophilic properties – see Figure 4.3A1. This behavior 

was the result of the combination between surface roughness and the hydrophilic nature of the 

A B
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substrate.[19] In fact, the diatoms are hydrophilic due to the SiO2 groups on their surface. To 

decrease the surface energy the substrate was subjected to fluorosilanization.[20] The chemical 

surface modification was confirmed by XPS analysis. As showed in Table 4.1 the surface with a DE 

layer (G2) is mostly constituted by oxygen and silica. The presence of carbon in unmodified glass 

(G1) and after DE coating (G2) is due to surface contamination.[21] Initially on the DE modified 

glass the fluorine content is almost inexistent and after the silanization process a peak indicating 

the presence of fluorine on the surface appears – compare Figure 4.3A2 with Figure 4.3B2.  

 
Figure 4.3: The chemical modification of the DE coated glass surface performed by a fluorosilane transform the 

initial superhydrophilic substrate (see water profile A1) to superhydrophobic one (see water profile B1). The chemical 

modification was confirmed by XPS analysis: the F1s spectra of the two samples are presented in A2 and B2, respectively. 

 

With the chemical modification the surface present a decrease on oxygen from 55.6% to 29.4% 

and a flour content of 31.8% - sample G3 in Table 4.1. Due to the changes on surface chemistry 

the initial superhydrophilic surface becomes superhydrophobic with a WCA of 151.0 ± 0.9˚ and a 

WCA hysteresis of 5.8 ± 1.4˚. 
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Table 4.1. Atomic composition of the studied substrates determined from XPS analysis. The present results are for 

unmodified glass (G1), glass substrate coated with DE (G2), DE coated glass chemically modified with PFDTS (G3) 

and DE/PFDTS modified glass after Argon plasma treatment (G4).   

Samples 

Atomic Composition (%) 

C1s O1s Si2p F1s 

G1 19.3 48.9 22.4 0.5 

G2 8.8 55.6 27.6 0.4 
G3 18.9 29.4 16.7 31.8 
G4 10.8 50.1 26.1 7.4 

 
 

Two theories have been used to explain the occurrence of the SH behavior. The Wenzel model 

postulated that the hydrophobicity of a surface can be increased by providing roughness to the 

surface, if the initial smooth substrate is already hydrophobic. In this model, the surface is 

completely wet since water completely fills all the surface roughness to form a fully wetted 

interface.[22] The second model, called Cassie model, predicts that air can be trapped in the 

surface roughness, the air blocks water infiltration into the valleys of the rough surface and the 

water droplet is partially suspended by air pockets.[9, 23, 24] For this model, the relation between 

WCA of the rough surface (*) and the WCA of the smooth surface () is given by the Cassie–

Baxter equation: 

(1) 

where f is the area fraction of the liquid–solid contact. As the SH substrate obtained in this work 

showed a lower WCA hysteresis we will assume that the Cassie model could explain its wettability 

properties. As the WCA of the smooth glass surface modified by fluorosilane was 112.7 ± 2.4˚, 

we can estimate that f = 0.2. 

We hypothesis that it is possible to use the same strategy to produce superhydrophobic surfaces 

using other kind of substrates, such as polymers. Experiments were carried out in order to modify 

cos  = 𝑓 1 + cos  − 1 



 
 

Chapter 4 – Superhydrophobic Surfaces Engineered Using Diatomaceous Earth 

118 

 

a polystyrene (PS) substrate with DE. The PS was chosen due to be an amorphous material and 

when heated the PS undergoes a glass transition to a rubbery state at a relatively low temperature. 

One of the main vantages of PS is that it is both inexpensive and very accessible material, almost 

of labs use Petri dishes that are made of PS. The strategy is to melt superficially the substrate to 

bind DE to the surface – see Figure 4.1B2. In the glass case, first the substrate was coated with 

DE and after that the coated surface was modified with a fluorosilane. However using PS as 

substrate, the chemical modification of DE was performed prior the deposition onto the PS that 

occurs at a temperature sufficiently low to maintain the properties of the fluorosilane. The binding 

process was carried out applying pressure over the surface with the DE layer to avoid PS substrate 

deformation due to temperature. As the PS has a glass transition temperature of 80-120 °C, using 

a temperature of 90 °C the PS exhibits a considerable viscoelastic behavior.[25] Appling pressure 

on the DE layer over the substrate, the DE particles penetrate on the PS surface. Then with the 

temperature decrease the PS becomes rigid and the hydrophobic particles stay trapped on PS 

surface. Initially the PS, obtained from the Petri dishes, presents a hydrophobic behavior. After the 

treatment with the hydrophobic DE particles the PS shows superhydrophobic properties – see 

Figure 4.4. The modified PS substrate with DE present a WCA of 153.6 ± 3.1˚ and a WCA 

hysteresis of 3.3 ± 1.1˚. 

After the chemical modification of the DE particles with PFDTS the obtained hydrophobic particles 

were analyzed by EDS. The chemical characterization reveals that the fluorine amount on particles 

was 2.8 ± 0.3%. 
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Figure 4.4: The polystyrene obtained from Petri dishes is a hydrophobic material (see the inset image A). After 

surface modification with hydrophobic DE particles the polystyrene becomes superhydrophobic (see the inset image 

B). 

 

To modify the surface wettability of the obtained SH substrates we exposed the fluorinated glass 

surfaces to an Argon plasma treatment. By increasing the exposure time, the WCA of the SH 

surface decreased steadily down to the hydrophilic regime such phenomenon was previously 

observed in SH polymeric surfaces.[26] The relationship between plasma treatment time and the 

WCA on the glass substrate surface is showed in Figure 4.5.  

 
Figure 4.5: Influence of Argon plasma treatment time on the WCA of the initial SH surface using the glass substrate. 
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When a fluoropolymer is treated by plasma both surface defluorination and oxidation occurs, during 

which CF2 carbons are changed by CF, CH2, C=O and C–O carbons.[27, 28] We believe that the 

fluorinated SH surface experienced a similar process. The chemical state of carbon on the obtained 

surfaces was analyzed by XPS before and after plasma treatment (samples G3 and G4 respectively) 

and the collected results are presented in Table 4.2. 

 

Table 4.2. Chemical state assessment of carbon functional groups on surface of DE coated glass chemical modified 

with PFDTS (G3) and DE/PFDTS modified glass after Argon plasma treatment (G4).      

  C1s 

  C-C, C-H C-O O=C-O CF2 CF3 

Binding Energy (eV) 285.0 286.5±0.3 289.0±0.2 291.5±0.3 293.8±0.3 

Sa
m

pl
es

 

G3 21.7% 10.5% 8.8% 48.3% 10.7% 

G4 61.1% 14.6% 10.1% 10.3% 3.8% 

 

 

The relative content of CF2 and CF3 carbons decreases and C-H, C-O and O=C-O carbons increase 

with plasma treatment. With this treatment the fluorine content on the surface decreases strongly 

and a new specie in the F1s spectrum at energy 685.5 eV is observed, corresponding to the bond 

of type Si-F – see Figure 6. Due to defluotination combined with the surface oxidation the surface 

energy increases and consequently also the surface wettability. After plasma surface modification 

the surface WCA remains stable until at least 5 days. 
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Figure 4.6: XPS F1s spectra comparison between the different samples: unmodified glass (G1), glass substrate coated 

with DE (G2), DE coated glass chemical modified with PFDTS (G3) and DE/PFDTS modified glass after Argon plasma 

treatment (G4). 

 

Surface modification can be performed in selected areas on the surface, so that patterns on the 

surface can be created. Using appropriate hollowed masks we can modify only specific areas on 

the surface. We used masks of plastic sheets in which different shapes were cut, namely squares, 

circles, lines or triangles. The masks were placed over the SH glass substrate and the ensemble 

was subjected to Argon plasma treatment. The exposed regions gave rise to hydrophilic features 

with the same geometry in the substrate. Such wettable regions can be wetted and support the 

confinement of liquids that will not transpose to the surrounding superhydrophobic regions due to 

the high contrast in surface tension. The patterning of wettable spots with three distinct geometries 

is shown in Figure 4.7A1-A3. Through this procedure we can produce platforms with imprinted 

patterns with potential to be used in high-throughput screening applications, open microfluidics 

and gel fabrication with different shapes, for example. The platform can also be used to generate 

gradients of different materials in an easy and fast way – see Figure 4.7A4.  

678683688693698
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Figure 4.7: Hydrophilic patterns with different shapes and able to confine liquid volumes can be imprinted on the SH 

glass surfaces (A1–A3), suck as on the SH polystyrene surfaces (B1-B2). Surfaces with channel-like patterns can be used 

as platforms to produce material gradients (A4). The patterns on surface was produced by Argon plasma treatment 

using masks with the desired shapes. 

 

The hydrophilic stripe imprinted on surface should be prewetted with a solution A. Then using a 

pipette a solution B can be dropped at one end of the prewetted stripe. The solution B spreads 

along to the fluid stripe and by convection generates a gradient of material B on the material A. It 

was proposed that such surface-tension-driven centimeter scale gradients could be used in 

diagnostics, cell behavior studies or drug screening.[29] In a similar manner on the PS 

superhydrophobic surfaces wettable regions can also be patterned – see Figures 4.7B1 and 4.7B2.  

The surface modification was also performed by Argon plasma treatment. Due to the possibility of 

applying the strategy reported on this work in different kinds of substrates, we can envisage the 

fabrication of devices exhibiting SH surfaces with very distinct properties, aimed to use in different 

applications. 
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A3 A4

B1

B2

Glass Substrate PS Substrate
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4.5. Conclusion 

We showed here the possibility to produce superhydrophobic surfaces using diatomaceous earth. 

The natural nano/micro-structure of the silica objects provided the necessary rough topography for 

the surface. After coating a glass surface with diatomaceous earth the desired hierarchical structure 

on the surface was obtained due to the anatomic characteristics of the diatom exoskeleton. The 

wettability of the produced superhydrophobic surfaces can also be precisely controlled by exposing 

the substrates to plasma treatment for specific times. The control in space of the plasma treatment 

can be used to imprint hydrophilic patterns on the superhydrophobic surface with well-defined 

geometries. It was also showed that the proposed strategy could be applied in other substrates, 

such as polystyrene. This open the possibility to produce superhydrophobic surfaces for specific 

applications through the choice of the most convenient substrate. 
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5.1. Abstract 

Biological tissues are recurrently exposed to several dynamic mechanical forces that influence cell 

behavior. On this work, we focused particularly on shear stress forces induced by a fluid flow. The 

study of flow-induced effects on cells lead to important advances in cardiovascular, cancer, stem 

cell and bone biology understanding. These studies were performed using cell culture flow (CCF) 

systems, mainly parallel plate flow chambers (PPFC) and microfluidic systems. Here, we propose 

an original CCF system based on the open fluidics concept. The system was developed using a 

planar superhydrophobic (SH) platform of polystyrene with hydrophilic paths on its surface. The 

paths worked as channels to drive cell culture medium flows without using walls for liquid 

confinement. The liquid streams were controlled just based on the wettability contrast on top of 

the developed chip. To validate the proposed concept, we studied the effect of the shear stress 

stimulus in the osteogenic differentiation of C2C12 myoblast cells. Combining bone morphogenic 

protein (specifically BMP-2) stimulation with this mechanical stimulus, a synergistic effect of these 

stimuli combination was found on osteoblast differentiation of C2C12 cells. This synergistic effect 

was confirmed by the enhancement of alkaline phosphatase (ALP) activity, a well-known early 

marker of osteogenic differentiation, for the combined stimulation. The proposed CCF system 

showed to combine some characteristics and advantages of both PPFC and microfluidic systems. 

For these reasons, we believe that the presented chip has high potential to achieve widespread 

use in different biological studies. 
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5.2. Introduction 

Biological tissues are often exposed to several dynamic mechanical forces, namely hydrostatic 

compression, fluid shear stress, mechanical tension, compression, and bending.[1] Wherein, the 

cellular response to specific mechanical stimuli is called of mechanotransduction.[2, 3] Studies in 

cell mechanobiology demonstrated that mechanical forces have important influence regulating cell 

decision events, such as cell proliferation and growth, cell migration, shape modulation, 

differentiation, and apoptosis.[1, 2, 4] 

In particular, shear stresses result from the intermolecular friction forces of a fluid acting on a body 

in the path of that fluid. Fluid shear stress plays a significant role in regular physiology. An obvious 

example is what happens in the blood vessels. Increasing the blood flow rate, blood vessels are 

able to increase its diameter in order to ensure a constant blood pressure. This vasodilatation 

process depends on the response of endothelial cells (EC) to the shear stress inflicted by blood 

flow.[3] Studies of flow-induced effects on mammalian cells lead to important advances on the 

understanding of biological processes in cardiovascular biology,[5] cancer,[6-9] stem cell,[1, 10, 

11] bone biology,[3, 12] and others.[2, 4] 

There are basically two generations of cell culture flow (CCF) systems to study the shear stress 

effect on adherent cells. The first CCF systems present macroscale dimensions, whereas the 

second generation have moved to the miniaturization with the appearing of the microfabrication 

techniques.[5] At the macroscale, the parallel plate flow chamber (PPFC) and variations on its 

basic design are the most commonly used systems.[4] PPFC systems usually consist of two plates 

in which fluid flows between and with a silicon gasket separating the plates to determine the height 

of the flow path. Adherent cells are placed and cultured in one of the plates, usually over glass 

slides, and then placed into the chamber. Typically, the dimensions of PPFC are in the order of 

several centimeters for width and length and hundreds of micrometers for height.[13-16] Using 
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microfabrication techniques, namely soft lithography, distinct microscale-based CCF systems were 

developed for studying the shear stress influence on adherent cells.[2, 5] These microfluidic 

systems claim to offer higher versatility, possibility for high-throughput studies and precise control 

over all chemical and mechanical stimuli, among others advantages.[4, 5]  

Here, we propose an innovative CCF system based on the open fluidics concept engineered over 

a planar superhydrophobic (SH) platform. Open fluidics consists in the use of small fluid volumes 

which are not enclosed in channels, presenting large air/liquid interfaces.[17] Some examples are 

a droplet on a flat surface,[18, 19] thin films,[20] ribbons of fluid,[21, 22] or flow in grooves.[23, 

24] In our case, we can spatially confine liquid flows by patterning wettable strips on polymeric SH 

surfaces. Similar platforms, where individual liquid streams were guided only by the wettability 

contrast on a planar substrate, were previously reported.[25-27] However, to best of our 

knowledge, this is the first time that a fluidic platform based on the wettability contrast was 

developed to study the shear stress effect on adherent cells. A platform consisting of a polystyrene 

SH planar surface with hydrophilic parallel paths on top was used. On the paths, adhered cells 

were exposed to shear stress stimuli inflicted by the culture medium flowing over the cell layer. For 

proof of concept, we studied the effect of this mechanical stimuli in the osteoblast differentiation 

of C2C12 myoblasts, a mouse adherent myoblast cell line. We hypothesize that the developed 

platform has high potential to achieve widespread use in the biological laboratories, due to combine 

characteristics from both generations of CCF systems, such as we discuss forward. 
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5.3. Materials and Methods 

5.3.1. Preparation of the superhydrophobic surfaces with wettable paths 

Polystyrene (PS) superhydrophobic surfaces were prepared as previously reported.[25] PS (184K, 

Styrolution) was dissolved in tetrahydrofuran (THF; Sigma) at a concentration of 70 mg/mL. This 

solution was then mixed at a ratio of 2:1.3 (v:v) with absolute ethanol. The mixture was vigorously 

shaken, until it became transparent. Pristine PS substrates were protected with strips of stickers 

with 30 mm x 2 mm separated by 4 mm, based on a previously reported patterning protocol.[28] 

The PS solution prepared in THF and ethanol was dispensed in the substrates. The excess of 

solution was then removed and the PS substrates were immersed in absolute ethanol. After the 

drying of the substrates, the obtained PS superhydrophobic (PS-SH) surfaces were modified with 

1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTS, 97%; Sigma) by immersion for up to 48 hours 

in 1% (v/v) PFDTS solution in absolute ethanol, after air plasma treatment for 30 seconds at 30 W 

(Plasma Prep5, Gala Instruments).[29] Then the chemically modified substrates were washed with 

absolute ethanol to remove the unreacted PFDTS and fluorinated superhydrophobic (F-SH) 

surfaces were obtained. Finally, the stickers were removed using tweezers and the regions covered 

by the stickers remained untreated and transparent. 

5.3.2. Surface Characterization 

The morphology of the samples was analyzed using scanning electron microscopy (SEM; JSM-

6010 LV, JEOL). To confirm the chemical modifications on the different substrate surfaces, energy 

dispersive spectroscopy (EDS; INCAx-Act, PentaFET Precision, Oxford Instruments) analysis were 

performed. The water contact angle (WCA) was also determined for the different surfaces produced 

over the PS substrates. The WCA was measured in a OCA 15+ goniometer (DataPhysics 

Corporation) at room temperature. The WCA was measured by a sessile drop method with a 6 μL 

water droplet. The WCA for the different surfaces (PS, SH-PS and F-SH) was also monitored during 
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48 hours that the samples were submerged on Dubbelco’s modified essential medium (DMEM; 

Invitrogen) with 10% (v/v) of fetal bovine serum (FBS; Gibco). 

5.3.3. Modification of the paths surface by plasma treatment 

Surface treatment using a plasma reactor Plasma Prep 5 (Gala Instruments) was performed in 

order to increase paths hydophilicity. Air was used such as the operational gas and the pressure 

in the reactor chamber was controlled in the range of 0.1−0.2 mbar. The treatment was performed 

using a power of 30 W and different time periods of treatment were tested on pristine PS. Stencil 

masks were used to expose only the desired areas to the plasma treatment. For cell confluence 

assessment, cell number quantification and osteogenic differentiation experiments, chips with four 

hydrophilic paths (previously modified by a 30 seconds plasma treatment) were used. 

5.3.4. Injection of dye on liquid stream to assess flow regime 

Using as the base chips with hydrophilic paths (described before) and the fluid system described 

forward, a setup was developed to perform a dye injection to assess flow regime. Taking advantage 

from the direct access to the liquid stream on the paths on the chip, a small diameter needle (30 

gauge syringe needle) was placed inside of the liquid rivulet. On the liquid stream, a dye of blue 

color was injected. We used a dye flow rate of 5 µL/s controlled by a syringe pump (NE-1000 

Programmable Single Syringe Pump). A digital camera (Canon Powershot G12) was used to record 

by video the dye behavior for further analysis. Then, video frames where the dye profile was 

completely developed on the water stream were selected. The obtained images were analyzed in 

grayscale and the dye dispersion on the liquid flow was measured by the ImageJ software (NIH, 

USA). Dye dispersion profile in the interior of the liquid stream was analyzed for different liquid flow 

rates in the range 0.5–3 mL/min. 
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5.3.5. Fluidic system for feeding the chip with hydrophilic paths 

The fluidic system consists in a peristaltic pump, four pulsation dampeners (one per channel), 

tubes and a SH platform with four paths. The liquid flow was used in a closed loop circulation for 

each channel and the used liquid volume per channel was 3 mL. To prevent the pulsatile flow 

generated by the peristaltic pump, a pulsation dampener was introduced on the fluidic system. The 

liquid flow rate was precisely controlled by a peristaltic pump of four channels (Ismatec REGLO 

Digital MS-4/6). Hydrophilic glass needles were used to feed and extract the liquid from each 

channel of the chip. To perform cell culture on the developed chip ensuring sterile conditions, a 

home-made incubation chamber was built that guaranteed a perfectly sealed environment and 

included an entrance for air circulation through a sterile syringe filter with a 0.22 µm pore size. 

5.3.6. On-chip cell culture 

 A mouse myoblast cell line (C2C12 cells) was used, aiming to study the effect of the shear stress 

stimulus in its osteogenic differentiation. Cell expansion was carried out in DMEM with 10% (v/v) 

FBS and 1% (v/v) antibiotic/antimycotic (Gibco). Cell culture media were exchanged every 2 days. 

The wettability contrast-based chips were sterilized by immersion in ethanol 70% overnight. The SH 

platforms were then dried inside a laminar flow chamber before the cell culture. Chip paths were 

coated with fibronectin protein (EMD Millipore) by placing 35 µL per path of fibronectin solution at 

25 µg/mL for 15 minutes. Cell suspensions at a density of 5x105 cells/mL were dispensed in each 

wettable path of the chip with a volume of 35 μL. After overnight incubation for cell adhesion, on-

chip cell culture was performed under static or dynamic conditions. In static conditions, cells were 

culture for 48 hours on the paths of the chip. The dynamic conditions consisted in 24 hours of 

initial static cell culture followed by 24 hours of cell culture under a constant flow of cell culture 

medium. In both conditions the cell culture medium was changed after 24 hour of culture. On the 

experiments to study the effect of shear stress stimulation on C2C12 osteoblast differentiation, the 



Chapter 5 – Open Fluidics: A Cell Culture Flow System Developed Over Wettability Contrast-Based Chips 

 

 

136 
 

cell culture medium was supplemented with 200 ng/mL of BMP-2 (Invitrogen). Different times of 

contact between cells and the supplemented medium were tested, namely 24 or 48 hours such 

as schematically represented on Figure 5.5. 

5.3.7. Cellular characterization on the paths of the chip 

The formation of cellular layers and respective morphology on the wettable paths was assessed 

after the fixation of the cells with 10% formalin. Cells' nuclei were stained with 4’,6-diamidino-2-

phenylindole (DAPI; Sigma, diluted 1000x). F-actin was stained with phalloidin-tetramethyl 

rhodamine isothiocyanate (Phalloidin; Sigma, diluted 1000x). Images of the cell layers were 

acquired using both reflected fluorescent light and visible light microscopy (Axio Imager Z1, Zeiss). 

5.3.8. Quantification of alkaline phosphatase (ALP) activity 

ALP is frequently used as an early biochemical marker of osteogenic differentiation. The 

cytochemical detection of ALP activity was performed using fast violet B salt (Sigma) in solution at 

0.25 mg/mL diluted in naphthol AS-MX phosphate alkaline solution (Sigma), flowing the 

manufacturer assessment procedure. The ALP presence was revealed by the appearing of a violet 

staining on channels. Staining area for the different conditions was measured by ImageJ software 

and normalized with the respective control condition of reference. 

5.3.9. Statistical analysis 

All data are presented as means ± standard deviations. The data was analyzed using one way 

ANOVA with Tukey’s post-hoc test and p values <0.05 were deliberated as statistically significant. 
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5.4. Results and Discussion 

The initial SH platform was produced by a one-step procedure, being both surface hydrophobization 

and patterning performed simultaneously. Strips of stickers were used to protect the desired areas 

from being modified by the phase separation process that provide superhydrophobicity to the 

surface (Figure 5.1A). Then, a polystyrene superhydrophobic (PS-SH) surface was obtained and 

presenting a water contact angle (WCA) of 153 ± 2°. This feature was reached by conferring micro- 

and nanoroughness to the pristine polystyrene (PS) surface,[30, 31] such as is illustrated by the 

SEM images (Figure 5.1A). Then the surface oxidation was promoted by air-plasma treatment,[32] 

and the plasma-oxidized polystyrene was chemically modified by a fluorosilanization process. 

During this process, covalent binding occurred between the fluorosilane molecule and the –OH 

groups formed on the PS-SH surface by the plasma modification.[33, 34] The fluorinated 

superhydrophobic (F-SH) surface exhibited a high WCA of 163 ± 3°, due to the low surface free 

energy of the fluorosilane.[35] The chemical surface modification was confirmed by EDS analysis 

with the appearing of two peaks, indicating the presence of fluorine and silicon both from the 

fluorosilane molecule (Figure 5.1A). This chemical surface modification showed to be essential to 

increase the surface resistance to be wetted by the cell culture medium. Samples of PS, PS-SH 

and F-SH surfaces were submerged on cell culture medium with 10% of fetal bovine serum (FBS) 

for up to 48 hours, during which the WCA of the tested samples was monitored – see Figure 5.1B. 

The detected changes on WCA are attributed to protein adhesion on the surface, from the FBS 

present in the medium. Superhydrophobicity showed to be fundamental for preventing protein 

adhesion for at least 4 hours.[36, 37] Wherein the surface resistance to protein adsorption was 

attributed to the trapped-air effect,[36] one important characteristic from the SH surfaces used 

here. The higher resistance to protein adsorption of F-SH surface comparing to PS-SH surface can 

be attributed to the different chemistry of the surface, namely to the fluorine presence that showed 
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to reduce the adsorption of proteins.[37] In the end of this two steps (Figure 5.1 A), the stickers 

were removed and a SH platform was obtained with straight, transparent and wettable paths. Due 

to the superhydrophobicity surrounding the protected areas, the liquid on top of the developed 

platform remained confine to the channel-shaped paths.  

 
Figure 5.1: (A) Preparation of superhydrophobic (SH) platforms patterned with strips of wettable regions: first, several 

strips of stickers in a pristine polystyrene (PS) substrate were glued; second, the increase in roughness was achieved 

by a phase separation method such as illustrated by SEM images, and consequently inducing an increase of the 

surface hydrophobicity proven by the higher water contact angle showed on the images of the water droplets profiles; 

then the polystyrene superhydrophobic (PS-SH) surface was chemically modified through a fluorosilanization process 
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obtaining a fluorinated superhydrophobic (F-SH) surface, confirmed by EDS analysis with the appearing of both fluorine 

and silicon peaks, from the fluorosilane molecule; finally, wettable and transparent channel-shaped paths surrounded 

by a SH surface were obtained by removing the stickers. (B) Water contact angle monitoring over time of PS, PS-SH 

and F-SH surfaces submerged on cell culture medium with 10% of FBS for up to 48 hours. 

 

The wettability contrast on the top of the SH platform made possible to control liquid fluid flows 

without using walls for the confinement. The flow rate of the liquid stream on the planar platform 

was controlled through a fluidic system powered by a peristaltic pump system. To classify the fluid 

flow concerning to flow regime – laminar or turbulent – the injection of dye was performed, by 

injecting a dye jet of low momentum.[38] If the dye forms a straight and smooth line this will be 

indicative of low flow velocities and a laminar regime. By contrast, if the dye forms turbidity on the 

fluid flow this will be a sign of a fully turbulent flow. In between of these two regimes, there is a 

transition regime that presents a mixed behavior. Taking advantage from the direct access to the 

flow stream allowed by this open fluidic chip, a home-made setup was constructed for the dye 

injection test (Figure 5.2A). A syringe pump was used to precisely control the dye injection rate on 

the flow stream and a digital camera was used to record by video the dye behavior for further 

analysis. Using water, several flow rates were tested in the range 0.5–3 mL/min (Figure 5.2B). 

After selecting video frames where the dye profile on the water stream was completely developed, 

the obtained images for each tested flow rate were analyzed. Analyzing images in grayscale, the 

dye dispersion on the liquid flow was measured at two distinct injection distances of the channel – 

lines (i) and (ii) in Figure 5.2B. Comparing the dye dispersion profile in both lines, similar profiles 

were obtained for the flow rates: 0.5, 1 and 2 mL/min. In the line (ii) in Figure 5.2B, the straight 

and smooth line formed by the dye on the liquid flow presented a larger width that can be attributed 

to the molecular diffusion of the dye between adjacent layers of the liquid.[39] For the flow rate of 
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3 mL/min, a diffuse line of the dye on the liquid flow was observed, being an indication that the 

transition regime was reached on this flow rate for the developed open fluidic system. We used 

fluid flow rates lower than 3 mL/min to perform the studies in laminar flow conditions. This choice 

was based on the fact that constant laminar flow is the most common situation used to study the 

effect of shear stress on cell behavior.[5, 6, 40]  

 
Figure 5.2: (A) Schematic representation of the home-made setup to perform the dye injection method to assess the 

flow regime – laminar, transition or turbulent flow. A syringe pump was used to control the dye injection rate and the 

results were recorded by video using a digital camera. (B) Representative video frame for each one of the water flow 

rates studied here and respective intensity profile of the dye dispersion in two distinct areas of the channel, represented 

by the lines (i) and (ii). Arrows on images indicate fluid flow direction. 
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Before, SH platforms with wettable patterns showed high versatility on biomedical applications,[41, 

42] still this is the first time that these platforms are present as a CCF system. A simple CCF 

system was engineered that consist of a peristaltic pump, a pulsation dampener per channel, 

connection tubes and a SH platform (Figure 5.3A). The liquid flow in each channel was used in a 

closed loop circulation. Since the peristaltic pump generates a pulsatile flow, a pulsation dampener 

was introduced on the fluidic system to prevent the pulsatile flow. The air pocket trapped in the 

dampener had the role to absorb pulsations from the pump.[43] The SH platform was placed in a 

home-made incubation chamber perfectly sealed to perform cell culture studies, ensuring the 

sterility of the system out of the laminar flow chamber (Figure 5.3A). 

As proof of concept, we present a system of four channels to show that the parallelization concept 

from microfluidics can also be applied here, using SH platforms. An advantage that second 

generation CCF systems claimed comparing with the PPFC systems, once parallelization allows to 

perform high-throughput studies increasing the efficiency of experimentation. Other advantage is 

that cross-contaminations between different conditions can be avoid by using separated channels. 

In our system, we used a few milliliters of cell culture medium, a midway volume if compared with 

microfluidics and PPFC systems. Once, in microfluidics is used a volume in the microliter range 

and in PPFC systems can be achieved hundreds of milliliters of cell culture medium. A general 

concern with the low volume of microfluidics is that sometimes it is not possible to detect some 

cellular metabolites using the conventional techniques and equipment available for biochemical 

analysis.[5] Our systems overcome this issue by using higher volumes than microfluidics. 

Simultaneously, comparing with the PPFC systems important cost savings can be archived by using 

lower volumes. 

On the developed chips, the patterned paths were constructed with the dimensions of 30 mm of 

length and 2 mm width. Cell culture medium was fed and extracted to the chip by glass needles 



Chapter 5 – Open Fluidics: A Cell Culture Flow System Developed Over Wettability Contrast-Based Chips 

 

 

142 
 

(Figure 5.3B). The use of hydrophilic needles was crucial to maintain the liquid rivulet stable, by 

preventing the occurrence of the dewetting phenomenon.[44] Other important step on chip 

optimization it was to increase the paths hydrophilicity by air plasma treatment, using a stencil 

mask to expose only the channels area to plasma (Figure 5.3C). By controlling the exposure time 

to the plasma treatment, PS hydrophilicity was easily controlled (Figure 5.3D). 

 
Figure 5.3: (A) Schematic representation of the home-made setup of a cell culture flow (CCF) systems based on 

planar superhydrophobic platforms with hydrophilic paths patterned on its surface. The CCF system comprised a 

peristaltic pump, a pulsation dampener for channel to prevent the pulsatile flow, tubes for connection and a SH 

platform of four parallel channels. The liquid flow in each independent channel was applied in a closed loop circulation. 

The SH platform was placed in a sealed incubation chamber to ensure the sterility of the system during the cell culture 

studies. (B) Using glass needles, cell culture medium was fed and extracted from each of the four independent 
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channels patterned on the chip. Cells were previously adhered to the hydrophilic paths and a continuous physical 

stimulus was applied by the continuous flow of cell culture medium over cells. (C) Paths hydrophilicity was increased 

by air plasma treatment, the selective exposure of the channels area to plasma was achieved using a stencil mask. 

(D) Paths hydrophilicity was precisely controlled by controlling the exposure time of pristine PS paths to the air plasma 

treatment. (E) Increasing paths hydrophilicity demonstrated to improve cell attachment that allowed cells to hold fluid 

flow conditions. Images comparing C2C12 adhered cells on both pristine PS and plasma-treated channels cultured in 

static conditions and under fluid flow conditions at low flow rate (0.5 mL/min) for up to 48 hours. Images are a 

combination of visible microscopy and fluorescence microscopy, where the fluorescent staining of cell nuclei (DAPI) is 

presented in blue.  Arrows on images indicate fluid flow direction. 

 

Increasing the wettability contrast between the channels and the superhydrophobic surrounding 

area, liquid rivulets more stable were reached.[45] To accomplish this requirement, pristine PS 

from the platform channels was treated by plasma for 30 seconds to reach a WCA of ~30°. Other 

important parameter to control was the liquid volume on the hydrophilic paths that should be less 

than 47 µL. This theoretical volume was calculated considering that the liquid rivulet on the paths 

presented a geometry similar to half cylinder and ensured that the apparent contact angle on the 

surface is less than 90°.[21, 46] Controlling these two parameter, hydrophilicity and liquid volume, 

stable and uniform rivulets were obtained in static conditions that remained stable also in the fluid 

flow conditions studied here. 

The step of increasing paths hydrophilicity demonstrated also to be necessary for the improvement 

of cell attachment and to be able to endure fluid flow conditions (Figure 5.3E). C2C12 myoblast 

cells previously adhered on pristine PS showed to detach at a low flow rate of 0.5 mL/min. After 

plasma treatment of the PS, cells showed to remain attach at the flow rate of 0.5 mL/min and 

even higher, such as presented in Figure 5.4. 
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After optimizing the SH platform and the fluidic system, cellular cultures were performed under 

dynamic conditions provided by the fluid flow and three different flow rates were studied: 0.5, 1 

and 2 mL/min. Tests were made using chips with pre-adhered C2C12 myoblast cells on the 

hydrophilic paths and chips under static conditions were used as control. On this step, the 

relationship between culture medium flow rate and both cell confluence and density was analyzed 

(Figure 5.4). 

Both cell confluence and cell density exhibited a similar tendency with the culturing conditions - 

see Figures 5.4A and 5.4B. Under dynamic conditions the area covered by cells and the cell 

number significantly decreased comparing with the static condition. After 48 hours of cell culture, 

the flow rates of 0.5 and 1 mL/min presented equivalent values and for 2 mL/min a significant 

decrease on cell confluence and cell density was observed. For a cell culture medium flow of 2 

mL/min, it seems that cells were washed-out from the open channels on the SH platform. 

 
Figure 5.4: (A) Cell confluence determined by the percentage of area that was occupied by cells, upon 48h of culture 

under static conditions and using different fluid flow rates. (B) Cell densities for the different studied conditions. (C) 

Images illustrating confluence, density and morphology of C2C12 cells under static culture conditions and under shear 
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stress conditions provided by cell culture medium flow over the cells (48h of culture). Magnified images for each of 

the studied conditions are also showed. Cells were stained with DAPI on its nuclei and with Phalloidin on its filamentous 

actin. Arrows on images indicate fluid flow direction. Bars with * present values that are statistically different comparing 

with the other conditions for p < 0.05. 

 

These differences on both cell confluence and density for the different tested conditions are 

illustrated by the images of Figure 5.4C. Cells presented a more elongated morphology when 

cultured under flow conditions. Shear stress stimuli were previously reported as the responsible for 

change the cell morphology, namely inducing cell alignment and cell elongation.[12, 40, 47, 48] 

To prove the concept that the developed SH platform can be used as the base for a CCF system, 

we chose C2C12 myoblast cells to study the influence of the shear stress stimuli on its osteoblastic 

differentiation. Previously, it was reported that C2C12 cells behavior was conditioned by both static 

and cyclic mechanical stretching.[49-52] In which, it was found a synergistic effect of mechanical 

stretching and bone morphogenic protein (specifically BMP-2) stimulation in the osteoblast 

differentiation of C2C12 myoblast cells.[51, 52] We hypothesize that a similar synergistic outcome 

can be observed by applying shear stress forces as mechanical stimulus, inflicted by cell culture 

medium flowing over the pre-adhered C2C12 cells. To determine the influence of this different 

stimulation on the osteoblast differentiation, ALP activity was assessed as a well-known early 

marker of osteogenic differentiation. ALP activity was detected directly on the chip by a colorimetric 

staining using an in situ detection procedure, performed after cell fixation on the open channels. 

The cytochemical detection of ALP was revealed with the appearing of a violet staining on channels.  

Several combinations between the mechanical stimulus (shear stress) and the biochemical 

stimulus (BMP-2) were studied – see Figure 5.5. Mechanical stimulus was performed by applying 

a cell culture medium flow of 1 mL/min and the biochemical stimulus by supplementing the cell 
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culture medium with 200 ng/mL of BMP-2. In all conditions cells were cultured by 48 hours, 

wherein the dynamic condition consisted in 24 hours of initial static cell culture followed by 24 

hours of cell culture under a constant flow of cell culture medium. Different times of BMP-2 

presence on the cell culture were also tested, namely 0, 24 and 48 hours. 

 
Figure 5.5: Different combinations between mechanical (shear stress) and biochemical (BMP-2) stimuli were tested 

for static and dynamic conditions. Static condition consisted in to perform cell culture on the open channels for 48 

hours and dynamic conditions consisted in 24 hours of initial static cell culture followed by 24 hours of cell culture 

under a constant flow of cell culture medium. Schematic representation of the used experimental protocol, comparison 
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of the ALP activity levels between both static and dynamic conditions and representative imagens of microscopy are 

presented for each combination of stimuli. On images the violet staining indicates ALP activity. (A) Regular cell culture 

medium was used to study the isolated effect of the shear stress stimulus on the ALP activity of the C2C12 cells. (B) 

Supplemented medium with BMP-2 was used during the 48 hours of cell culture for both static and dynamic conditions. 

(C) Supplemented medium with BMP-2 was used only in the first 24 hours of cell culture for both conditions. (D) To 

compare the potency of the mechanical and biochemical stimuli on ALP activity levels, supplemented medium with 

BMP-2 was used in the first 24 hours of cell culture for the dynamic condition and during the 48 hours of cell culture 

for the static condition. Arrows on images indicate fluid flow direction. Bar values with * are statistically different 

comparing with the static conditions for p < 0.05. 

 

For the conditions without BMP-2 stimulation, no violet staining was detected on the channels for 

both static and dynamic conditions (Figure 5.5A). Indicating that for the established conditions the 

mechanical stimulus alone did not encourage C2C12 differentiation into osteoblasts. Comparing 

the results of both static and dynamic conditions for cell cultured with BMP-2 for the 48 hours of 

culture, an enhancement in ALP activity was detected due to the mechanical stimulus (Figure 

5.5B). Similar tendency was also detected by the same conditions but just using BMP-2 

supplemented medium in the first 24 hours of culture (Figure 5.5C). The results clearly 

demonstrate that there was a synergistic effect by combining both stimuli, such as previously 

reported for the mechanical stretching stimulus.[51, 52] However comparing the dynamic 

condition using BMP-2 only in the first 24 hours of culture and the static condition using BMP-2 

along all the culture time, less ALP activity was observed in cells exposed to mechanical stimulation 

versus those induced with BMP-2 alone for 48 hours (Figure 5.5D). Indicating that, such as 

previously reported, the mechanical stimuli (mechanical stretching and now shear stress) were 

less potent that a continued cell culture of C2C12 myoblast cells with BMP-2 to induce its 

osteogenic differentiation.[51, 52] 
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Using an open fluidic system for applications on cell culture under fluid flow conditions brings some 

important advantages. First, open fluidic chips allow direct and fully access to the culture channels 

before, during and after the application of flow. Such possibility makes easier to perform 

procedures such as cell seeding, cell fixation and permeabilization prior to immunostaining, protein 

extraction or culture media collection for molecular secretion measurements, for example. Then, 

due to the high air-liquid interface, there are no physical limitations to oxygen diffusion and allows 

also experiment with modified atmospheres where a precise control of the gas amount that reach 

cells is mandatory. Finally, the open fluidic chips are easy and cheap to produce, due to the 

proposed methodology but also to the used material, the PS. The PS offers the possibility to use 

the chips as disposable material for single use, ensuring simultaneously chemically resistance and 

optical transparency to aid visualization. In which may include real-time monitoring of live cells by 

designing a specific incubation camera to perform cell culture directly on a time-lapse video 

microscope. PS is also the most commonly used material in laboratory cultureware, because this 

material ensure their inertness to biological outcomes. In this work chips with four channels were 

produced for the proof-of-concept. However, we could envisage the production of supports with 

more channels permitting the independent monitoring of the effect of different culturing conditions, 

which would increase the throughput possibility of such technology. 

 

5.5. Conclusion 

In summary, we have reported a novel cell culture flow (CCF) system to study the shear stress 

effect on adherent cells, based on a planar superhydrophobic (SH) platform with hydrophilic paths 

patterned on its surface. On the paths, cells were pre-adhered and cultured under shear stress 

stimuli that was inflicted by the cell culture medium flowing over the cell layer. To show the 

pertinence of the proposed concept, we studied the influence of this mechanical stimuli in the 
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osteogenic differentiation of C2C12 myoblast cells. A synergistic effect between the mechanical 

and a biochemical stimuli on the osteoblast differentiation of C2C12 cells was found. Combining 

bone morphogenic protein (specifically BMP-2) stimulation with the shear stress, an enhancement 

on ALP activity was detected. On the optimization process of the developed system, the chemical 

surface modification of the SH platform with a fluorosilane and the increase of hydrophilicity of the 

channels revealed to be important for system robustness and flow stability. With the 

fluorosilanization process the surrounding area of the channel presented higher resistance to 

protein adhesion, which was crucial to maintain the liquid streams morphology and integrity along 

all the period of the dynamic culture. The increasing of the hydrophilicity of the paths combined 

with the glass needles, used to feed and extract the culture medium to the open chip, helped to 

increase liquid streams stability preventing the dewetting phenomena. A higher hydrophilicity of 

the cell culture channels showed to improve cell attachment and cells could hold higher cell culture 

medium flow rates. One characteristic of the developed chip was that until a flow rate of 2 mL/min 

the flow regime was laminar. 

We believe that the presented work is a step forward on the potential applications of the patterned 

SH platform and on the CCF systems. SH platforms with wettable patterns on its surface have 

shown a high versatility on biomedical applications. Still, to best of our knowledge, this is the first 

time that this kind of platform was developed to study the shear stress effect on cell behavior. An 

interesting achievement of the proposed CCF system is that the SH platform with hydrophilic paths 

combined characteristics and advantages of both main systems used for cell culture under flow 

conditions, the parallel plate flow chambers and the microfluidic devices. 
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6.1. Abstract 

 Cell spheroids are three-dimensional (3D) structures of living cells with high interest for biomedical 

research. One of the most promising spheroids applications is in tissue engineering, where they 

have been suggested for cell-based regenerative approaches and for organ/tissue bio-fabrication 

as building blocks. Especially, co-cultured spheroids are gaining momentum because they allow 

studying cellular interactions occurring in the native in vivo environment. Here, we propose a 

hanging drop system based on a superhydrophobic (SH) platform for the production and culturing 

of human adipose-derived stem cell (hASC) spheroids under co-culture conditions. hASC spheroids 

were formed in the SH surfaces in indirect co-cultures with L929 and Saos-2 cell lines, and human 

umbilical vein endothelial cells (HUVEC). The method allowed obtaining compact spheroids with 

uniform sizes. The co-culture with Saos-2 cells indicated that the spheroid production and hASC 

differentiation into an early osteogenic phenotype can be obtained in a one-step procedure. These 

SH platforms may be interesting systems for massive production of pre-differentiated spheroids to 

be used in bio-fabricated constructs for bone regeneration. The developed platform also showed 

versatility for cell analysis, as it permitted easily harvesting and transferring spheroids between 

platforms, and directly performing on-chip cell viability assessment. 
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6.2. Introduction 

Cell spheroids are three-dimensional (3D) structures of living cells with high interest as models for 

basic science. Also, they are very important for cancer research, drug discovery and tissue 

engineering.[1] Spheroids are progressively finding application in tissue engineering strategies as 

building block units to be used in a multiplicity of approaches targeting the regeneration of different 

organs and tissues,[2-5] including bio-printing and bio-fabrication techniques.[6-8] The increasing 

importance assumed by spheroids on biomedical research is justified by their similarity to the 

native 3D biological niches present in in vivo tissues. In spheroids, cell-to-cell interactions are 

increased, reproducing better all functional and architectural characteristics of the native tissues, 

as compared to 2D cell culture.[9] Several methods for spheroid production have been reported, 

namely centrifugal pellet culture, spinner flask culture, use of non-adhesive substrates, rotating 

wall vessels and porous 3D scaffolds, external force cell aggregation enhancement (electric, 

acoustic or magnetic), microfluidics, micro-molded hydrogels and hanging drop culture.[1, 10]  

With the goal to faithfully mimic the in vivo environment, complex systems combining 

simultaneously different cell types have been studied. Co-culture spheroid models were reported 

as valuable tools for gaining in-depth understanding of cancer biology and for oncology drug 

development and discovery. Generally, these models are a closer approximation of the in vivo 

environment as they are able to combine different cell types like those present in the body.[11, 12] 

For example, studying the interactions between different cells can be applied in cell- and antibody-

based immunotherapies, by using cytokines to improve natural immune system against cancer 

cells.[13-15] Other of the most promising clinical applications of co-culture systems may be related 

to ‘personalized tumor analyses’, where after collecting the cells from patients, customized 

treatment strategy can be designed.[16] 
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In this work, we propose a hanging drop platform for spheroid production under indirect co-culture 

conditions. A platform consisting of a polystyrene (PS) superhydrophobic (SH) planar surface with 

wettable areas was used. In a first step, one cell type was left to adhere as a monolayer on the 

wettable patterns. Afterwards, droplets of suspended cells, of a second type, were placed over the 

formed cell layer. The SH platform was immediately turned upside-down, taking advantage of the 

high adhesiveness of the droplets to the spots. The cells, which were initially suspended in the 

droplets, assembled to form one spheroid per droplet due to the effect of gravity.  

There are numerous systems for distinguished biomedical applications using SH-based platforms, 

showing its high versatility.[17]  Reported applications include microfluidic devices,[18] production 

of smart drug delivery systems,[19] biocompatible polymeric microparticles with nearly 100% drug 

encapsulation yield,[20] bioactive spherical structures with shape memory capability[21] and high-

throughput generation of shape-controlled microgels.[22] Other promising application of these 

platforms involves the easy in-situ analyzes of cellular response.[23, 24]  

The use of a SH platform for spheroids production in mono-culture conditions was previously 

reported.[23, 25-28] Such technology allowed precisely controlling spheroids’ size with very low 

size variability, by simply tailoring both cell number and droplet volume. Different superhydrophobic 

patterned platforms were previously developed for high-throughput spheroid generation for 

application in combinatorial drug screening[23, 25, 28] and for testing the therapeutic efficacy 

enhancement for angiogenesis and insulin secretion.[26, 27]  

The high array of applications of SH platforms in the biomedical field, as well as their high versatility, 

inspired the design of a chip for a novel application, where both components of a co-culture - 3D 

spheroids and 2D monolayers - could be studied in each hanging droplet. The system was used 

for the production of human adipose-derived stem cell (hASC) spheroids under co-culture 
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conditions with a cell monolayer, in a setup that allowed their further growth and possible 

differentiation, as well as their on-chip analysis. 

 

6.3. Materials and Methods 

6.3.1. Preparation of the superhydrophobic surfaces with wettable regions 

Polystyrene (PS) superhydrophobic surfaces were prepared as previously reported.[18] PS (184K, 

Styrolution) was dissolved in THF (Sigma) at a concentration of 70 mg/mL. This solution was then 

mixed at a ratio of 2 : 1.3 with absolute ethanol. The mixture was vigorously shaken, until it became 

transparent. PS of upper lids of petri dishes were protected in regions of 2 x 2 mm2 separated by 

2 mm with poly(vinyl) carbonate (PVC) stickers, similarly as reported by Oliveira et al..[25] The PS 

solution prepared in THF and ethanol was dispensed in the petri dish lid, inducing polymeric phase 

separation. The solution was then removed and the lids were treated with absolute ethanol. After 

the drying of the lids, the stickers were removed using tweezers. The regions covered by the stickers 

remained untreated, showing a wettable behavior. The wettability contrast-based chips were 

sterilized by immersion in ethanol 70% overnight. The samples were then dried inside a laminar 

flow chamber. 

6.3.2. Cell isolation and expansion 

Human abdominal subcutaneous adipose tissue was used to isolate human stem cells derived 

from the adipose tissue (hASC). The samples were obtained from patients undergoing 

lipoaspiration procedure, after informed consent. The retrieval and transportation of the samples 

to the 3B's Research Group laboratorial facilities were performed under a protocol previously 

established with the Department of Plastic Surgery of Hospital da Prelada (Porto, Portugal) and 

approved by the local Ethical Committee. All samples were processed within 24 h after the surgical 

procedure, and isolation was carried out according to a protocol previously described.[29] The 
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undifferentiated cells were cultured and expanded under basal condition, using Minimum Essential 

alpha Medium (α-MEM, ThermoFisher Scientific), supplemented with 10% (v/v) fetal bovine serum 

(FBS, ThermoFisher Scientific) and 1% (v/v) penicillin-streptomycin (ATB), until passages 2 and 3. 

The cells were used in passages 3 to 5. 

Immortalized cell lines L929 (mouse fibroblasts), Saos-2 (human osteoblast-like cells) and human 

umbilical venous endothelial cells (HUVEC) were purchased from Sigma. Their expansion was 

carried out in Dulbecco’s Modified Essential Medium (DMEM, Invitrogen) with 10% FBS and 1% 

ATB, for L929 and Saos-2, and in medium 199 (M199) with 20% FBS, 1% ATB and 1% Glutamax, 

supplemented with heparin (100 μg/mL) and endothelial cell growth supplement (50 μg/mL; 

ECGS, Invitrogen), for HUVEC. Cell culture media were exchanged every 3 days.  

6.3.3. Preparation of a cell layer on-chip 

Cell suspensions at a density of 2.5x105 cells/mL were dispensed in each wettable spot of the 

chips with a volume of 5 μL. Cells were either L929 or Saos-2 suspended in DMEM, or HUVEC in 

M199. All cell culture media had the same complete formulation presented previously. 

The cell suspension droplets were left in contact with the wettable spots for 4 hours, promoting 

cellular adhesion, at 37 ºC and 5% CO2 environment. The excess medium and non-adhered cells 

were then removed using a micropipette in all spots. Fresh medium was then added to the wettable 

spots, in a volume of 5 μL. The cells were then cultured on chip overnight at 37 ºC, 5% CO2. The 

wettable spots later used for the formation of cell spheroids without co-culture were left empty 

during this step. 

6.3.4. Preparation of hASC cell spheroids on-chip 

The cell culture medium used to culture the cell lines previously adhered to the wettable spots 

overnight was removed from the spots using a micropipette. A 7.5 μL droplet of hASC cell 

suspension at a cell density of 3.33x105 cells/mL was dispensed in the wettable spots of the chips, 
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which were rapidly turned 180º, acquiring a hanging drop configuration. hASC dispensed in the 

wettable spots containing adhered L929 or Saos-2 were suspended in α-MEM with 10% FBS. For 

the spots containing adhered HUVEC, the hASC were suspended in M199 with 10% FBS and 1% 

Glutamax, supplemented with heparin (100 μg/mL) and ECGS (50 μg/mL). The control spheroids, 

cultured as a monoculture (i.e., in cell-free wettable spots), were cultured in both α-MEM and M199 

supplemented media. As such, we promoted a hanging drop configuration for the growth of hASC 

cells in the presence (or absence, in the case of control samples) of a 2D monolayer of cell lines. 

The lower lid of the petri dishes was filled with sterile PBS with 10% of α-MEM. The schematic 

representation of the co-culture setup can be found in Figure 6.1B. The chips were incubated at 

37 ºC, 5% CO2 for 72 h. Medium replacement was performed every 24 hours, by adding 2 μL of 

medium to each spot. 

6.3.5. Characterization of the cellular layers 

The formation of cellular layers and respective morphology on the wettable spots was assessed 

after the fixation of the cells with 10% formalin. Cells' nuclei were stained with 4’,6-diamidino-2-

phenylindole (DAPI, Sigma, diluted 1000x). F-actin was stained with phalloidin-tetramethyl 

rhodamine isothiocyanate (Sigma, diluted 1000x). Images of the monolayers were acquired using 

a reflected fluorescent light microscope (Axio Imager Z1, Zeiss). 

6.3.6. Measurement of spheroid diameter and roundness 

Images of the produced spheroids were acquired using a regular microscope. Then, the diameter 

of spheroids for each tested condition was measured using the ImageJ software. The roundness 

parameter was also determined using the same software, based on the equation 1. 

6.3.7. Quantification of total dsDNA in the spheroids 

The total amount of double stranded DNA (dsDNA) in the spheroids was quantified to assess 

cellular proliferation. Quantification was performed using the Quant-iTt Pico-Green dsDNA Assay 
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Kit (Invitrogen, Molecular Probes, Oregon, U.S.A.), according to the instructions of the 

manufacturer. After rinsing twice with PBS, cells in the spheroids were lysed by osmotic and 

thermal shock. Briefly, the spheroids were collected in ultrapure water, stirred using a vortex for 1 

minute (3x) and incubated at room temperature for 30 minutes. The samples were frozen at -20ºC, 

until their use for quantifications. After thawing at room temperature, the samples were exposed 

to ultrasounds for 15 minutes. The freezing/thawing followed by ultrasound exposure process was 

repeated twice for all samples. All samples were submitted to centrifugation (1 minute, 300 g) 

before quantifications, and the supernatant was used for the dsDNA quantification assays. The 

fluorescence of the dye was measured at an excitation wavelength of 485/20 nm and at an 

emission wavelength of 528/20 nm, in a microplate reader (Synergie HT, Bio-Tek, USA). The 

dsDNA concentration for each sample was calculated using a standard curve (dsDNA concentration 

ranging from 0.0 to 1 µg/mL) relating the quantity of dsDNA and fluorescence intensity.  

6.3.8. Quantification of alkaline phosphatase (ALP) activity 

Alkaline Phosphatase (ALP) is frequently used as an early biochemical marker of osteogenic 

differentiation. The activity of this marker was evaluated using a commercially available Alkaline 

Phosphatase Detection Kit (Sigma, 245-325-0), following the protocol recommended by the 

manufacturer. The fluorescence was read at 360/440 nm excitation/emission on a plate reader 

(Synergie HT Izasa). 

The presence of enzymatically active ALP in the spheroids was also corroborated by staining the 

enzyme with the substrate nitro-blue tetrazolium chloride / 5-bromo-4-chloro-3'-indolyphosphate p-

toluidine salt (BCIP/NBT, Sigma) overnight. BCIP/NBT shows a purple color when in contact with 

ALP. The samples were then washed with a buffer and images acquired before and after staining 

using a stereomicroscope (Zeiss). 
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6.3.9. Spheroid transference 

The ability of hASC spheroids to be transferred from the chip where they were formed (as part of 

a hanging drop system) to a clean cell-free chip allows performing on-chip assays where the 

spheroids were analyzed separately from the 2D cell monolayer. An on-chip protocol was developed 

to prove the suitability of this technique. Empty sterilized cell-free chips with the same disposition 

and size of wettable spots were aligned with the chips containing cell layers and 3D cell spheroids. 

The spheroids were passed to the new clean chips by contact established between the wettable 

spots through the cell culture medium droplet. A schematic representation of this step can be 

found in Figure 6.4A. 

6.3.10. On-chip metabolic activity testing 

The metabolic activity of the transferred spheroids was assessed on-chip by adapting the 

AlamarBlue protocol to the few microliter dimensions of the chips. The excess medium transferred 

to the clean wettable spots was removed using a micropipette. 4 μL of AlamarBlue reagent 

(AbDSerotec) diluted 100x (in α-MEM or M199) was added to each spot of the chips. The chips 

were incubated at 37 ºC, 5% CO2 for 8 hours and, immediately after, pictures of the chips were 

acquired (Canon Powershot G12). Cell viability ratios were calculated by measuring the red color 

channel intensity in each spot. The images RGB channels were split using the ImageJ free software 

(NIH, USA), and the grey intensity corresponding to the red channel was quantified. Cell viability 

ratios of co-cultured samples were calculated using monocultured spheroids as a reference (with 

value 1). The tests were performed using at least 4 spots per condition. 

6.3.11. Statistical analysis 

All quantitative data are presented as means ± standard deviations. All data was analyzed using 

one way ANOVA with Tukey’s post-hoc test and p values <0.05 were considered statistically 

significant. 
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6.4. Results and discussion 

The SH platform used here was manufactured by a one-step patterning/hydrophobization process, 

using square shaped stickers to protect the desired areas from being reached by the phase-

separation reagents that confer to the surface superhydrophobicity, resulting in water contact 

angles higher than 150°.[18] This property was achieved by the introduction of micro- and 

nanoroughness on the PS surface (Figure 6.1A), mimicking the extreme water repellency of lotus 

leaves. Due to the superhydrophobicity surrounding the untreated areas, cell suspensions 

remained restricted to these areas. In two steps, it is possible to produce an array of co-culture 

droplets – see Figure 6.1B. One type of cells (here called “cells 1”) is first cultured in the surface 

of the wettable spots. Then, droplets of a suspension of cells 2 are added. By inverting the chip, 

cells 2 are forced to assemble into a spheroid shape, keeping the contact with cells 1 via paracrine 

signaling. Note that in each spot the nature and amount of cells 1 or cells 2 could be independently 

controlled, being thus possible to generate versatile chips for high-throughput analysis. 

In this study, we analyzed the effect of preparing hASC spheroids in indirect contact with three 

different cell types – L929 fibroblast cell line, Saos-2 osteoblast-like cell line and human umbilical 

vein endothelial cells (HUVEC). In the chip’s indirect co-culture setup, no physical barrier (such as 

the trans-well systems) was used and cells were only separated by the culture medium. Minimum 

essential alpha medium (α-MEM) was used for hASC co-culture with L929 and Saos-2 cells. 

However, the hASC/HUVEC co-culture was carried on a suitable cell culture medium for HUVEC 

cell survival/proliferation: medium 199 complemented with endothelial cell growth supplement 

and heparin (M199). 
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Figure 6.1: (A) Preparation of superhydrophobic (SH) platforms patterned with arrays of wettable regions: first, an 

array of stickers in a pristine polystyrene (PS) substrate was made; then, a roughness increasing was achieved by in 

situ deposition of PS such as illustrated by SEM images, and consequently inducing an increase of the surface 

hydrophobicity at the macroscopic level proven by the water contact angle images; finally, wettable transparent spots 

surrounded by a SH surface were obtained by removing the stickers. (B) Schematic representation of the procedure 

for the production of spheroids of cells 2 in co-culture conditions of cells 1 on the developed platform: addition of a 

suspension of cells 1 into the wettable spots by pipetting; after overnight incubation, during which cells 1 adhered onto 

the surface, a cell suspension of cells 2 was dispensed in each single spot over the previously adhered cells 1; then, 

the platform was rotated 180° to create a hanging-drop setup; finally, the spheroids of cells 2 were left to aggregate 

for 3 days in indirect co-culture contact with the adhered cells. 

 

Taking advantage of the wettable areas transparency, spheroid formation was easily monitored 

over time using a regular microscope, as well as the proliferation of adhered cell layers. After 3 

days of incubation for complete hASC spheroids formation, the obtained spheroids for all studied 

conditions presented a diameter size in the range 195-215 µm (Figure 6.2A). Spheroids developed 
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under co-culture conditions presented a similar diameter value comparing with the respective 

control, where spheroids were cultured only with α-MEM or M199 medium (Figure 6.2A). Equation 

1 was used to calculate spheroids’ roundness, which allowed characterizing and comparing the 

shape of the different spheroids. 

𝑅𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠 = 4 ×
[𝐴𝑟𝑒𝑎]

𝜋×[𝑀𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠]2
    Equation 1 

Spheroids presented a roundness value in the range 0.75-0.95 (Figure 6.2B), and those cultured 

under co-culture conditions presented a roundness value in the same range of the respective 

controls. However, no significant differences on both measures were verified. Figure 6.2C shows 

images of spheroid profiles for each tested condition, and fluorescent images of the cell layer 

adhered on the PS above of the respective spheroid. These cell layers showed that cells were 

confluent and had spread morphology, showing a good adhesion to the PS substrate. The proposed 

technique would allow a pre-adsorption of an adhesive protein or other surface treatment to PS 

envisaging the enhancement of cell adhesion, which was not necessary in this case. Since, a low 

number of cells detaching from the monolayer and adhering to the spheroid was detected (Figure 

6.S1). For a similar amount of hASC cells and droplet volume, spheroids presented diameter values 

in the same magnitude of the ones reported elsewhere.[26] Importantly, the obtained spheroids 

were compact and with a uniform size. Seo et al. and Lee et al. found that this hanging drop 

method using SH surfaces originated stem cell spheroids high higher quality than using both 

spinner flask and hanging drop culture on a petri dish.[26, 27] The explanation for the better 

results using SH platforms instead of petri dishes relies in the favorable internal hydrodynamic flow 

of the medium droplet during the spheroid formation. On a static hanging droplet, the droplet 

internal flow can be influenced by the surface and medium chemical properties, the surface 

geometry and evaporation rate of the liquid. Due to large contact angle and small contact area 

between the SH surface and medium droplet, the hydrodynamic forces on the interface 
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liquid/substrate generated by medium evaporation are weaker than that on the petri dish surface. 

For this reason, gravity forces are more prevalent over cell aggregates than internal hydrodynamic 

forces. Consequently, cell aggregates can more promptly accumulate at the drop apex, generating 

compact and functionally enhanced spheroids.[26]  

 
Figure 6.2: (A) Size distribution of the obtained hASC spheroids after 3 days of culture, either in single cell culture 

or co-culture, is shown for the tested conditions. (B) Shape characterization of spheroids taking in account the 

roundness parameter. (C) Transmitted light microscopy images of the spheroids acquired from the top of the developed 

platform, through the transparent spot. Nuclei (DAPI)/cytoskeleton F-actin (phalloidin-TRITC) staining was performed 

in the cells adhered to the pristine PS spot above the respective spheroid. 

 

We hypothesized that the SH platforms previously used for spheroids production would also be 

compatible with hASC spheroids production under indirect co-culture conditions with other cell 

types. The use of this platform allows easily assessing the effect of preparing spheroids under 

different co-culture conditions on different biological features, including specific markers 

expression. As proof of concept, we investigated the effect of producing and culturing the spheroids 

in different co-cultures on their alkaline phosphatase (ALP) expression, which is a well-known earlier 

marker of osteogenic differentiation. The expression of ALP in mesenchymal stem cells, namely 
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hASC, is known to be affected by their crosstalk with osteoblast-like cells and HUVEC cells. Both 

are known to drive an increased expression of this marker in early time points.[30-35]    

Double stranded DNA (dsDNA) quantification showed that the stem cell spheroids produced in 

different co-culturing procedures presented approximately three times more dsDNA than the 

control conditions (cultured as monocultures in either α-MEM or M199) (Figure 6.3A).  Similar 

results were previously reported for other indirect co-culture methods, where stem cell proliferation 

was increased via co-culture with osteoblast cells[30][31] and HUVEC cells.[33, 34] However, 

these differences detected on dsDNA amount did not originate significant differences on spheroid 

diameters, suggesting that co-culture conditions promoted the formation of more compact 

spheroids. 

ALP activity results showed that hASC spheroids produced in the presence of Saos-2 cell line 

presented twice more ALP activity, normalized by total sdDNA, as compared to the spheroids 

produced both under monoculture conditions in α-MEM or in co-culture with fibroblast cell line 

L929 (Figure 6.3B). Despite the observed trend, the difference was not statistically significant 

compared to spheroids cultured in α-MEM. However, the use of either L929 or Saos-2 cell lines 

showed a significant difference in the expression of ALP. Birmingham et. al described similar results 

for two-dimensional co-cultures, showing that osteogenic differentiation of mesenchymal stem cells 

can be directed by performing indirect co-culture with osteoblast-like cells in the absence of 

osteogenic media.[30] For the HUVEC co-culture case, the ALP activity was reduced for half of the 

value detected on the control condition (M199), as shown in Figure 6.3B. This results may be 

correlated with previous findings which showed that HUVEC cells inhibited mesenchymal bone 

marrow stem cells (BMSC) differentiation into mature osteoblasts when co-cultured in indirect 

contact,[33] even using osteogenic medium.[36] In contrast, direct co-culture of HUVEC cells with 

stem cells has been established as enhancing its osteoblastic phenotypic markers, resulting for 
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example in an increase of ALP expression.[34, 35] Villars and coworkers highlighted these 

differences by comparing direct and indirect co-cultures of HUEVC and BMSC cells.[33] 

To corroborate the obtained results for ALP activity, and also to adapt the biochemical tests to rapid 

on-chip detection, a colorimetric detection method for ALP was used. In the employed method, an 

insoluble product is formed by a reaction with ALP and is easily observable with its purple color. 

Figure 6.3C shows ALP activity in all the studied conditions. hASC spheroids co-cultured with Saos-

2 is distinguished from others by the intense purple staining of the spheroid, indicating an 

enhanced ALP activity. 

 
Figure 6.3: (A) Quantification of the DNA content per spheroid for each of the studied conditions at day 3. (B) Alkaline 

phosphatase (ALP) activity in each spheroid for the different tested conditions. (C) Images of spheroids obtained from 

the different co-cultures before and after ALP staining. More intense purple color indicates enhanced ALP activity. 
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Taking advantage of SH platform versatility, a technique for rapid and low handling cellular viability 

assessment directly on chip is here presented. Using an equivalent platform to the one employed 

on spheroid production, by aligning and touching with the spheroid production platform on the 

empty platform the spheroids were transferred for the new platform – see Figure 6.4A. With this 

simple step the spheroid can be easily separated from the cell layer adhered on the first platform. 

From that point on, both spheroids and cell layer can be analyzed separately. For example, the 

platform with the adhered cell layer can be processed in order to characterize cell morphology, as 

shown by the fluorescent images present in Figure 6.2C. However, other kind of assays can be 

easily performed on these platforms such as immunocytochemistry staining to study specific 

markers on cells.  

The new platform containing harvested spheroids was used to perform AlamarBlue assay. The blue 

color of the AlamarBlue solution changes to red due to a reduction reaction promoted by viable 

cells. Through image analysis, the red channel intensity is amenable to be measured and this way 

metabolic activity on spheroids can be assessed (Figure 6.4A). By analyzing the image presented 

in Figure 6.4B, the relative cell viability could be determined, using as reference the respective 

control condition (α-MEM and M199). The cell viability for the co-cultured spheroid was very similar 

to the control conditions, where no significant differences were found (Figure 6.4B). By relating the 

previous results with the cell viability results, we conclude that even though co-cultured spheroids 

presented higher amount of DNA they showed the similar cell viability to controls. One possible 

explanation could be that the spheroid obtained in co-culture conditions showed a high level of 

compactness, and cells on spheroid core may be dead. For this reason the spheroids with higher 

DNA amount did not present a higher AlamarBlue reduction rate, as would be expected. Relating 

the conditions using α-MEM medium with the conditions using M199 medium, the last presented 

an intense red color comparing with the first conditions (Figure 6.4B). This evident difference may 
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be attributed to the composition of the medium 199 or its supplements. As such, controls with cell-

free medium were established for both cell culture media used in this experiment.  

 
Figure 6.4: (A) Schematic representation of the procedure for the on-chip AlamarBlue assay using the developed 

platform: by touching with the medium droplets containing the spheroid on a second SH platform with empty wettable 

spots spheroids were transferred; on the harvesting step, spheroids and adhered cell layers were separated in two 

different chips allowing the independent processing of both; on the chip with spheroids, the excess of medium was 

removed from each spot and an AlamarBlue solution was dispensed, ensuring the same volume per spot; after 

incubation, an image from the chip was collected and processed to measure the red channel intensity, calculating this 

way the cell viability ratio. (B) After 8 hours of incubation, the obtained results for on-chip AlmarBlue assay for each of 

the tested conditions are present on the image, then after image processing the cell viability ratio was calculate taking 

as reference the respective control condition, α-MEM or M199.  

 

We here present a simple and low cost platform for spheroid production and further culture under 

indirect co-culture conditions. To best of our knowledge, this is the first time a platform allows the 

formation of cell spheroids in the presence of a layer of other cell type. Recently, de Groot et. al 

reported an open microfluidic platform for hanging droplet culture that allows co-culture.[37] 
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Besides the complexity of both manufacturing process and spheroids harvesting, the co-culture 

was performed using polymeric scaffolds.[37] By using our platform, different co-culture conditions 

can be tested and compared on a single chip. Moreover, by improving the automatization of the 

platforms production and liquid dispensing, these SH platforms can also be used as part of a 

technique for massive spheroid production under the influence of a second cell type. The 

adaptation of the method to a high-throughput testing strategy would be easily achieved, 

considering that the platforms are compatible with automatic liquid dispensing equipment. The 

high-throughput screening of the results is assured by the proved compatibility of this system with 

image-based analysis of rapidly acquired data. This interest is increased by the fact that the hanging 

drop method based on SH surfaces originate spheroids with enhanced functionality.[26] As shown 

in this work, the produced spheroids were compact and with a uniform size, which are crucial 

characteristics for therapeutic applications in several fields, including biomedical engineering, 

cancer therapy development and production of microtissues for regeneration approaches. 

 

6.5. Conclusion 

We report a novel use for patterned superhydrophobic surfaces as affordable and easy-to-use chips 

for the production of 3D spheroids and their culture under co-culture conditions. As a proof of 

concept, we produced spheroid of hASC cells in indirect co-culture with L929, Saos-2 and HUVEC 

cells. After performing spheroid production under these conditioned conditions, increased ALP 

activity was detected on hASC spheroids cultured with the 2D monolayer of Saos-2 osteoblast-like 

cells. This result indicated that the hASC differentiation was amenable to be directed for an early 

osteogenic phenotype simultaneously with spheroid formation. These results open the path for the 

simultaneous production of 3D cellular structures and their differentiation promotion in a one-step 

procedure. Such spheroids pre-committed with the osteoblast linage may have high interest for 
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bone regeneration. The obtained 3D structures may be used as building blocks which, combined 

with the appropriate biomaterials, have potential to be used in the bio-fabrication of complex 

personalized constructions. The high versatility of these SH platform was also shown by the 

possibility of characterizing on-chip both types of cells involved in the co-culture by image-based 

analysis. We also developed a method to easily harvest the spheroids to new platforms and 

subsequently perform an on-chip cell viability assessment. As such, the developed methodology 

presents potential to be implanted in high-throughput strategies for biologically relevant studies in 

the biomedical field, namely in tissue regeneration, as well as in cancer biology and drug screening 

approaches.  
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6.9. Supporting Information 

 

 
Figure 6.S1: Investigation of cell detachment from cell layer adhered to the PS above of the 

respective spheroid. (A) SaOs-2 cell layer adhered to the PS, being the SaOs-2 cells tagged with a 

red lipophilic staining before cell adhesion. (B) hASC spheroid formed in the SH surfaces in indirect 

co-cultures with Saos-2 cell line. hASC were tagged with a green lipophilic staining before the co-

culture procedure. hASCs and the SaOs-2 cell line were pre-stained with 20mM 1,1′-Dioctadecyl-

3,3,3′,3′-tetramethylindocarbocyanine perchlorate (Dil; Sigma, USA) and  3,3′-

Dioctadecyloxacarbocyanine perchlorate (Dio; Sigma, USA), respectively. Cells were trypsinized 

and resuspended in 2 μM cell dye in serum-free medium for 10 min at 37 ºC and washed with 

PBS prior to their seeding, performed such as described in experimental section. Images of the 

monolayer and spheroid were acquired using a reflected fluorescent light microscope (Axio Imager 

Z1, Zeiss). 
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of Anchorage-Dependent Cells. Advanced Healthcare Materials 2015, 4, 264–270.  
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7.1. Abstract 

Stable liquid marbles (LM) were produced by coating liquid droplets with a hydrophobic powder. 

The used hydrophobic powder was produced by fluorosilanization of diatomaceous earth, used 

before to produce superhydrophobic structures. Here, it is proposed LM use for high-throughput 

drug screening on anchorage-dependent cells. To provide the required cell adhesion sites inside 

the liquid environment of LM, surface modified poly(L-lactic acid) microparticles were used. A 

simple method that takes advantage from LM appealing features is presented, such as the ability 

to inject liquid on LM without disrupting (self-healing ability), and to monitor color changes inside 

of LM. After promoting cell adhesion, a cytotoxic screening test was performed as proof of concept. 

Fe3+ was used as a model cytotoxic agent and was injected on LM. After incubation, AlamarBlue 

reagent was injected and used to assess the presence of viable cells, by monitoring color change 

from blue to red. Color intensity was measured by image processing and analysis of pictures took 

using an ordinary digital camera. The proposed method was fully validated in counterpoint to a 

MTS (3- (4,5-dimethylthiazol-2-yl) -5- (3-carboxymethoxyphenyl) -2- (4-sulfophenyl) -2H- tetrazolium) 

colorimetric assay, a well-known method used for cytotoxicity assessment. 
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7.2. Introduction 

Liquid marbles (LM) were first reported by Aussillous and Quéré.[1] LM were defined as liquid 

droplets covered with a hydrophobic powder. To manufacture the LM is only necessary to roll a 

liquid droplet over powder particles. The hydrophobic shell protects the encapsulated material by 

preventing any direct contact between the liquid and the external environment. However posteriorly, 

it was reported that LM can also be produced using hydrophilic particles, namely graphite and 

carbon black.[2, 3] LM make possible an easily manipulation of liquids, being good candidates to 

be used as micro-reactors, and sensors for water pollution detection, gas and pH.[4-9] Taking 

advantage of LM small dimensions, they can be used to miniaturize processes, reducing drastically 

the used amount of chemical/biological agents with high control over all the process conditions.  

LM are permeable to gases allowing their application for gas sensing.[6, 7] Since the required force 

to move LM on a surface is small, its manipulation can be easily done by using electrostatic, 

gravitational or magnetic fields, which make promising the LM usage on microfluidic 

applications.[10] Reports about LM applications on the biological field were published very recently. 

Arbatan T. and co-workers showed that LM could be used as a micro-bioreactor for rapid blood 

typing.[11] Using blood droplets to produce LM and by injection of specific antibodies it was 

possible to detect the blood type. The analysis was made by detecting differences on the LM color 

due to the haemagglutination reaction that occurs between the antibodies and the antigens on the 

surface of red blood cells. In another study, it was demonstrated that the LM could be used as 

micro-bioreactors for microorganisms culture by taking advantage of the LM permeability to 

gases.[12] On the biomedical and tissue engineering fields, LM were employed to produce cancer 

cell spheroids and embryoid bodies inside of LM.[13, 14] These works showed the applicability of 

LM to culture cells with ability to form aggregates by itself, such as the case of both cancer cell 

and embryonic stem cell lines. 
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Here, we propose a strategy to culture anchorage-dependent cells using the LM as cell culture 

reactors. The rational is based on the possibility of fast producing well designed LM in which high-

throughput drug screening studies can be performed. To fabricate the LM, we propose to use a 

hydrophobic powder developed on a previous work that was produced by chemical surface 

modification of diatomaceous earth.[15] Diatomaceous are unicellular microalgae with a very 

peculiar silica micro-skeleton. After diatomaceous’ dead, the exoskeletons remain and sediment 

on the bottom of lakes or sea, called diatomaceous earth. The exoskeletons of diatomaceous are 

microstructures with nanotextures on their surface – this could provide especial features to the 

particles, including increased water-repellency due to the well-known lotus effect – and are 

constituted mostly by amorphous silica. The dried diatomaceous earth can be easily hydrophobized 

by fluorosilanization to obtain hydrophobic particles.[15] Additionally, as the anchorage-dependent 

cells need to have a physical support to adhere and be able to proliferate, microparticles were 

dispersed on the LM core to be used as anchorage sites for the cells. This idea of using 

microparticles as supporting platforms for adherent cells was fully validated in previous works, in 

which functionalized poly(L-lactic acid) (PLLA) microparticles and cells were encapsulated within 

liquefied multilayered capsules.[16, 17] Taking advantage from the self-healing ability of the 

obtained LM it is possible to inject (or extract) controlled volumes of liquids without disrupting these 

structures. Color changes can be also visualized inside the LM. We hypothesize that such 

combination of characteristics could allow to develop a simple hierarchically organized device able 

to analyze the biological outcome of encapsulated cells in response to different agents, while 

maintaining the LM integrity. As proof of concept a cytotoxic study using iron (Fe3+) was performed 

onto fibroblast-like cells using the proposed device. 

Iron is a fundamental element for sustaining life. It is engaged in numerous biological processes 

and reactions, including DNA synthesis, erythropoiesis and both electron and oxygen transport. 
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However, iron is also potentially toxic, due it catalyses the generation of reactive oxygen species 

and highly reactive radicals (such as hydroxyl radicals) under aerobic conditions.[18] 

 

7.3. Materials and Methods 

7.3.1. Materials 

Poly(L-lactic acid) (PLLA) with a molar mass Mw∼1600−2400 was purchased from Polysciences 

(Germany). Methylene chloride (CH2Cl2) was purchased from Fisher Chemical (U.K.). Diatomaceous 

earth (DE) commercially named Food-Grade Fossil Shell Fluor® was kindly supplied by Perma-

Guard Europe (Switzerland). Iron (III) chloride hexahydrate (FeCl2.6H2O), 1H,1H,2H,2H-

Perfluorodecyltriethoxysilane (PFDTS), polyvinyl alcohol (PVA), phosphate buffer saline (PBS), low 

glucose Dulbecco’s Modified Eagle’s Medium (DMEM) and sodium bicarbonate were purchased 

from Sigma-Aldrich (U.S.A). CellTiter 96 Aqueous One Solution Cell Proliferation Assay (MTS Assay) 

was purchased from Promega (U.S.A). AlamarBlue reagent was purchased from AbD Serotec (U.K). 

The immortalized mouse lung fibroblast cell line (L929) was purchased from the European 

Collection of Cell Cultures. 

7.3.2. Hydrophobic powder production 

The hydrophobic powder was prepared by chemical modification of DE with PFDTS, as already 

described before, with minor modifications.[15] To promote water desorption and expose more 

silanol groups on diatom surface the DE was heated at 190 ºC under vacuum for 2 hour.[19] By 

mixing DE (1 g) with PFDTS solution (10 mL at 1% v/v) prepared in deionized water a DE 

suspension was prepared, the mixture was left to react overnight. By filtration it was separated the 

solid phase from the liquid. After dried in air, the obtained solid was heated at 220 ̊ C for 5 minutes 

to promote silane hydrolysis and condensation, thereby producing a stable fluorosilanated layer on 
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the diatom surface. To remove any unreacted silane, the modified DE was washed with ethanol 

(20 mL) and dried on air before to use. 

The modified DE morphology was analyzed using a Leica Cambridge S-360 (Leica, Germany) 

Scanning Electron Microscope (SEM) and the samples were pre-coated with a conductive gold layer. 

7.3.3. PLLA microparticles production and characterization 

Poly(L-lactic acid) (PLLA) microparticles were produced by emulsion solvent evaporation technique 

as elsewhere described.[17] Briefly, a 5% w/v solution composed  by PLLA dissolved in CH2Cl2 was 

prepared. Under agitation, this solution was added to a 0.5% w/v PVA solution, and, ultimately, it 

was left to stir for 2 days at room temperature (RT) to evaporate the organic solvent. The produced 

PLLA microparticles were collected by centrifugation (300 g, 5 min) and washed several times with 

distilled water. Microparticles were subsequently frozen at −80 °C and freeze-dried (Cryodos, 

Telstar) for 3 days. Microparticles were stored at 4 °C until further use. The surface of PLLA 

microparticles was modified by air plasma treatment. The PLLA microparticles were placed inside 

a plasma reactor chamber (PlasmaPrep5, Gala Instrumente, Germany) fitted with a radio frequency 

generator. After the pressure of the chamber had stabilized to ∼0.2 mbar, a glow discharge plasma 

was created by controlling the electrical power at 30 V of electrical potential difference. 

Microparticles were treated for a total plasma reaction of 15 minutes with a gentle mixing every 5 

minutes. PLLA plasma-treated microparticles (450 mg) were sterilized by UV radiation for 30 

minutes and then immersed in acetic acid (30 mL at 0.02 M) containing collagen I (1200 µg) for 

4 hours at RT. A mild shaking was employed every hour. Finally, microparticles were collected by 

centrifugation (300 g, 5 min) and washed three times with PBS. 

The morphology of PLLA microparticles was visualized by optical microscopy (Axio Imager Z1m, 

Zeiss, Germany). 

 



Chapter 7 – Liquid Marbles for High-Throughput Biological Screening of Anchorage-Dependent Cells 

  

189 
 

7.3.4. In vitro cell culture 

The immortalized mouse lung fibroblast cell line (L929) was routinely cultured with low glucose 

DMEM supplemented with 3.7 g·L−1 sodium bicarbonate, 10% FBS, and 1% penicillin−streptomycin 

at pH 7.4. Cells were grown in 150 cm2 tissue culture flasks and incubated at 37 °C in a humidified 

air atmosphere of 5% CO2. Every 3−4 days, the medium was replaced with fresh medium. 

7.3.5. Cytotoxicity test of the hydrophobic powder 

The cytotoxicity test was accessed by an indirect contact method. The hydrophobic powder 

obtained from the DE was sterilized by autoclaving at 121 ºC for 30 minutes. Hydrophobic powder 

(4 g)  in DMEM culture medium (20 mL) were incubated at 37 ºC and 60 rpm for 48 hours to 

extract possible leachable from the hydrophobic powder. After the extraction period, the extraction 

fluid was filtered using a 0.45 µm membrane filter. As negative and positive controls polystyrene 

cell tissue culture coverslips and latex rubber were used, respectively. On both cases the leachable 

extraction was performed under the same conditions of the samples. In a 6-well tissue culture plate 

L929 cell line suspension (2 mL) were dispensed per well in order to have a cell density of 10,000 

cells per cm2. Samples were incubated at 37 °C in a humidified air atmosphere of 5% CO2. After 

24 hours, in order to establish a 70-80% confluent cell monolayer, the cell culture medium was 

replaced by the different extraction fluids. Samples were incubated at 37 °C in a humidified air 

atmosphere of 5% CO2 for more 48 hours. Then, a MTS colorimetric assay was performed to assess 

the cytotoxicity of the different materials. 

7.3.6. Liquid Marble manufacture and PLLA microparticles effect assay on cell 

behavior 

A uniform layer of hydrophobic powder was spread on a Petri dish. Over the hydrophobic powder 

layer droplets of the L929 cell suspension with or without PLLA microparticles on the suspension 

were dispensed one by one. Then, the liquid marbles by rolling the droplets over the hydrophobic 
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powder were produced. A cell concentration of 1×106 cells/mL and modified PLLA microparticles 

concentration of 50 mg/mL were used. 48-well plates were used to store the LM during the 

incubation period (n = 4 LM per well). To decrease water loss due to evaporation, only the wells 

on the center of the plate were used and a well of space between the LM and the plate border was 

left. The empty wells around the wells with LM were filled with water and plates with low evaporation 

lid were used. To access the PLLA microparticles effect over cell behavior, LM with or without PLLA 

microparticles were produced. Cell viability and proliferation assessment were performed by MTS 

colorimetric and DNA quantification assays, respectively.  

The morphology of the adhered cells at the surface of the modified PLLA microparticles was 

analyzed by SEM. In a 96-well plate, modified PLLA microparticles and L929 cells were incubated 

at 37 °C in a humidified air atmosphere of 5% CO2 for 24 hours. Then, culture medium was 

removed and 10% formalin was added to each well. After 1 hour at RT, formalin was removed and 

samples were dehydrated using sequential ethanol series (60, 70, 80, 90, 96, and 100%, 10 

minutes each). For SEM (Cambridge S-360, Leica, Germany) visualization, the microparticles with 

cells were coated with gold. 

7.3.7. Cytotoxicity screening assay on the developed device as proof of concept 

A mixture of cells and PLLA microparticles was prepared and incubated at 37 °C in a humidified 

air atmosphere of 5% CO2 for 3 hours. Then, the incubated mixture was used on the LM production 

with 20 µL of volume. After 24 hours of incubation, the FeCl3.6H2O cytotoxic agent (4 µL) was 

injected on the LM. A range of concentrations from 6 to 18 mM (concentration inside the LM) was 

tested. The FeCl3.6H2O solutions were prepared in PBS solution. After the agent injection, the LM 

were incubated. After 24 hours, MTS and DNA quantification assays were performed. 
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7.3.8. DNA Quantification Assay 

For each condition 4 LM (with 20 µL each) per well were used to perform the DNA quantification 

assay. To compare between LM with or without PLLA microparticles, the measurements were 

performed at 0, 24, and 48 hours of incubation. On the FeCl3.6H2O cytotoxicity test, the same 

procedure was used but the measurement was only performed in the end of the incubation period, 

namely 48 hours. After incubation, ultra-pure water (1 mL) was added to each well and LM were 

destroyed. After 1 hour of incubation, samples were transferred to eppendorf tubes and 

immediately stored at -80 °C, until quantification. The total amount of double-stranded DNA was 

quantified by using the Quant-iT PicoGreen dsDNA Assay Kit according to the manufacturer’s 

instructions. The measurements were performed and using a multi-mode microplate reader 

(Synergy HT, BioTek, U.S.A). No background interference was detected due to the presence of 

hydrophobic powder or PLLA microparticles, as confirmed by a preliminary test using samples 

without cells (data not shown). 

7.3.9. MTS viability assay 

The cell viability was evaluated using the MTS colorimetric assay, according to the instructions of 

the manufacturer. On each well MTS medium (500 µL) were dropped and the LM were destroyed 

such as reported previously. LM without cells were also prepared to remove the background 

interference on the measurement. The MTS assays were performed after 48 hours of LM incubation. 

On the cytotoxicity assay, first it was determined the effective optical density (O.D.) value for each 

sample, by taking off the value of background interference to the O.D. measured at 490 nm. Then 

the relative cell viability (RCV) ratio was determined, by dividing the O.D. value of each sample by 

the O.D. value of the reference. The value of reference was the determined O.D. for the conditions 

that only PBS solution was injected in the LM. 
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7.3.10. AlamarBlue assay performed without destroying the liquid marbles 

LM were produced such as reported previously using a cell suspension with PLLA microparticles. 

96-well plates were used and a 40 µL LM were placed per well. As referred before to prevent water 

loss due to evaporation, only the wells on the center of the plate were used to store the LM, the 

empty wells around the LM were filled with water and plates with low evaporation lid were used.  

After the initial incubation of 24 hours, Fe3+ solution (8 µL) was injected on the LM in a concentration 

ranging from 6 to 18 mM. After more 24 hours of incubation, AlamarBlue reagent (4 µL) were 

injected in each LM and samples were incubated at 37 °C for 3 hours. After incubation, 24 bit 

color images were took from the 96-well plates using a 10 megapixel digital camera (Canon 

PowerShot G11). The pictures were taken with the camera fixed at 50 cm above the plates and 

with an optical zoom of 5×. Using the ImageJ software, the images were split in three channels: 

red, green and blue. On the 8 bit red channel, the red intensity was measured manually by defining 

on the image the area of interest for each LM. LM without cells were prepared to be used on 

background determination. By subtracting the red intensity value of background to the red intensity 

value for each condition, the effective red intensity (ERI) for each tested condition was determined. 

The red intensity value was measured using the ImageJ software. Then, by dividing the ERI value 

of each condition for the reference ERI value, the RCV ratio was determined.  Such as before 

reference value was value for the conditions where only PBS solution was injected. 

7.3.11. Statistical Analysis 

At least two independent experiments in triplicate were performed. The results were present as 

mean ± standard deviation. To assess the level of significant differences on cytotoxicity test of 

hydrophobic powder, an one-way ANOVA followed by a Turkey’s test was performed. Comparing 

LM with or without PLLA microparticles, the level of significant differences was performed by t-test 

or by two-way ANOVA for MTS or DNA assays, respectively. The difference between the proposed 
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method and the standard MTS assay was also analyzed by two-way ANOVA. All the statistical 

analysis was carried out using Graph Pad Prism 5.0 software for Windows. 

 

7.4. Results and Discussion 

On this work, we propose a method to use liquid marbles (LM) in high-throughput screening 

applications, involving cells compartmentalized in three-dimensional (3D) environments. The LM 

production is easy and enables to create individual micro-bioreactors where, for example, the effect 

of a chemical agent over cellular behavior can be study. To produce LM it is only necessary to roll 

a liquid droplet over a hydrophobic powder layer until complete coating of the droplet. The used 

hydrophobic powder was diatomaceous earth that was chemical modified with a fluorosilane. By 

the fluorosilanization process the surface energy of diatom decrease and the hydrophilic diatoms 

become hydrophobic. This modification process was reported and fully characterized in a previous 

work.[15] Taking advantage from the LM self-healing ability that allows to inject liquid without 

destroying its integrity, it is possible to inject different agents throughout time and study the 

biological outcome of encapsulated cells. By injecting an agent that changes its color against some 

specific cellular response, it is possible to observe and compare the tested conditions and correlate 

with cell response only by monitoring the color change of the LM. This is possible due to the fact 

that the LM are translucent. The color monitoring can be performed by simply taking pictures of 

the LM, and then measuring the color intensity by image processing. An overview of all steps 

involved in the proposed method is schematically represented in Figure 7.1. 
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Figure 7.1: Schematic representation of the proposed method for liquid marbles usage on high-throughput drug 

screening. First, a defined volume of cell suspension with modified PLLA microparticles was dispensed over a 

hydrophobic powder bed. After to coat the liquid droplet with the hydrophobic powder, the produced liquid marbles 

were incubated for 24 hours. Then, taking advantage of the ability to inject liquids inside the liquid marbles maintaining 

its integrity, chemical agents (drugs) to be tested can be injected. After a new incubation period, AlmarBlue reagent 

can be injected to monitor cell viability by color change inside of the liquid marbles. The measurement of the color 

intensity was performed by image processing/analysis of pictures of the liquid marbles and a heat map with the results 

can be obtained. 

 

The used diatomaceous to produce the hydrophobic powder present a cylindrical shape, as showed 

in Figure 7.2(A). To access the ability of LM to support living cell encapsulation using the proposed 

hydrophobic powder, we performed a cytotoxicity test. As showed on Figure 7.2(B), the 

hydrophobic powder does not present any cytotoxicity for cells compared with tissue culture 

polystyrene used as negative control. These results are due to the high hydrophobicity of the 

powder, in which the interaction with the water-based liquids, such as the medium culture, is low. 

Therefore, any toxic substances from hydrophobic powder are released to culture medium. 
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Figure 7.2: (A) SEM image of diatomaceous earth that was used to produce the hydrophobic powder. Scale bar is 5 

µm. (B) Cytotoxicity test of the hydrophobic powder using the L929 cell line was accessed by MTS assay. As positive 

and negative controls latex rubber and tissue culture polystyrene coverslips were used, respectively. 

 

Our main objective was to develop a screening system for anchorage-dependent cells culture using 

the LM. Previously similar systems were reported but for non adherent cells, namely for cell 

spheroids and embryoid bodies production.[13, 14] To achieve our goal cell anchorage sites for 

cell adhesion were introduced by incorporating solid microparticles in the liquid environment of the 

LM. We specifically used PLLA microparticles modified by plasma treatment with collagen.[16, 17] 

The produced PLLA microparticles present a size in the range of 20-100 µm, suitable to be used 

as cell carriers (Figure 7.3(B)). The surface of PLLA microparticles was modified to enhance cell 

adhesion by combining air plasma treatment and deposition of collagen I. Collagen is a natural 

biomacromolecule with domains that are known as specific binders to integrin on cellular 

membrane. To test the importance of the presence of PLLA microparticles on the proposed system, 

we produced LM with and without PLLA microparticles dispersed together with cells in the LM core. 

LM marbles with several controlled volumes can be easily produced such as illustrated in Figure 

7.3(A). 
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Figure 7.3: (A) Liquid marbles with distinct sizes produced from liquid droplets with the following volumes: 5, 7.5, 

10, 20, 30 and 40 µL. Scale bar is 1 mm. (B) Optical microscopy image of PLLA microparticles that were dispersed 

in the core of the liquid marbles to provide anchorage sites for cell adhesion. Scale bar is 100 µm. 

 

The DNA quantification results showed on Figure 7.4(A) show a higher amount of DNA per LM after 

48 hour of incubation on the LM with PLLA microparticles inside, suggesting that the cell 

proliferation was enhanced by PLLA microparticles presence.[17] These results were corroborated 

by the MTS (3- (4,5-dimethylthiazol-2-yl) -5- (3-carboxymethoxyphenyl) -2- (4-sulfophenyl) -2H- 

tetrazolium) assay results on Figure 7.4(B), that show a higher cell viability for LM with PLLA 

microparticles, also for an incubation period of 48 hours. The cell viability can be directly related 

with the optical density at 490 nm wavelength on the MTS assay. In both assays, cells encapsulated 

in LM without PLLA microparticles showed a cell proliferation and viability that were around 50% 

less of that obtained for LM with PLLA microparticles. The results clearly demonstrate the 

importance of introducing such particulate elements to provide anchorage points for adherent cells. 

By using the microparticles, an advantage is that a higher surface area for cell adhesion is provided 

comparing with two-dimensional (2D) cell culture in well plates. A 20 µL LM with PLLA 

microparticles offer 50-60% more area (assuming that particles density is 1 Kg.dm -3 and average 

particle size is 60 µm) for cell adhesion than a well of the 96 well plate. This advantage is also 

associated with the necessity to use less volume of culture medium. Only 20 µL of culture medium 

were used on LM, when the recommended working volume for a 96 well plate is 75-200 µL per 

well. The cells-microparticles interactions were visualized by SEM. Figure 7.4(C) show that cells 

were adhered and spread across the modified PLLA microparticles surface, evidencing their 
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fibroblast-like elongated morphology. Based on the SEM image analysis, after 24 hours of 

incubation the PLLA microparticles aggregated by cell adhesion. We observed this phenomena in 

previous works, and attributed to the fact that the dorsal side of cells adhered to one particles can 

adhere to the surface of other particles, thus contributing for particle aggregation.[16, 17] Hereby, 

we believe that with the PLLA microparticles/cells aggregation a 3D structure was obtained inside 

of the LM. 

 
Figure 7.4: L929 cell response upon encapsulation in liquid marbles without (w/out) or with (w/) PLLA microparticles 

inside the core. (A) DNA quantification per liquid marble at different incubation periods, namely 0, 24 and 48 hours. 

(B) Optical density values of MTS assay at 490 nm for liquid marbles without (w/out) or with (w/) PLLA microparticles 

after 48 hours of incubation. (C) SEM image of modified PLLA microparticles with adhered L929 cells on surface after 

24 hours of incubation. 

 

After assessing the non-cytotoxicity of hydrophobic powder and the beneficial effect of 
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was performed to validate the system as a drug-screening device. We propose to use LM with PLLA 

microparticles as a means to carry out high-throughput screening of drugs on anchorage-dependent 

cells. The ability of LM to handle the injection of small volumes (until around of 30% of the initial 

volume) and to take out liquid without disrupt the LM make the LM good candidates for the 

suggested application – see Figure 7.5 that illustrates this liquid transfer possibility. 

 
Figure 7.5: (A) An image sequence to show that it is possible to remove or inject liquid on liquid marbles without 

destroy its structure. I- Two liquid marbles with the same volume were produced. II- Partial volume of the blue liquid 

marble was withdrawn. III- The removed volume in the previous step was injected on the yellow liquid marble. IV- The 

liquid marble structures remain stable after manipulation. (B) Several liquid marbles can be produced to test different 

conditions during cell culture, showing their ability to be used as high-throughput drug screening devices. 

 

The self-healing ability of LM can be explained by the fact that the hydrophobic powder coating 

possibly is multilayered. Bormashenko et. al reported a work where they studied the inflation and 

deflation (by evaporation) of LM.[20] Their results are explained below and we believe that our case 

fits in the described events. When a liquid is injected, the core volume increases and consequently 

the surface area of the LM also increases. To compensate this effect, the particles from the inner 

layer of the hydrophobic coating migrate to the LM surface, maintaining the integrity of the LM 

structure. On the other hand at the micrometer level, the particles of the coating are not 

(B)
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homogeneously distributed and some clearings can be found on the LM surface. When an amount 

of the liquid core is withdraw, the surface area of the clearings decreases.[20] This dynamic 

behavior of the LM shell gives them the great feature of self-healing properties after the injection 

step. 

For the proof of concept, the Fe3+ was choose as the cytotoxic agent and was used on the 

concentrations ranging from 6 mM to 18 mM. After 24 hour of cell culture in the LM containing 

PLLA microparticles in contact with Fe3+, cell proliferation for the different conditions was 

determined by DNA quantification. The DNA amount ratio was determined taking as the reference 

the LM in which PBS solution was injected. Figure 7.6 shows that the relative DNA amount ratio 

decreases with increasing of iron concentration. The same tendency was confirmed by MTS assay, 

as shown in Figure 7.7. As expected, with the increasing of Fe3+ concentration the cell viability 

decrease, showing that the iron toxicity is concentration-dependent. An iron excess on medium 

results in increasing of oxidative stress and damage in the DNA, lipids and proteins.[21] 

 
Figure 7.6: Relationship between Fe3+ concentration and the relative DNA amount ratio. LM injected only with PBS 

were used as the reference. The measurement was performed after 48 hours of cell culture, 24 hours without Fe3+ and 

more 24 hours of culture in contact with the cytotoxic agent. 
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We also aimed to develop a strategy to monitor the behavior of encapsulated cells within the LM, 

while the integrity of the LM is maintained. Taking advantage from the fact that it is possible to 

detect color changes on the core of LM, the cell monitoring inside the LM can be done, by using 

appropriate reagents that change its color in response to some cellular event. Both MTS and 

AlamarBlue reagents have this kind of characteristics and are used on conventional tests to access 

the cell viability. In the MTS assay, a tretrazolium salt is reduced into a formazan product and, 

subsequently, the color of MTS solution changes from yellow to brown. A similar process also 

occurs in the AlamarBlue assay, where a resazurin-based product is reduced to resofurin, and the 

color of the solution changes from blue to red in the presence of viable cells. In both assays, the 

mitochondrial enzymes of metabolically active cells promote a similar reduction reaction. Therefore, 

the two methods have comparable sensibility for the measurement of cell viability.[22, 23] Based 

on this evidence, we adapted the AlamarBlue assay to the developed LM and the results were 

compared with the standard MTS assay. The advantage in using the AlamarBlue reagent is that it 

can be added directly to the encapsulated cells, without the need of using a different solvent, as in 

the case of the MTS assay in which a serum free medium is required. Other advantage is the red 

color that appears in the presence of viable cells, that is specifically one of the three single channels 

that a digital camera can detect. For the adapted AlamarBlue assay, the reagent was injected on 

LM and the assay was performed without the need to destroy the LM, whereas for MTS assay, it 

was necessary to disrupt the LM. Comparing the measurement performed by the two methods, no 

significant differences were detected, as shown in Figure 7.7. However, the values obtained by 

image acquisition have a higher standard deviation compared to the standard MTS assay. 
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Figure 7.7: Relationship between Relative Cell Viability (RCV) ratio and Fe3+ concentration determined using two 

different methods. A non-destructive method by image processing of pictures from LM using a conventional digital 

camera is compared with a standard destructive MTS assay. A representative picture of LM is show for each condition. 

No significant differences were found between the two methods for all Fe3+ concentrations analyzed.  

 

Although, some non-homogenous distribution of hydrophobic particles on LM surface at the micro-

level was reported before on literature by Bormashenko et. al.[24] However, for the proposed 

method this fact does not show to be critical, because at the macro-level wherein we performed 

the color intensity measurements the obtained values are not so different between them, such as 

shown in Figure 7.S1 and Figure 7.S2 from supporting information. In other words, the non-

homogenous particles distribution at micro-level does not interfere significantly on the proposed in 

situ colorimetric methodology. 

To express the impact of the tested cytotoxic agent on the cell viability the IC50 factor (inhibitory 

concentration for 50% of viable cells) was determined. For MTS assay the obtained value was 11.49 

mM and for the proposed non destructive method was 11.92 mM. For the same cytotoxic agent 

and cell line, the reported values on literature were 3.58 mM and 5.42 mM.[25, 26] Different 
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contact times between the cells and the cytotoxic agent, different cell densities and viable cell 

quantification methods were used on these three studies. However, the major difference is that the 

cytotoxicity test was performed in this study in a 3D cell culture microenvironment, while on 

previous reported studies, a 2D cell culture was employed. It has been reported that 3D cell culture 

environments have more resistance to cytotoxic agents as compared to 2D cell culture 

environments.[27, 28] This benefits the proposed assay platform as the cytotoxicity results from 

the 3D systems are considered to be more reliable to predict in vivo toxicity effects.  In fact, cell 

behavior and both cell-cell and cell-matrix interactions on 3D models are more analogous to their 

native state.[27, 29] In this sense, several studies presenting strategies to culture cells on 3D 

environment were been reported, namely spheroid and scaffold-based strategies.[30-32]  

For example, Ho et al. developed a high throughput screening method based on multicellular tumor 

spheroid culture from breast cancer cells.[31] However, spheroid-based high throughput screening 

methods are both reagent and time consumption, because after spheroid production they need to 

be harvest and translocated for multi-well plates for posterior drug testing. During drug testing with 

the medium exchange cell loss also occur. To solve these issues, Li et al. presented a method 

based on a micro-scaffold array chip for cell-based high-throughput drug testing.[28] A sponge-like 

micro-scaffolds were used as a means to prevent cell loss during medium exchange and for auto-

loading of cells or drugs. However, special equipment is required to produce the reported chip 

such as a laser engraver machine. By our method only simple and regular lab equipments are 

required.  
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7.5. Conclusion 

We showed the possibility to use hydrophobized diatomaceous earth to produce liquid marbles 

(LM). The LM can be easily produced with several controlled sizes. Injection or removal of liquid 

from the LM can be performed without destroy its structure. Color changes inside the developed 

LM are easily detected permitting to use such compartments in colorimetric-based non-destructive 

tests. Since the main goal was to culture anchorage-dependent cells, we proposed a novel strategy 

to culture these cells inside the LM using PLLA microparticles to provide sites for cell adhesion. 

The importance of adding PLLA microparticles to the liquid core of LM on cell proliferation was 

demonstrated. As the size of the microparticles is at least one order of magnitude lower than the 

size of the LM the system maintains its flexibility and handleability.   The application of the 

developed hierarchical LM as a high-throughput drug screening device was assessed. It was shown 

to be possible to perform cytotoxicity tests using LM, by monitoring color changes in situ. The 

proposed alternative was fully validated by comparison with a well know (destructive) conventional 

method. We believe that the LM with encapsulated solid microparticles can be used on high-

throughput drug screening with several benefits. As a 3D cell culture system, LM provide reliable 

results for predicting in vivo effects, and with low need of resources, namely in terms of medium 

volume, cell number, drug/reagent amount, equipment, and time. The versatility of the proposed 

system could be also easily adapted to other applications including as a platform to set-up disease 

model or for fabrication of 3D micro-tissues for tissue engineering. 
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7.8. Supporting Information 

 

Average value of blue color intensity for each LM 
Mean ± standard 

deviation 

212.215 213.106 208.312 211.046 209.590 211.668 210.98 ± 1.62 

Figure 7.S1: Liquid marbles (LM) with distinct sizes produced from liquid droplets with the following volumes: 5, 7.5, 

10, 20, 30 and 40 µL. The average value of blue color intensity was determined by ImageJ for each LM, the whole 

area of each LM was used for the determination. The mean value of all six values was calculated as well as the 

respective standard deviation. 

 

 

 

 

 

 
Figure 7.S2: LM corresponding to the different studied concentrations are present in four replicates. The average 

value of red color intensity was determined by ImageJ for each LM, the whole area of each LM was used for the 

determination. The mean value of the four values of each condition was calculated as well as the respective standard 

deviation. 

Average value of red color intensity for 

each LM 

Mean ± 

standard 

deviation 

211.413 211.734 211.679 211.268 
211.52 ± 

0.19 

203.092 202.673 204.202 203.900 
203.47 ± 

0.61 

194.577 192.821 194.221 195.192 
194.20 ± 

0.87 

191.215 183.170 185.208 187.031 
186.66 ± 

2.97 

156.172 156.984 152.214 160.006 
156.34 ± 

2.78 

152.881 151.579 152.648 149.539 
151.66 ± 

1.32 
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8.1. Abstract 

Hydrogels, formed through cross-linking of hydrophilic polymer chains, represent a class of 

materials that are capable of holding large volumes of water. Here we report a novel class of 

hydrophobic hydrogels that can free-float on the surface of different aqueous media by coating 

conventional hydrogels with a layer of hydrophobic microparticles. We further demonstrate that 

these floating hydrogel-based devices can be used for sensing applications on liquid surfaces such 

as the construction of floating pH meters. Moreover, we demonstrate that the floating hydrogels 

present high mobility with excellent self-assembling property on the surface of water. Importantly, 

the floating systems reserved the intrinsic biocompatibility of the core hydrogels, enabling 

microengineering of floating tissue constructs. It is expected that these floating hydrophobic 

hydrogel-based devices will likely find widespread applications including but not limited to sensing, 

tissue engineering, and biomedicine. 
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8.2. Introduction 

Hydrogels, formed through cross-linking of hydrophilic polymer chains, represent a class of 

materials that are capable of holding large volumes of water.[1, 2]  The dilute network of the 

polymers in the hydrogels can be created by a variety of techniques including physical, ionic, and 

covalent cross-linking via chemical-, light-, or pH-induced reactions.[1, 2] The water-rich nature of 

the hydrogel systems has found widespread applications in numerous fields such as sensing[3, 4] 

and biomedicine.[5-7] However, pristine hydrogels are often insufficient to achieve extended use 

due to the limited functionality that the unmodified networks possess, therefore necessitating the 

functionalization of the hydrogels for particular applications. For example, moieties such as RGD 

peptide and fibronectin have been incorporated into the hydrogels to promote cell adhesion;[8] 

vehicles for delivering bioactive molecules (e.g., growth factors) can be loaded into the hydrogels 

to promote tissue responses;[9] and conjugation of enzyme-sensitive peptide linkers with the 

polymer networks will induce cell-mediated remodeling of the hydrogels.[9-12] While all these 

conventional modifications of such water-rich systems largely retain their hydrophilic properties, the 

ability to maintain these bulk properties but at the same time altering their surface properties is 

important. 

It has been demonstrated that free-standing, nonsticky liquid droplets can be coated with a layer of 

hydrophobic micro/nanoparticles on their outer surfaces.[13, 14] These particles adhere stably at 

the liquid/air interface, rendering these liquid droplets hydrophobic as individual nonwetting soft 

objects, while the hydrophilicity in their interiors is well maintained.[13, 14] The liquidity of these 

“liquid marbles” upon contact with a solid substrate is converted to a solid–solid  contact as 

mediated by the hydrophobic microparticles at the interfaces.[15] The unique properties of these 

“liquid marbles” have made them suitable for a range of applications including sensing (e.g. 
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temperature, pH, UV, and gas),[16-18] and use as microreactors,[19, 20] as well as for high-

throughput screening.[21-26]  

Inspired by “liquid marbles”, here we propose a novel concept termed “hydrophobic hydrogels”. 

By coating the surfaces of solid, cross-linked hydrophilic polymer networks (i.e., hydrogels) with 

hydrophobic microparticles, it rendered these hydrogels with hydrophobic exteriors while 

maintaining the hydrophilic microenvironment in the interiors. Interestingly, it was found that these 

hydrophobic hydrogels could not only free-stand but also float on the surface of aqueous media, 

presumably due to the water repellency incurred by the presence of a layer of scattered air gaps 

trapped within the hydrophobic shell.[13, 14, 27, 28] These hydrophobic hydrogel units can 

therefore be processed into floating microdevices for uses in many unconventional applications. We 

further illustrated three unique applications of the hydrophobic hydrogels including the construction 

of floating optical pH sensors, microengineering of self-assembling floating hydrogels, and 

fabrication of engineered biological tissues, which could not be achieved with the conventional 

“liquid marble”. 

 

8.3. Materials and Methods 

8.3.1. Preparation of hydrophobic microparticles 

The hydrophobic microparticles were prepared by chemical modification of the pristine 

diatomaceous earth (DE) with 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTS). To promote 

water desorption, the DE was first dried at 190 °C under vacuum for at least 2 h before use. DE 

suspension was then prepared by mixing 1 g of DE with 10 mL of PFDTS solution at 1 vol% in 

deionized water. The reaction was allowed to take place overnight. The solid phase was 

subsequently separated from the liquid by filtration. The  dried  solid  was  heated  at  220 °C  for  

5 min to stabilize the  fluorosilanated  layer  on  the DE  surface. The unreacted silane was removed 
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by washing the modified DE with 20 mL of ethanol and the PFDTS-DE microparticles were finally 

dried in air. The morphology of the microparticles was analyzed using SEM (Ultra 55, Carl Zeiss). 

The surface chemical compositions of the pristine and coated DE microparticles were analyzed by 

X-ray photoelectron spectroscopy (XPS) (K-Alpha ESCA, Thermo Fisher Scientific).   

8.3.2. Gelatin methacryloyl (GelMA) synthesis 

GelMA was synthesized by following our established protocol. Briefly, gelatin type A was dissolved 

at 10 w/v% in phosphate buffered saline (PBS) at 60 °C under vigorous stirring.  Methacrylic 

anhydride was then slowly added under constant stirring at 50 °C until a concentration of 8 vol% 

was reached and allowed to react for 2 h. Following a 2X dilution with warm PBS (40 °C) to stop 

the reaction, the solution was immediately dialyzed against deionized water using 12-14 kDa cutoff 

dialysis membrane at 40 °C for 1 week to remove salts, side products, and unreacted chemicals. 

After lyophilizing the dialyzed solution, a white porous foam of GelMA was obtained and stored at 

–80  °C for further use.  

8.3.3. Fabrication of hydrophobic hydrogels 

GelMA solutions at 4, 6, and 8 w/v% in PBS containing photoinitiator Irgacure (Ciba Specialty 

Chemicals) at 0.25 w/v% were prepared. Photo-cross-linking was conducted by exposing the 

prepolymer solution coated with a uniform layer of PFDTS-DE microparticles under UV light 

(OmniCure S2000, Excelitas Technologies) at a power of 800 mW and a distance of 8 cm between 

the UV output and the samples. Different UV exposure times for the photo-cross-linking process 

were tested: 15, 30, 45, and 60 s. Then, by rolling the cross-linked hydrogels over the PFDTS-DE 

microparticles, hydrogels coated with a uniform layer of hydrophobic microparticles were produced. 

The rolling process was performed until complete saturation of the hydrogel surface with the PFDTS-

DE microparticles was reached (Figure 8.S1). Hydrogels with different shapes were obtained by 
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using in-house made poly(methyl methacrylate) (PMMA) stencil masks to control the initial shape 

of GelMA solution exposed to UV light. 

To prepare pH-sensing microbeads, 22.5 mg of Bromothymol Blue (Sigma-Aldrich) was dissolved 

in 5 mL deionized water. The dye solution was then added with 256 mg of anion exchange resin 

microbeads (Dowexs chloride form, 200–400 mesh, Sigma-Aldrich), and the mixture was stirred 

for 2 h to allow uniform adsorption of the dye onto the resin microbeads (Figure 8.S2). To construct 

floating pH-sensing microdevices, pH-sensing microbeads were uniformly dispensed in GelMA 

prepolymer solution at a concentration of 10 w/v%. Then, spherical hydrophobic hydrogels were 

produced as described above, where a UV exposure time of 60 s was used to achieve complete 

cross-linking of the hydrogels. To better visualize the hydrophobic hydrogels that were used for 

studying the self-assembly process, colored polystyrene microbeads at 0.1 vol% were encapsulated 

into hydrogels.  

8.3.4. Cell culture and cell encapsulation in the floating hydrogels 

Human dermal fibroblasts (ATCC) were maintained in DMEM supplemented with 10 vol% FBS and 

1 vol% penicillin-streptomycin (P-S, all from Life Technologies). Pristine human umbilical vein 

endothelial cells (HUVECs) were obtained from ATCC whereas GFP-positive HUVECs were obtained 

in-lab, both of which were cultured in Endothelial Cell Growth Medium (ECGM, Lonza). For both cell 

types, a concentration of 1×106 cells mL-1 in GelMA prepolymer solution in PBS was used to produce 

the hydrophobic hydrogels as described before, where photo-cross-linking was performed for 60 s. 

These floating hydrogels encapsulating fibroblasts or HUVECs were cultured in their respective 

medium for up to 10 days. Cell viability was analyzed by staining them with the Live/Dead kit (Lift 

Technologies) at days 0, 3, 7, and 10 according to the manufacturer’s instructions. To better 

visualize the cells in the floating tissue assembly experiment, fibroblasts were prestained with 

CellTracker Red CMTPX Dye (Life Technologies) prior to encapsulation, while GFP-HUVECs were 
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used. After coating the hydrogels with the PFDTS-DE microparticles, different blocks were 

immediately placed in a Petri dish on the surface of a mixture of DMEM and ECGM (1:1 volume 

ratio) and allowed to assemble. Fluorescence images were taken using an inverted microscope 

(Axio Observer.D1, Carl Zeiss). 

 

8.4. Results and discussion 

8.4.1. Hydrophobic hydrogel produced by coating with hydrophobic microparticles 

In the first step of our study, we performed a chemical modification to produce hydrophobic 

microparticles based on DE, using the same procedure reported in previous works.[25, 29] DE 

microparticles are extracted from the fossilized remains of diatoms, which are characterized by 

their micro- and nanoscale hierarchical structures (Figure 8.1a). These hierarchical structures have 

provided large specific surface areas than nonporous microparticles to potentially facilitate the 

functionalization and interaction with other materials. Since DE is mainly composed of silica, it is 

intrinsically hydrophilic. By modifying the surface with PFDTS (Figure 8.1b), we were able to render 

these microparticles hydrophobic. Figure 8.1c shows XPS analysis of the DE microparticles before 

and after treatment by PFDTS. Successful modification of the surface was shown by the appearance 

of the binding energy peak at around 689 eV. Importantly, the PFDTS treatment of DE 

microparticles did not alter their size distribution (8.54 ± 4.34 µm for PFDTS-DE versus 7.83 ± 

3.80 µm for DE) nor caused aggregation of the microparticles (Figure 8.S3). 

In this work we chose GelMA, a type of chemically modified gelatin that is photo-cross-linkable and 

strongly biocompatible,[6] to demonstrate our concept of hydrophobic hydrogel. As shown in Figure 

8.1d, the uncoated GelMA hydrogel was hydrophilic with a water contact angle of 71°. After coating 

with a layer of pristine DE microparticles, the surface of the GelMA hydrogel block became 

superhydrophilic with a water contact angle approaching 0° (Figure 8.1e). However, when the 
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hydrogel block had been coated with hydrophobic PFDTS-DE microparticles (Figure 8.S1), a large 

water contact angle of 145° almost approaching superhydrophobicity (150°) could be achieved on 

its surface (Figure 8.1f), which we refer to as “hydrophobic hydrogels”.  

 
Figure 8.1: (a) SEM image of DE microparticles. (b) Formula of PFDTS used for hydrophobic treatment of DE. (c) 

XPS analysis of the pristine DE and PFDTS-DE microparticles. (d-f) Water contact angle measurements of cross-linked 

GelMA, GelMA coated with pristine DE microparticles, and GelMA coated with hydrophobic PFDTS-DE microparticles. 

(g-i) Confocal fluorescence micrographs showing the GelMA, PFDTS-DE microparticles, and GelMA coated with PFDTS-

DE microparticles. GelMA was stained in green with fluorescein, and the PFDTS-DE microparticles were stained in red 
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with rhodamine. (j-l), Photographs showing a water droplet (dyed in blue) on top of a hydrophobic GelMA hydrogel 

block. The GelMA structure was placed on (j) a glass slide and (k, l) a pool of water. 

 

We then used confocal microscopy to confirm the adhesion of the PFDTS-DE microparticles onto 

the surface of the GelMA hydrogel block. Prior to fabrication of the hydrophobic hydrogels, GelMA 

and the PFDTS-DE microparticles were first stained with fluorescein (green) and rhodamine (red), 

respectively (Figure 8.1g, h). After the coating process, it was clear that the outer surface of GelMA 

was completely covered by a thin layer of PFDTS-DE microparticles, at a thickness of approximately 

15-20 µm (Figure 8.1i). Notably, due to the capillary force arising from the thin layer of water on 

the outer surface of the cross-linked hydrogel, PFDTS-DE microparticles adhered tightly, a 

phenomenon well observed with the classical “liquid marbles”.[13, 14] Additionally, the hydrogel 

coated with the hydrophobic PFDTS-DE microparticles exhibited a unique water-repelling capacity, 

as demonstrated by the appearances of the convex meniscus formed by the surrounding water 

when it was placed at a water-air interface (Figure 8.S4). 

Gently placing a droplet of water on a rectangular hydrophobic hydrogel resulted in free-standing of 

the droplet in an almost spherical shape, indicating the hydrophobicity of the hydrogel surface 

(Figure 8.1j). More interestingly, when we transferred the rectangular hydrophobic hydrogel into a 

pool of water, the hydrogel could easily float at the water/air interface without sinking as indicated 

in the side and top views in Figure 8.1, k and l. On the contrary, an ordinary hydrogel block without 

hydrophobic coating would sink to the bottom of a water tank (Figure 8.S5), due to the slightly 

higher density of the GelMA block (approximately 1.088 g cm -3) than water. The contact of the 

hydrophobic hydrogel with water did not lead to dissociation of all surface-bond PFDTS-DE 

microparticles, but only those loosely attached (Figure 8.S6). Such excellent water repellency of the 

hydrophobic hydrogels might be attributed to an intermediate wetting state that is between the 

classical Wenzel and Cassie-Baxter states.[30, 31] In a typical Wenzel state, water will penetrate 
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into all the minute structures of a surface resulting in an enlarged solid-liquid contact area. On the 

other hand in a Cassie-Baxter state, air will be trapped in the structures and water is prevented 

from entering the structures, leading to a reduced solid-liquid contact area. For the peculiar 

intermediate wetting state formed here, water could partially enter the microstructures formed by 

the PFDTS-DE microparticles on the surface of the hydrogel while keeping a certain amount of air 

sealed in between the cavities. This explanation is consistent with the observation by Bormashenko 

et al., who used microscopic images to determine the air layer separating the bulk liquid outside 

from that in the liquid marbles.[32] Similarly, we have also observed a partial mirror-like effect 

when a piece of hydrophobic hydrogel was immersed in water (Figure 8.S7, note the difference 

between the portions above and below water). The mirror-like effect arose from the presence of 

trapped air inside the porous structure (mean size: 5.37 ± 1.71 µm) formed on the surface of 

GelMA during the packing process. Such intermediate wetting state not only ensures the floating 

capacity of the hydrophobic hydrogels, but further potentially allows for liquid exchange between 

the hydrogels and the surrounding aqueous environment at the molecular level enabled by capillary 

force,[33] critical for their applications demonstrated later on. Importantly, the hydrogel block 

floating on top of water maintained its hydrophobicity on the upper side noncontact with liquid, 

verified by the ability to hold the spherical water droplet (Figure 8.1, k and l). 

8.4.2. Floatability assessment of the hydrophobic hydrogels 

To probe the factors influencing the floating capacity of the hydrophobic hydrogels, they were 

prepared with different concentrations (4, 6, and 8 w/v%) of GelMA and extent of cross-linking 

under various UV exposure time (15, 30, 45, and 60 s). For easy visualization, spherical 

hydrophobic hydrogel particles with a diameter of approximately 5 mm were fabricated. The as-

prepared hydrophobic GelMA hydrogels were then placed in a water pool for up to 5 days, and their 

floating capabilities as a function of time were recorded. Specifically, we have defined the 
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parameters involved in the floating capability of the hydrophobic hydrogels. For a spherical 

hydrophobic hydrogel placed on the surface of water after equilibrium, height of the portion outside 

the water (i.e., exposed in the air) is denoted as d1, and height of the portion submerged in the 

water is denoted as d2 (Figure 8.2c). For example in extreme cases when the hydrogel entirely 

floats on the surface (Figure 8.2c-i) or sinks under water (Figure 8.2c-iii), d1/d2 approaches infinity 

and 0, respectively, where d1/d2 = 1 when exactly a half was exposed/submerged (Figure 8.2c-

ii). Figure 8.2a, b shows the representative images at time 0 and 5 days after the hydrophobic 

GelMA hydrogel spheres were subjected to the floating assay. At the beginning, the spheres 

prepared under all conditions could float on the water/air interface, which exhibited a slight 

increase in d1 over d2 with longer UV cross-linking time. There was also a trend of improved 

floatability when the concentration of GelMA was increased. After 5 days of experiment, all the 

hydrophobic hydrogels prepared with 4% GelMA sank below the water/air interface; for the 

hydrogels prepared with 6% GelMA, those endured 15 and 30 s of UV exposure sank, while others 

were still floating; and for the hydrogels at a concentration of 8% GelMA, only the one with 15 s of 

UV exposure sank.  

We also quantified and compared the floating performance of the hydrophobic hydrogels with 

different formulations at a range of time points (Figure 8.2, d-f). Well correlating with the 

photographs, both prolonging the UV cross-linking time and increasing the GelMA concentration 

resulted in stronger floating ability of the hydrophobic hydrogel spheres. It is presumed that the 

reduced floating ability of the hydrophobic hydrogels over time could be attributed to the decreased 

density of the PFDTS-DE microparticles upon the swelling of the hydrogels. To validate the 

assumption, we further quantitatively measured the swelling behavior (Figure 8.2g-i) and retention 

ability of the microparticles (Figure 8.2j-l) for the hydrophobic hydrogels. Indeed, the swelling 

behavior of the hydrophobic hydrogels exhibited a trend dependent on the concentration of GelMA 
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and UV exposure time, i.e., swelling was decreased with increasing cross-linking density of the 

hydrogels (Figure 8.2g-i). 

 
Figure 8.2: (a-b) Representative images of the floating performance of hydrophobic GelMA hydrogel spheres prepared 

under different conditions at time 0 and after 5 days in water. (c) Definition of the portion exposed in the air, d1, the 

portion submerged under water, d2, and the ratios of d1/d2 in three particular cases. (d-f) Plots of d1/d2 ratios versus 

floating time in water for hydrophobic hydrogels obtained under different UV cross-linking conditions for 4%, 6%, and 

8% GelMA, respectively. (g-i) Plots of the swelling ratio of the hydrophobic hydrogels obtained under different UV cross-
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linking conditions for 4%, 6%, and 8% GelMA, respectively. (j-l) Plots of the percentage of PFDTS-DE coating area on 

the hydrophobic hydrogels obtained under different UV cross-linking conditions for 4%, 6%, and 8% GelMA, respectively. 

 
In comparison, with the swelling behavior of the pristine hydrogels (Figure 8.S8), the hydrophobic 

hydrogels exhibited slightly less swelling ratios due to the presence of the PFDTS-DE microparticles 

on their surfaces. The retention ability of the microparticles showed a reverse trend, where the 

hydrophobic hydrogels with less swelling resulted in better retention of the PFDTS-DE microparticles 

(Figure 8.2j-l). Therefore, as the initially densely packed layer of the microparticles became more 

sparsely distributed when the volumes of the hydrogel spheres expanded, the simultaneously 

diminishing microstructures formed by microparticles resulted in decreasing collective water 

repellency but increasing resemblance with pristine hydrogels, eventually leading to sinking of the 

spheres. Furthermore, the retention ability of the hydrophobic hydrogels for the PFDTS-DE 

microparticles showed a pH dependence. Lower pH resulted in reduced retention of the 

microparticles, while higher pH led to improved coating stability (Figure 8.S9). Experiments were 

also performed where Dulbecco’s Modified Eagle Medium (DMEM) and DMEM supplemented with 

10 vol% fetal bovine serum (FBS) were used as the aqueous environment (Figure 8.S10). In both 

cases, similar trends were observed, but the addition of salt and serum seemed to have slightly 

improved the floatability of the hydrophobic hydrogel spheres, which might be attributed to 

increased surface tension endowed by these molecules.[34, 35] 

8.4.3. Construction of floating optical pH sensors 

We next demonstrated the potential application of these hydrophobic hydrogels in the construction 

of floating microdevices such as pH sensors. Specifically, we introduced pH-sensitive beads (Figure 

8.S2) into the GelMA hydrogels prior to coating with the hydrophobic PFDTS-DE microparticles 

(Figure 8.3a). As expected, incorporation of the pH-sensitive beads inside the GelMA did not affect 

the floating capacity of the hydrophobic hydrogels (Figure 8.3b). The slight increase in the volumes 



Chapter 8 – Hydrophobic Hydrogels: Toward Construction of Floating (Bio)microdevices 

 

222 
 

submerged below the water surface was due to the higher density (≈1.2 g cm-3) of the encapsulated 

pH-sensitive beads. Interestingly, when the pH of the surrounding water was increased from 5 to 

9, the color of the floating devices, collectively reflecting that of the pH-sensing beads encapsulated 

inside, changed from vivid red to dark brown (Figure 8.3b). Such a process was reversible, where 

the color of the devices would change back to bright red upon decreasing the pH to 5. This 

observation clearly demonstrated that despite the hydrophobic nature of the coating resulted in 

floating of the microdevices, it still allowed for medium diffusion in/out of the hydrogels presumably 

due to the capillary force enabled by the porous PFDTS-DE microparticles. To be noted, such 

change in the color of the floating pH-sensors was quantifiable. By plotting the color intensity of the 

red channel of the captured photos, we were able to obtain a linear calibration curve against pH 

values (Figure 8.3b). 

After validating the capability of the hydrophobic hydrogels as a floating device to sense the 

environmental pH, we further demonstrated the possibility to use such a device for real-time pH 

monitoring. A hydrophobic hydrogel piece with a shape of rectangular slab was fabricated and 

allowed to float in a water reservoir adjusted at pH of 5. Upon reaching equilibrium, a pellet of 

sodium hydroxide was dropped at the left end of the container, where the color of the pH-sensing 

floating hydrogel was then continuously monitored. As the dissolving sodium hydroxide diffused 

toward the right side, the color of the device gradually turned dark from the left, forming a color 

gradient along the long axis indicating the gradient of the pH below in the medium and eventually 

reaching a steady state where it became uniformly dark brown (Figure 8.3c). According to the 

correlation between pH values and the red channel color intensities, we could predict the pH values 

along the device at different time points (Figure 8.3c).  
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Figure 8.3: (a) Schematic representation of the method to produce the hydrophobic hydrogels encapsulation pH-

sensing microbeads. (b) Side views of the floating pH meters at pH 5-9, where the red channel intensities of the devices 

were plotted against pH values. (c) Time-lapse photographs showing the color change of a slab of floating pH meter 

when a pellet of sodium hydroxide was dropped at the left side of the water container. The progressive pH increase 

along the long axis of the device was quantified from the standard curve. (d) Bottom view of the floating device at 1 

min post addition of sodium hydroxide and when the pH of the medium became homogenous. 

 

Figure 8.3d contains bottom views showing the color of the floating device at 1 min upon sodium 

hydroxide addition (Figure 8.3d, left) and at the end of the equilibrium (Figure 8.3d, right), where 

graded sensing capability of the device was well observed. While a pH sensor was used as a proof-
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of-concept demonstration, microbeads sensing other molecules such as carbon dioxide[36-38] and 

ammonia[37-39] may also be readily encapsulated inside the hydrophobic hydrogels to construct 

other different types of floating sensors. Although conventional sensing materials and probes are 

widely available, there have rarely been reports on floating sensors that can be conveniently applied 

to measure desired parameters at liquid-air interfaces. This new class of floating sensing devices 

has opened up many potential future applications where environmental or biomedical monitoring 

at interfaces are required. 

8.4.4. Microengineering of self-assembling floating hydrogels 

Additionally, it was found that the floating devices engineered in this work revealed high mobility 

and could be manipulated to move directionally by using weak forces, such as electrostatic forces. 

Specifically, using a plastic pen that was positively charged by friction, we were able to drive a 

floating hydrogel sphere around in a Petri dish filled with water (Figure 8.4a). During this process, 

the hydrophobic PFDTS-DE microparticles coated on the outer surface of the hydrogel were induced 

to polarize when the charged pen approached them due to the pronounced electret characteristic 

of silica,[40, 41] the major constituent of DE. The polarization then rendered the side closer to the 

positively charged plastic rich in negative charges, and it is this electrostatic attraction force between 

the pen and the PFDTS-DE microparticles that drove the directional motion of the floating device 

on the surface of water. 

Interesting enough, the floating devices constructed with complementary shapes could self-

assemble on the surface of water (Figure 8.4b). The underlying driving forces for this spontaneous 

assembly are believed to arise from the capillary interactions between the floating hydrophobic 

hydrogels.[42, 43] It is well known that the surface free energy of a system is proportional to the 

overall surface area of the interface. When two convex or concave menisci are formed and brought 

together within the range of the capillary length of a liquid, they become instable and prone to 
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attract each other to assemble automatically.[44, 45] The as-formed menisci decrease the surface 

area of the interface and minimize the surface free energy of the system accordingly.[44, 45] 

Specifically to the convex menisci of water generated by the floating hydrophobic hydrogels, they 

were subject to the same capillary interactions, and the assembly of the hydrogels could thus be 

formed spontaneously when they approach each other to a distance within the capillary length of 

water (approximately 2 mm).  

 
Figure 8.4: (a) The floating hydrogels could be directed to move on the surface of water using electrostatic forces, 

for example a charged plastic pen. (b) The floating hydrogels with different shapes could be manipulated and self-

assemble in different configurations on the surface of water. 

 

Of note, the assembled hydrogels were stable and could withstand strain; they could be 

manipulated together without disrupting their integral structures, until the strain reached a certain 
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amount; once separated, the devices would quickly reassemble again when coming back to 

proximity. 

8.4.5. Engineering floating biological tissues 

The self-assembly feature among complementarily shaped floating hydrogels demonstrated above 

supplies a potential strategy to engineer tissue constructs, particularly for those tissue types 

preferring the air-liquid interface.[46-48] Such a method of self-assembly would also be easily 

scaled up in fabricating large pieces of interconnected tissues.[49-51] To demonstrate this concept, 

we first encapsulated fibroblasts into the floating hydrogels and investigated their viability and 

spreading for up to 10 days. Live/dead analyses were performed at days 0, 3, 7, and 10 

postseeding. 

As shown in Figure 8.5a-h, the percentages of live cells (in green) on the side exposed to the air 

remained high at all the time points tested. The viability of the encapsulated cells on the side 

submerged in the medium, and the side exposed to the air did not differ much. The cell spreading 

over the entire period was also pronounced, during which we did not observe significant degradation 

of the hydrogel blocks. Such high viability of the encapsulated cells is critical to sustain the longterm 

functionality of assembled floating tissues and would not be possible using conventional “liquid 

marbles” containing liquid cores. We also demonstrated before that hydrogel building blocks could 

also self-assemble into larger pieces of tissues when they were allowed to float on the surface of 

high-density, hydrophobic liquids.[52] Nonetheless, the nonaqueous environment reported in this 

work was not able to support the viability of embedded cells over extended periods due to the lack 

of nutrient delivery. In contrast, the high viability observed here indicated a benign 

microenvironment for the encapsulated cells inside the floating hydrophobic hydrogels, proving that 

the nutrient exchange between the floating hydrogels and the surrounding aqueous medium was 
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sufficient. By further combining the cell encapsulation capacity with the self-assembly capability of 

the floating hydrogels, biomimetic 3D multitissue constructs could be produced. 

 
Figure 8.5: (a-h) Live/dead analysis of fibroblasts encapsulated inside the floating hydrophobic hydrogel blocks at 

days 0, 3, 7, and 10. Live cells are indicated in green and dead cells in red. (i) Fluorescence micrograph showing 

floating assembly of three hydrogel blocks encapsulating fibroblasts (red) on the sides and endothelial cells (green) in 

the center. (j, k) Magnified views showing the interface between the two adjacent blocks encapsulating the two cell 

populations. 

 
As a proof of concept, two blocks encapsulating fibroblasts labeled in red and one block with 

encapsulated HUVECs expressing green fluorescent proteins (GFPs) were allowed to float in the 

same reservoir. These blocks could then be easily manipulated to assemble in a structure where 
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the endothelial block was flanked by the two hydrogels containing fibroblasts (Figure 8.5i-k), 

mimicking a vascularized skin construct floating at the air-liquid interface. 

 

8.5. Conclusion 

In summary, we have reported a novel class of hydrophobic hydrogels that could float on the surface 

of different types of aqueous liquids by coating conventional hydrogels with a layer of hydrophobic 

PFDTS-DE microparticles. We further demonstrated the potential of these floating hydrogel-based 

devices for the construction of floating pH meters and have inferred their potential for other different 

sensing applications. Moreover, we demonstrated that the floating hydrogels presented high 

mobility with excellent self-assembly property. Importantly, the floating systems reserved the 

intrinsic biocompatibility of the core hydrogels, as indicated by the high viability of cells 

encapsulated in the interior. We believe that these floating hydrophobic hydrogel-based devices will 

find widespread applications including but not limited to sensing, tissue engineering, and 

biomedicine. 
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8.8. Supporting Information 

 

 

 
Figure 8.S1: Schematic diagram showing the preparation procedure of hydrophobic GelMA hydrogels. 
 

 

 

 

 
Figure 8.S2: Schematic showing fabrication process of pH-sensing resin microbeads.  First a pH-sensitive dye, 

Bromothymol Blue, was dissolved in deionized water; then the dye solution was added into a beaker containing anion 

exchange resin microbeads; after stirring for 2 h for dye adsorption, pH-sensing microbeads could be obtained. 
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Figure 8.S3: (a, b) SEM images and (c, d) size distributions of the DE particles (a, c) before and (b, d) after PFDTS 

modification. Most DE particles were in the size range of 3.2-10.5 m, while most PFDTS-DE particles fell in the size 

range of 3.6-10.6 m.  

 

 

 

 
Figure 8.S4: Photograph showing the repellency of the hydrophobic hydrogel following slow insertion into a pool of 

water, indicated by the convex meniscus. The PFDTS-DE microparticles were dyed with rhodamine in red for better 

visualization. 

  



Chapter 8 – Hydrophobic Hydrogels: Toward Construction of Floating (Bio)microdevices 

 

237 
 

 
Figure 8.S5: Photograph showing a GelMA hydrogel block without coating of PFDTS-DE microparticles sank to the 

bottom of a water container. 

 

 

 

 

 

 

 

 
Figure 8.S6: Fluorescence micrographs showing the PFDTS-DE microparticles on the surface of the GelMA hydrogel 

(a) before and (b) after immersion in water. 

  



Chapter 8 – Hydrophobic Hydrogels: Toward Construction of Floating (Bio)microdevices 

 

238 
 

 
Figure 8.S7: Photograph showing the mirror-like effect of the hydrophobic hydrogel partially submerged in water. 

The PFDTS-DE microparticles were dyed with rhodamine in red for better visualization. 

 

 

 

 

 

 

 
Figure 8.S8:  Swelling behavior of pristine GelMA blocks at different time points. (a)-(c) are corresponding to the 

GelMA blocks prepared with 4%, 6%, and 8% of the GelMA solution. The different colored curves represent GelMA 

blocks with different UV crosslinking time. 
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Figure 8.S9: Stability of the hydrophobic particles on the GelMA blocks in different pH solutions. The hydrophobic 

particles show increased retention ability on the GelMA surface with increasing pH values in the whole.  

 

 

 

 
Figure 8.S10: Quantitative analysis of the floating ability of the hydrophobic GelMA hydrogels prepared under 

different conditions versus time in (a-c) DMEM and (d-f) DMEM supplemented with FBS. 
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Chapter 9 

   

Conclusions and Future Perspectives 

 

The control of the surface wettability has been showed as an important parameter for several 

systems and applications on the biomedical field. The wettability is a relevant characteristic on the 

development of scaffolds or prosthesis, for example. Once the surface wettability can decisively 

affect the protein adsorption, and both bacteria and mammalian cell adhesion. On this thesis, the 

motivation was on the development of devices for biomedical applications based on the advanced 

control of wettability in surfaces, tuning directly the surface characteristics or modifying surfaces 

by coating with a hydrophobic microparticles. 

Surfaces with ability to completely repel water, named superhydrophobic (SH) surfaces, can be 

achieved combining both low surface energy and hierarchical topography at nano/microscale. 

Here, it was showed the possibility to produce SH surfaces using diatomaceous earth (DE), which 

is a natural, accessible and cheap material constituted by silica micro-skeletons of unicellular algae 

– called diatomaceous or diatoms. The natural nano/microstructure of these silica objects provided 

the necessary rough topography for the surface. This desired hierarchical structure was created on 

a smooth surface of glass by coating, using directly these natural structure. The binding between 

DE and surface was performed by melting superficially the substrate, obtaining a layer of DE 

entrapped on its surface. On this step, superhydrophilic surfaces were obtained that became SH 

surfaces by further fluorosilanization of surfaces that decreased the surface energy. The possibility 

to change in a precise way the wettability of the produced SH surfaces was also explored, by 

exposing the substrates to plasma treatment for specific times. Using stencil masks, the control in 
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space of the plasma treatment was also performed, allowing to perform 

hydrophilic/superhydrophobic patterning on surfaces with well-defined geometries. Additionally, it 

was showed that the proposed strategy could be applied in other substrates, such as polystyrene. 

This open the possibility to produce SH surfaces for specific applications through the choice of the 

most suitable substrate. 

Then, two different devices for cellular studies were engineered, but using other surfaces patterned 

with hydrophilic paths or square spots and fully constituted of polystyrene (PS). Once PS is the 

most commonly used material in laboratory cultureware, because this material ensure their 

inertness to biological outcomes. These SH platforms were manufactured by a one-step 

patterning/hydrophobization process, using stripe or square shaped stickers to protect the desired 

areas from being reached by the phase-separation reagents that confer the superhydrophobicity to 

the surface. The patterned paths on the surfaces worked such as channels to drive cell culture 

medium flows without using physical walls for liquid confinement. Controlling liquid flows on planar 

surfaces, a novel cell culture flow (CCF) system to study the shear stress effect on adherent cells 

was created, based on the open fluidics concept. On the paths, cells were pre-adhered and cultured 

under shear stress stimuli that was inflicted by the cell culture medium flowing over the cell layer. 

As proof of concept, it was studied the influence of this mechanical stimuli combined with bone 

morphogenic protein (specifically BMP-2) stimulation in the osteogenic differentiation of C2C12 

myoblast cells. A synergistic effect between the mechanical and a biochemical stimuli on the 

osteoblast differentiation of C2C12 cells was observed, through the detection of an enhancement 

in the ALP activity – a well-known early marker of osteogenic differentiation. On the optimization 

process of the developed device, several procedures revealed to be crucial for the system 

robustness and flow stability such as the fluorosilanization of the SH surface, the increasing of 

channel hydrophilicity, and the use of glass needles to feed and extract the culture medium to the 
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open chip. These procedures helped to maintain both morphology and integrity of the liquid 

streams and preventing the dewetting of channels along all the period of culture. Additionally, an 

increased hydrophilicity of the cell culture channels showed to improve cell attachment and cells 

could hold higher cell culture medium flow rates, always in a laminar flow regime. Still, to best of 

our knowledge, this is the first time that this kind of platform was developed to study the shear 

stress effect on cell behavior. 

The second application proposed for the patterned superhydrophobic surfaces was for the 

production of 3D spheroids and their culture under co-culture conditions. As a proof of concept, 

human adipose-derived stem cell (hASC) spheroids were produced and cultured in indirect co-

culture with L929, Saos-2 and HUVEC cells. Performing spheroid production under these 

conditioned conditions, the co-culture with a 2D monolayer of Saos-2 osteoblast-like cells indicated 

that the simultaneous production of 3D cellular structures and their differentiation promotion can 

be obtained in a one-step procedure. The hASC differentiation into an early osteogenic phenotype 

was confirmed by the detection of an increased ALP activity. These pre-committed spheroids may 

have high interest for bone regeneration, such as building blocks that combined with the 

appropriate biomaterials may be used in the bio-fabrication of complex personalized constructions. 

These SH platforms with wettable patterns on its surface showed a high versatility on biomedical 

applications, namely in tissue regeneration, cancer biology or drug screening approaches. 

As an alternative approach to conventional superhydrophobicity, it was arose the liquid marbles 

(LM). The LM production was performed using hydrophobized DE to coating liquid droplets. Taking 

advantage of the possibility to inject or remove liquid from the LM without destroy its structure, the 

use of LM for high-throughput drug screening on anchorage-dependent cells was presented. To 

provide the required cell adhesion sites inside the liquid environment, a novel strategy to culture 

these cells was developed adding poly(L-lactic acid) microparticles to the liquid core of LM. The 
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crucial importance of these microparticles for cell proliferation was demonstrated. By monitoring 

color changes in situ, cytotoxic screening tests were performed using LM. This innovative alternative 

was fully validated by directly comparing with a well-know (destructive) standardized method used 

for cytotoxicity assessment. As the LM provide a 3D cell culture environment, the assessed results 

should be more reliable for predicting in vivo effects and with low need of resources, namely in 

terms of medium volume, cell number, drug/reagent amount, equipment, and time. The versatility 

of the proposed system could be also easily adapted to other applications including as a platform 

to set-up disease model or for fabrication of 3D micro-tissues for tissue engineering. 

Inspired by LM, a novel class of hydrophobic hydrogels was created by coating conventional 

hydrogels with a layer of hydrophobized DE microparticles. These hydrophobic hydrogels showed 

to be able free-floating on the surface of different aqueous media. It was demonstrated that floating 

hydrogel-based devices could be developed with applicability for pH sensing on liquid surfaces, 

showing also potential for other different sensing applications. Additionally, it was verified that the 

floating hydrogels presented high mobility with excellent self-assembly property. The floating 

systems preserved the intrinsic biocompatibility of the core hydrogels, as indicated by the high 

viability of cells encapsulated in the floating tissue constructs that were microengineered.  

On this thesis, different biomedical devices were engineered just based on the advanced control of 

the wettability of different surfaces. These devices have high potential to achieve widespread use, 

namely for applications in sensing, drug screening, fabrication of 3D microtissues for tissue 

engineering, and biomedicine. 
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