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Abstract 

In the scope of the ClickHouse R&D Project, a residential modular temporary building was 

proposed and developed to accommodate, in urgent situations, dislocated families due to e.g. 

the occurrence of natural disasters. Proposed building is composed of a frame structure, 

panels and a tailored connection system. The frame structure and connection are composed of 

glass fibre reinforced polymer (GFRP) pultruded tubular profiles. While for the panels, 

composite sandwich panels made of polyurethane foam (PU) core and GFRP skins, are 

utilized. A new connection system is defined for connecting adjacent members. This modular 

construction of temporary housing, should be capable of being prefabricated according to the 

pultrusion technology (for the case of frame and connection components), transported at low 

cost to the area of installation (due to the reduced weight and being packed), and being easily 

and quickly assembled. 

In the ambit of the present thesis, the following research programs, which contributed for the 

ClickHouse outcomes, were developed: (I) material testing program; (II) development/ 

characterization of a connection system for jointing composite panels, (III) evaluation of the  

mechanical performance of single panel, two jointed panels and three jointed panels under 

flexural loading; (IV) assessment of single and two jointed wall panel’s behaviour under axial 

loading; (I) performance/characterization of two floor modular prototypes. 

Phase I is comprising comprehensive material testing program for establishing constitutive 

relation of the constituent materials of the sandwich panel, namely the PU foam core, GFRP 

skins and the bond between these two materials. Furthermore, bearing strength behaviour of 

GFRP skin and pultruded profiles is subjected to study in this phase. 

In the phase II, a connection system is proposed for connecting floor and wall sandwich 

panels. Proposed connection is composed of two main parts namely as end integrated U-

shape GFRP profile and two connected tubular square GFRP profiles. The end former 

working as a connector by interlocking inside the U-shape profiles. Two approaches are used 

to study mechanical behaviour of jointed panels: friction technique and hybrid technique. An 

experimental program is performed to study the mechanical response of this connection 

system in the longitudinal and transversal directions.  
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Phase III is included a series of experimental tests are carried out on a single panel, on two 

and three jointed panels. Flexural responses of the panels, in short term, is analysed, 

including evaluation of the failure mechanism and the efficiency of the proposed connection 

system between panels in jointing sandwich panels. Additionally, the creep behaviour of the 

panels, which is a limiting factor for their serviceability design, is investigated. Numerical 

and analytical models are proposed and verified including capturing the local failure of the 

panel using experimental program. The proposed models are used to go further in-depth to 

understand capability of connection in jointing panels and influence of U-shape GFRP 

profiles in increasing flexural stiffness of the panels. Additionally, contribution of single 

sandwich panels components in total shear deflection is investigated.  

In the phase IV, the structural performances of the sandwich wall panels under axial loading 

condition are experimentally tested and thereafter analytically assessed in two cases: (i) 

single wall panels; (ii) two jointed wall panels. The influence of the proposed connection 

system on the axial load capacity of the jointed panels is analytically evaluated.  

In phase V, performances of the two floor prototypes to support typical load conditions of 

residential houses are also assessed. The experimental program is complemented with an 

extensive finite element modelling and analytical study to verify the experiments results and 

to obtain connection flexibility, load distribution factor and stress distribution within the floor 

modular components. Additionally, several parametric studies are developed using FEM 

models developed and validated by varying geometric aspect ratios and numbers of U-shape 

GFRP profiles to show potentiality of this structure to have more housing space and 

consequently to extend this concept for other markets. 

 

Keywords: Floor and wall sandwich panel; Connection system; GFRP profiles; modular 

prototype; prefabricated emergency house; experimental research; FEM-modelling. 
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Resumo 

No âmbito do Projeto I&D ClickHouse, uma habitação modular temporária foi proposta e 

desenvolvida para acomodar, em situações de urgência, famílias deslocadas, devido à 

ocorrência de e.g. desastres naturais. A habitação proposta é composta por uma estrutura 

porticada, painéis sanduíche e um sistema de conexão. A estrutura porticada e ligações são 

em perfis tubulares pultrudidos em polímeros reforçados com fibra de vidro (GFRP). Por sua 

vez, os painéis de sanduíche compósitos são constituídos por uma espuma de poliuretano 

(PU) no núcleo e lâminas de GFRP nas extremidades. Um novo sistema de conexão é 

proposto para a ligação de elementos adjacentes. Esta construção modular de alojamento 

temporário, pré-fabricada de acordo com a tecnologia de pultrusão (no caso da estrutura 

porticada e conexões), pode transportada a baixo custo para a área da instalação (devido ao 

peso reduzido e sistema embalamento), e ser fácil e rapidamente montada. 

No âmbito da presente tese, os seguintes programas de investigação, que contribuíram para os 

resultados do ClickHouse, foram desenvolvidos: (I) programa experimental de caracterização 

dos materiais; (II) o desenvolvimento/caracterização do sistema de conexão, (III) a avaliação 

do comportamento mecânico de um painel isolado, dois painéis e três painéis ligados entre si 

sob cargas de flexão; (IV) a avaliação do comportamento mecânico de um painel isolado e 

dois painéis ligados entre si sob carga axial; (I) performance/caracterização de dois protótipos 

de piso modular. 

A fase I é composta por amplo programa de ensaios dos materiais para o estabelecimento de 

relações constitutivas dos materiais constituintes do painel de sanduíche, ou seja, o núcleo de 

espuma PU, as lâminas de GFRP e a aderência entre estes dois materiais. Além disso, a 

resistência ao esmagamento das lâminas e perfis de GFRP para o caso de ligações mecânicas 

é também estudada nesta fase. 

Na fase II, um sistema de ligação é proposto para ligar painéis sanduíche de piso e de parede. 

O sistema de conexão proposto é composto de duas partes principais, nomeadamente (i) 

perfis GFRP em “U” integrados no contorno dos painéis e (ii) perfis retangulares em GFRP. 

A ligação entre painéis é por encaixe, sendo que os elementos (ii) realizam a respetiva 
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ligação. Duas abordagens são usadas para estudar o comportamento mecânico dos painéis 

ligados: encaixe (apenas por atrito) e técnica híbrida (atrito e mecânica). Um programa 

experimental é realizado para estudar a resposta mecânica deste sistema de ligação nas 

direções longitudinais e transversais 

Na fase III inclui-se série de ensaios experimentais realizados num painel isolado, em dois e 

três painéis ligados entre si. A resposta à flexão dos painéis, a curto prazo, é analisada, 

incluindo a avaliação dos mecanismos de rotura e a eficiência do sistema de ligação. Além 

disso, o comportamento de fluência dos painéis, o que é um aspeto condicionante no 

dimensionamento deste tipo de painéis, é investigada. Modelos numéricos e analíticos são 

propostos e validados com recursos aos resultados experimentais obtidos. Os modelos 

propostos são posteriormente usados na compreensão da capacidade da ligação entre painéis 

no aumento da rigidez à flexão dos painéis. Além disso, a contribuição da deformação por 

corte na deformação dos painéis sanduíche é também investigada. 

Na fase IV, o desempenho estrutural dos painéis sanduíche de parede é testado 

experimentalmente, sob condições de carga axial, e posteriormente avaliados analiticamente, 

em dois casos: (i) painéis de parede isolados; (ii) dois painéis de parede ligados entre si. A 

influência do sistema de ligação proposto na capacidade de carga axial dos painéis é avaliada 

analiticamente. 

Na fase V, o desempenho de dois protótipos modulares é avaliada para as condições de carga 

típicas de habitações residenciais. O programa experimental é complementado com uma 

extensa simulação numérica e analítica para verificar os resultados experimentais e obter a 

flexibilidade de ligação, o fator de distribuição de carga e a distribuição de tensões nos 

componentes modulares do piso. Além disso, vários estudos paramétricos foram 

desenvolvidos utilizando modelos FEM para mostrar a potencialidade do sistema ser 

aplicável a estruturas de vãos superiores e, consequentemente, estender este conceito para 

outros mercados. 

 

Palavras-chave: painel de sanduíche de piso e parede; sistema de conexão; perfis GFRP; 

protótipo modular; habitação de emergência pré-fabricada; investigação experimental; 

simulação FEM.
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1  CHAPTER 1: Introduction 

 

1.1 Context and motivation 

In the field of temporary shelters and emergency management, a great deal of time is placed 

in the act of responding to disasters. After any event, the main priority is to re-establish 

normality for the affected populace. This return to normalcy is first brought about by clearing 

away the aftermath of the event and rehousing affected people whom have lost their homes. 

A home is a source of pride and cultural identity linking the livelihoods of those that inhabit 

it and acts as the social centre of a family. The ability to quickly return a populace to their 

daily activities allows communities to not only continue their daily efforts but also contribute 

to the effort of reconstruction.  

Currently, temporary houses vary widely in quality and performance and are typically 

directly correlated with the displaced community’s means. Low performance solutions use 

materials such as sand, earth bags, and tents. In most circumstances, these solutions are not 

capable of handling the standardized design loads required for use. In contrast, high 

performance solutions are available with materials such as: wood, steel, or concrete.  

However, these high performance solutions have the detriment of requiring highly skilled 

labour for installation, long installation times - as materials are not always readily available - 

and high capital cost.    

In this thesis, a temporary modular dwelling system is proposed in the scope of the 

ClickHouse R & D project and studied in the ambient of the present thesis. Although the 

main target of this project is developing an emergency house for displaced communities, the 

methods and results of this study have the ability to serve other potential applications. The 

main tenants that were considered in designing this system were: material selection, ease of 

transportation and constructability, potential for reuse, and a code compliant design.  

Additionally, utilizing modular structures was considered to reduce building cost and to 

improve the quality of the manufacturing [1-3]. 
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The proposed building types included in this study comprise the study of wall panels, floor 

panels, roof panels and connections between them and with the framed-structure composing 

of the house. Accordingly, pultruded GFRP material was used for the frame structure while 

the remaining elements, mainly panels, were materialized using a sandwich wall concept. 

Pultruded GFRP composite profiles display promising advantages including: low production 

costs, low maintenance, high durability, immunity to corrosion, and high strength [4-7]. 

Likewise, sandwich panels have been increasingly used in structural applications due to their 

high strength, stiffness to weight ratio, immunity to corrosion, and low thermal and acoustic 

conductivity [8-12].  The proposed sandwich panels, consist of two thin and stiff GFRP skins 

separated by a relatively thick and lightweight PU foam core.  

Feasibility and cost of the system was key factor in constructing and designing this structure. 

The proposed modular system in this study is expected to be quickly and effortlessly 

assembled on a site with a handful of unskilled labourers. This easy of construction is 

possible due to the low weight components and simple assemblage. Additionally, the low 

weight component of the system allows for faster and lower costs of transportation and assists 

in transporting the material to areas that have limited accessibility.  

1.2 Research objectives and methodology 

The research in this thesis is intended to demonstrate an in-depth understanding and a critical 

evaluation of the proposed residential modular system.  Additionally, outcomes from this 

research have the potential to be used in the several alternative structural applications 

including flooring, decking, cladding, and roofs.   

The specific objectives of this study were set as follows: 

1- Establishing the constitutive relationship of the individual materials of the residential 

modular system; 

2- Developing a connection system for jointing composite panels; 

3- Evaluating mechanical performances of single, double, and triple jointed panels under 

flexural loading; 

4- Assessing axial behaviour of single and jointed wall panels; 

5- Evaluating the floor modular prototypes. 

For the first task, an extensive experimental procedure was conducted to obtain mechanical 

performance of the dwelling materials. This testing included: characterization of the GFRP 
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pultruded profiles and GFRP laminates under tensile testing, evaluation of the PU foam core 

under different loading conditions (tensile, compression and shear), assessing tensile bond 

strength between GFRP skin and PU foam core by performing a pull-off test, and 

characterization of the polyester resin under tensile test. 

The second objective consisted of developing a connection system to joint composite panels; 

thus, a connection system between adjacent sandwich panels was proposed and studied. The 

panel to panel connection was accomplished using interlocking tubular U-shaped GFRP 

profiles as the main connection between integrated end U-shaped GFRP profiles. This 

module was tested under four-point and three-point bending tests configuration to assess the 

connection behaviour on overall mechanical response of the jointed panels. The behaviour of 

the jointed panels was studied along the longitudinal and transverse directions with respect to 

two different methods of connection namely friction techniques and a hybrid technique.  

The third objective consisted of the following tasks: 

1- Assessing flexural performance of the single sandwich panels; 

2- Characterization of the flexural behaviour of single and jointed sandwich panels. 

The first task consisted of an experiment research to study flexural performance of the single 

composite sandwich panels under service load state (SLS), ultimate load state (ULS) and 

failure. To satisfy the ULS loading condition, the structure must not collapse when subjected 

to the peak design load for which it was designed. Meanwhile, a structure was deemed to 

satisfy the SLS loading condition when the structure do not deflect by more than certain 

limits laid down in the building code. To accomplish this, full scale sandwich panels were 

tested in four-point and three-point bending test to analyse the flexural behaviours in SLS and 

ULS loading. Thereafter, failure mechanisms and long-term behaviour (creep) were 

investigated on small scale specimens. Next, ultimate capacity of a full scale single floor 

panel and its corresponding failure mechanisms were experimentally assessed. Finally, 

analytical and FE assessments were executed to further understand the failure mode of the 

sandwich panels as well as the influence of the ribs placed inside the panels. 

The second task involved experiments to evaluate flexural behaviour of the jointed panels 

under SLS and ULS conditions. Several analytical and FE simulations were developed to test 

these conditions. The FE models simulated and predicted the experimentally observed 

responses by analysing the efficacy and contribution of the connection between panels. By 



Chapter 1 Introduction 

 

4 

 

studying the transference of loads from one panel to another, the effects of the proposed 

connection system in increasing flexural stiffness of the jointed panel were quantified. 

The fourth objective aimed to assess the axial behaviour of single and jointed wall panels in 

two parts: 

1- Axial performance of single sandwich wall panels; 

2- Axial performance of two jointed wall panels. 

The first and second task involved assessing the structural behaviour of both the single and 

double sandwich panels under concentric axial loading. Aspects related to assembly and 

disassembly as well as ease of integration in the production line was also evaluated. Finally, 

an analytical investigation was performed to determine the axial capacity and stresses 

associated with various failure modes, both in the single and double jointed panel. 

Finally, the fifth objective was to develop a modular floor prototype for the temporary 

building. Functionality of this system was assessed experimentally by 

assembling/disassembling and fulfilling the requirements established in the engineering 

standards. Analytical and numerical models were created and validated using the 

experimental results. The research aimed at simulating and predicting the response, analysing 

the efficiency, and measuring the contribution of the connection between panels. By studying 

the transference of loads from one panel to another, the load distribution factor and 

connection flexibility in the floor modular prototype was attained. Finally, parametric studies 

were carried out on the modular floor systems to explore differences in the used materials in 

order to achieve higher span to length ratios. 

1.3 Thesis outline  

This thesis is organized in nine chapters. The following paragraphs give a brief summary of 

the contents of each chapter. 

Chapter 1 presents the main subject of this thesis. In this chapter a general overview and 

motivation behind this research is included. Furthermore, the methodology is established in 

order to provide a rational underpinning. 

Chapter 2 presents literature review, including the historical background, fundamental 

characterization of the sandwich panel’s materials, and potential application areas for the 

sandwich panels. Composite sandwich panels are categorized according to their configuration 

and current research of the subject is summarized.   
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Chapter 3 describes the architectural design of the proposed temporary building. The 

typology of each structural element is described in terms of geometry, functionality, and 

layout. 

Chapter 4 provides the experimental program carried out to evaluate mechanical 

performance of the composite sandwich panel’s constituent materials including the GFRP 

pultruded profile, GFRP skin, PU foam core, polyester resin, GFRP skin-PU foam core bond 

strength, bearing strength of the GFRP skin, and pultruded profiles. 

Chapter 5 of this thesis presents the experimental programs for characterizing the efficiency 

of the proposed connection techniques in jointing composite sandwich panels. Flexural 

characterization of the jointed panels in transferring the imposed load in longitudinal and 

transverse direction was investigated by using friction and hybrid techniques.   

Chapter 6 explores a series of experimental programs carried out to evaluate flexural 

performance of single, double, and triple jointed panels subjected to the vertical loading 

conditions under serviceability and failure behaviour.  Analytical and FE simulations are also 

provided. Analytical simulations enabled the research to dive deeper in evaluating the effects 

of each component on the global behaviour of the structures.   

Chapter 7 provides a system for connecting composite sandwich wall panels. The structural 

performance of full scale wall panels including maximum axial load, failure modes, lateral 

deflections, axial deflection and strains were evaluated in two cases. An analytical 

investigation was created to determine the axial capacity and stresses associated with various 

failure modes, both in the single and double jointed panels. 

Chapter 8 provides information about two modular prototypes proposed for the flooring 

system of the temporary building. Since the floor panels were studied independently of the 

GFRP framed structures, this chapter focuses on the feasibility of assemblage/disassembling 

and the responses of the prototypes under uniform loading (SLS). The experimental results 

were used to validate the theoretical and numerical models and verified the effects of 

connection in terms of stiffness and flexibility on the behaviour of the systems. Furthermore, 

the validated models were used for parametric study to explore the potential of the used 

materials as well as structural behaviour for pavements with different typology.  
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2 Chapter 2: Literature overview 

2.1 Introduction 

One of the major concerns after a natural disaster is settling down surviving communities in 

shelters or temporary houses. This issue remains difficult to manage despite decades of 

experience. Availability of temporary housing is crucial since it allows people to quickly 

commence their daily activities such as school, working and cooking [13-15]. Even though 

there are different sorts of temporary buildings made of steel, wood and plastic [16-18], many 

of these temporary dwellings do not offer a basic level of security and protection for its 

occupants, and/or result in very complex and expensive solutions. Nowadays, a clear trend is 

observed in the industrial manufacturing and prefabrication of temporary building towards. 

This modern method of construction leads to achive tangible benefits in terms of faster 

construction, improved quality and reduced wasting resource material [19]. 

Lightness is a key factor when proposing a material/structural system for a temporary 

building because, after a natural disaster, accessibility to roads is usually limited. Thus, low 

weight prefabricated components are very convenient for packing, shipping, unpacking and 

assembling [20]. Taking this into account, sandwich panels made fundamentally by GFRP 

pultruded profiles and sandwich panels may constitute excellent options in the field of 

temporary buildings. Sandwich panels and pultruded profiles are lightweight elements with 

very good mechanical performance, being able to be manufactured and rapidly assembled in 

modular sections. 

In this chapter, the main principle of sandwich elements is presented to obtain a better vision 

about the composite sandwich structures. Furthermore, the fabrication processes are 

described and the potential applications of sandwich panels are presented. 

2.2 Definition of Sandwich Structures    

A sandwich structure is a special type of laminated composite structure. Generally, sandwich 

structures follow the same pattern of two face sheets (also called skins) separated by a thick 
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layer (called the core). To transfer the load between the separate components, the skins are 

adhesively bonded to the core material (Fig. 2.1).  

 

Fig. 2.1. Definition of sandwich structure. 

 

External faces are normally thin, and composed of stiff and high strength material. In 

contrast, core material is relatively thick yet light with sufficient stiffness in a direction 

normal to the face of the panel [21]. Structural component material properties must be 

selected according to the specific application and design criteria [22]. There are two kinds of 

sandwich structure namely symmetric and asymmetric. In the symmetric structure, the skins 

material and thickness are identical. In contrast, in the asymmetric type, the skin may differ in 

thickness or material because of different loading conditions or environmental factors [23]. 

2.3 Principle of Sandwich Structures 

The main concept of sandwich structure can be explained as such: bending loads are to 

imposed on the skins and the shear loads are transferred through the core [24]. Furthermore, 

the core material must stabilize the skins against buckling or wrinkling. The bond between 

skins and core must have sufficient strength to withstand the shear and tensile stresses 

introduced between them.  

A sandwich structure acts similar to an I-beam with two flanges and narrow web [22]. 

Flanges resist tensile and compression stresses while the web that connects the two flanges 

carries mostly shear forces [25]. The main difference between the sandwich structure and the 

traditional I-beam is that in the case of the sandwich structure materials for the core and skins 

are different. Additionally, instead of connecting the skins by a narrow web, the core of 

sandwich structure provides continuous supports for the skin (Fig. 2.2). 
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In these structures, placing two skins apart from each other leads to an increase in section 

modulus [26].  

 

                                               (a)                                                      (b) 

Fig. 2.2. Comparison between sandwich structure and I beam: (a) sandwich structure; (b) I beam. 

The main advantages of using sandwich panel are that, the flexural strength and flexural 

rigidity can be improved in comparison with a homogeneous plate of material without 

increasing weight Considering a single skin structure (see Table 2.1) one can apply bending 

to this beam and calculate weight, bending stiffness, and bending strength and set them into 

unity. Now one can cut the beam from the middle and separate parts with insulation (core), 

and one more time calculate weight, bending stiffness, and bending strength. The more the 

distance between the two parts is increased, the bigger value for flexural strength and flexural 

rigidity will be obtained [27]. The relative properties of each beam are provided in Table 2.1. 

The resulting sandwich structure’s advantages can be summarized as: high stiffness and 

strength to weight ratio, excellent thermal insulation,  rapid constructability without requiring 

lifting equipment of high capacity, and easy repair in the case of damage [22, 23, 25]. 

Table 2.1. Sandwich structural efficiency [23]. 

 

   

Relative bending stiffness 1 7 39 

Relative bending strength 1 3.5 9.2 

Relative weight 1 1.03 1.06 

2.4 Historical Background of Sandwich Structure Application  

Engineers, designers, artists, and inventors have used sandwich structure concepts at various 

times in the history. The earliest sandwich structure drawings can be found in the works of 

t 2t 4t 
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Leonardo da Vinci [28]. However, the first person to describe the sandwich structure 

principle (using two cooperating skins separated by a thick core) on the record appears to be 

done by the Frenchman, Duleau, in 1820 [8]. A bridge was built in Wales by two plates 

separated by a wooden egg crate core in 1845 [29]. The use of sandwich structure in 

aeronautics began in 1919 when the pontoons of a seaplanes were primarily constructed of a 

mahogany skins and a balsa wood cores. Thereafter, in 1945 the first aluminium sandwich 

panel was constructed. The proposed panel was composed of two aluminium skins and 

aluminium honeycomb core. Numerous small, aluminium hexagon cells were bonded to form 

the honeycomb core. It should be mentioned that at this stage, adhesives were being utilized 

for bonding the skins and core, and presented low viscosity, which could not properly bond 

the skins to the core [30]. 

The first major structures to incorporate sandwich panels were created during the Second 

World War. Sandwich panels were used in airframes such as the case of the ‘’Mosquito’’ 

bomber aircrafts [21, 28]. 

In 1969, the successful application of sandwich panels in various new technological fields, 

such as rocket engineering and computers assisted to the successful landing of Apolo 11 on 

the moon. The spaceship was constructed by using sandwich technology in order to be light 

yet have adequate strength to withstand the induced stress from acceleration and landing. (see 

Fig. 2.3). 

 

(a)                                                                                 (b) 

Fig. 2.3. Details of Apollo 11 capsule: (a) Sandwich construction details; (b) Cellular sandwich forming the 

outer shell [21]. 

 

2.5 Constituent of Sandwich Panels 

Composite sandwich panels can be manufactured by choosing different materials for skins 

and cores. In the last decade, introduction of fibre composites robustly increased the choices 

of face sheets and core materials  [8]. However, component material properties still must be 
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selected to fulfil the design criteria needs of the structure. The following section describes the 

basic functions and material properties for different components of sandwich structures. 

2.5.1 Face Skin Materials  

In general, the primary purpose of face sheets supports bending loads [9, 31]. In sandwich 

structures, both face sheets are usually identical in materials and thickness [9]. Hence face 

sheets must have specific mechanical characteristics such as: high tensile and compressive 

strength, high stiffness, as well as high resistance impact loading and to the environmental 

conditions[8, 9, 21]. 

A proper guide towards the selection of face sheet materials is presented by Ashby [32]. 

Zenkert divided face materials into two main groups namely metallic and non-metallic [8]. 

Metallic materials include steel, aluminium, and titanium, while non-metallic materials can 

be composed of wood, concrete, and fibre composite materials. Mechanical properties of 

some typical face sheets are tabulated in Table 2.2 and Table 2.3 . It must be mentioned that 

the listed mechanical properties represent short-term conditions according to standard testing 

methods. In reality, mechanical properties may vary depending on the temperature and 

humidity [31]. 

Table 2.2. Metallic Face Sheet Mechanical Properties [33, 34] . 

Metallic material    (kg/m3) E(GPa) σT (MPa) 

Aluminium (2024-T3) 2800 73 414 

Steel (AISI 1025) 7800 207 394 

Titanium 4400 108 550 

 =density, E =Young’s modulus, 
T = Ultimate tensile strength 

 

2.5.2 Core Material 

The other component of the sandwich structure, is the core material. The core material has 

several main functions which must be considered when designing a sandwich structure. 

Separating the face sheets at a set distance from one another is the main function of core 

material. In order to ensure that the core thickness is maintained during the loading, this 

material must have adequate stiffness perpendicular to the face sheet [28]. Decreasing core 

thickness, led to loss of flexural rigidity in the structure [8]. In addition, in order to minimize 

the weight of the structure, core material requires a low density material. In sandwich 

structures, the core is mainly subjected to shear forces. Thus, in order to prevent the sliding of 
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skins during the loading, core material must have adequate shear stiffness, otherwise, face 

sheets will act as two independent beams or panels without interaction [28]. 

Table 2.3. Non-Metallic Face Sheet Mechanical Properties [8] . 

Non-Metallic Material    (kg/m3)  E  (GPa) T (MPa) 

Wood Pine 520 12 47.7 

Plywood 580 12.4 21 

Unidirectional 

Fibre Composite 

(vf≈0.6-0.7) 

Carbon/Epoxy 1600 180/10 1500/40 

Glass/Epoxy 1800 39/8 1060/30 

Kevlar/Epoxy 1300 76/6 1400/12 

Bi-directional Fibre 

Composite (vf≈0.3-

0.4)  

Kevlar/Polyester 1300 17.5 375 

Glass weave/ Polyester 1700 16 250 

Glass WR (woven roving)/Polyester 1600 12 215 

Random Fibres 

(vf≈0.15-0.25) 

Glass CSM (chopped stand mat) 1500 6.5 85 

SMC (sheet moulding compound) 1800 9 60 

vf: fibre volume fraction 

Core material could be classified to structural and cellular according to Fig. 2.4. The 

structural core material is formed by a corrugated, continuous web made by of solid elements. 

However, cellular core material has a number of voids inside to increase the insulation 

properties. These voids in the material are to be referred as cells. Cellular core comprising, 

cellular foam, honeycomb and balsa wood. Cellular foam contains polyurethane (PU), 

polystyrene (PS),  Polyvinyl-chloride (PVC), polymethacrylimide (PMI)  

Core material

CorrugatedStructural

Cellular

Cellular foam

Honeycomb

Balsa wood

PU PS PVC PMI

Paper Aluminum Glass Nomex

EPS XPS

 

Fig. 2.4. Core material classifications. 

In addition to that, Fig. 2.5 shows ranges of the mechanical properties for PU foam core. 

http://www.compositesworld.com/suppliers/category/140
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Fig. 2.5. Ranges of the mechanical properties of PU foam core: (a) modulus of elasticity versus. density; (b) 

strength versus. density. 

2.6 Application areas of sandwich panels 

This pat tends to classify application of sandwich panels. Accordingly, sandwich panels are 

classified into: industrial applications and civil engineering applications and structure 

members.  

2.6.1 Industrial applications 

In recent years, sandwich structures have been widely used in the aerospace industry due to 

their high strength to weight ratio that leads to lower total weight and enhanced fatigue 

resistance. Usually sandwich structures are composed of smooth metal skins or fibre 

reinforced polymer (FRP) materials with an aluminium honeycomb, corrugated core, balsa 

wood, or aramid paper core due to the excellent fatigue characteristics exhibited. [8, 28, 29, 

35]. The combination of the materials used is dependent on the application. For instance, 

aluminium skins with honeycomb cores used for military transport aircraft where 

concentrated loading is expected. FRP skins and aramid honeycomb, predominately utilised 

in a passenger aircraft. In the aerospace industry different sandwich panels can be used for 

each part of the plan: fuselage, flooring, wings, speed brakes, seats, doors, doors frame, tail 

boom, horizontal stabilizers, and flap segments. 

The successful application of composites in the aerospace industry led researchers to utilize 

these composite systems in the marine industry including naval vessels [36]. Sandwich 

structures can be used in applications such as: bulkheads, sail boats, hulls, and decks. When 

designing marine applications, lowering the centre of gravity reduces the weight above the 

water line and is one of the several important aspects the designer face. In the field of marine 
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engineering, FRPs material are prevalently used for the skins due to the high corrosion 

resistance. Foam core materials are primarily used due to the low rate of water absorption. 

Finally, sandwich panels have been used in many land based vehicles to lower fuel 

consumption. By implementing lighter components less energy is required to propel the 

vehicle forward. Differing variations of sandwich panels are used throughout vehicles to 

replace ordinarily heavy parts. In recent history, sandwich structures have been used in parts 

of the vehicle including the roof, hood, and doors. Additionally, sound insulation 

characteristics of sandwich structure make them optimal for use as walls and floors in vans, 

trucks, and trailers. Some of the applications of sandwich panels in the industrial filed are 

presented in the Fig. 2.6. 

 
(a)                                                     (b)                                           (c) 

 

 
(d)                                                  (e)                                                  (f)  

 
Fig. 2.6. Industrial application of sandwich panels: (a) Sandwich structure used in Eurocopter EC 665 German’s 

helicopter parts such as fuselage, flooring and tail boom; (b) Boing 787 details made of sandwich structure; (c) 

First class seating system for Airbus 318 made of sandwich panel; (d) Corvette Viby; (e) Evonik electric car; (f) 

Epcot’s spaceship building. 

A sandwich panel has several different failure modes, which may condition its load-bearing 

capacity. Such load-bearing capacity depends on the sandwich materials, the panel 

dimensions and the structural geometry itself. Fig. 2.7 presents the most common failure 

modes and their corresponding design equations. 
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        (a)                   (b)                (c)                  (d)                (e)              (f)                  (g)                (h) 

Fig. 2.7. Failure modes in sandwich panel: (a) face/core yielding; (b) core shear; (c) buckling-face wrinkling; (d) 

debonding; (e) general buckling; (f) buckling-shear crimping; (g) buckling-face dimpling; (h) core indentation-

core yield. 

2.6.2 Civil engineering applications 

Civil structures typically involve the use of traditional materials such as concrete, steel, 

timber and masonry. Usage of these materials is time-consuming and prone to errors during 

construction. Implementing composite materials in buildings would provide a more beneficial 

such as: frugal, designed oriented properties, higher quality control, lightweight, non-

susceptibility to corrosion, easier and faster application in case of using pre-fabricated 

elements, etc. Further, sandwich panels can exhibit a variety of architectural flourishes such 

as freeform shapes, ranges of colours, and transparencies. In addition, sandwich structures 

have superior acoustic and sound insulation qualities. In this section, material 

characterization for the face skins and core is tabulated in the Table 2.4 and Table 2.5, 

respectively. Additionally, the results of the experimental analysis are shown in Table 2.6 

and Table 2.7 

2.6.2.1 Floor and roof applications 

In this part, sandwich panels applications for the floor and roof are classified as: panels 

without internal ribs, panels with internal ribs and Hybrid panels. 

Sandwich panels without internal ribs 

In 2001, Kim and Swanson investigated composite beams that were manufactured with a 

polyurethane foam core and Carbon Fibre Reinforced Polymer (CFRP) skins. The relevant 

results obtained for the mechanical behaviour are displayed in Table 2.4 and Table 2.5. The 
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beams were evaluated under three-point bending test to understand the behaviour of the 

sandwich panel in localized loading region, such is the case of accidental impact. In order to 

investigate the failure modes in this composite sandwich panels, the authors used different 

densities and thickness for the foam core material. In this study, the densities of 96.1 kg/m3, 

160 kg/m3, and 320 kg/m3 were selected for the polyurethane foam core. 

Different types of failure modes including shear failure (Fig. 2.8a), compression and 

delamination failure in the CFRP skin (Fig. 2.8b), as well as fibre failure on the skins (Fig. 

2.8c) were observed. The authors reported that, in the low density solution, the shear failure 

mode occurred in the core. By increasing the thickness and density of the core, the failure 

began to occur on the compression CFRP face of the specimen.  

(a) (b) (c) 

Fig. 2.8. Failure modes in sandwich panels of a core thickness of 6.35mm: (a) Shear failure in sandwich beam 

with 96 kg/m3 polyurethane core of thickness 6.35 mm; (b) debonding failure in sandwich beam with 160 kg/m3 

polyurethane core of thickness 6.35 mm; (c) failure of the carbon/epoxy face in sandwich beam with 320 kg/m3 

polyurethane core of thickness 6.35 mm [37]. 

As can be seen in Fig. 2.9, it was observed that, for this type of sandwich structure, the load 

carrying capacity of the structure has increased with the core density of composite sandwich 

panel[37]. The additional results of three-point bending tests are indicated in Table 2.6 and 

Table 2.7 . 

   

(a) (b) (c) 

Fig. 2.9. Comparison of experimental failure load for sandwich beam with predicted competing failure modes: 

a) 96 kg/m3 polyurethane core of thickness 6.35 mm; b) 160 kg/m3 polyurethane core of thickness 6.35 mm; c) 

320 kg/m3 polyurethane core of thickness 6.35 mm [37]. 
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In 2010, Sharaf et al. studied the performance of composite sandwich panels as wall panel 

cladding that consisted of GFRP laminate skins and polyurethane foam core with the 

dimensions of 9000×2400×76 mm3 (see Fig. 2.10). Densities of 31 kg/m3 Kgm3 and 63 

kg/m3 for the polyurethane foam core were selected. Table 2.4 and Table 2.5 summarizes the 

effective mechanical properties of the skins and the core materials determined from testing. 

 

Fig. 2.10. Typical full-scale sandwich composite cladding Wall [38]. 

Panels with dimensions of 1500×300×70 mm3 were manufactured and one-way bending, 

three-point bending, four-point bending, and uniform load tests were carried out. The 

corresponding results are indicated in Table 2.6 and Table 2.7. The results indicated that 

flexural strength and stiffness of the panels increased by doubling the core density. The 

dominate failure mode was the shear failure in both of the soft and hard foam cores. In the 

soft core, very large deflections were associated with excessive shear deformation of the core, 

which led to nonlinear behaviour in the panel; The authors suggested utilizing GFRP ribs 

inside the foam in order to connect the faces and increase the shear capacity of the core 

material [38]. 

In 2010, Manalo et al. studied flexural strength and failure modes of composite sandwich 

beam under four-point bending test (4PBT) in flatwise and edgewise directions. The 

proposed sandwich beams were comprised of phenolic core material and GFRP skins. The 

mechanical properties of the proposed sandwich panel components are indicated in Table 2.4 

and Table 2.5. The load-deflection behaviour, stress-strain behaviour, failure loads, and 

failure mechanisms of the utilized beam were evaluated under four-point static bending tests 

in flatwise (normal orientation) and edgewise direction (perpendicular orientation). Fig. 2.11 
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illustrates the scheme of flexural test of composite sandwich beams in two different 

directions. 

  
(a) (b) 

Fig. 2.11. Test Setup for 4PBT in two different positions: (a) flatwise; (b) edgewise position[39]. 

In this study, the analytical simulation was carried out by considering the linear elastic 

behaviour of GFRP laminate and the non-linear behaviour of the core material which acted 

linearly in tension and bi-linearly in compression. 
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The results from experimental investigation revealed that the composite sandwich panels in 

flatwise orientation failed in a brittle manner due to either shear failure of the core or 

compressive failure of the skin followed by debonding between the skin and the core. In 

contrast, edgewise position specimens, failed due to progressive failure of the skin. Fig. 2.12 

illustrates load-deflection behaviour of the specimen under the four-point bending test. 

According to this figure, under the same level of loading, the deflection in the specimens 

tested in the flatwise position, experienced twice as much deflection as that of in the 

edgewise position. The composite sandwich panel in the edgewise position failed in the 

higher load than flatwise position. The final results of the investigation displayed the 

potential for use of this composite sandwich panel in structural laminated beam [46]. The 

corresponding results of the four point bending test (4PBT) in different positions is indicated 

in Table 2.6 and Table 2.7. 

 
 

(a) (b) 

Fig. 2.12. Load-midspan deflection relation of specimen in flatwise and edgewise direction: (a) 4PBT with 100 

mm shear span; (b) 4PBT with 160 mm shear span [46]. 

Sandwich panels with internal ribs 

Reis and Rizkalla in 2008 [47] for avoiding delamination problems which typically occurred 

in traditional sandwich panels, proposed sandwich panels containing 3-D fibre reinforced 

polymer ribs. In this system, the top and bottom skins were connected together by using 

GFRP fibres, which were inserted in the foam core. Fig. 2.13 illustrates the scheme of this 

system.  
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Fig. 2.13. Schematic Illustration of new 3-D Sandwich Panel [47]. 

Two different patterns for the through-thickness fibres were investigated in this study namely 

as regular array (Fig. 2.14a) and continuous wall (Fig. 2.14b). In the first pattern, the 

through-thickness fibres were evenly spaced in each direction. While in the second pattern 

the through-thickness fibres were arranged in semi-solid rows, like in a closely spaced picket 

fence, in one direction forming a rigid web. 

  

(a) (b) 

Fig. 2.14. Different arrangements of through-thickness fibres: (a) regular array; (b) continuous wall [47]. 

The mechanical properties of the face sheets were evaluated using in-plane tensile tests. A 

total of 33 tension coupons with different number of plies and different configuration of 

fibres were tested. It was observed that increasing the densities of fibres resulted in 

decreasing elastic modulus as well as the tensile strength of face sheets. This explained by the 

fact that by increasing the densities of the fibres creates zones of imperfection and waviness 

among the fibres. Influences of the through-thickness fibres on the proposed sandwich panels 

were evaluated using shear, compression and flexural tests.  

In the shear test, the results indicated linear behaviour up to the initiation of the shear crack in 

the foam core followed by a nonlinear behaviour with significantly low shear modulus up to 

failure. The shear tests results showed that the density and configuration of 3-D fibres affect 
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the core shear modulus. Additionally, tests results suggested that increasing the thickness of 

the sandwich panels did not have significant effect on the shear modulus of the sandwich 

panel. Fig. 2.15a shows shear cracks in the shear test. 

Compression test results showed that, increasing the quantity of 3-D fibres increased the 

compressive strength of the tested panels. The increase in the compressive strength was 

linearly proportion to the increase in density of the through-thickness. Additionally, test 

results revealed that decreasing the thickness of the panel, increasing the buckling load of the 

through-thickness fibres, resulting in the increase of the compressive strength of the panel 

significantly. The buckling of the through-thickness fibres at compression test is shown in 

Fig. 2.15b.    

  

(a) (b) 

Fig. 2.15.Failure of the tested sandwich specimens: (a) shear cracks in shear test; (b) buckling of through-

thickness fibres at failure 

 

 

Fam and Sharaf studied the composite sandwich panels composed of polyurethane foam 

cores with the densities of 31.6 kg/m3 and 64.6 kg/m3 and GFRP skins. The main mechanical 

properties of the constituents are shown in Table 2.1 and Table 2.2. In this research, six 

sandwich panels (P1-P6) with different rib configurations and dimensions were fabricated. 

Configurations of the test panels and the fabrication process are shown in Fig. 2.16a and Fig. 

2.16b, respectively.  In this study, the internal and external ribs consisted of two back to back 

C-shape GFRP profiles (see Fig. 2.16a- detail B). While for the external ribs only one C-
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shape profile (see Fig. 2.16a- detail C) was utilised. The fabrication method using Vacuum 

Assisted Resin Transfer Moulding (VARTM) process is depicted in Fig. 2.16b. 

 
(a) 

 
(b) 

 

Fig. 2.16. Proposed Composite Sandwich Panel: (a) configurations of tested panels; (b) fabrication process 

[42]. 

 

The specimens were tested in one-way bending with a span of 2300 mm, under a uniform 

load. The results indicated that the flexural strength and stiffness of a composite sandwich 

panel increased by adding GFRP interior ribs. From the preformed experimental works the 

importance of using internal and external GFRP ribs in increasing flexural stiffness and 

stiffness of the panels was observed. Accordingly, a single internal and external rib influence 

in increasing flexural strength and stiffness was obtained by a value of 95% and 50% 

respectively. However, in the panel with both internal and external rib, increase for the 

flexural strength and stiffness was obtained by a value of 140%. 

Furthermore, it was observed that, in the sandwich panel without any internal GFRP ribs, 

shear contributed to over 50% of midspan deflection. By adding GFRP ribs, flexural became 

more dominate and shear deformations of the ribs contributed 15-20% of the total deflection 

(see Fig. 2.17).  
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Fig. 2.17. Load- Deflection response for the different composite sandwich panel [42]. 

Regarding to the failure modes. Two types of failure were noticed namely as wrinkling and 

crushing of GFRP skin (see Fig. 2.18). Accordingly, in the sandwich panels without any ribs 

and in the panels with only longitudinal ribs the outward wrinkling of the GFRP skin in the 

compression side was reported as a failure mode. Additionally, in the panels with both 

longitudinal and external ribs wrinkling and crushing of the GFRP skin in the compression 

side was reported as failure modes.  

    

(a)                                                                                        (b) 

    

                                      (c)                                     (d)                                                     (e) 

Fig. 2.18. Failure modes of sandwich panels: (a) cylindrical wrinkling of compression skin in specimen P1; (b) 

conical wrinkling of compression skin in specimen P2; (c) Conical wrinkling of compression skin in specimen 

P3; (d) delamination of corner in specimen P4; (e) crushing of compression skin in specimens P5 and P6 [42]. 

In 2012, Correia et al. investigated composite sandwich panels, which were composed of 

polyurethane (PU) and polypropylene (PP) foam core, with GFRP laminate skins and internal 
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GFRP ribs for civil engineering applications. The results for the mechanical properties of 

materials in this study are indicated in Table 2.4 and Table 2.5. 

The following four types of composite sandwich panels made of GFRP skins were produced 

and studied: (i) two standard sandwich panels without lateral reinforcement (see Fig. 2.19a), 

formed by a core of either PU or PP (panels PU-U and PP-U, respectively) and  (ii) two 

sandwich panels  (see Fig. 2.19b) comprising GFRP ribs, each one with the aforementioned 

core materials (panels PU-R and PP-R, respectively).  

  

(a) (b) 

Fig. 2.19. Configurations of Test Panels: (a) Unconfined Panels; (b) Confined Test Panels [44]. 

In the proposed sandwich panels, the nominal dimensions were: core thickness=90 mm, skin 

thickness= 7 mm, and ribs thickness= 6 mm. For the large scale panels, four-point bending 

tests were carried out. The relevant results for the static flexural test are indicated in Table 

2.6and Table 2.7. 

The results indicated that specimen’s response was linear up to failure with a slight stiffness 

reduction prior to collapse. The unconfined sandwich panels with PP foam core were stiffer 

than panels with PU foam core. GFRP ribs in the confined panels led to a change of the 

failure mode from shear failure in the unconfined panel to wrinkling and delamination failure 

mode in the skins. Fig. 2.20 illustrates the different kinds of failure modes in composite 

sandwich panels in this study [44]. 

  
(a) (b) 
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(c) (d) 

 

Fig. 2.20. Failure modes in static flexural tests in different panels: (a) Shear failure mode in PP-U panel; (b) 

Shear failure mode in PU-U panel; (c) Wrinkling failure mode in PP-R panel; (d) Delamination failure mode in 

PU-R panel [44]. 

Hybrid concrete sandwich panel 

In 2004, Norton worked on a new sandwich panel with the aim of using it in bridge decks. 

This panel consists of basalt core material and GFRP corrugated internal ribs. In this system, 

concrete was used as skin in the compression side of the sandwich panel (see Fig. 2.21).  

 

Fig. 2.21.Photo of the hybrid concrete sandwich panel being tested [48]. 

In order to prepare adequate surface for bonding concrete to the sandwich panel, two kinds of 

shear connectors, namely metal shear connectors and composite shear connectors, were 

utilized in this system before casting the concrete. After installing the metal and composite 

shear connector to the top of the specimen, concrete was cast on the panels (see Fig. 2.22). 

To evaluate the effects of through-thickness internal corrugated GFRP, three kinds of decks 

were produced. In Deck 1 the metal shear connector was utilized with corrugated GFRP ribs, 

whereas in Deck 2, the basalt core was used without corrugated GFRP; in Deck 3 the 

composite shear connector was used with corrugated GFRP ribs. 



Chapter 2 Literature overview 
 

28 

 

   

(a) (b) (c) 

Fig. 2.22. Sandwich panels with different configuration of shear connectors: (a) sandwich panel with metal 

shear connectors and corrugated ribs (Deck 1); (b) sandwich panel with composite shear connectors and without 

corrugated ribs (Deck 2); (c) sandwich panel with composite shear connectors and corrugated ribs [48]. 

Three-point bending tests were carried out on the proposed specimens. Fig. 2.23 shows 

different the type of failure modes registered in the tested specimens. As can be seen, Deck 1 

failed due to concrete crushing and buckling of the top concrete skin. In Deck 2 the failure 

was due to shear failure in the concrete, while Deck 3 failed by the concrete delamination of 

the top skin. 

Results for the different decks revealed that shear connectors led to an increase in the load 

carrying capacity for all of the specimens. When comparing the metal and composite shear 

connectors, metal shear connectors were found to be useful, but the installation of these 

connectors on the top surface was very difficult. Furthermore, it was suggested that shear 

bolts be used by drilling them into the top surface [48]. 

   

(a) (b) (c) 

Fig. 2.23. Failure modes in the proposed specimens: (a) concrete crushing and skin buckling in deck 1; (b) 

concrete shear failure in deck 2 ; (c) concrete delamination in deck 3 [48]. 

 

2.6.2.2 Building Façade   

Several experimental and theoretical investigations have been carried out by different 

researchers to evaluate the behaviour of composite sandwich wall panels and their failure 

modes under eccentric or concentric axial loads.  
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Recently, Mathieson and Fam [49] performed an in-depth study to investigate the influence 

of the slenderness ratio on the concentric axial behaviour of sandwich wall panels. The study 

examined the effects of cross-sectional configurations and slenderness ratio (KLe∶r) ranging 

from 15 to 70 on the axial behaviour. Where Le is the length between the two end pins, K=1 

for pinned-pinned condition and r=(I/A) 1/2 , where I and A are the moment of inertia and 

cross-sectional area of GFRP component including skin and ribs and neglecting the core.  

A total of 45 specimens were manufactured using GFRP skins and PU foam core with a cross 

section of 150×75 mm2. Details of tested specimens is indicated in Fig. 2.24. A self-reacting 

axial loading frame was designed consisting of two heavy reaction beams connected together 

using high-strength DYWIDAG bars (see Fig. 2.25).  

 

(a)                                                  (b)                                                     (c)      

Fig. 2.24. Details of test specimens: (a) cross-section configuration; (b) detail A; (c) core-skin interface. 

 

Fig. 2.25. Test setup [49]. 

 

The failure modes in this research were categorized in three groups based on the slenderness 

ratios of the panels as: (i) panels with a slenderness ratio of 15-17 experienced local failure in 

non-ribbed panels or skin crushing in ribbed panels; (ii) panels with a slenderness ratio of 41-

70 experienced global buckling followed by skin wrinkling and core shear failure, as well as 
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skin crushing in the ribbed panels; (iii) panels with a slenderness ration of 17-41 presented 

mixed failure modes. 

It was found that by increasing the skin thickness by a factor of four, panels with a 

slenderness ratio of 15 and 75 increased their ultimate axial load by 32% and 86%, 

respectively. By increasing the core four times resulted in an increase of ultimate axial load 

of 264% and 52% for the panels with the slenderness ratios of 15 and 75, respectively. 

Hence, increasing skin thickness of panels with higher slenderness ratios was recommended 

as more effective when global buckling is the predominant failure mode. Similarly, in panels 

with a low slenderness ratio, by increasing the shear modulus of the core was indicated as the 

most effective method when local skin wrinkling is the governing failure mode.   

Mousa and Uddin [50, 51] studied the structural behaviour of sandwich wall panels under 

eccentric loading. The dominant failure mode was described as an abrupt debonding between 

the GFRP skin and the foam core on the compression side due to out-of-plane interfacial 

tensile stresses that attained the ultimate tensile strength of the foam core material. This kind 

of failure is known as wrinkling failure or local buckling. An analytical model was developed 

to justify the wrinkling failure by considering two kinds of stresses associated to it: 

(i) interfacial tensile strength between GFRP skin and foam core; and, (ii) the critical 

wrinkling stress in the compressive GFRP skin. 

Different theoretical approaches can be used to analyse the instability that occurs in 

composite sandwich wall panels. The basic approach was proposed by Euler using the well-

known Euler-Bernoulli assumption, where the global buckling load is predicted under various 

support conditions and slenderness ratios. It was observed that the effect of transversal shear 

(out-of-plane shear components) can significantly reduce the Euler critical load. Based on 

that, Engesser [52] and Haringx [53] proposed to include shear deformation in the analysis of 

axially loaded composite panels. The nonlinear geometrical behaviour of sandwich panels 

using high-order theory was further developed under various boundary conditions [54, 55].  

2.7 Conclusions  

The literature review illustrates that sandwich panels are emerging as potential members in 

light structural application after a long history of successful application in different industrial 

field. Compared to other traditional construction technologies, composite sandwich panels 

present higher thermal-acoustic performance and strength-to-weight ratios, making them 

suitable for applications in the field of civil engineering. 
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It was observed that GFRP skins combined with PVC or PU foam cores can provide a 

significant reduction in sectional mass of the sandwich panel. However, the optimization of 

the composite action in sandwich panels was found to be dependent on the mechanical 

performance of sandwich panel’s components, as well as on the production quality of the 

structure. In the un-ribbed sandwich panels, the shear stiffness of foam material was verified 

to be an effective parameter in the design process. Almost all of the performed experiments 

demonstrated shear failure localized in the foam core. However, in ribbed panels, the 

debonding and skin wrinkling were the main modes of failure; thus, the quality of the bond 

between skin and foam, as well as the strength of the skin materials were the driving 

characteristics throughout the design process.   

Potential exists for employing composite sandwich panels as a modular system in a 

temporary building. Modular construction provides faster and easier assembly with less 

labour due to the lighter and stronger sandwich panel materials. However, this topic still 

requires further investigation to achieve appropriate fruition and fulfil the design 

requirements of temporary houses. 
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3 Chapter 3: Temporary Residential 

Housing 

3.1 Introduction 

The timely establishment of emergency structures after natural disasters is an important step 

in returning an affected community to normality.  By quickly providing shelters, risk of death 

from exposure and illness is diminished, restoration efforts can be undertaken, and 

communities can begin the process or rebuilding. [14, 56-58]. 

Existing temporary shelters are categorized into two main categories: (i) shelters made of 

plastic, earth bags, and tents; (ii) shelters made of woods, metal, or prefabricated materials. 

The main concern of the first group of temporary structures is that they are not capable of 

providing the means by which a family can return to daily life. Hence, it is impracticable to 

call these structures a suitable replacement by which a community can regrow. In the other 

group of temporary shelters, while the structures are safer, they have the disadvantage of 

requiring skilled laborers for assembly and install in addition to their large upfront cost. [59].  

In this context, the team composed of members of University of Minho (UMinho), Instituto 

Superior Técnico (IST) from University of Lisbon and the company ALTO - Perfis 

Pultrudidos, Lda., developed a R&D proposal, named “ClickHouse”, for developing a new 

system of prefabricated temporary buildings into the emergency shelter market. The proposal 

was accepted and founded by the Portuguese National Agency of Innovation (ANI – 

“Agência Nacional de Inovação”) – project no. 38967. The structure designed uses GFRP 

pultruded profiles and composite sandwich panels, both made by ALTO - Perfis Pultrudidos, 

Lda.  

The main assumptions when designing ‘ClickHouse’ included: (i) ease of transport and 

assembly; (ii) international design code compliance (iii) structural safety and thermal 
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performance; (iv) self-sufficiency with regard to energy supply and water; and (v) 

competitive cost against current solutions. 

3.2 Architectural Design 

The designed temporary structure composed of a single-story building with a rectangular plan 

of 6.12 × 3.12 m2, formed by connecting two units of 3.12 × 3.12 m2 with a height of 3.12 m 

capable of accommodating a family of 4 to 5 members. 

All of the house’s components including walls, floors, and roof were designed to incorporate 

water supply, drainage, sewage, and electricity. These disciplines were further developed in 

the Clickhouse’s infrastructure task [60]. Fig. 3.1 illustrates the plan and elevation view of 

this temporary housing system. It is important to note that the capability of connecting units 

with each other provided the possibility of erecting a pre-selected number of buildings by 

joining them. Comprehensive information about the architectural aspects can be found in 

[59]. A photo of the single-story built prototype is represented in Fig. 3.2.  
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Fig. 3.1. Modular system plan and elevation views: (a) plan view; (b) south view; (c) east view (all units in 

millimeters) [59]. 
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Fig. 3.2. Temporary single-story prototype. 
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3.3 Structural Components  

The proposed temporary dwelling was composed of three main components: (i) a framed 

structure composed of columns and beams, (ii) sandwich panels forming the floor, wall, and 

roof, and (iii) the connectors. The team of IST designed the framed structure whereas the 

team of UMinho designed the sandwich panels. Both teams designed the different existing 

connectors. 

3.3.1 Columns and Beams 

The framed components of the house were made of tubular GFRP pultruded profiles with a 

cross section of 120×120 mm2 and a wall thickness of 8 mm. For the sake of decreasing 

segment variation in the manufacturing process, this profile was used in both beams and 

columns (see Fig. 3.3). 

 

Fig. 3.3. GFRP framed structure. 

3.3.2 Floor, Roof, and Façade Panels 

3.3.2.1 Floor Sandwich Panels  

A common sandwich panel made of two outer skins and an interior core was adopted in this 

project. Prior investigations indicated that using high strength material such as Carbon Fibre 

Reinforced Polymer (CFRP) for the skin was not necessary and Glass Fibre Reinforced 

Polymer (GFRP) was recommended [61]. Additionally, it was found that PU foam material 

with a minimal internal ribs exhibited satisfactory insulation characteristics [38]. 

Consequently, GFRP and PU foam were chosen to form the main structure of the wall panels 

in the study.  
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The connection between panels and other elements was accomplished using a U-shape GFRP 

pultruded profile with a cross section of 60×55 mm2 and a wall thickness of 5 mm 

(U60×55×5) externally adhered to the PU foam core during a manufacturing process. Two 

possible geometric profiles for the slab sandwich panels were designed and proposed for use 

in the ClickHouse’ project, as depicted in Fig. 3.4:  

a) Panel FSP-L2.4_W1.2_t70 consisted of a sandwich panel 2.4 m long, 1.2 m wide, and 

0.07 m thick, and with thicknesses of the GFRP skins and foam core equal to 5 mm and 

60 mm, respectively. The panel’s weight was approximately 65 kg; 

b) Panel FSP-L3.0_W1.0_t70 consisted of a sandwich panel 3.0 m long, 1.0 m wide, and 

0.07 m thick, with thicknesses of the GFRP skins and foam core equal to 5 mm and 60 

mm, respectively, and two interior GFRP ribs made from the same profiles used on each 

panel side (U60×55×5). The panel weighted around 70 kg. 
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Fig. 3.4. Geometry of proposed floor slab sandwich panels (all units in millimeters). 

  

3.3.2.2 Roof Sandwich Panels 

Fig. 3.5 depicts the geometry of the sandwich panels used for the roof slabs. As can be seen, 

panels are 3.0 m long, 1.0 m wide, and 0.19 m thick, with GFRP skins of 5 mm thickness, 

and a PU foam core of 180 mm. To allow the connection of panels with other panels, three U-

shape GFRP pultruded profiles of dimensions 60×55×5 mm3 (profile U60×55×5) were placed 

and adhesively bonded to each of the longitudinal outer faces of the sandwich panel. The roof 

panel weighted around 100 kg. The thermal requirements stated at the design objectives 

yielded to this thickness value of the PU foam core. 
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Fig. 3.5. Geometry of the roof sandwich panels (all units in millimeters) 

3.3.2.3 Wall Sandwich Panels 

The geometry for the sandwich wall panels is depicted in Fig. 3.6. Proposed composite 

sandwich panels for the wall elements have a dimension of 2.88 m of height, 0.96 m of width 

and 0.64 m of thickness, with GFRP skins of 2 mm thickness, and a PU foam core of 60 mm.  
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Fig. 3.6. Geometry of the wall sandwich panels (all units in millimeters) 

GFRP U-shape profiles, with dimensions of 60×55×5 mm3, were adhesively bonded to 

sandwich panel around the edges during the manufacturing process in order to facilitate the 
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connections of walls to the GFRP beams and GFRP columns. Each panel weighed 

approximately 42 kg, making them easy to transport and install on-site.  

3.3.3 Connections 

This study also involved the development of a connection system for joining adjacent 

ClickHouse’ components. Connections were designed with the objective of maximizing the 

advantage of the inherent elements strength, keeping the integrity of the floor module, and 

enabling an easy, fast assembly / disassembly of the prototype. 

Three types of the connections were developed in the study (see Fig. 3.7): (i) beam-column, 

(ii) beam/column-panel and (iii) panel-panel. 

Beam-column connections were formed by tightening GFRP beams to GFRP columns with a 

series of M8 bolts, and using short steel tubular profiles, (steel class of S235) with a cross 

section of 120×120×3 mm3, to ensure a satisfactory transfer of loads between both 

components (see Fig. 3.7a). For beam/column to panel connections, the before mentioned U-

shape GFRP profiles were adhered to the edges of the sandwich panels. Next, a 50 mm 

square tubular GFRP profile with a 5 mm thickness was bonded to the GFRP beam. These 

two elements were then mechanically and adhesively bonded to form a singular unit as seen 

in Fig. 3.7b and Fig. 3.7c.  Finally, for the panel to panel connection, a similar approach as 

the beam to panel connection was used, the U-shape profile was fit into two square tubular 

profiles (also of 50 mm edge and 5 mm of thickness) attached to a GFRP beam and 

mechanically and adhesively connected together (Fig. 3.7d). 

1 5 6 38
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4 2 3

 

(c) (d) 

 

Legend: (1) GFRP beam; (2) GFRP U-shape profile; (3) GFRP square profile; (4) floor sandwich panel; (5) steel profile; (6) 

GFRP column; (7) sandwich wall panel; (8) M8 bolts 

Fig. 3.7. Schematic Presentation of the Connections: (a) Beam-column, (b) Beam-panel; (c) Column-panel; 

(d) Panel-panel. 

3.4 The Manufacturing Process 

Pultrusion is a continuous manufacturing process by which a material is coated in resin and 

then carefully pulled through a heated die to produce consistent pultruded profiles.  

The production process of the pultruded profiles using ALTO’s technology is illustrated in 

Fig. 3.8. Rolls of GFRP fibres (1 and 2) were employed to keep the strength across the 

profiles. The pultrusion process begins when fibres are fed from spools into the tension roller. 

Fibbers are then guided and saturated in resin (4). Thereafter, the saturated GFRP fibres (1 

and 2) are then coated with a glass fibre (3) and pulled through a metal preform shape that 

became the profile. The function of the coating layer was not to add extra strength to the 

profile but to add colour and enhance the product’s appearances as well as protect the final 

product from corrosion and impact. 

Finally, the product entered a hot steel frame to create the final shape of the material.  The 

final cured profile (5) was cut in the appropriate length according to the specifications 

required.    
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Fig. 3.8. Manufacturing process of pultruded profiles [59]. 

For the case of the sandwich panels, as an example, a description about the manufacturing of 

the panel FSP-L3.0_W1.0_t70 was provided to explain the different stages involved.  

Manufacturing began with the creation of a structure composed of U60×55×5 GFRP profiles 

(Fig. 3.9a). These profiles were placed at each side of the panels, and were also used as ribs 

in panel FSP-L3.0_W1.0_t70_ribs. The second step consisted of the producing the GFRP 

skins using hand-layup technique with dry fibres saturated with an isophthalic polyester resin 

(Fig. 3.9b). In essence, this technique consisted of positioning a glass mat fabric in an open 

mold, pouring resin, placing a new glass mat fabric layer and continuing the process until 

finished. Before putting a new layer, entrapped air was removed manually with squeegees or 

rollers. Curing was initiated by a catalyst in the resin system, which hardens the fibre 

reinforced resin composite without external heat. Multiple plies of GFRP fabrics were used, 

employing two different types of mats, chopped strand mat (CSM) and bidirectional woven 

fabric mats (WFM). Skins had faces of five symmetric layers of epoxy saturated isotropic 

glass fibre, with total fibre volume ranging from 30% to 40%. Composition of each skin 

followed the sequence: 

• Layer 1: CSM-300 gr/m2  

• Layer 2: CSM-450 gr/m2  

• Layer 3: CSM-450 gr/m2 + WFM 500 gr/m2  
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• Layer 4: CSM-450 gr/m2 

• Layer 5: CSM-300 gr/m2 

Once skins were produced, sandwich panels were mounted (Fig. 3.9c and Fig. 3.9d). The first 

skin was placed under the GFRP (both side profiles and ribs) and PU blocks. Then, the upper 

skin was installed. To glue the skins to the GFRP profiles and the PU blocks, a polyurethane 

resin was used. 

(a)

(c) (d)

(b)
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(c) (d)

(b)
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Fig. 3.9.  Manufacturing process of the sandwich panels: (a) U60×55×5 GFRP profiles; (b) production of the 

GFRP skins; (c) placing the GFRP profiles and the foam to the first skin; (d) mounting the second skin. 

 

3.5 Conclusions 

In this chapter, a description about the prefabricated emergency housing system developed in 

the scope of the ClickHouse R&D project for the purpose of relocating families after natural 

disasters was performed. Throughout the design process, the ability to quickly return affected 

communities to their lives was the driving factor. Additionally, indoor air-quality and thermal 

insulation were considered to be important factors in the design process.  

Lightweight composite sandwich panels and pultruted profiles were integrated into the 

ClickHouse prototype. This integration of parts allowed the prefabricated materials to be 

easily transported to the site and rapidly installed due to reduced weight of the structure. The 

frame structure (beams and column) consisted of GFRP pultruded profiles. On the other 
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hand, the floors, roofs, and walls elements consisted of composite sandwich panels utilizing a 

polyurethane foam core (PU) enclosed by two GFRP skins produced by hand-layup 

technique. The overall thickness of the floor, roof, and wall panels were considered to be 

70 mm, 190 mm, and 64 mm, respectively.  

Three kinds of the connections were designed namely: beam-column; panel-panel; 

beam/column-panel. In the connection design, complexity was avoided to allow assembly of 

the temporary building to continue without the need for special equipment and expert 

labourers. Additionally, the connections were designed to be capable of transferring the 

imposed loads to the different structural components.  
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4 Chapter 4: Material characterization  

4.1 Introduction  

The investigated composite sandwich panels in this research consists of two thin and 

relatively stiff GFRP skins connected by a polyurethane (PU) foam core with a low density of 

48 kg/m3, along with U-shape GFRP pultruded profiles with a cross section of 60×55 mm2 

and a wall thickness of 5 mm (U60×55×5). 

Given the unconventional nature of these materials, performing comprehensive material 

testing program to evaluate mechanical behaviour on composite sandwich panel’s constituent 

seems to be essential. The main scope of this study was to obtain mechanical material 

properties of GFRP skins, U-shape GFRP profiles as well as the PU foam core under 

different loading conditions, namely tension, compression and shear. For these purposes 

ASTM standards were used to determine the material properties as well as statistical stated 

methods for analysing the results. It should be mention that all GFRP, PU foam core and 

pultruded U-shape coupons were extracted from the skins, foam core and pultruded U-shape 

GFRP profiles of the manufactured sandwich panels. 

To assure composite action between composite sandwich panel’s constituents, the bond 

stiffness and strength between skins and core material plays always critical rule, especially 

when the manufacturing is the hand-layup technique. The use of proper adhesive ensures load 

transfer between GFRP skins and the core and is a key in achieving the desired strength of 

the sandwich panel. This bond must have sufficient stiffness and strength to withstand the 

shear and tensile stresses introduced between them. Accordingly bond strength of the 

adhesive joint between GFRP skin and PU foam core was measured using pull-off test. 

Additionally, mechanical properties of the polyester resin (adhesive material used to glue 

GFRP skin to PU foam core) was assessed under direct tensile tests.  

The mechanical fasted joints are gaining interest over adhesive bonded joints, because they 

present some advantage such as being able to be removed without destroying the connection 

components – a comprehensive explanation will be discussed in Chapter 5. Hence, some 

experimental tests were conducted to investigate the mechanical behaviour of bolted joints in 
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GFRP skins as well as GFRP pultruded profiles. For this aim a procedure was set up to 

measure bearing stiffness of GFRP laminates as well as GFRP pultruded profiles in single-

bolt double lap joint.  

4.2 GFRP skins and pultruded profiles 

Both GFRP profiles and sandwich panel GFRP skins were characterized by performing 

tensile tests according to ASTM D3039 [62]. The rectangular-shape coupons were cut out 

from a panel using a diamond saw in two different directions, namely longitudinal (along the 

specimen) and transverse (perpendicular to the length of the specimen) directions.   

Five coupons were prepared in both longitudinal and transverse directions with the width of 

25 mm and length of 250 mm. Thickness of the specimens were measured with a calliper in 

various positions and average value was determined. Four aluminium tabs with a geometry of 

25×50×2 mm3 were glued at the end of the coupons. The tabs distribute gripping stresses and 

prevent premature specimen failure caused by grip jaws. A minimum of 24 hours curing time 

was allowed for the bonding agent of the tabs to fully cure before testing the samples. 

Schematic representation of tension test specimen is shown in Fig. 4.1 

 

 

(a)                                                                                     (b) 

Fig. 4.1. Tension specimens: (a) Preparing coupon for tension test; (b) Tension coupon ready to be tested. 

Specimens were mounted in the universal testing machine comprising a fixed and movable 

member as well as grips for holding the coupons with a grip distance of 150 mm, and 

monotonically loaded with a head displacement rate of 2 mm/min up to failure. Fig. 4.2 

shows a specimen been tested. 
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The typical stress-strain curves obtained from the tensile tests are presented in Fig. 4.3. The 

strains given in these curves are engineering strains, this means they are calculated as the 

extension given by the testing machine divided by the original length of the specimens 

between the grips. The tensile stress is computed by dividing the applied load by the average 

original cross-sectional area in the gauge length region. 

 

Fig. 4.2. GFRP tension test. 

The tests carried out on GFRP profiles coupons show a linear-elastic behaviour until failure. 

The typical failure of a specimen started by the quiet sound of crunching followed by a big 

crack corresponding to the breaking of the surfacing veil and finally the peak load was 

reached when the glass fibres had lost their strength. 
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(a)                                                                                  (b) 

Fig. 4.3. Tensile stress-strain response in the longitudinal direction: (a) GFRP skin; (b) GFRP pultruded profile. 
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Table 4.1 summarizes the results of the material characterization tests conducted on the 

different components of the floor prototype, listing the values obtained for maximum stresses 

(σ), strains (ε), elastic modulus (E) and shear modulus (G).  

Table 4.1. Mechanical properties of GFRP skin and profiles. 

 max,L  
max,T  

LE  
TE  

 Mean 

(MPa) 

CoV 

(%) 

Mean 

(MPa) 

CoV 

(%) 

Mean 

(GPa) 

CoV 

(%) 

Mean 

(GPa) 

CoV 

(%) 

GFRP profiles 327.1 8.6 230.1 7.6 32.0 6.8 16.1 8.9 

GFRP skin 117.0 10.4 116.9 24.7 9.6 7.4 10.3 8.0 
L: longitudinal direction, T: transverse direction, CoV: coefficient of variation 

4.3 Polyurethane foam core 

4.3.1 Tension tests  

In order to determine the tensile properties of PU foam core, five coupons were prepared and 

tested  according to ASTM C297/C 297 M-04 [63]. The prism-shape coupons were cut with a 

cross section of 70×70 mm2 and thickness of 60 mm. Since this material has low stiffness, in 

order to assist gripping in the testing machine, the specimens were bonded using adhesive to 

the T-shape steel profiles. The tests were performed using universal testing machine at a 

displacement rate of 0.50 mm/min (see Fig. 4.4).  

 

Fig. 4.4. PU foam tensile test setup. 

The stress-strain curves obtained from the experimental tests, is presented in Fig. 4.5a. As 

can be seen, almost linear behaviour was observed until failure occurred by a rupture close to 

the T-steel section profile (Fig. 4.5b). The results are tabulated in Table 4.2. 
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(a)                                                                      (b) 

Fig. 4.5. PU foam core tensile test result: (a) stress-strain relation; (b) failure mode. 

4.3.2 Compression tests  

Mechanical properties of PU foam core subjected to compressive loading was evaluated 

according to ASTM C365-03 [64] a cross-section of 70×70 mm2 and thickness of 60 mm. A 

universal testing was used to test the five prism-shape coupons at the displacement rate of 

0.5 mm/min (see Fig. 4.6a). 

PU foam under compression showed the typical nonlinearity exhibited in this kind of 

materials (see Fig. 4.6b), with a linear elastic branch followed by a plastic plateau with nearly 

constant stress, and a strain-hardening part at large strains, with large compressive 

deformation [42, 65]. 
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(a)                                                                      (b) 

Fig. 4.6. PU foam core compression test: (a) test setup; (b) stress-strain relation. 
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4.3.3 Shear tests  

For the testing the PU under shear loading, five cubic specimens with a dimension of 

120×120×120 mm3 were prepared. The specimens were bonded to four metallic plates and 

mounted in the universal testing machine where a tension load was applied along one side of 

the setup (see Fig. 4.7). The applied load was transferred into the plates that were encasing 

the specimen, by introducing a governing shear stress field in the specimens. Comprehensive 

information about this test setup can be found elsewhere [66].  

 

Fig. 4.7. PU foam core shear test setup. 

The shear-strain curves obtained from shear test is represented in the Fig. 4.8a and the 

summary of the results are tabulated in Table 4.2. Shear behaviour was almost linear-elastic 

until failure, which occurred in a brittle manner and with the formation of failure surfaces at 

an angle of nearly 45.The failure occurred in a brittle manner and with the the formation of 

failure surfaces along the horizontal diagonal at an angle of nearly 45off-axis direction 

relative to the specimens’ edges (see Fig. 4.8b). 

0.00 0.03 0.06 0.09 0.12
0.0

0.1

0.2

0.3

S
h

e
a

r 
s
tr

e
s

s
 (

M
P

a
)

Shear strain (mm/mm)
 

(a)                                                               (b) 

Fig. 4.8. PU foam core shear test result: (a) stress-strain relation; (b) failure mode. 
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Table 4.2. Mechanical properties of PU foam core. 

Foam 
max  E G 

 
Mean 

(MPa) 

CoV 

(%) 

Mean 

(MPa) 

CoV 

(%) 

Mean 

(MPa) 

CoV 

(%) 

Compression test 0.30 10.0 6.3 9.0 --- --- 

Tensile test 0.49 8.9 --- --- --- --- 

Shear test 0.15 10.2 --- --- 3.15 12.1 
                     CoV: coefficient of variation 

4.4 Polyester resin 

Mechanical properties of the polyester resin (adhesive material used to glue GFRP skin to PU 

foam core) was assessed under direct tensile tests, according to ASTM D638 [67]. 

The polyester resin coupons were casted in a teflon mould in which the mixed epoxy was 

filled in. The coupons had a length of 170 mm, 4 mm thickness, 10 mm width at the middle 

and 20 mm width in a dogbone shape. The geometry of the coupons was measured using a 

digital calliper for accurately estimate the normal stress. Direct tensile tests were performed 

using the universal testing machine at the displacement rate of 1 mm/min. A load cell with 

the maximum capacity of 20 kN was used to measure the applied load. A strain gauge was 

glued at the middle height of each coupon for measuring the axial strain (see Fig. 4.9a).  

The polyester resin subjected to the direct tensile test exhibited an ultimate tensile strength, 

ultimate tensile strain and Young’s modulus of 40.40 MPa (CoV = 7.87%), 0.0258 m/m 

(CoV = 3.07%) and 1568 MPa (CoV=9.3%), respectively. All of the coupons failed nearly at 

the middle of them with the failure surface perpendicular to the length of the specimens (see 

Fig. 4.9b).  

         

(a)                      (b) 

Fig. 4.9. Test setup for direct tensile of polyester resin: (a) test setup; (b) failure modes. 
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4.5 Bond strength of the joint skin/core 

Tensile bond strength of the adhesive joint between GFRP skin and PU foam core was 

measured by pull-off tests based on ASTM 1583-04 [68]. 

Five cores were drilled on GFRP skins with a diameter of 50 mm and a core depth of around 

10 mm (Fig. 4.10a). Aluminium disks with a diameter of 50 mm were adhesively glued to the 

GFRP skin (Fig. 4.10b). The prepared specimens after curing, were mounted in the universal 

testing machine and tensile force was applied to the disks with a head displacement rate of 

0.2 mm/min (see Fig. 4.10). 

 

Fig. 4.10. Bond strength assessment of the joint skin/core: (a) a cutting off in sandwich panel; (b) bonded the 

aluminum disk; (c) pull-off test. 

In the pull-off tests, an ultimate tensile strength of 0.50 MPa (CoV = 18.7%) was obtained. 

The failure occurred in the PU foam core. No failure was detected in the interface between 

GFRP and the PU foam core.  In Fig. 4.11a and Fig. 4.11b, the failure of sandwich panel 

foam core and aluminum disk are presented respectively. Comparing the ultimate tensile 

strength obtained for epoxy (40.40 MPa) with the tensile strength value registered in the pull-

off test (0.50 MPa), it is confirmed that the polyester resin had the capability of creating 

sufficient bond between GFRP skin and PU foam core. On the other hand, the values of 

ultimate tensile strength of PU foam core and tensile strength obtained by pull-off test were 

close, so the PU tensile failure occurred due to excessive out-of-plane tensile stress [69]. 

4.6 Bearing strength of GFRP skin and pultruded profiles 

The bearing strength of GFRP skin and pultruded profiles was assessed in the scope of the 

present work. In the case of GFRP skin, a diamond saw was used to obtain rectangular shape 

coupons of length 220 mm and width 70 mm, with a thickness of 5 mm. Five coupons were 
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prepared and a 5-mm-radius hole was drilled in each piece 20 mm far from one of the edges. 

Two square aluminum tabs with dimensions of 70×70×3 mm3 were bonded at the opposite 

end of coupons using epoxy. Fig. 4.12a schematically shows the prepared specimens. 

 

(a)                                                                 (b) 

Fig. 4.11.  Pull-off test failure: (a) failure in the PU foam core of sandwich panel; (b) aluminum disk.  

In the case of U-shape and square-shape GFRP pultruded profiles, 10 coupons per profile had 

prepared.  It is worth reminding that, U-shape profiles had a length of 100 mm and a cross 

section of 60×55×5 mm3 while squared-profiles had a length of 100 mm and cross section of 

50×50×5 mm3. Thereafter 5-mm-radius hole was drilled in each coupon at the middle length 

of the flange, 20 mm far from the edge. Fig. 4.12b depicts schematics of the prepared 

specimens for evaluating bearing strength.  
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(a)                                                               (b) 

Fig. 4.12. Specimens prepared for evaluating bearing strength: (a) GFRP coupon; (b) pultruded profiles. 

Experimental procedures were performed according to ASTM D 953-95 [70]. The GFRP skin 

coupons were placed in the universal testing machine, taking care to align the longitudinal 

axis of the specimen. The load was applied through stiff steel pins and lugs (Fig. 4.13a). Two 

steel plates clamped the side without the hole with aluminium tabs. A M10 bolt was inserted 

in the opposite side, in the 5-mm-radius hole and connected to the fixed part of the test setup 
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thought two stiff plates and a pin. Two LVDTs with a stroke up to 10 mm were installed 

vertically along the length of the coupons in order to measure the movement of both sides. 

An incrementally monotonic load was applied by a hydraulic jack with a maximum capacity 

of 50 kN until failure.  

For U-shape and square-shape profiles testing, the same perception as in the case of GFRP 

laminate was used. In this case, five coupons were selected and placed in the universal testing 

machine. Five coupons of each one were tested individually. The rest were tested working 

together (i.e. attaching a U-shape to a square-shape profile). A T-shape stiff steel profile was 

placed inside the coupons and gripped to a movable clamp (Fig. 4.13b). A M10 bolt was 

inserted in the 5-mm-radius hole and connected to the fixed part of the test setup thought two 

stiff plates and a steel pin, in a similar way as in the case of GFP skin coupons. Two LVDTs 

with a stroke up to 10 mm were installed vertically in order to measure the movement of the 

pin in both sides. 

  

(a) (b) 

Fig. 4.13. Bearing tests: (a) GFRP laminate; (b) square-shape profile; (c) U-shape and square-shape profiles. 

Fig. 4.14 shows the load-pin displacement recorded for all tested coupons. The relation 

between load and pin displacement in all tested coupons was sensibly linear up to the 
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maximum force. At that point, a sudden drop was observed. This drop indicated of substantial 

failure phenomena occurring in the coupons.  
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Fig. 4.14. Load-pin displacement curves: (a) GFRP laminate; (b) U-shape profile; (c) square-shape profile; 

(d) U-shape and squared profiles. 

Inspection of Fig. 4.14 showed that the maximum applied load and pin-displacement in the 

case of GFRP laminate, U-shape profile and square-shape profile were nearly 8kN and 1.5 

mm respectively. However, the maximum applied load and pin-displacement increased to be 

equal to 16 kN and 2 mm respectively when both U-shape and square-profile worked 

together. The pin-bearing strength, b , for the all coupons was calculated as the ratio of the 

maximum load to the hole diameter times the specimen thickness. That resulted to obtain this 

value for the GFRP laminate as 100 MPa and 50 MPa for the GFRP profiles.  

In the experimental study, the progression of the failure was observed visually. Cleavage and 

net-tension failure modes were the dominate failure modes in the GFRP coupons and 

pultruded profiles respectively (see Fig. 4.15). It is noteworthy reminding that, cleavage 

failure mode is a mixed net-tension and shear-out failure modes. Net-tension failure is 

characterized by a sudden transversally crack propagation to the direction of the connecting 

force, due to a relatively small area of the plate-section. Shear net is caused by shear stresses 
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and happened along shear-out planes on the hole boundary in the principal bolt load direction 

[71]. 

 
 

Fig. 4.15. Failure modes: (a) GFRP laminate; (b) U-shape profile; (c) square-shape profile; (d) U-shape and 

squared profiles. 

4.7   Conclusion  

A comprehensive mechanical characterization of the sandwich panel constituents was carried 

out. The study included performing tensile tests of the GFRP skins and pultruded profiles in 

two different directions namely longitudinal (along the fibre) and transversal (perpendicular 

to the fibre). In addition to that, mechanical performance of the PU foam core was evaluated 

under tensile, compressive and shear tests. Since bond between GFRP skin and PU plays a 

critical action in transferring the load, the bond strength was evaluated using epoxy direct 

tensile test and pull-off test. Finally, bearing tests were carried out pertaining to the GFRP 

laminate as well as pultuded GFRP profiles for obtaining maximum bearing load and failure 

loads using the developed test setup. The following conclusion are drawn: 
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 Both GFRP laminate skins and pultruded profiles exhibited almost linear-elastic 

performance during tensile testing regarding to both longitudinal and transversal 

directions; 

 The GFRP laminate skins presented nearly the same elastic modulus in both directions 

(9.6 GPa). In contrast, GFRP pultruded profiles showed two times of elastic modulus in 

longitudinal direction (32 GPa) higher than transversal direction (16 GPa); 

 PU foam core in compression test exhibited three stages of loading: linear-elastic, plastic 

and strain hardening. The compressive elastic modulus was calculated from the linear part 

as 6.3 MPa. In the tensile and shear tests of the PU foam coupons, a linear-elastic 

behaviour until failure was noticed and consequently the elastic modulus and shear 

modulus were calculated to be 15 MPa and 3.5 MPa, respectively; 

 An ultimate strength of 0.50 MPa was obtained in the pull-off tests of bond strength 

between GFRP skin and foam core. The failure occurred in the PU foam core. Comparing 

this value with the ultimate tensile strength of epoxy (40.40 MPa) it was confirmed that 

the utilized polyester resin had the capability of creating sufficient bond between GFRP 

skin and PU foam core. 

 Regarding to the bearing tests, a bearing strength of 100 MPa was obtained for the GFRP 

laminate. However, this value decreased to 50% in the case of pultruded profiles. 

Cleavage and net-tension failure modes were reported as the dominate failure modes in 

the GFRP laminate and pultruded profiles respectively. 
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5 Chapter 5: Connection system for 

jointing sandwich panels 

 

5.1 Introduction  

One of the critical challenge in the application of using composite sandwich panels in the 

sector of civil engineering is the development of the panel-panel connection. Nowadays, there 

is a growing interest in finding cost-effective and durable technology for connecting 

composite sandwich panels. 

In general, jointed composite sandwich panels shall be designed for quick assembling on-site 

and to achieve the objectives of safety, serviceability and constructability [72]. However, this 

aim is highly dependent on the connection detailing system. Proposed connection system 

needs to be designed and detailed to facilitate a quick and secure installation procedures [73]. 

Based on the levels of connection, the design requirements for jointed composite sandwich 

panels might be different. For this aim, two main levels are defined as component level and 

panel level. In the component level, preparing adequate integrity between jointed components 

for ensuring load transfer efficiency is the main objective. In the panel level, the major aspect 

is the capability of transferring the loads [72]. 

5.2 Problem statement and technical considerations 

Different techniques for connecting FRP panels in modular housing system applications are 

documented in the literature. Some of these techniques are depicted in Fig. 5.1. For instance, 

‘Z’-shape adhesively connected techniques (Fig. 5.1a) have been employed for connecting 

sandwich panels in the rehabilitation of building floors [74] and in bridge decks [75]. The 

main drawback of this connection in modular systems is the need of adhesive for integrating 

the two components. Using adhesive requires time for curing and specific treatment, which 

increases the time of construction and requires suitable temperatures for the curing process. 

Additionally, it is fairly difficult to only replace one panel because all the panels are 
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adhesively jointed. In this case, it might be necessary to replace the entire jointed panel, 

which can be a relatively expensive process. Scarfed and stepped overlap joints (Fig. 5.1b) 

present the best performance among bonded joints [76]. However, this type of connection 

results in higher complexity in the production lines and, consequently, increases the price of 

the produced panels. Male-female connections (Fig. 5.1c) have been used in bridge 

applications [72, 77, 78]. In spite of providing integrity between panels and loading-transfer 

efficiency of the formed deck, these panels needs to be placed horizontally by employing 

specific instruments, such as hydraulic jacks, which is a time consuming and expensive 

process. The use of this technique in building applications seems to be a more demanding 

procedure due to spatial limitation [74]. Tongue and groove mechanisms (Fig. 5.1d) are used 

in bridge deck applications [73]. The transportation of these panels must be undertaken very 

carefully. If a small part is damaged, the entire panel needs to be replaced. In addition, the 

integration of this system in production lines appears to be a major challenge. 

Adhesive
GFRP rib Stepped lap joint Scarf joint  

                                            (a)                                                                       (b) 

Dual cavity

beam unit

Adhesive bond line

Mirrored unit

 

(c)                                                           (d) 

Fig. 5.1. Various types of the jointing sandwich panels techniques: (a) Z-shape; (b) stepped and scarf; (c) male-

female; (d) tongue and groove. 

For connecting sandwich panels, a fitting system was used to efficiently transfer bending 

moments and shear forces between jointed panels. Panel-panel connection was composed of 

two main parts (see Fig. 5.2): (i) end integrated “U” cross section pultruted profile (60×55×5 

mm3) and (ii) two tubular pultruted GFRP square profiles (50×50×5 mm3). The former works 

as a connector by interlocking inside the U profiles during the assembling process. Two 
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approaches were used to connect floor sandwich panels, namely without mechanical 

fastening (Friction technique) and with mechanical fastening (Hybrid technique). Their 

mechanical behaviour was studied in this research. 

The following objectives were targeted in this study: (i) analyse the connection ability to 

efficiently distribute stresses and strains between jointed panels; (ii) evaluate the contribution 

of the connection for the flexural stiffness and shear stiffness of the panels; (iii) analyse the 

flexural responses of the jointed panels; (iv) understand the failure mechanism of the 

proposed connections.   

5.3 Flexural tests on jointed composite sandwich panels  

5.3.1 Description of test specimens  

A total of 28 specimens were tested as described in Table 5.1, which shows the test matrix. 

For the longitudinal direction, the specimens were prepared with the dimensions of 850 

(length) × 200 (width) × 70 (thickness) mm3. Subsequently, for transverse direction, 

specimens were prepared with the dimension of 200 (length) × 100 (width) × 70 (thickness) 

mm3. Two different techniques for connecting the specimens were used. In the first one, a 

connector is placed inside the U-shape GFRP profile in the sandwich panel (Fig. 5.2). The 

friction introduced between connector and U-shape GFRP profile was used to accomplish the 

integrity of the structure during loading. In the second approach the floor panels are 

connected by using hybrid technique composed by connector that is placed into the U-shape 

GFRP profile of sandwich panels by Friction technique, and then mechanical fastenings were 

used to stich this connector to the floor sandwich panel. 

Table 5.1. Summary of test matrix and parameters. 

Specimen 

ID 

Number of specimen Connecting technique Loading configuration 

Friction Hybrid 3PBT 4PBT 

PLF1-PLF3 3  - -  

PLH1-PLH3 3 -  -  

PTF1-PTF2 2  -  - 

PTF3-PTF4 2  - -  

PTH1-PTH2 2 -   - 

PTH3-PTH4 2 -  -  
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Fig. 5.2. Details of Friction and Hybrid technique for connecting sandwich panels in longitudinal and 

transversal directions. 
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5.3.2 Test setup and instrumentation  

Flexural performance of the connected sandwich panels up to failure was studied according 

to ASTM C393 standard [79]. Longitudinal connected panels were tested in 4PBT under a 

clear span of 750 mm (Fig. 5.3a). Supports were materialized by steel rollers of 50 mm of 

diameter placed under the specimens at both ends, with one of them allowing a free sliding of 

the structure (roller support), and the other one representing a pinned support. The load was 

monotonically applied at one-third and two-third of span by a hydraulic jack of 200 kN of 

bearing capacity, being monitored using a load cell of 200 kN with a precision of 0.05%. A 

steel spreader beam plate (300 mm length × 50 mm width × 100 mm thickness) and steel 

rollers of 50 mm of diameter were used to transfer the load to the panels (Fig. 5.3a).  

Vertical displacements were recorded by eight LVDTs with a stroke ranging from 25 mm to 

50 mm, placed at the mid-span and under loaded sections. Moreover, specimens were 

instrumented in tension skins with TML PFL-30-11-3L strain gauges, placed at the midspan 

along the centre lines of the specimens. 

Transverse connected panels were tested in 3PBT and 4PBT under the clear span of 350 mm. 

The supports were used in a similar way as to the longitudinal connected panels. The load 

was monotonically applied by a hydraulic jack of 50 kN of bearing capacity, being monitored 

using a load cell of 50 kN with a precision of 0.05%. In the case of 3PBT (Fig. 5.3b), the load 

was applied at the middle of span by using a half steel cylinder with the diameter of 40 mm. 

In the 4PBT (Fig. 5.3c), the specimens had a shear span of 90 mm and the load applied by the 

actuator was distributed by means of a steel spreader beam plate (180 mm length × 50 mm 

width × 100 mm thickness) that includes half steel cylinder with a diameter of 40 mm. 

Vertical displacements were recorded by two LVDTs with a stroke 25 mm placed at the mid-

span of each specimen. 
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(a) 

 

(b) 

 

(c) 

Fig. 5.3.Test setup: (a) four-point bending test in longitudinal connection; (b) three-point bending test in 

transversal connection; (c) four-point bending test in transversal connection 

 

5.3.3 Flexural test results 

The behaviour of the different connections type is discussed for each of the panel 

configuration in the following sections. 
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5.3.3.1 Longitudinal direction connection  

The load versus midspan deflection curves obtained in the longitudinal jointed specimens 

submitted to monotonic loading up to failure are presented in Fig. 5.4. The results include 

both techniques of jointing panels namely as friction (Fig. 5.4a) and hybrid (Fig. 5.4b). 
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(a) (b) 

Fig. 5.4. Load versus midspan deflection in the longitudinal connected specimens: (a) friction technique; (b) 

hybrid technique 

The results indicated that in both connection techniques, the relation between load and 

midspan deflection was almost linear up to failure. Load capacity of the tested specimens 

increased almost linearly until reaching the load and deflection of around 70 kN and 13 mm, 

respectively. At this stage, a significant, a significant drop in load was observed due to the 

debonding of the GFRP skin in the bottom side (tension side). Increasing the load, resulted in 

propagation of debonding toward the U-shape GFRP profile and led to PU foam core 

detached from U-shape GFRP profile. Debonging of PU foam core from GFRP bottom skin 

and U-shape GFRP profile resulted in loosing composite action between sandwich panel 

components. Accordingly, the applied load transferred to the U-shape GFRP profile. In the 

continuous of loading operation, the specimen continued to sustain load but never exceed the 

previous peak load as only U-shape GFRP profile and connector were carrying the load. The 

specimen then failed due to the tensile failure of the U-shape GFRP profile and connector. 

The relation between bending stresses and strains at the bottom GFRP skin for the specimens 

tested is depicted in Fig. 5.6. The strain values were those registered in the strain gauges 

mounted on the bottom surfaces of the specimens, while the stresses were calculated based on 

the equilibrium of tension and compression forces [31] on the GFRP skin: 
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σ =
f

M

b d h 
                                    (5.1) 

where d is the distance between the centroids of the skins (d = hc + hf, being hc and hf the core 

and skin thickness, respectively), and b is the width of the panel.  
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            (a)                                                                                   (b)  

Fig. 5.5. Stress versus strain: (a) friction technique; (b) hybrid technique 

A quite linear behaviour for strain-stress can be observed, being a consequence of the linear 

strains measured in the GFRP skins, which at the same time is a reflection of the linear 

behaviour exhibited by this material.  It was observed that after exceeding the tensile stress of 

20 (MPa) and corresponding strain of 1500 (με), strain gauges were unable to record 

properly. It could be explained that, after this level of strain, the strain gauges were damaged 

due to wire connection problem. 

5.3.4 Transverse direction connection 

Fig. 5.6 shows the load midspan deflection curves obtained in the transverse jointed 

specimens subjected to a monotonic loading 3PBT configuration up to failure. Jointed 

specimens with friction technique presented some nonlinearity. Load capacity of these 

specimens increased linearly until a load and a displacement of 0.27 kN and 3 mm, 

respectively (Fig. 5.6a). At this point some nonlinearity in the load-deflection response was 

observed due to stiffness degradation. However, the specimens were capable of supporting 

extra load until a maximum load and displacement of 0.6 kN and 10 mm, respectively. At this 

load level, a drops of load was observed due to the failure of the U-shape GFRP profile. This 

failure led to the degradation of integrity between connector and U-shape profiles due to the 

decrease level of friction effectiveness. This effect consequently resulted in reduction of 

stiffness in the jointed specimens. However, in the case of panels with hybrid connections, it 

was noticed that the relation between load and midspan deflection was nearly linear. A 
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maximum load and displacement of 0.8 kN and 8.5 mm, respectively, were registered before 

failure of the specimens. The dominate connector failure mode was observed. Above the 

deflection corresponding to peak load, the specimens entered in a softening stage with a 

decrease of load carrying capacity (Fig. 5.6b).   
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            (a)                                                                                   (b)  

Fig. 5.6. Load versus midspan deflection in three-point bending test: (a) friction technique; (b) hybrid technique. 

Fig. 5.7 presents the relation between load and midspan deflection of the tested panels in 

four-point bending tests. The behaviour of the tested specimens in this test was similar to the 

previous test (3PBT). In the specimens jointed with friction technique (Fig. 5.7a) failure of 

the specimens was noticed due to failure of U-shape GFRP profile at a load and a 

displacement of 0.45 kN and 5.5 mm, respectively. Just after peak load the specimens 

presented an abrupt load decay, followed by a stage of pseudo-ductility due to losing integrity 

of the structure because of decreasing the friction effectiveness between connector and U-

shape GFRP profile. On the contrary, linear relation between load and displacement was 

observed for the specimens with hybrid connections (Fig. 5.7b). After reaching a maximum 

load and displacement of around 1.5 kN and 9.6mmspecimens presented an abrupt load decay 

due to initiation of a crack in the GFRP square connector. Such as previous specimens in 

three-point bending test, after reaching this pick load specimen were not able to withstand 

extra load due to the degradation of the integrity between specimens and connection. 

Table 5.2 includes the values for the ultimate moment (Mu), ultimate load (Pu), midspan 

deflection corresponding to  Pu  (δu), initial stiffness (K) as the slope of the force and 

deflection in the linear part, maximum longitudinal strain on bottom skin (εub,) and maximum 

flexural stress (σu). 
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Fig. 5.7. Load versus midspan deflection in four-point bending test: (a) friction technique; (b) hybrid technique. 

Table 5.2. Main summary results from flexural test in jointed specimens. 

Connection 

Direction 

Test 

Type 

Specimen 

IDE 
Mu Pu δu εu σu K 
(kN·m) (kN) (mm) (μstrain) (MPa) (kN/mm) 

Longitudinal 

 
4PBT 

PLF1 8.516 68.130 12.830 1829.319 65.510 5.310 

PLF2 7.881 63.050 10.568 1157.835 60.625 5.966 

PLF3 9.803 78.420 16.121 2411.513 75.404 5.215 

PLH1 8.659 69.270 13.063 1487.524 66.606 5.302 

PLH2 8.996 71.970 14.693 1398.876 69.202 4.916 

PLH3 8.593 68.740 13.143 2247.221 66.096 5.230 

Transverse 

 

3PBT 

PTF1 0.051 0.573 10.336 

- 

1.542 0.085 

PTF2 0.053 0.617 14.751 1.661 0.087 

PTH1 0.063 0.723 8.265 1.946 0.122 

PTH2 0.066 0.765 8.111 2.059 0.124 

4PBT 

 

PTF3 0.104 0.832 11.275 

- 

3.200 0.134 

PTF4 0.063 0.509 9.387 1.957 0.136 

PTH3 0.196 1.571 9.388 6.042 0.223 

PTH4 0.154 1.234 7.939 4.746 0.224 

 

5.3.5 Failure mechanism 

Failure mechanisms of all tested panels are depicted in Fig. 5.8. In the case of the 

longitudinal connected specimens, the same failure modes were noticed for both type of 

connections (friction and hybrid). The failure for these specimens started with the occurrence 

of debonding of the GFRP skin in the bottom side (tension side). After that, debonding 

propagate toward to the U-shape GFRP profile and consequently damage in the U-shape 

GFRP profile and connector occurred. For the transverse connected specimens, different 

types of failures were observed for friction and hybrid connections. In the friction connection, 

the dominant failure was due to creation of damage in the GFRP U profile. Naked eyes 

inspection of GFRP square connection showed that there were no any cracks or failure in this 

component. On the contrary, in the hybrid connection the main failure mode was due to 

damage in the GFRP square connector.  
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Fig. 5.8.Failure mechanism of tested panels 
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5.4 Conclusion  

This chapter presented a fitting jointing methodology to connect two sandwich panels. The 

connection is composed of integrated U-shape GFRP profile and interlocked GFRP square 

profile. Behaviour of the jointed sandwich panels were evaluated in longitudinal and 

transversal directions. Two approaches were used to connect floor sandwich panels, namely 

without mechanical fastening (Friction technique) and with mechanical fastening (Hybrid 

technique). Their mechanical behaviour was studied in this research. 

 The main concluding remarks drawn from the tests carried out can be listed as: 

 Regarding to the longitudinally connected specimens, in both friction and hybrid 

techniques, the failure started due to debonding of lower GFRP skin and propagate 

toward the U-shape GFRP profile. By increasing the load, due to degradation of 

composite action between sandwich panel’s component, the applied load transferred to 

the U-shape GFRP profile and connector. Increasing the load resulted to failure of U-

shape GFRP profile happened at the middle of web due to excessive longitudinal tensile 

stresses.  Linear elastic behaviour was observed for the load-deflection in both friction 

and hybrid techniques. In both techniques, the same amount of ultimate load was 

obtained. This fact representing that employing mechanical fasteners did not have any 

influence in increasing flexural capacity of the jointed specimens.  

 In the transverse direction specimens, comparing the failure mechanism in specimens 

connected using friction and hybrid techniques illustrated that, in the specimens jointed 

by friction technique the failure happened in the U-shape GFRP profile. However, by 

using hybrid technique failure occurred in the GFRP square connector. Regarding to the 

load carrying capacity of connected panels, in both three-point and four-point bending 

tests, connected panels with hybrid techniques represented higher load than friction 

technique. 

 The efficiency of using fitting technique in transferring produced bending moments 

between jointed modular panels without effecting in flexural stiffness was observed in 

this system. 
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6 Chapter 6: Single and jointed 

sandwich panels 

 

6.1 Introduction  

The composite sandwich panels studied in this chapter can be categorized into two main 

groups namely as single sandwich panels and jointed sandwich panels. The flexural 

performances of these two groups of sandwich panels were subjected to study in this chapter. 

Single sandwich panels are comprising into small scale panels and full scale panels. Two 

different types of tests were carried out in the single sandwich panels: (i) static tests up to 

service load and ultimate load, and (ii) static tests up to failure. The main aims of performing 

static tests in short-term were evaluating the flexural performance of composite sandwich 

panels, designed to support serviceability limit state (SLS) and ultimate limit state (ULS) load 

conditions of residential houses. Furthermore, the long-term static flexural tests had the 

objective of evaluating the viscoelastic behaviour of the proposed sandwich panels during 

service life with two kinds of support conditions: (i) with the end U-shape GFRP profiles and 

(ii) without that profiles. The static flexural tests up to failure aim to assess the ultimate 

capacity of floor panels and their failure mechanisms.  

In a second stage, the flexural behaviour of two and three jointed panels are experimentally 

assessed under both SLS and ULS conditions. In this stage, capability of the panels in 

fulfilling the requirements by the standard [80] is assessed. Additionally, the efficacy and 

contribution of the connection between panels, by studying the transference of loads from one 

panel to the adjacent ones is studied 

Finally, some analytical and numerical studies are performed for: (i) assessing the flexural 

behaviour of the panels in SLS and ULS conditions, (ii) predicting long-term performance of 

the panels, (iii) capturing the failure mode of sandwich panels, (iv) evaluating the influence 
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of the GFRP ribs placed inside the panels, and (v) assessing the performance of the 

connection system in jointing panels. 

6.2 Flexural response of single floor composite sandwich panels 

6.2.1 Small scale single composite sandwich panels  

Small scale specimens were manufactured with the purpose of conducting a series of flexural 

and creep tests. The following subsections provide details of test specimens, setup and 

procedure. 

6.2.1.1 Flexural test up to failure 

Experimental program  

One-way static behaviour of sandwich panels up to failure was investigated according to 

ASTM C393 standard [79]. Four-point bending tests were carried out with the following two 

groups of specimens (see Fig. 6.1): (i) with an end U-shape GFRP profile (PUi), and (ii) 

without that profile (Pi).  
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(a)                                                                          (b) 

Fig. 6.1. Small scale sandwich specimens: (a) with U-shape GFRP profiles in their supporting extremities (PUi); 

(b) without U-shape GFRP profiles (Pi) (dimensions in millimeter, i=1,2) 

The first group of specimens (PU1 and PU2) were tested under a shear span of 300 mm, with 

a clear span of 1150 mm and a width of 350 mm (Fig. 6.2a). Regarding the panel’s support 

conditions, one of the supports allowed free sliding of the panel, while the other introduced 

pinned support conditions. A tubular steel profile of 50×50×5 mm3 cross section was fixed at 

each ends of the sandwich panels, and a steel roller with a diameter of 32 mm was placed 

inside that tubular profile in order to allow free rotation of the panel ends. 
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For the second group of specimens (P1 and P2), shear span and the width of the tested panels 

were the same of the PUi, but the clear span was limited to 900 mm. For these specimens the 

supports were materialized by steel rollers and one of the supports allowed free sliding of the 

panel, while the other introduced pinned support conditions (Fig. 6.1b). 

Loads were applied by a hydraulic jack and were monitored using a load cell of 200 kN with 

a precision of 0.05%. A steel spreader IPE beam profile and steel rollers were used to transfer 

the load to the panels. Additionally, rubber pads were placed between the specimens and the 

steel rollers to avoid any indentation failure [81-84]. Vertical displacements were recorded by 

five LVDTs with a stroke ranging from 25 mm to 50 mm, placed on the supports, midspan 

and under loaded sections. Moreover, the tension and compression skins of the specimens 

were instrumented with strain gauges, placed at the intersection of the midspan section of the 

specimen with its longitudinal axis. 

  

(a) (b) 

Fig. 6.2. Test setup for four-point bending tests up to failure of specimens: (a) with U-shape GFRP profile 

(PUi); (b) without U-shape GFRP profile (Pi) (all units in mm). 

Results  

The load-deflection curves of PUi and Pi are presented in Fig. 6.3. For the case of Pi, results 

show that, the relation between load and midspan deflection was fairly linear up to failure ( 

Fig. 6.3a). The load capacity of these specimens increased linearly and continuously until 

reaching an average load of 7 kN, and an average deflection of 14 mm. At this moment, 

specimens failed abruptly due to shear rupture of the core. Conversely, as Fig. 6.3b shows, 

for the case of PUi sandwich panels the relation between load and displacement was linear 

until a load of about 4 kN (which is nearly 60% of the maximum load). Once reached that 

load, a small reduction in the stiffness was observed due to delamination of the bottom GFRP 

skin in the maximum flexural zone. However, the specimens were capable of supporting 

higher load, registering a slightly drop at a load of 5 kN also due to delamination of the 
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bottom skin. Above this load stage, the stiffness of these panels has gradually decreasing up 

to the sudden brittle failure that occurred at a load of about 7 kN, caused by the rupture of the 

core material in the vicinity of the support. 
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Fig. 6.3. Load-midspan defection curves for tested specimens: (a) without end U-shape GFRP profiles (P) 

and ; (b) with end U-shape GFRP profiles (PU). 

The obtained results show that, both Pi specimens attained nearly the same ultimate load. Fig. 

6.4 shows the moment-curvature diagram at the midspan cross-section for four-point bending 

tests load configuration, where the curvature was calculated using the information given by 

the strain gauges placed at the midspan cross-section (top and bottom skins).  
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Fig. 6.4. Moment-curvature diagrams for tested specimens without end U-shape GFRP profiles (Pi); with end 

U-shape GFRP profile (PUi). 

Both types of specimens presented a linear behaviour response before failure, being their 

flexural stiffness (defined as the slope of the moment-curvature diagram) very similar in all 
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the tested specimens. This confirms that introducing the end U-shape GFRP profiles for 

providing connection system in the panels did not have any significant effect in terms of 

flexural stiffness. 

Table 6.1 includes the values for the ultimate moment (Mu), the ultimate load (Pu), the 

maximum deflection (δu), the initial stiffness (K) defined as the slope of the force and 

deflection in the linear part, the maximum longitudinal strain on the top and bottom skins (εut 

and εub, respectively), the maximum flexural stress (σu), and the maximum average shear 

stress in the core (τu) obtained according to Eq. (6.1) and (6.2), based on equilibrium analysis 

[31]. 

σ =
f

M

b d h 
                                          (6.1) 

1
τ =

M

x b d



 
                                 (6.2) 

where d is the distance between the centroids of the skins, d = hc + hf, hc and hf are the core 

and skin thicknesses, respectively, and b is the width of the panel.  

Table 6.1. Main summary results from the tests up to the failure. 

Specimen Mu (kN·m) 
Pu  
(kN) 

δu  
(mm) 

εu (μstrain) 
σu (MPa) 

K  

(kN/mm) 
τu (kPa) 

εut  εub  

P1 1.09 7.27 13.59 -807 804 9.58 47.45 159.80 

P2 1.02 6.83 15.20 -590 941 9.00 47.14 150.11 

PU1 1.06 7.06 20.67 -838 854 9.31 43.91 155.16 

PU2 1.07 7.18 20.01 -714 859 9.47 47.93 157.80 

Failure modes are presented in Fig. 6.5. Shear failure of the core was the mechanism 

governing the behaviour of the Pi specimens. This failure can be explained by the fact that 

the registered foam core shear stress in the specimens (see Table 6.1) exceeded maximum 

shear strength obtained in material characterization (see chapter 4, Table 4.1). Shear failure 

occurred in the shear span, with a crack angle of 45 degrees. The propagation of these shear 

cracks followed toward the skins causing core-skin debonding. 

In the case of PUi specimens, the failure was governed by the debonding between the bottom 

face of the U-shape GFRP profile and the GFRP bottom skin, followed by an abrupt 

formation of a tensile fracture surface on the core materials due to its residual tensile strength, 

and propagation of the failure surface at the core-top GFRP skin. Hence, the detachment 
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process between U-shape GFRP and GFRP bottom skin is eminently a nonlinear 

phenomenon, which justify the nonlinear response of these panels. 

 

Fig. 6.5. Failure modes. 

The strain-stress relation at top and bottom skins for the specimens tested is depicted in Fig. 

6.6. The strain values were those registered in the strain gauges applied on the top and bottom 

surfaces of the panels, while the stresses were calculated based on the equilibrium of tension 

and compression forces on the skins, according to Eq. (6.1) [31]. A quite linear behaviour for 

strain-stress in both specimens before any failure can be observed, being a consequence of 

the linear behaviour of the panel, which before the damage initiation is governed by the two 

outer layers of GFRP that have linear-elastic behaviour. 

Moreover, when calculating the elastic modulus, the average elasticity modulus obtained in 

the GFRP material characterization (around 9.5 GPa) is reached. It is interesting to mention 

that all the specimens failed at a stress and a strain of approximately 9 MPa and 850 mm/m, 

respectively. These levels of stress and strain are only 7% of the ultimate stress and strain of 

the GFRP material obtained from the direct tensile tests.  
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(a) (b) 

Fig. 6.6. Stress-strain curves: (a) without end U-shape GFRP profiles (Pi) and ; (b) with end U-shape GFRP 

profiles (PUi). 
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6.2.1.2 Creep tests  

Experimental program  

Two panels with and without end U-shape GFRP profiles, PU3 and P3, respectively, were 

prepared to study the creep behaviour of sandwich panels. Specimens were tested in bending 

for a period of 263 days (6312 h) to assess long term viscoelastic flexural behaviour of 

sandwich panel. Four-point bending tests were carried out with the same test setup 

configurations described in the previous subsection, except the loading conditions (see Fig. 

6.7). A total load of 1.7 kN was applied, which corresponds to 24% of its ultimate strength. 

Vertical displacements were measured by using three mechanical dial gauge displacement 

indicators, with 0.01 mm of precision. These dial gauges were placed underneath of GFRP. 

  

(a) (b) 

Fig. 6.7. Test setup for creep test: (a) without end U-shape GFRP profiles (P3); (b) with end U-shape GFRP 

profiles (PU3) (all units in millimeters). 

Results  

Load versus midspan deflection relationship for the panels P3 and PU3 are illustrated in the 

Fig. 6.8. The applied load of 1.7 kN induced an immediate elastic deformation of 3.33 mm 

and 3.5 mm for panels P3 and PU3, respectively. Keeping that load constant during almost 

nine months, the midspan deflection in both P3 and PU3 increased to around a 116% of the 

elastic deflection. Clearly, it was noted that at the end of this period the creep deflection is 

still quite active. This evidences the importance of considering long term deformation in 

composite sandwich panels. Moreover, it was observed that support condition did not have 

any major effects in long term behaviour of the panels. 
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Fig. 6.8. Time-midspan deflection in the panel without end U-shape GFRP profiles (P3) and with end U-shape 

GFRP profiles (PU3). 

6.2.2 Full scale single composite sandwich panels  

The full scale panels comprised two distinct configurations, as depicted in Fig. 3.3 of 

CHAPTER-3 namely: FSP-L2.4_W1.2_t70 and FSP-L3.0_W1.0_t70. Two different types of 

tests were carried out: (i) static tests under SLS and ULS loading conditions, and (ii) static 

tests up to failure.  The following subsections provide details of test specimens, setup and 

procedure. 

6.2.2.1 Flexural behaviour at service load, ultimate load and failure 

Experimental program  

Two FSP-L2.4_W1.2_t70 composite sandwich panels with the dimension of 2400 mm×1200 

mm× 70 mm with two internal GFRP U-shape profiles, were manufactured (hereafter FPʹ1- 

FPʹ2). The panels were subjected to a flexural testing as schematically is illustrated in Fig. 

6.9. The tests were conducted in accordance with ASTM C393 [30], following two load 

schemes: (i) four-point bending test, and (ii) three-point bending test. 

The tests were designed in order to introduce a maximum bending moment in the sandwich 

panel equivalent to a uniform distributed load, representing a characteristic live load of 2 

kN/m2 in accordance with Eurocode 1 [85], which was assured by submitting the panels to a 

load of 2.75 kN and 5.5 kN for three-point and four-point bending tests, respectively. 
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(a) 

 

(b) 

 

Detail 1                                                Detail 2 

Fig. 6.9. Schematic representation of the FPʹ sandwich panel flexural test under service loads: (a) four-point 

bending test; (b) three-point bending test (dimensions in mm). 

Regarding the panel’s support conditions, the same system was used as aforementioned in the 

case of small scale testing panels (PUi). The monotonic load was applied by a hydraulic jack, 

and transferred to the panels by means of longitudinal IPE 100 profiles with steel rollers of 20 

mm of diameter welded at their bottom flange. A load cell of 300 kN with a precision of 
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0.05% was used to measure the load, while deflections in the panels were monitored under 

supports, midspan and in the loaded sections by LVDTs with a measuring stroke of 100 mm. 

In the case of FSP-L3.0_W1.0_t70 panels, four full scale floor sandwich panels with a 

dimension of 3000 mm×1000 mm× 70 mm and four internal U-shape GFRP profiles 

(designated by FP1 to FP4) were tested under a uniform load to evaluate their structural 

performance as a single panel. Additionally, after uniform testing, one of the panel tested 

(FP4) was selected and flexural behaviour of this panel was studied until failure. The panels 

were tested with a clear span of 2700 mm, and supports were materialized by two steel rollers 

with a diameter of 50 mm placed under both panel ends. Both supports allowed free rotation 

and one of them also allowed for longitudinal sliding (roller support), while the other was 

fixed in the longitudinal direction (pinned support).  

Regarding to the uniform loading, based on the UNHCR  recommendation [86] for an 

emergency house, a uniform load of 1.6 kN/m2 was selected to be load in SLS. That load was 

increased 1.5 times to evaluate ultimate limit state (ULS) of panels as traditionally defined in 

the Eurocodes. The load was manually applied by using cement bags of 20 kg each. In a first 

step (SLS loading configuration), 16 cement bags were disposed in two layers, representing a 

uniform distributed load of 1.6 kN/m2 (see Fig. 6.10a). In a second step, eight extra bags 

were added to attain a loading level corresponding to ULS conditions (see Fig. 6.10b). 

Loading operations were performed fast as fast as possible to avoid any potential creep effect. 

Cement bags completely covered the surface of the panels, and gaps between bags were 

assured to avoid any arch effect.  

Vertical displacement was measured by means of a LVDT placed at the intersection of the 

specimen’s midspan section with its longitudinal axis. The panels were also instrumented in 

the tension skin (bottom skin) with a strain gauge bonded at a distance of 10 mm from the 

centre of the panel to avoid any interference with the LVDT. 

The static behaviour of one-way full scale sandwich panel up to its failure was investigated 

by executing a four-point bending test according to the ASTM C393 recommendations [87]. 

The panel was tested with a shear span of 850 mm, and supports were materialized as already 

described for the single panels submitted to a uniformly distributed load. Hydraulic jack was 

used to apply a monotonic load up to the failure of the specimen. The load was transferred to 

the panel by means of a longitudinal spreader HEB 200 with a length of 2000 mm, and two 
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IPE 100 profiles with steel rollers of 20 mm of diameter welded at their bottom flange. A 

load cell of 300 kN (with a precision of 0.05%) was used to register the load applied. Rubber 

pads were placed between the panel and the steel rollers to avoid any indentation failure[81-

84].  

 

Fig. 6.10. Different phases of uniform single panels loading corresponding to: (a) SLS conditions (1.6 kN/m2) 

and (b) ULS conditions (2.4 kN/m2, 1.5 times SLS load). 

Fig. 6.11a shows the test setup configuration. Vertical displacements were recorded by five 

LVDTs  with a stroke ranging from 25 mm to 50 mm, placed under loaded sections (D4-D5) 

and at midspan (D1-D3). Moreover, six strain gauges were bonded on the bottom skin (S1-

S3) and on the top skin (S4-S6) at the midspan section of the specimen (see Fig. 6.11b). 
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(a)                                                                          (b) 

Fig. 6.11. FP4 four-point bending test: (a) test setup; (b) instrumentation (all units in mm). 

Results  

Load versus midspan deflection for the FPʹ sandwich panels in SLS under three point and 

four-point bending tests are plotted in Fig. 6.12. Both tests presented a very similar response, 

which is an indicator of the elastic behaviour of the composite sandwich panels under 

characteristic live loads. 
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Fig. 6.12. Load-midspan deflection of FPʹ sandwich panels under service loads subjected to three-point bending 

test and four-point bending tests. 

The flexural stiffness (K), defined as the ratio between the maximum applied load and its 

corresponding midspan deflection (δmax), was quite similar in both testing configurations 

(Table 6.2), confirming the same flexural behaviour of both floor panels under serviceability 

loads. 

Table 6.2. Three-point and four-point bending tests results for sandwich panels under service loads. 

Panel 
Three-point bending test Four-point bending test 

δmax (mm) K (kN/mm) δmax (mm) K (kN/mm) 

FPʹ1 4.80 583 8.96 669 

FPʹ2 5.03 556 8.92 672 

The registered midspan deflections and midspan strains for the tested panels FP1-FP4 under a 

uniformly distributed load are shown in Fig. 6.13a and Fig. 6.13b, respectively. The 

application of the load in two steps, corresponding to SLS (1.6 kN/m2) and ULS (2.4 kN/m2) 

load conditions is fully recognizable in the graphs by an abrupt increase of midspan 

deflection and strain after the stabilization stage at the end of the SLS (SLS_L) and ULS 

(ULS_L) loading processes. As can be seen, a full recovery of the deflections and strains took 

place after the unloading phase, which evidences that, for the considered load levels the 

panels have presented an elastic behaviour. Moreover, Fig. 6.13 shows that, the values for 

both deflections and strains registered were very similar in the four tested panels, revealing a 

manufacturing process of high repeatability. 
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(a)                  (b) 

Fig. 6.13. Results of single composite sandwich floor panel testing under uniform loading test in terms of: (a) 

time versus midspan deflection; (b) time versus strain. 

Under ULS loading conditions, the average of the maximum tensile strain recorded in the 

bottom GFRP skin at midspan was 491 micro strain (),which is significantly lower than the 

ultimate tensile strain of GFRP skins obtained experimentally (12188 ). 

The load-deflection relationship of the single panel tested up to failure under a four- point 

bending configuration is depicted in Fig. 6.14a. The panel failed at a maximum load of 

28.47 kN, at which the midspan deflection was 61.02 mm. The panel exhibited a linear 

behaviour up to failure, which was also attested by the strain gauges measurements plotted in 

Fig. 6.14b. The maximum tensile strain measured at midspan in both bottom and top skins 

was around 2600 micro strain. 

0 30 60 90 120 150
0

10

20

30
 D1

 D2

 D3

L
o

a
d

 (
k
N

)

Deflection (mm)
 

-4000 -2000 0 2000 4000
0

10

20

30

 S1

 S2

 S3

 S4

 S5

 S6

L
o

a
d

 (
k
N

)

Strain (Microstrain)
 

(a) (b) 

Fig. 6.14. Single panel up to failure test result: (a) load versus. deflection and (b) load versus. strain. 
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Fig. 6.15 depicts the failure mode evolution observed on the tested panel at different loading 

stages. Localized debonding between GFRP compression skin (top skin) and PU foam core 

was the predominant failure mode of the panel. This failure occurred in the region of pure 

bending moment, between the two lines of loading, and was caused by a very high out-ward 

tensile stress between skin and core, as a result of attaining the maximum PU tensile stress 

[50]. 

This phenomenon, known as local instability or wrinkling failure mode of a sandwich panel, 

leads to a sudden outward buckling of the GFRP skin in the compression side where the 

buckling wavelength is short. The initiation of wrinkling failure mode is schematically shown 

in Fig. 6.15a. It was experimentally observed that, at the beginning, the length of the 

debonded part was equal to the PU thickness. This observation confirmed previous 

information mentioned by other authors about the debonded length, referring that it could be 

equal to the PU thickness [28, 31, 88]. Thereafter, debonded part propagated to the centre of 

the panel (Fig. 6.15b), and finally the sandwich panel presented an overall instability (Fig. 

6.15c).  

(a)

(b)

(c)

 

Fig. 6.15. Local instability failure mode stages in single panel up to failure: (a, b) failure mode evolution; (c) 

final failure mode. 

A failure load of 28.47 kN was reached in the tested panel, which is much higher than the 

ULS load, 5.14 kN. These load levels correspond, in terms of load (maximum bending 

moment), to an equivalent uniform load for ULS (2.4 kN/m2) in a four-point bending test 

configuration. This result is totally in accordance with the behaviour of typical sandwich 

panels [38, 42], which are commonly designed for mainly fulfilling service loads, being their 

failing state usually far from the theoretical ultimate state. 
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6.3 Flexural response of jointed floor composite sandwich panels  

6.3.1 Experimental program 

After have been submitted to uniformly distributed load, the three floor panels (FP) described 

in section 6.2 (FP1 to FP3) were also tested (Fig. 6.16a) in a two-by-two connection 

configuration (FP1 with FP2 and FP2 with FP3). Each pair was jointed together by two 

GFRP tubular profiles of 50×50×5 mm3 cross section. A test with the three panels (Fig. 

6.16b) jointed together (FP1, FP2 and FP3) was also carried out. All these tests were 

undertaken under a four-point bending configuration with a shear span, a flexural span and a 

clear span of 850 mm, 1000 mm and 2700 mm, respectively, and according to ASTM C393 

recommendations [87]. The support conditions were similar to those adopted previously in 

the single panel tests.  

The load was transferred to the panels by means of a frame formed by a 2000 mm 

longitudinal metallic HEB 200 profile, to which was attached (welded) two transverse HEB 

200 profiles with a length equal to the width of the jointed panels (i.e. 2000 mm for the case 

of two panels and 3000 mm for the case of three panels). Two-cylinder steel bars of 50 mm 

diameter were placed between the panel and the load transfer frame in order to apply a line 

load. A monotonically increase load was applied by a hydraulic jack on the panels until 

reaching a magnitude of 10.29 kN and 15.43 kN for the case of two and three jointed panels, 

respectively. These load levels correspond, in terms of load (maximum bending moment), to 

an equivalent uniform load for ULS (2.4 kN/m2) in a four-point bending test configuration. A 

load cell of 300 kN with a precision of 0.05% was used to measure the load. 

To assess the effectiveness of the connection in distributing the load amongst the jointed 

panels, an additional test with three jointed panels was conducted by applying the load only 

on the central panel (see Fig. 6.16c). This test configuration followed exactly the setup 

previously indicated. But in this case, the length of the steel cylinder placed under the HEB 

profiles was only 1000 mm, therefore the load is exclusively applied on the central panel. 

The instrumentation used for monitoring these tests is depicted in Fig. 6.16d and Fig. 6.16e. 

Ten and fifteen LVDTs (with a stroke ranging from 25 mm to 50 mm) were used in the two 

and three jointed panels, respectively, for measuring the vertical deflection of the panels in 

their loaded and midspan sections. Strain gauges positioned on both skins (top and bottom), 
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at the midspan of the specimen were used to measure the strains developed in the GFRP 

skins.  
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Fig. 6.16. Jointed panel flexural test: (a) two jointed panels; (b) three jointed panels; (c) connection study; 

(d) instrumentation for two jointed panels; (e) instrumentation for three jointed panels. 

 

6.3.2 Results  

The load versus midspan deflection in two and three jointed floor sandwich panels is depicted 

in Fig. 6.17a, while the load versus strains measured on the bottom skin is depicted in Fig. 

6.17b. In the system formed by two jointed panels (FP1-FP2 and FP2-FP3), the plotted 

midspan deflection and strain were computed as the average deflection/strain of the D2, 

D7/S1, S4 (Fig. 6.17d) placed at the center of each panel. In the system formed by three 

jointed panels, the plotted midspan deflection and strain directly correspond to the measured 

deflection/strain of the D7/ S4 (Fig. 6.16e) placed at the center of the middle panel. The 

midspan deflection measured for the considered loads level was 10.58 mm and 10.40 mm for 
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two and three jointed panels, respectively, being the corresponding maximum load 10.29 kN 

and 15.43 kN, respectively. 
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Fig. 6.17. Flexural response of jointed panels: (a) load versus midspan deflection; (b) load versus strain. 

 

Fig. 6.18a and Fig. 6.18b present the deflection along the transverse direction of the midspan 

section of the systems formed by two and three jointed panels. As can be observed, deflection 

at center of the jointed panels was smaller than other points, having the highest deflection 

been measured in the free edges of the system formed by the jointed panels. In the case of 

two jointed panels, this fact can be justified by the presence of the connection profile at the 

middle of the panels, which considerably increases the stiffness of this zone. Similarly, in the 

case of three jointed panels, the connection profiles used for joining the panels are internal 

stiffeners, leading the middle panel has less deflection.  

Moreover, the maximum strain recorded in two and three jointed panels for the ULS load was 

334  and 426 , respectively, which are significantly lower than the ultimate tensile strain 

measured in the GFRP skins at material characterization (12188 ).  

The effectivity of using the proposed connection system for distributing flexural loads is well 

demonstrated in Fig. 6.18c. This figure shows the deflection along the transversae direction 

of the midspan section of the systems formed by the three jointed panels when only the 

central panel is loaded. The obtained results reveal that, as expected, the highest deflection 

occurred in the central panel since it was the loaded one. However, the lateral panels have 

also deflected significantly, even their free edge, which evidences that the proposed 

connection system has the ability to appropriately transfer flexural loads. 
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Fig. 6.18. Measured deflection in jointed panels: (a) two jointed panels; (b) three jointed panels; (c) three panels 

with load only in the middle panel. 
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6.4 Analytical assessment  

The following subsections provides some theoretical prediction to permit a deeper 

investigation about flexural behaviour of single sandwich panels and jointed sandwich panels. 

The mechanical properties of the sandwich panels components established form coupon 

testing were employed in this investigation.  

6.4.1 Service life deflection prediction 

Findley power law was used to estimate viscoelastic deformation of the panel by the time, 

following Eq. (6.3): 

0

nm t                                  (6.3) 

where   is the time dependent deflection (in mm), 0 is the instantaneous deflection (in 

mm), m is the creep amplitude, t  is the time after application of load (in days), and n  is the 

time exponent. 

Power law has fitted the experimental results by using a creep amplitude of m=0.41 and a 

time exponent of n=0.41 in both types of the panels as depicted in Fig. 6.19. These 

parameters were obtained with a coefficient of determination (R2) of 99%. By using Eq. (6.3) 

with these values for its parameters, and considering a service life of 5 years for the type of 

emergency applications that the prototype is designed for, a viscoelastic deformation 252% 

higher than the initial elastic deflection is estimated at the end of this period. 
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Fig. 6.19. Time-midspan deflection: (a) without end U-shape GFRP profiles (P3); (b) with end U-shape 

GFRP profiles (PU3). 
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6.4.2 Long-term deflection in single sandwich panels and jointed sandwich panels 

Italian standard CNR [80] is commonly used to verify the performance of composite 

sandwich panels under SLS conditions. According to this code, the maximum long-term 

deflection ( LT ) for the quasi-permanent load (equal to 30% of the service load) should be 

less than L/250. Based on this, Eq. (6.4) was proposed: 

LT SLS Creep                                                                         (6.4) 

where SLS  is the instantaneous deflection in service limit state (SLS),   is the proportion of 

quasi-permanent load in respect to the SLS load (i.e. 30%), and Creep is the creep coefficient; 

based on the creep tests value for that coefficient was set to 2.52 (this value takes into 

account a service life of 5 years). 

In the single panel, considering the average experimental deflection value obtained under 

SLS conditions (7.48 mm), Eq. (6.4) gives a value of 5.70 mm for the maximum deflection 

expected to be registered in 5 years. This value is lower than that required by CNR code [80] 

(L/250 = 2700/250 = 10.8 mm), and therefore, panels fulfil the deflection serviceability 

requirements. 

Regarding to the jointed panels, long-term deflections of jointed panels ( LT ) were also 

estimated with Eq. (6.4), having been obtained for the two and three panels a value of Quasi  

equal to 5.37 mm and 5.28 mm, respectively. Therefore, the computed deflection fulfils the 

serviceability limit requirement imposed by CNR code [80] (2700/250 = 10.8 mm).  

6.4.3 Failure mode of the full scale composite sandwich floor panel tested up to the failure 

Interaction between GFRP skin and PU foam core can be treated using Allen’s formula by 

invoking the concept  of Winkler hypothesis [28]. In that model, the GFRP skin is modelled 

as infinitely long strut supported on an elastic medium (the core of the panel). Two kinds of 

stresses can be developed: interfacial stress ( in ), and critical wrinkling stress ( cr ) [31, 50, 

69]. Interfacial stress is defined as: 

20.07 ( )in cf E                                 (6.5) 
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where   depends of the core thickness ( ct ) and half-wave length of l  given by ct

l


  , cE  

is the elastic modulus of the PU foam. ( )f   is a function of the core Poisson’s ratio ( c ) and 

 . The value of ( )f   depends on skin wrinkling mode. Three cases of skin wrinkling modes 

were defined [28]. Case I, represents a sandwich panel in which wrinkling occurred in the 

compression skin. Case II, deals with antisymmetric wrinkling and Case III, considered 

symmetric wrinkling. In this research Case I was considered the most appropriate since only 

one face skin was debonded. Accordingly, Eq. (6.6) was proposed for this purpose as: 

   

     
2 32 2

3- sinh cosh 12
( ) ( )

1 3- sinh - 1

c c

c c c

f
    


     

     
  

      

              (6.6) 

Debonding occurs when the interfacial tensile strength ( in ) exceeds the tensile strength of 

the PU foam core. Regarding to the critical wrinkling stress, it is determined by the following 

equation: 

2

2( )
12

fc
cr c f

f c

EE
t f t

t t


 

   
         

  
                (6.7)       

where 
ft  and 

fE  are the thickness and the elastic modulus of the GFRP skin, respectively. 

In the experimental program it was observed that, the length of the debonded part was equal 

to the PU thickness. Based on this, interfacial tensile stress, in , was obtained by a value of 

0.77 MPa using Eqs. (6.5) and (6.6). A comparison of this value with the maximum tensile 

strength of PU foam core ( ct ) experimentally determined of 0.49 MPa reveals that the 

separation between PU foam core and GFRP skin was caused by the attainment of the tensile 

capacity of the PU. 

From Eq. (6.7) a critical wrinkling stress (
cr ) of 62.64 MPa was determined for the GFRP 

skin. Based on strain values measured in S5 (Fig. 5b), a compressive stress value of 25.07 

MPa was calculated on the GFRP skin (the value was computed assuming the modulus of 

elasticity experimentally recorded). Comparing the experimental and the theoretical values 

for the critical wrinkling stress, it can be observed that, these two values differ by a factor of 

nearly 2.5. This stress relation was also found in the previously performed tests [50, 89, 90]. 
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Due to lack of predictive performance of Eq. (6.7), an empirical expression was proposed as 

expressed by Eq. (6.8): 

1/3 2/30.42cr f cE E                      (6.8) 

By applying this equation, a critical wrinkling stress of 25.54 MPa was obtained, which is a 

value quite close to the one obtained experimentally (25.07 MPa), demonstrating the good 

predictive performance of Eq. (6.8). 

6.4.4 Effects of the U-shape GFRP profiles in the sandwich panels under uniform loading 

First-order Shear Deformation Theory (FSDT) may be employed to evaluate flexural 

performance of a single sandwich panel. In this theory, some hypotheses are assumed, such 

as considering the panel components are formed by isotropic materials, and assuming perfect 

bond between constituent components. Besides, the total deflection of the sandwich panel 

( Total ) can be estimated by considering the simultaneous contribution of bending and shear 

deformation: 

Total b s                                               (6.9) 

where b  and s  are the deflections due to the bending and shear, respectively. Eq. (6.9) 

could be expressed in the following form: 

0 0

L L

u L u L
Total

M M V V
dx

EI kGA
                                         (6.10) 

where the first and second terms of the right part of this equation provide the deflection due 

to bending and shear, respectively. In Eq. (6.10) the uM  ( uV ) and LM  ( LV ) are the bending 

moments (shear forces) due to a unit load and the actual load, respectively. 

By developing Eq. (6.10) in terms of providing the midspan deflection of a sandwich panel 

subjected to a uniform loading, it is obtained: 

4 25

384( ) 8 ( )

s s
Total

eq

qL qL

EI K GA
                                (6.11) 
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where q , sL , ( )eqEI , ( )GA  and K are the uniform distributed load, span length, equivalent 

flexural stiffness, shear stiffness and shear correlation factor, respectively. The coefficient K 

was assumed equal to 1.0 in this study [91]. For the present sandwich panel, the equivalent 

flexural stiffness is obtained by the following equation: 

 
23

33( ) 2 ( ) 2
6 2 2 12

f f c U
eq f f u c u u c u

t t t nE
EI bE t b t b t t t

  
              

          (6.12) 

where b  is the width of the panel, n  is the number of the U-shape GFRP profiles (both 

located in the interior of the panel and at the edges), and UE , ut , ub  are the Young’s 

modulus, thickness and width of those profiles, respectively.  

The midspan deflection obtained from Eq. (6.11) and measured experimentally is compared 

in Table 6.3. A very good agreement between experimental and analytical values is observed, 

showing an adequate precision of FSDT in estimating the total deflection of the sandwich 

panels.  

Table 6.3. Results obtained in the flexural test performed on single composite sandwich floor panels. 

 δ Total (mm) 

Experimental 

 SLS ULS 

FP1 7.25 11.17 

FP2 7.73 11.22 

FP3 7.50 11.35 

FP4 7.45 11.20 

Average 7.48 11.23 

Analytical 

Flexural deflection 7.20 10.90 

Shear deflection 0.23 0.35 

Total deflection 7.48 11.21 

Fig. 6.20 shows the influence of the number of U-shape GFRP profiles (n) on the midspan 

deflection of the sandwich panel, having been adopted values of n varying from 0 to 4. As 

can be observed, when deflection is computed for a panel without U-shape GFRP profile (n = 

0) and for a panel with one U-shape GFRP profile (n = 1), a sudden decrease in the deflection 

of nearly 42% takes place. By using more than one U profile, the total deflection tends to 

decrease almost linearly with the increase of the number of GFRP profiles. Moreover, the 

relative contribution of bending (M) and shear (V) on the total deflection (indicated on the 

top right corner of Fig. 6.20) shows that the contribution of the shear deformation decreases 

with the increase of the number of GFRP profiles applied. When GFRP are not applied (n=0) 

the contribution of bending and shear for the total deformation is 60% and 40%, respectively, 

while when four GFRP profiles are adopted this relative contribution is 97% and 3%. Thus, 
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for the panel designed, the dominate deformation is flexural and not shear, since four U-shape 

GFRP profiles were used in each panel (two interior and two at edges) that are working as 

ribs, providing high shear stiffness (GA) to the panel. 
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Fig. 6.20. Effect of the number of U-shape GFRP profiles on the total deflection of the sandwich panel. 

The load-deflection behaviour of the tested single sandwich panel under four-point bending 

test configuration was also analytically determined by using FSDT and considering the same 

assumptions. Eq. (6.13) gives the total deflection for a four-point load configuration:  

 

2 2

4
8 6

s
Total PBT

eq

LPa a Pa

EI KGA
 

 
   

 
              (6.13) 

where P  is the applied line load, sL  is the span (equal to 2700 mm), a  is the shear span 

(equal to 850 mm),  
eq

EI  is the equivalent flexural stiffness determined according to Eq. 

(6.12) (159.30 kN.m2), and GA  is the shear stiffness (6147.4 kN). By adopting these values, a 

midspan deflection of 62.01 mm was calculated, which is in good agreement with the 

experimental result, since the difference is 1.60 %.  

6.4.5 Efficiency of the proposed connection system between panels 

The Eqs. (6.12) and (6.13) were also applied to predict the midspan deflection of the jointed 

panels), and the results are presents in Table 6.4 , which also include the flexural and shear 

stiffness values. Additionally, analytical results of a continuous slab (a slab formed by the 

same number of U-shape GFRP profiles as the jointed panels but assuming continuity 

between the panels) as depicted in the Fig. 6.21, with the same dimensions and configuration 
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of the jointed panels were obtained in order to evaluate the efficiency of the proposed 

connection.  
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Fig. 6.21. Schematic of jointed panels and continuous slabs. 

The results of Table 6.4 indicate an acceptable predictive performance for the analytical 

expressions, since a relative difference of 2.15 % and 2.40 % for the, respectively, two and 

three jointed sandwich panels, was obtained. Comparison of analytical values between 

jointed panels and a continuous slab shows that using the proposed connection system results 

in decreasing the midspan deflection in 7.17% and 9.48% for two and three panels, 

respectively. This is the consequence of the influence of using the connector profile, which 

increases the flexural stiffness and shear stiffness of the jointed panels. 

Table 6.4. Flexural response of jointed panels and continuous sandwich slab 

 Jointed panels  Continuous slab 

 Panel’s properties 
Midspan 

deflection 

 
Panel’s properties Midspan deflection 

 
EI 

(kN.m2) 

GA 

   (kN) 

Exp. 

(mm) 

Anal. 

(mm) 

 EI 

(kN.m2) 

GA   

(kN) 

Anal. 

(mm) 

Two jointed panel 325.60 16494.80 9.79 10.88  305.90 12294.80 11.66 

Three jointed panel 498.20 26842.30 9.25 10.65  458.90 18442.30 11.66 

 



Chapter 6 Single and jointed sandwich panels 
 

100 

 
 

6.5 Numerical simulations 

Nonlinear three-dimensional finite element (FE) models were developed to simulate the 

behaviour of a single panel, two jointed panels and three jointed panels. These models were 

developed considering all the geometrical and material information gathered in the physical 

models and the experimental tests described in the previous section. The FE simulations were 

developed using the commercial software ABAQUS v6.12 [92]. A nonlinear static analysis 

enabling geometric nonlinearities based on the direct Full Newton-Raphson Technique was 

used to run the simulations. 

6.5.1 Finite element, mesh description, boundary condition and loading 

All sandwich panel constituents, i.e. GFRP skins, PU foam core, GFRP U-shape profiles and 

GFRP connection profiles, as well as the frame components (GFRP beams and columns), 

were modelled using 3D hexahedral deformable solid elements, with 8 nodes and 3 degree of 

freedom per node (C3D8). After some preliminary analyses, it was found that elements with 

an approximate size of 50 mm of side were optimal in terms of accuracy, convergence and 

computational time of the simulation. A schematic representation of the developed finite 

elements models is represented in the Fig. 6.22. 

Due to the symmetry of panels and loading conditions, and with the aim of reducing time of 

analysis, only one quarter of the structure was simulated in the case of the single panel and 

the jointed panels (see Fig. 6.22). Corresponding boundary conditions in the symmetry planes 

were applied, as well as a roller support condition at the end of the panels, under the bottom 

skin. In order to simulate the 4PBT configuration, a vertical displacement was imposed to the 

nodes positioned along a loading line located similarly to the experimental tests. 

6.5.2 Constitutive models and interaction between the different panel components 

Constitutive relations towards material behaviour of sandwich panel components were 

adopted according to the performed material characterization tests. The GFRP skins have a 

quasi-isotropic lay-up, so isotropic linear elastic material with an elastic modulus of 9.60 

GPa, Poisson’s ratio of 0.3 and ultimate stress of 117 MPa were used to represent the 

mechanical behaviour of the GFRP skin. The GFRP pultruted profiles were modelled 

assuming linear-elastic orthotropic material properties with an elastic modulus of 28 GPa and 

ultimate tensile stress of 415 MPa in the parallel to the fibre direction (longitudinal direction), 
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and elastic modulus of 13 GPa and ultimate tensile stress of 180 MPa in the perpendicular to 

the fibre direction (transversal).  

Based on equations previously developed by other authors [93], the crushable foam core 

model was selected to represent the mechanical behaviour of the PU foam core by attributing 

to the shear modulus, the elastic modulus and the elastic-plastic constitutive relation with a 

compressive stress being of 3.15 MPa, 6.3 MPa and 0.30 MPa respectively. 

Interaction between all adherent surfaces belonging to a panel (i.e. interfaces between PU and 

GFRP skins, PU and U-shape GFRP profiles, and GFRP skins and U-shape GFRP profiles) 

were modelled as cohesive [94]. The generalized cohesive-behaviour of ABAQUS package 

was used. This is a surface-based cohesive behaviour defined by a traction-separation law 

(Fig. 6.23a). The model considers linear-elastic behaviour until reaching a certain value of 

interface stresses (t) and surface separation (δ). Afterwards, initiation and evolution of 

damage occur.  
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Fig. 6.22. FE models details. 

The elastic behaviour of the model is written in terms of two components:  k , an elastic 

constitutive matrix that relates normal and shear stresses to   , the normal and the shear 

separations across the interface. Thus, surface separation (δ) is computed by Eq. (6.14): 

    t k                    (6.14) 

Associated cohesive elements contain three components (Fig. 6.23b): two shear forces 

parallel to the plan of interaction (s1 and s2) and a normal force (n) to the interaction plane. 

Accordingly, Eq. (6.14) could be written in the form of Eq. (6.15):  

2

1 1 1 1 1 2 1

2 2 1 2 2 2 2

nn ns nsn n

s ns s s s s s

s ns s s s s s

k k kt

t k k k

t k k k







     
     

     
     
     

               (6.15) 

In the simulation, an uncoupled behaviour was assumed between the tractions and 

separations. This means that the stress in the normal direction did not result in a separation in 

the shearing directions. Consequently, shear stress did not lead to any separation in the 

normal direction. Therefore, in the stiffness matrix  k the off-diagonal components ( nnk , ssk  

and ttk ) were considered to be zero.  
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Fig. 6.23.  Cohesive behaviour simulated: (a) traction-separation response; (b) cohesive element. 

Degradation of bond between the two adherent surfaces is simulated with a damage model. 

Initiation of damage was defined by a stress based traction separation law, and it was 

assumed that failure mode corresponds to an “opening” (see Fig. 6.24), according 

Westergaard [95]. No mode-mixity was took into account for simplicity. Consequently, 

damage initiated in the model when the maximum contact stress ratio reached one of the 

maximum values presented [96] by Eq. (6.16): 

1 2

1 2

0 0 0
max , , 1

s sn

n s s

t tt

t t t

  
 

  
                (6.16) 

where tn is the normal stress; 
1s

t  and 
2st  are the shear stresses (in planes s1 and s2); and 

0

nt , 

1

0

st and 
2

0

st represent the peaks for normal stress and shear stresses (in planes s1 and s2), 

respectively. It must be mentioned that   representing Macauluny bracket. 

 

(a)                           (b)                                 (c) 

Fig. 6.24. Failure modes: (a) opening; (b) sliding; (c) shearing 
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Since direct pull-test in the material characterization test (Chapter 4-sec 4.5) showed that the 

stiffness degradation between GFRP skin and the PU foam core was due to failure of the 

foam itself, the peak values were substituted by the maximum tensile strength and shear 

strength of the foam core, as indicated in Table 4.1. It is worthwhile mentioning that, since 

the mode-mixity was not presumed in this simulation, hence defining the shear stress value 

did not have any influences on type of simulation (even though ABAQUS require those 

values [97]). 

Finally, a damage evolution law was defined. For the evolution of the initiated damage, an 

energy based approach with a linear softening law was utilized. A fracture energy of 0.025 

J/m2 was adopted for the simulations. 

Two types of failure criteria were taking into account to determine the failure of a panel: a 

stability failure based on skin outward or inward wrinkling, and the sandwich panel 

constituent materials failure. The first failure was identified when detected a sudden change 

in the stiffness due to the degradation of integrity between the sandwich panel components. 

The material failure was identified by controlling strain and stress in each component. 

6.5.3 Panel-panel connections 

Connections between panels and with panels and beams were modelled with interfaces, 

assuming a non-perfect connection. Behaviour in normal direction was modelled as “hard” 

contact in ABAQUS [92], meaning that no penetration was allowed between the two surfaces 

and there was no limit to the magnitude of contact pressure transmitted when the surfaces 

were in contact. Behaviour in tangential direction was modelled by the classical Coulomb 

friction law, but without any contact cohesion. A trial and error calibration of the model 

against the experimental results led to set the friction coefficient equal to 0.10. 

6.5.4 FE results 

6.5.4.1 Single panel up to failure 

Fig. 6.25a shows the load-midspan deflection curve obtained from the FE simulation plotted 

against the experimental result, while the load-strain response in the GFRP skins, at the 

middle of the panel registered experimentally and numerically is showed in Fig. 6.25b. A 

very good match is observed between the numerical results obtained by the FE model and the 

experimental ones. 
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Fig. 6.25. Experimental versus. FE simulation of single sandwich panel: (a) load-midspan deflection; (b) 

load-strain. 

From Fig. 6.25, it can be deduced that, the FE model accurately captured the single sandwich 

panel’s flexural behaviour. The panel failed at a maximum load of 28.47 kN (29.66 kN in the 

FE model) registering a midspan deflection of 61.02 mm (60.83 mm in the FE model) with a 

linear behaviour prior to the abrupt failure. Experimentally, failure was caused by a localized 

debonding between the GFRP compression skin (top skin) and the PU foam core (Fig. 6.26a). 

The failure occurred in the region of maximum flexural moment, between the two line loads 

[50]. This phenomena known as local instability, or wrinkling failure mode of sandwich 

panel, leads to a sudden outward buckling of the GFRP skin in the compression side [28, 31, 

88]. Similar failure mode was predicted by the FE model (Fig. 6.26b), and was the result of 

exceeding out-ward tensile strength at the interface between the GFRP skin and the PU foam 

core (i.e. failure criteria implemented in traction-separation law). 
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Fig. 6.26. Single panel failure mode: (a) experimental; (b) FE predicted (units in millimeters). 

6.6 Parametric study and analysis 

Parametric studies are carried out in this section by using the FE models developed and 

validated, to delve into the mechanical behaviour of single sandwich panel as well as jointed 

sandwich panels. In all simulations constitutive material models and properties were equal to 

those previously indicated in section 6.5. Besides, loading and boundary conditions were the 

same as those mentioned above for a single panel, two and three jointed panels. 
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Fig. 6.27. Experimental versus numerical results of jointed panels subjected to ULS loading: (a) load versus 

midspan deflection ; (b) load versus strain. 
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6.6.1 Influence of the U-shape GFRP profiles 

Considering a single sandwich panel with the same geometry as indicated previously, two 

new cross-sections were proposed according to Fig. 6.28: (i) “U_3” section, in which  instead 

of four U-shape GFRP profiles, the panel was composed by the two outer U-shape profiles 

and one inner of U-shape profile; and (ii), “U_2” section, with only the two outer U-shape 

profiles.  
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 Fig. 6.28. Parametric study about flexural behaviour of single panel: (a) geometry and loading condition; (b) 

cross-section A-A. 

Results of the new simulations for a single panel and jointed panels under a four-point 

bending test configuration in ULS loading are plotted in Fig. 6.29 and expressed in terms of 

the maximum midspan deflection versus the numbers of U-shape profiles. A similar pattern 

was observed for the three considered cross sections (U_4, U_3 and U_2) in both the single 

panel and the jointed panels. It was noticed that, decreasing the numbers of U-shape profiles 

had a linear consequence in increasing maximum midspan deflection. In this case, decreasing 

the numbers of U-shape GFRP profiles from 4 to 3 and 2, leads to an increase in the 

maximum midspan deflection (thus decreasing stiffness) in about 10% and 20%, respectively. 
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Fig. 6.29. Parametric study with U-shape profile variation in single panel and jointed panels. 

6.6.2 Connection effectiveness  

In order to interpret effectiveness of connection in increasing flexural stiffness of jointed 

panels, a continuous panel was simulated (without joints). The continuous panels were 

assumed having the same dimensions, loading conditions and U-shape profiles of the jointed 

panels. The unique difference of continuous and jointed panels is restricted to the presence of 

the joint in the jointed panels, since this joint does not exist in the continuous panel.  

Linear-elastic relation between maximum midspan deflection and applied loads was found in 

both jointed and continuous panels. Based on that, the flexural stiffness was calculated as a 

slope of the load-deflection curve. The obtained flexural stiffness for the two and three 

jointed panels was 1095.84 N/mm and 1686.34 N/mm, while the flexural stiffness of the 

corresponding continuous panels was 1051.07 N/mm and 1568.09 N/mm, respectively. It is 

then possible to conclude that in the two jointed panels and three jointed panels the presence 

of the connector caused an increase of the flexural stiffness by a factor of 1.04 and 1.07, 

respectively. 

6.7 Conclusions 

Based on the experimental, analytical and numerical research carried out for different 

sandwich panels typologies, the following main concluding remarks can be drawn. 

 In the small scale failure tests, fairly linear behaviour was observed for all specimens 

tested. In specimens with end U-shape GFRP profile, small reductions in the stiffness 

was noticed due to debonding of the lower GFRP skin. However, it was identified that 
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the presence of this GFRP profile had not significant effect in the flexural strength 

and stiffness; 

 Shear failure of the core was the mechanism governing the behaviour of the 

specimens tested without end U-shape GFRP profile. On the other hand, the panels 

with end U-shape GFRP profile have failed due to the debonding between the bottom 

face of the GFRP profile and the GFRP bottom skin, followed by an abrupt formation 

of a tensile fracture surface on the core materials due to its low tensile strength; 

 Long-term behaviour of proposed composite sandwich panels was studied with two 

support conditions: (i) with end GFRP ‘U’ profile, (ii) without that profile. Support 

conditions were found not have any influence for the creep behaviour of the panels 

since both panels presented the same viscoelastic behaviour. Findley power law was 

capable of fitting and predicting the maximum deformation of the panels after five 

years, which is 2.5 times higher than initial elastic deformation; 

 For the load level considered, which is representative of a building structure, the 

sandwich panels presented an elastic linear behaviour. Their maximum deflection 

under service loads, taking into account the viscoelastic behaviour, fulfils the 

requirement established by the actual design standard; 

 Ultimate carrying capacity of sandwich panels is substantially greater than the design 

demand levels. Failure occurs due to a local outward buckling known as wrinkling. 

The failure has started when outward tensile strength between skin and core has 

attained. The debonding propagates towards the centre of the panel leading to a loss 

of integrity between GFRP skin and PU foam core. A theoretical prediction 

employing Winkler hypothesis and utilizing mechanical properties of the constituent 

materials has shown that a critical wrinkling stress occur which leads panel to failure; 

 Behaviour of jointed two and three sandwich panels exhibited adequate flexural 

performances and fulfilled the requirements in both SLS and ULS, in terms of 

deflection and strain. Moreover, the proposed connection system has demonstrated its 

effectiveness in transferring loads between the panels, guaranteeing deformation 

compatibility. Additionally, it was observed that using a connector in two and three 

jointed panels resulted in decreasing middle span deflection when compared to a 

continuous panel of equivalent dimensions; 

 Experimental results and analytical predictions of the midspan deflection based on 

FSDT equations were compared. A very good agreement was observed, showing an 
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adequate precision of the FSDT in estimating the total deflection of the sandwich 

panels; 

 The importance of using U-shape GFRP profiles inside the sandwich panels as ribs 

for increasing the flexural stiffness of the panel is clearly observed. In the panel 

without any rib, an analytical analysis showed that the contribution of flexural and 

shear deformation is about 60% and 40%, respectively. Conversely, when the number 

of ribs increased, the shear deformation contribution to the total deflection decreased. 

The amount of decreasing was obtained by a value of around 7% per rib. 

 Nonlinear three-dimensional finite element models were developed to simulate the 

behaviour of a single panel up to failure. A very good agreement was observed 

between the numerical results and those obtained by the FE model. The model 

showed to be capable of predicting the behaviour of the sandwich panels under 

designed load; 

 In the simulations of single panel, two jointed panels and three jointed panels with 

two, three and four U-shape GFRP profiles it was verified that, under ULS loading 

conditions, the midspan deflection has increased about 10% and 20% when the 

number of U-shape GFRP profiles has decreased from 4 to 3 and from 4 to 2, 

respectively; 

 Effectiveness of connection in increasing flexural stiffness of jointed panels was 

investigated by comparing experimental results of jointed panels under ULS loading 

and by simulating continuous panels. It was concluded that in two and three jointed 

panels, the presence of connector caused an increase of the flexural stiffness by a 

factor of 1.04 and 1.07, respectively. 



Development of prefabricated modular houses in pure composite sandwich panels 
 

111 

 
 

  

7 Chapter 7: Axial performance of 

jointed sandwich wall panels 

 

7.1 Introduction  

The investigations conducted pertain to individual sandwich panels submitted to axial 

loading. Joining composite sandwich wall panels introduce a different challenge level, and 

may lead to distinct behaviour. This chapter intends to assess the structural behaviour under 

concentric axial loads of both single and double composite sandwich wall panels, composed 

of GFRP skins and PU foam core, that are connected by an innovative system. Aspects 

related to assembly and disassembly, as well as ease of integration in the production line, 

were also considered. For this purpose, the structural performance of single sandwich wall 

panels, and two connected panels under concentric axial loading was experimentally 

investigated. Finally, an analytical investigation was performed to determine the axial 

capacity and stresses associated with various failure modes, both in single panels and two 

jointed panels. 

7.2 Problem statement and technical considerations 

Different techniques for connecting FRP panels in modular housing system applications are 

documented in the literature. Some of these techniques are depicted in Fig. 7.1. For instance, 

‘Z’-shape adhesively connected techniques (Fig. 7.1a) have been employed for connecting 

sandwich panels in the rehabilitation of building floors [74] and in bridge decks [75]. The 

main problem of this connection in modular systems is the need of adhesive for assembling 

the two components. Using adhesive requires time for curing and specific treatment, which 

increases the time of construction and requires suitable temperatures for the curing process. 

Additionally, it is fairly difficult to only replace one panel because all the panels are 

adhesively jointed. In this case, it might be necessary to replace the entire jointed panel, 

which can be a relatively expensive process. Scarfed and stepped overlap joints (Fig. 7.1b) 
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present the best performance among bonded joints [76]. However, this type of connection 

results in higher complexity in the production lines and, consequently, increases the price of 

the produced panels. Male-female connections (Fig. 7.1c) have been used in bridge 

applications [72, 77, 78]. In spite of providing integrity between panels and loading-transfer 

efficiency of the formed deck, these panels need to be placed horizontally by employing 

specific instruments, such as hydraulic jacks, which is a time consuming and expensive 

process. The use of this technique in building applications seems to be a more demanding 

procedure due to spatial limitation [74]. Tongue and groove mechanisms (Fig. 7.1d) are used 

in bridge deck applications [73]. The transportation of these panels must be undertaken very 

carefully. If a small part is damaged, the entire panel needs to be replaced. In addition, the 

integration of this system in production lines appears to be a major challenge. 

Adhesive
GFRP rib Stepped lap joint Scarf joint  

                                            (a)                                                                       (b) 

Dual cavity

beam unit

Adhesive bond line

Mirrored unit

 

(c)                                                           (d) 

Fig. 7.1. Various types of the jointing sandwich panels techniques: (a) Z-shape; (b) stepped and scarf; (c) male-

female; (d) tongue and groove. 

In the present work, an interlocking technique is proposed for the connections. Different 

criteria were considered in the development of this system, namely: (i) to ensure adequate 

integrity and load transfer efficiency between jointed components; (ii) to guarantee practical 

assembly in confined spaces; (iii) to provide rapid installation of the panels with non-skilled 

manpower; (iv) to facilitate an easy integration in production lines; (v) to include a 
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disassembling system for repairing or replacing purposes and (vi) to provide functional and 

efficient connections by adjoining entire wall panels to roof elements. 

A common sandwich panel made of two outer skins and an interior core (Fig. 7.2a) was 

adopted in the present work. Previous investigation indicated that using high strength 

material for the skin was not necessary [61] and that foam material exhibited good insulation 

characteristics [38], therefore, GFRP and PU foam core were chosen to form the main 

structure of the wall panels in this study.  

The panels were designed to have the capability of joining together along their length and 

width (longitudinal and transversal directions, respectively) to other elements such as beams 

or columns, using two kinds of pultruded profiles: (i) GFRP pultruded ‘U’ profiles installed 

along the edges of the wall panels during the manufacturing process (see Fig. 7.2b); (ii) 

tubular pultruded GFRP profiles (designated as connectors) placed inside the GFRP ‘U’ 

profile during the assembly process (see Fig. 7.3c). 

The sandwich wall panels were devised to be easily assembled in this system. After installing 

the first wall panel, the longitudinal connector is placed inside the corresponding GFRP ‘U’ 

profile, and, subsequently, another wall panel can be attached to this connector by sliding 

(Fig. 7.3d). The key manner to integrate the two wall panels is based on the mechanical 

interlocking of ‘U’ profiles with the tubular connector. 

The connection between two wall panels and the beams form the main structural system of 

the construction, which is represented in Fig. 7.3e. In this respect, the first wall panel slides 

along the transversal GFRP tubular connector (that was previously attached to the beam or 

roof elements) up to its target position. After placing the first wall panel into position, a 

longitudinal GFRP tubular connector is placed into the corresponding GFRP ‘U’ profile. 

Finally, another panel slides along the transversal GFRP tubular connectors, being connected 

to the previous one. 
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Legend: (1) GFRP skin; (2) foam core; (3) longitudinal GFRP U profile; (4) longitudinal GFRP tubular connector; 

(5) transversal GFRP U profile; (6) transversal GFRP tubular connector; (7) beam element; (8) adhesive layer; (9) M8 steel 

bolt. 

Fig. 7.2. Schematic of sandwich wall panels: (a) common sandwich wall panel; (b) Sandwich wall panel with 

sub-connector GFRP U profiles; (c) sandwich wall panel with longitudinal and transversal GFRP U profile and 

GFRP tubular connector; (d) longitudinally connecting wall panels; (e) connecting panels together and into 

beam element. 

7.3 Specimen description  

Six sandwich wall panels, designated as WP1 through WP6, were manufactured using hand-

layup technique. The GFRP skins have a thickness of 2 mm and were produced using dry 

glass fibres impregnated with an isophthalic polyester resin. PU foam blocks with a thickness 

of 60 mm and a nominal density of 48 kg/m3 were used to form the sandwich panel core. 

These blocks were bonded to the skin with polyester resin. With these characteristics, the 

designed prototype fulfils thermal insulation performance demands for housing in terms of U-

value [W/m2 ºC] which must be between 0.4 and 1.4 W/m2 ºC. Comprehensive information 

about manufacturing process and mechanical properties of utilized materials can be found in 

CHAPTER-3. 
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Sandwich wall panels present an overall thickness of 64 mm, a width of 960 mm and a height 

of 2880 mm. Each panel’s weight was approximately 42±2 kg, making them easy to transport 

and install on-site. In this investigation, GFRP ‘U’ profiles with dimensions of 60×55×5 mm3 

were adhesively bonded to the skins and PU foam core around the edges of the panels during 

the manufacturing process. The two GFRP pultruded tubular square profiles (2Q50×50×5 

mm3), with a length of 2700 mm, are considered as longitudinal connectors. These two 

profiles were bonded together with polyester resin and eight mechanical fasteners (M8 steel 

bolts), as shown in the Detail 3 of Fig. 7.2.  

7.4 Experimental program  

Four tests of both single and jointed wall panels were carried out, using WP1 and WP2 as 

single wall panels, and series WP3+WP4 and WP5+WP6 as jointed wall panels. These tests 

intend to identify the failure modes, evaluate the developed strains on the skins, assess the 

maximum axial loading capacity, and determine the maximum in-plane and out-of-plane 

deflection. Additionally, the tests with the jointed panels aim to verify the efficiency of the 

connector in facilitating integrity between two connected panels, as well as the connection’s 

influence on the axial load capacity of the panel system.  

7.4.1 Axial loading test setup and instrumentation 

A self-balanced reaction axial loading frame was designed based on the estimated ultimate 

axial load of two jointed panels. Schematic view of this frame is shown in Fig. 7.3a. The 

frame comprised the following components: reaction beams, support system, high-strength 

steel DYWIDAG bars, and loading system (see Fig. 7.3b).  

Two stiff HEB 200 steel profiles with a length of 2000 mm were designed as reaction beams 

in order to transfer axial loading to the panels. Each of these profiles was placed on the top 

and bottom of the specimens. The top beam was fixed to one existing steel frame with M20 

steel bolts. The bottom HEB 200 profile was not fixed to any elements and was allowed to 

move in the axial direction of the panels (see Fig. 7.3b and Fig. 7.3c). 

The specified supporting system was designed to act as a pined support at both ends of the 

panel (see Fig. 7.3d). This system comprised three segments: (i) two T-shape steel plates; (ii) 

a steel cylinder and; (iii) a steel UNP profile. The two ‘T’-shape steel plates had a flange 

dimension of 200×200×10 mm3 and web dimension of 200×150×10 mm3, and were 
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connected together through steel cylinders with a diameter of 50 mm and length of 300 mm, 

allowing the rotation of these two ‘T’-shape plates. One part of the ‘T’-shape plate was 

attached to the HEB 200 beam profile with four M20 steel bolts, while the other part was 

welded to the UNP 120 steel profile, with a length of 2000 mm. To reduce misalignments and 

to distribute the load uniformly along the width of the sandwich wall panel, four of these 

pinned supporting systems were considered along the UNP profile at top and bottom of the 

wall panels (see Fig. 7.3c).  

For applying the load from top HEB 200 beam to the bottom HEB 200 beam, four high 

strength steel DYWIDAG bars with a diameter of 16 mm were employed. These bars were 

locked to steel plates with dimension of 400×200×60 mm3 by using steel lock washers.  

Two BVA hydraulic jacks with a maximum load capacity of 200 kN and including a through-

hole load cell of the same capacity were used to apply and measure the load. The pressure on 

the jacks was controlled manually by using a hydraulic pump. Since during the loading the 

top steel plate is pushed by the hydraulic jacks, the produced tensile force in the DYWIDAG 

bars is transferred to the wall panel as a compression force. Additionally, different views of 

the test setup are presented in Fig. 7.4. 

 

(a) 
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Fig. 7.3. Axial loading test setup: (a) overall test setup; (b) schematic representation; (c) detailing; (d) detail 1. 

 

Fig. 7.4. Test setup for single panel and two jointed panels. 

Single wall panels and jointed panels were instrumented with LVDTs (D) and strain gauges 

(S). LVDTs were placed at each quarter height of the wall panels for measuring the out-of-
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plane deflection of the panels, D1 to D14 where used in single panel, while D1 to D18 were 

implemented in the jointed panels. Likewise, axial displacement of tested panels was 

measured by placing two LVDTs along the height of the panel at each end, D15 to D16 in 

single panel and D19 to D20 in jointed ones. Also, strain gauges were mounted along the 

centre lines of the panels for measuring longitudinal strains on both compression (C) and 

tension (T) skin sides. The monitoring arrangement in single panels and in two jointed panels 

is shown in Fig. 7.5  
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                                                                    (a)                                              (b) 

Fig. 7.5. Monitoring system: (a) single panel; (b) two jointed panels. 

 

7.5 Results and analysis 

7.5.1 Assembly functionality 

The functionality of the proposed system for connecting sandwich wall panels was assessed 

during the practical assembling process. Since the installation process was done without 

using any chemical adhesive for joining sandwich wall panels, the total process was relatively 

quick to perform. From the assembly of the prefabricated segments in a confined space, it 

could be concluded that this system was much more efficient than conventional methods. 
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7.5.2 Axial loading test results 

The axial load versus mid height deflection of the tested single wall panels and jointed wall 

panels are plotted in the Fig. 7.6a and Fig. 7.6b, respectively. For the single wall panels, 

lateral deflection was obtained based on the average deflection registered in the three LVDTs 

placed at mid height of the panels (D12-D14, Fig. 7.5a). In jointed panels, the lateral 

deflection was calculated based on the average measurement recorded by the six LVTDs 

installed at mid height of the panels (D13-D18, Fig. 7.5b). 

Regarding the single wall panels, it is observed that the axial behaviour of both panels (WP1 

and WP2) was similar until failure. Axial load capacity of these specimens increased almost 

linearly up to a load of 59.50 kN, at which a lateral deflection of 4.50 mm was registered. A 

nonlinear response was noticed after this loading stage. Inspection of panels showed that 

GFRP skin in the compression side initiated debonding from the PU foam core. This kind of 

localized failure mode is well known as outward wrinkling failure of the sandwich panel. 

Increasing the load resulted in the progression of this nonlinearity, which is correlated to the 

debonding process. This localized failure led to buckling at an average load of 66.75 kN, 

when the deflection was 11.76 mm. 

Similar responses to the single wall panels were also observed in the case of the two jointed 

panels. The wall panels WP3+WP4 presented an axial load of 121.21 kN and mid height 

deflection of 18.09 mm when the panels experienced outward buckling of GFRP skin on one 

side. Thereafter, the jointed panels continued to carry out the load, and at the maximum axial 

load of 127.80 kN and mid height deflection of 35.61 mm the overall buckling has occurred. 

Regarding to the jointed panels WP5+WP6, the GFRP outward buckling and overall buckling 

failure modes seem to have occurred at nearly the same time. The jointed panel captured the 

maximum axial load and mid height deflection by the values of 168.47 kN and 3.01 mm 

respectively.  

A slight disparity in axial load capacity and stiffness of the WP3+WP4 wall panels was 

triggered by an out-of-straightness geometric imperfection of the panels. Proposed 

imperfections of 3 and 5 mm were measured in WP3 and WP4, respectively, which have 

introduced initial eccentricities to the panels. This imperfection was produced by the 

misalignment of the PU core blocks during production process.  
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Through the analysis of Fig. 7.6b, it appears that the jointed panels WP5+WP6 failed due to 

global buckling instability since failure occurred rapidly after initiation of the localized 

debonding between GFRP compression skin and PU foam core. These panels presented 

insignificant nonlinear behaviour when compared to the WP3+WP4 jointed panels, which 

justifies the differences in the lateral displacement values at failure. During loading, jointed 

wall panels WP5+WP6 unexpectedly buckled out of the LVDTs stroke measuring range. 

After failure, all of the LVDTs were repositioned to measure the mid height deflection. 

Consequently, data was not recorded in this period of time (failure and rearranging). 
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Fig. 7.6. Axial load vs. mid height lateral deflection: (a) single panel; (b) two jointed panels. 

The axial displacements developed in each test for the buckling load are listed in Table 7.1. 

The axial displacements in all of the tested panels were calculated based on the average 

displacements of two LVDTs placed at the ends of the panels (D15-D16 for single panels and 

D19-D20 in jointed panels). Linear response was observed for load-axial displacements, and 

based on this response, axial stiffness of the panels was calculated as the slope of the curves. 

The results are indicated in Table 7.1. By comparing maximum axial load in the single wall 

panels with the jointed wall panels, it was observed that depending on the failure modes, 

axial capacity increased from 91% to 152 %. 

Table 7.1. Main results from the axial loading tests. 

 

Fig. 7.7a and Fig. 7.7b show the axial load versus longitudinal strains for single wall panels 

and jointed wall panels. The strain gauge on the compressive skin of WP1 did not function 

Specimen 
Maximum 

load (kN) 

Lateral deflection at different levels (mm) Axial 

displacement 

(mm) 
0 h/4 h/2 3h/4 h 

WP1 67.30 2.64 6.5 10.99 7.47 5.16 33.88 

WP2 66.20 6.67 11.03 12.54 6.48 1.19 23.76 

WP3+WP4 127.80 8.62 24.32 35.61 25.06 6.16 21.35 

WP5+WP6 168.47 1.95 1.38 3.01 2.45 1.06 24.13 
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properly; however, for the remaining panels, the measured compression (C) and tension (T) 

strains are included. Regarding the jointed panels, the strain in the compression and tensile 

sides presented in Fig. 7.7b is the average of the values recorded in the two applied strain 

gauges. From the data recorded in the strain gauges, it was noticed that both skins start with 

approximately equal compressive strains just below the localized failure load. Thereafter, the 

strains diverged nonlinearly, indicating significant bending and eminent failure. Once failure 

occurred, strain gauges on the convex side of the deformed panel presented compression 

strains, while the strain gauges localized on the concave side of deformed panels registered 

tensile strains. After this nonlinear stage of the load versus strain evolution, both the 

compression and tensile strains increased suddenly due to the global failure of the panels.  

The maximum registered strains on the tension side of the single wall panel and of the two 

jointed wall panels (0.0017 m/m and 0.0015 m/m, respectively) were significantly lower than 

the ultimate tensile strain measured in GFRP skins (0.0117 m/m) in skin material 

characterization. Thus, a direct conclusion could be drawn that during axial loading stage of 

composite sandwich wall panels at serviceability limit state conditions the material used in 

the GFRP skins was underutilized. Previously, Fam and Sharaf [42] observed the same 

situation in sandwich panels tested in bending. 
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(a)                                                                              (b) 

Fig. 7.7. Load vs. axial strain: (a) single panel compressive strain; (b) two adjusted panels. 

7.5.3 Failure modes 

Failure modes of all tested panels are depicted in Fig. 7.8. All tested panels primarily failed 

by the localized instability of the skins, in the form of outward wrinkling of the GFRP skin at 

the compression side (convex side of the deflected panels). This mechanism can be explained 

by the occurrence of interfacial tensile stresses between GFRP skin and PU foam core that 
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attained the ultimate tensile strength of PU foam core. This failure arose from the very soft 

nature of PU foam core and the relatively low tensile strength of the PU. Generally, a local 

failure was observed in the panel, localized at one-third of its height. Finally, localized failure 

mechanisms lead to an apparent overall buckling in all tested panels. 

 

Fig. 7.8. Failure modes observed in axially loaded single panel and two jointed panels. 

 

7.6 Analytical study 

Consider a sandwich wall panel of height L , width b , and with simply supported boundary 

conditions at both ends (Fig. 7.9a) subjected to axial loading. The proposed panel has a skin 

thickness ft , skin elastic modulus fE , core thickness ct , core elastic modulus and shear 

modulus, cE  and cG , respectively. 

A strut was selected to evaluate behaviour of the panel during the loading (Fig. 7.9b). It can 

be observed that sandwich wall panel started to buckle when the axial load acting on the 
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panel reaches the critical buckling load ( crP ). Due to this fact, significant lateral deflection in 

the panel occurred (Fig. 7.9c). At a cross section positioned far from y  to the panel’s 

extremity, two components could be considered for a resultant thrust, P . The first one is 

sin( )P   acting perpendicular to the middle surface of the panel representing a shear force, 

while the second one is cos( )P   that is tangent to this surface and imposes bending moments 

(Fig. 7.9d).  Consequently, two superimposed lateral deflections 1 and 2 are developing 

during buckling. The first one results from additional displacement associated with the shear 

deformation, while the second one is ordinary bending displacement.  

b
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                                   (a)                                    (b)                          (c)                                 (d) 

Fig. 7.9. Axially loaded wall panel: (a) schematic of axially loaded panels; (b) strut subjected to axial load; (c) 

deformed shape of strut and (d) free body diagram of the bucked strut. 

7.6.1 Global buckling load 

Based on those two deflections, 1 and 2, Allen [28] proposed a general equation for 

calculating the critical global buckling load ( crP ) in sandwich panels, as expressed by Eq. 

(7.1). 

1 1 1

cr E sP P P
   (7.1) 
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where EP  is the Euler buckling load (based on bending moment), and sP  is the localized 

shear buckling load (based on shear force). Hence, in a sandwich panel with soft foam core, 

the critical buckling load is governed not only by the flexural stiffness of the panel but also 

by the shear stiffness of foam core. However, in panels with internal ribs, shear deformation 

of the core becomes negligible due to the relatively high shear stiffness ensured by GFRP 

ribs; thus, Euler load will be the dominant buckling load [28, 31, 49].  

In this study, the Euler buckling load is considered the critical buckling load, since the two 

GFRP ‘U’ profiles placed in the longitudinal direction of the panel at its extremities act as 

ribs in wall panels. 

2

.

2

( )eq

E

EI
P

L

 
  (7.2) 

where .( )eqEI  is the equivalent flexural stiffness of the panel. Since the cross section 

proposed in this study for the sandwich wall panel was symmetric, the neutral axis is placed 

at the middle-surface of the panel and then the equivalent flexural stiffness of the wall section 

is represented by Eq. (7.3) 

2 33

.( ) 2
6 2 2 12

c U cf f
eq f f U

t t tt t
EI bE t nE

  
     

   
 (7.3) 

where n , UE  and Ut  are, respectively, the number, the elastic modulus and the thickness 

of the GFRP ‘U’ profiles.  

Based on Eq. (7.3), a flexural stiffness of 63.0 kN·m2 was obtained in the single wall panels. 

Substituting this result in Eq. (7.2) led to an Euler buckling load of 74.96 kN. It is clear that 

the analytical prediction differs from the experimental result (66.75 kN). This difference 

(about 12%) could be explained by the wall panel failure mode in axial loading, since both 

single panels failed due to local buckling instability, while the analytical Eq. (7.2) is only 

applicable when a global Euler instability occurs. Therefore, the loads corresponding to the 

interfacial tensile stress and critical wrinkling stress should be evaluated. 

Concerning the jointed wall panels system, a flexural stiffness of 143.83 kN·m2 was obtained 

from Eq. (7.3). Substituting this value in Eq. (7.2) led to a global buckling load of 171.15 kN. 

By comparing this value with the Euler buckling load obtained in the single wall panel (74.96 
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kN), it can be seen that these two values differ by a factor of 2.28. Since the total width of the 

jointed wall panels is twice that of the single wall panel, it is concluded that the presence of a 

connector led to an increase in the global buckling load by a factor of 1.28. Recalling the 

experimental axial loads of 127.80 kN (WP3+WP4) and 168.47 kN (WP5+WP6), it was 

observed that the load carrying capacity of the (WP3+WP4) connected jointed panels differed 

significantly from the analytically predicted ones, while this difference was less pronounced, 

as expected, in the second jointed panels (W5+W6). This fact can be explained by the 

observed failure modes. The dominant failure mode in the (WP3+WP4) was due to local 

buckling instability, while in the (WP5+WP6) the dominant failure mode was the global 

Euler buckling.  

7.6.2 Skin wrinkling of sandwich wall panels 

7.6.2.1 Interfacial tensile stress  

During axial testing, local buckling failure occurred due to debonding of the GFRP skins in 

the compression side of the deflected sandwich wall panels. This particular instability of the 

GFRP skins corresponds to a wrinkling effect in which the GFRP skin buckled towards the 

outside in a sinusoidal shape, with half wave length ( hL ) equal to the debonded part (see Fig. 

7.10). It is worth mentioning that previous investigations [28, 98] demonstrated that hL  is of 

the same order of the thickness of PU foam core ( ct ). 


cr


inter

L
h

 
Fig. 7.10. GFRP skin wrinkling model and stresses. 
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Based on the Winkler Elastic Foundation (WEF) approach, Allen [28] assumed that the 

compressed GFRP skin could be modelled by a strut supported on an elastic foundation PU 

foam core. A set of closely-spaced springs was adopted to simulate the behaviour of an 

elastic foundation corresponding to the foam core. A fourth order differential equation was 

proposed in Eq. (7.4) and Eq. (7.5) to take into account the sinusoidal waves with half 

wavelength developed when the compression face skin buckles. 

4 2

int4 2
( )er

d w d w
D P b

dy dy
    (7.4) 

sinm

h

x
w w

L


  (7.5) 

where D  is the flexural stiffness of the strut, P  is the axial thrust in the strut, w  is the 

displacement, inter  is the interfacial stress and mw  is the maximum displacement. By 

substituting Eq. (7.5) in Eq. (7.4) and differentiating this latter equation, it was possible to 

obtain the interfacial stress, as defined by Eq. (7.6). The first part of this equation is the 

stiffness of the assumed springs in the WEF approach, as previously proposed by Mousa and 

Uddin [69], and the second part represents the sinusoidal displacement at the compressed 

GFRP skin. 

2

int ( ) . siner c c m

h h

x
E t f w

L L

 
 

    
     
     

                           (7.6) 

where hL  is the half wave length and ( )f   is the skin wrinkling mode shape. Three cases 

of skin wrinkling failure modes are defined in Fig. 7.11. Case I corresponds to rigid base or 

single sided, case II deals with antisymmetric wrinkling, and case III considers symmetric 

wrinkling. In this research, case I was considered the most appropriate since only one face 

skin was debonded. Accordingly, Eq. (7.7) was proposed to calculate the skin wrinkling 

shape mode [28]. 
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where c  is the Poisson’s ratio of the PU foam core and   is function of core thickness and 

half wave length, as given by Eq.(7.8). 

c

h

t

L


   (7.8) 

Interfacial tensile stress was calculated based on Eq. (7.6) and was used to compute the 

maximum out-of-plane tensile stress between the GFRP skin and the foam core, in order to 

evaluate the debonding between these two materials. The values of ( )f   and   were 

determined based on Eq. (7.7) and Eq. (7.8), respectively, and the values of 0.18 and 3.14 

were obtained. An interfacial stress value of 0.78 MPa was obtained by substituting these 

values into Eq. (7.6).  

 

Fig. 7.11. Principal types of wrinkling instability [28]. 

 

Comparing this value with the maximum tensile strength of PU foam core suggests that the 

main reason for debonding failure mode could be explained by exceeding the interfacial 

tensile stress between GFRP skin and PU foam core from ultimate tensile strength of PU 

foam core. This was also observed in previous investigation work where the same failure 

mode was registered [69]. It is worth mentioning that interfacial tensile stress was 

independent of wall panel’s geometry, therefore the same value is attained in the single panel 

and in the two jointed panels. 

7.6.2.2 Critical wrinkling stress 

The second stress associated with wrinkling failure modes in compressed GFRP skins is the 

critical in-plane compressive wrinkling stress ( cr ), which can be obtained from Eq. (7.9). 

This stress is calculated based on the aforementioned Winkler Elastic Foundation (WEF) 

approach. Complementary information can be found elsewhere [28, 69] 

1/3 2/3

1cr f cE E   (7.9) 
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where   is a coefficient depending on the elastic modulus and thickness of the GFRP skin 

and PU foam core. By comparing Eq. (7.9), used to calculate the critical wrinkling stress, 

with Eq. (7.6) adopted to determine interfacial tensile stress, it is noticed that critical 

wrinkling stress is evidently dependent on the material properties of GFRP skin and foam 

core, while interfacial tensile stress only depends on the foam core material properties. 

Based on the critical wrinkling stress calculated on the compression GFRP face skin, an 

equation was suggested [69] to determine its corresponding critical buckling load: 

cr wrinkling cr fP bt   (7.12) 

Substituting Eq. (7.9) into Eq. (7.12) results in a general form of the critical buckling load: 

 1/3 2/3

1cr wrinkling f c fP E E bt   (7.13) 

Eq. (7.13) was used to predict the critical load of both the single sandwich wall panels and 

the jointed wall panels. In this equation the variables fE , cE , ft , ct , b  (in single wall panel) 

and b  (in two jointed wall panels) were substituted by the values of 9600 MPa, 5 MPa, 2 mm, 

60mm, 960 mm and 1920 mm, respectively. Coefficient 1  was calculated according to the 

Eq. (7.10), having obtained a value of 0.59  

Using Eq. (7.13) resulted in the values of 69.20 kN and 138.40 kN for the single wall panel 

and jointed wall panels, respectively. In the experimental program an average axial load of 

66.75 kN for single panels (WP1 and WP2) and 127. 078 kN for jointed panels (WP3+WP4) 

was obtained. The comparison between these values and the analytical ones showed that Eq. 

(7.13) is quite precise in predicting the panels axial load capacity when a wrinkling failure 

mode occurs. Jointed wall panel WP5+WP6 was not taken into account in this comparison 

since this jointed panel developed a global buckling failure mode. 
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Additionally, by comparing the results experimentally obtained in single wall panels and in 

two jointed wall panels, it can be observed that these two values differ by a factor of 1.91. 

This result shows that connecting panels by the proposed techniques increased the critical 

wrinkling load nearly twice in comparison to single wall panels, demonstrating the high 

effectiveness of the proposed technique. 

 

7.7 Conclusion 

In this part of study, the possibility of employing sandwich wall elements in the ClickHouse 

project was studied. The capability of rapid on-site assembly/disassembly and ease of 

integration in the production line could be mentioned as advantages, achieved by the 

proposed wall system comprising GFRP skins, PU foam core and connectors. GFRP 

pultruded ‘U’ shape profiles were positioned along each edge of the panel and were 

considered as connectors. Some important conclusions can be drawn from the developed 

work: 

 Using the proposed connection and the lightweight nature of structural members, the 

assembly of the wall panels was performed easily. As such, this system presents a high 

potential to be used as wall elements in prefabricated dwellings or in the building sector  

 Linear elastic response of wall panels was observed, prior to failure, in all the tested wall 

panels, through the analysis of load–mid height deflection and load–axial displacement 

curves. 

 Mounted strain gauges in both sides of the skins exhibited similar behaviour before 

failure, due to axial compression of the GFRP skins. After initiation of failure, the strain 

gauges positioned in the convex side and in the concave side of the deformed panels 

presented compressive and tensile behaviour, respectively. The maximum tensile strain 

registered in the GFRP skin was 14% of the ultimate tensile strain of this composite 

material. This represents that during axial loading of sandwich wall panels the material 

used for the GFRP skins is somewhat underutilized. 

 Three modes of failure were observed in single wall panels and in two jointed wall 

panels. The panels first started to show a localized failure at GFRP skin in the 

compression side. This localized failure corresponds to the instability of the GFRP skin 

in a half wave length that is equal to the core thickness. The second failure mode was 

related to the propagation of this failure toward the GFRP skin and the PU core due to 
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the load increase. Finally, all the panels failed due to global instability of the system that 

resulted from the degradation of integrity between GFRP skins and foam core.  

 In the jointed panels, disparities in ultimate load (of about 20%) and failure modes (local 

versus global) were triggered by initial eccentricity in one of the jointed panels during 

the loading process. The main reasons for this eccentricity are related to the actual 

geometry of the panels and the level of complexity of the test setup. 

 Regarding to the theoretical study, a reasonable agreement between experimental results 

and theoretical predictions were observed in both failed panels due to global buckling 

and due to localized wrinkling buckling. It was concluded that in global buckling failure 

of jointed panels, axial load increased by a factor of 2.52 of the buckling failure load 

obtained in single wall panels. The presence of the connector was able to increase the 

global buckling load by a factor of 1.28. However, it was also verified that the axial load 

capacity of jointed panels that suffered localized GFRP skin wrinkling failure was nearly 

2.0 times higher than the corresponding failure load measured in single wall panels. 

 Finally, two kinds of stresses, namely interfacial out-of-plane stress and critical 

wrinkling stress were evaluated in this study. It was shown that high interfacial out-of-

plane stresses between PU foam core and GFRP skins occur, and that these stress values 

were higher than the tensile strength of the PU foam, resulting in debonding in both 

single and jointed panels. The calculated critical wrinkling stresses were in good 

agreement with the experimental values measured in both single and jointed panels.  
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8 Chapter 8: Residential floor modular 

prototype 

 

 

8.1 Introduction  

In the chapter 6, the short and long-term behaviour of single sandwich floor panel flexural 

were comprehensively studied through experimental, analytical and numerical investigations. 

It was observed that, for the level of the load considered in designing residential floor 

modular system, sandwich panels performances with taking into account the viscoelastic 

behaviour, fulfil the requirements established by standards. Additionally, regarding to the 

connected two and three floor sandwich panels, it was deduced that the behaviour of jointed 

panels exhibited adequate flexural performance and fulfilled the requirements in both SLS 

and ULS conditions in terms of deflection and strain.  

In this chapter the structural behaviour of two floor residential modular prototypes of 2.64 × 

2.64 m2 and 3.40 × 3.40 m2 is investigated. The proposed prototypes are composed of GFRP 

profiles and sandwich panels. The floor panels are the same already studied in chapter 6. 

Experimental programs were conducted to evaluate the performance of the developed basic 

units floor prototypes as a structure designed to support serviceability and ultimate load 

conditions in residential houses. The performance included the feasibility of assembling and 

fulfilling the requirements by standards in short-term and long-term. Finally, some analytical 

and numerical studies were carried out to go further in depth in predicting the actual 

behaviour of the modular systems and connection effectiveness under designed load. In 

addition to that, parametric studies were carried out to explore the potentiality of the 

proposed materials and structural concept in floor residential building with different covered 

areas. 
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8.2 First prototype  

8.2.1 Concept and geometry 

For the sake of simplicity, effects of roof and walls were not taken into account in the current 

study. Thus, the study will be mainly focused on the floor slabs. The proposed prefabricated 

modular prototype is schematically represented in Fig. 8.1. 

 

                                         (a)                                                                                (b) 

Fig. 8.1. Schematic representation of the modular prototype: (a) full prototype; (b) prototype without walls, roof 

and top beam elements. 

 

The modular building floor prototype is comprised of two main components: the frame 

structure (columns and beams) and the slab that is composed of two sandwich panels. The 

sandwich panel contains an interior polyurethane (PU) foam core enclosed by two GFRP 

skins. The core and the skins have different functions: while skins bear the bending loads, the 

core deals with the shear loads, stabilizes the skins against buckling and wrinkling, and 

provides thermal and acoustic isolation. 

Fig. 8.2 shows the frame structure of the prototype, which is constituted by four GFRP beams 

supported in four short columns. Tubular GFRP pultruded short elements with cross section 

of 120×120 mm2 and a wall thickness of 8 mm are used as columns; for the sake of 

decreasing segments variation in the manufacturing process, the same profile was used for the 

beams disposed in the contour for the floor. In Fig. 8.3, a schematic view of the two floor 

sandwich panels is represented. Sandwich panels presented an overall cross section’s depth of 

70 mm, a width of 1200 mm and a length of 2400 mm. On the contour of the panel a GFRP 
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pultruded profile (U60×55×5) was adhesively bonded for its easy connection to the 

supporting elements (see Fig. 8.3– section CC). 
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Fig. 8.2. Prototype frame structure (all units in millimetres). 
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Fig. 8.3. Sandwich floor panel description (all units in millimetre). 
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There are three types of connections in the present prototype (Fig. 8.4): (i) beam-column, (ii) 

beam-panel and (iii) panel-panel. It should be mentioned that the resistance and the ability of 

an easy and fast assembling / disassembling of the prototype were taken into account in the 

design phase. Hence, for assuring disassembling with integral reuse of the prototype, 

adhesive connections were not used between the different elements. In the case of beam-

column connections, steel tubular profiles of class S235 and cross section of 120×120 mm2 

were utilized to transfer the loads to the column; these steel profiles were directly connected 

to the GFRP columns with a series of M8 bolts (Fig. 8.4a). For beam-panel connection a 

GFRP square tubular profile of 50 mm edge and 5 mm of thickness was used; this profile was 

mechanically and adhesively bonded to the beam element as depicted in Fig. 8.4b, since it 

was assumed to be not disassembled from the corresponding supporting beam. Finally, the 

same GFRP square tubular profile used for beam-panel connection was employed for the 

panel-panel connection (Fig. 8.4c). 

 

                 (a)                                                 (b)                                                        (c) 

Fig. 8.4. Connections details: (a) beam-column; (b) beam-panel; (c) panel-panel. 

 

8.2.2 Assembly process 

The assembly process is expected to be conducted by non-experimented workers in disaster 

areas. In this context, an assessment of the prototype assembly was carried out to analyse the 

feasibility of the process. The assembly process is started by placing the four columns in their 

specified positions (Fig. 8.5a), and connecting them with three beams (Fig. 8.5b). The 

installation of the last beam is postponed to the end of assembly process in order to facilitate 

the introduction of the floor panels. Hence, the next stage of the assembly process is the 

installation of the first sandwich panel, by handling and mounting it along the beam-panel 

connections; as can be seen in Fig. 8.5c, panel is sliding along the tubular profiles fixed to the 

beams. Once the first panel is in its final position, and the panel-panel connector is mounted 

(Fig. 8.5d), the second panel is installed in a similar way (Fig. 8.5e). Finally, to complete the 

assembly process, the final beam is placed in its position (Fig. 8.5f). All this procedure is 
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performed in less than 2 hours by three persons without any special equipment, evidencing 

that the prefabricated prototype may be suitably assembled by non-experimented workers in a 

short period of time, and without the need of any special tool and equipment, which are 

normally scarce in a disaster area. 

 

 (a)                                                 (b)                                                        (c) 

 

(d)                                                       (e)                                                        (f) 

Fig. 8.5. Assembly process: (a) columns placement; (b) attaching the beams to the columns; (c) first panel 

mounting; (d) sliding the first panel to its correct position; (e) second panel installation; (f) installation of the 

final beam. 

8.2.3 Experimental program 

As previously referred, the lightweight prototype was designed to be the floor element of a 

residential house, and therefore it was necessary to analyse its performance when submitted 

to the serviceability vertical loads. 

The response of the prototype under flexural loads was assessed by applying a uniform 

distributed load, representing a characteristic live load of 2 kN/m2 in accordance with 

Eurocode 1 [85]. The structure was manually loaded and unloaded employing filler bags (20 

kg of each) in two layers, each one of 12 bags, resulting in a uniform distributed load of 1 

kN/m2 per layer. Loading and unloading operations were performed fast to avoid any 

potential creep effect. Table 8.1 schematically represents the loading and unloading 

sequences of the four tests. Fig. 8.3 illustrates different phases of these tests. 
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Table 8.1. Loading/unloading phases schemes. 

Phase Test 1 Test 2 Test 3 Test 4 

Phase 0 
    

Phase 1 
    

Phase 2 

    

Phase 3 

    

Phase 4 

  
  

Phase 5 

  

  

Phase 6 

 
 

  

Phase 7 
  

  

Phase 8 
  

  

 

 

Fig. 8.6. Distinct phases of the performed tests. 

Monitoring arragement is shown in Fig. 8.7: seven LVDTs (D1 to D7) with a stroke ranging 

from 25 mm to 50 mm were placed at the bottom surface of the slabs’s prototype, four in the 

beams (D1 to D4) and three in the panels (D5 to D7) to measure vertical deflections, while 

eight TML PFL-30-11-3L strain gauges (S1 to S8) were bonded to the beams (S7 and S8) and 

panels (S1 to S6) to register the longitudinal strains during the loading process. 
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Fig. 8.7. Instrumentation layout for static tests in the assembled prototype: Positions of LVDTs (Di, i=1 to 7) 

and strain gauges (Sj, j=1 to 8). 

 

8.2.3.1 Experimental results 

The measured deflection-time and strain-time relationships in each carried out test are plotted 

in Fig. 8.8. The end of each loading/unloading operation is recognizable by the sudden 

change observed in the curves. In fact, the presence of small rate of deflections and strains at 

the end of each of the loading/unloading phases is the consequence of having three persons 

on the top of the panels during the loading/unloading procedures. Furthermore, it is 

interesting to mention that once all the load was applied, the four performed tests gave the 

same results in terms of deflections and strains; thus, all tests can be considered as equivalent, 

and differences between each one are mainly due to the loading/unloading scheme. 

Based on the obtained deflections at the end of the loading process, four groups of LVDTs 

could be identified (see Table 8.2). The first group includes the LVDT placed at the middle 

of the two panels joint (D6 – see Fig. 8.7), which recorded a maximum value of about 16 

mm. The second group are those LVDTs placed at the centre of the two panels (D5 and D7), 

which measured a value of around 12 mm. The third group corresponds to the LVDTs placed 

on longitudinal beams (D2 and D4), i.e. those beams placed perpendicularly to the panel-

panel connection (beams 2 and 4), in which a deflection of approximately 7.5 mm was 

registered. Finally, the fourth group of LVDTs (D1 and D3) is related to those placed on 

transverse beams (beams 1 and 3), which recorded a value of 3 mm. 
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Fig. 8.8. Static test results on the assembled prototype: (a) Test 1; (b) Test 2; (c) Test 3; (d) Test 4. 
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Table 8.2. Maximum deflections (in mm) registered by the LVDTs in the assembled prototype subjected to a 

uniform load of 2 kN/m2. 

Test 
Panels joint 

(D6) 
Middle of panels 

(D5 and D7) 
Longitudinal beams 

(D1 and D3) 
Transverse beams 

(D2 and D4) 

Test 1 -16.49 -11.93 -3.46 -7.91 

Test 2 -16.29 -11.48 -3.09 -7.56 

Test 3 -16.41 -11.56 -3.03 -7.47 

Test 4 -16.21 -11.44 -2.87 -7.49 

 

Similarly, the strain gauges may also be grouped in five groups. The first group involves the 

strain gauges bonded at the centre of the joint between the two panels in the longitudinal 

direction (S5), which measured a strain value of around 0.25 mm/m (positive value means a 

tensile strain). The second group corresponds to those gauges placed in the longitudinal 

direction in the middle of the panels (S1 and S3), which recorded a value of nearly 0.17 

mm/m. The third group comprises the strain gauge located at the centre of the joint between 

the two panels in the transverse direction (S6), which registered a value of 0.15 mm/m. The 

fourth group consists of those gauges measuring transverse strains in the middle of the panels 

(S2 and S4), where a strain value of about 0.05 mm/m was recorded. Finally, the fifth group 

is comprised by those strain gauges placed in the middle of the two beams 4 and 2 (S7 and 

S8), where a maximum strain of 0.35 (mm/m) was registered. Table 8.3 lists the maximum 

values of strains measured in the prototype. 

Table 8.3. Maximum strains (in mm/m) registered by the strain gauges in the assembled prototype subjected to 

a uniform load of 2 kN/m2. 

Test 
Group 1 

(S5) 
Group 2 

(S1,S3) 
Group 3 

(S6) 
Group 4 

(S2,S4) 
Group 5 

(S7,S8) 

Test 1 0.23 0.13 0.13 0.05 0.35 

Test 2 0.26 0.17 0.16 0.05 0.37 

Test 3 0.26 0.14 0.14 0.05 0.38 

Test 4 0.15 0.09 0.08 0.04 0.22 

 

From the analysis of the displacements and the strains some information can be extracted. 

Analysing the strains recorded in the first and second groups of gauges (S5, S1 and S3), and 

in the third and fourth groups (S6, S2 and S4) it is verified that the level of strains registered 

in the centre of each panel is significantly different from the level of strain recorded in the 

centre of the joint between the two panels. This indicates that the panels did not present one-

way bending behaviour. Likewise, when compared the first and second groups of LVDTs 

(D6 against D5 and D7) it is revealed that floor panels presented a two-way bending 

behaviour, being the bending moments in longitudinal direction (i.e. where beams 2 and 4 

work as support) higher than in the transverse direction. The response of the panels implies 

that beam-panel connection was tight, assuring a high degree of connectivity of the panel to 
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the supports. Regarding to the third and fourth group of LVDTs, their measurements show 

that beams 2 and 4 presented almost double deflection of beams 1 and 3, demonstrating the 

different load level transferred by the panels to these supporting beams. Furthermore, the 

largest strains were recorded in beams 2 and 4 (last group of gauges, S7 and S8). Finally, it 

should be referred, as expected, for the load levels applied the system behaved linearly, since 

after removing the loads negligible displacements and strains were registered. 

8.2.4 Numerical simulation  

8.2.4.1 General approach  

The proposed modular prototype was numerically simulated by a nonlinear three-dimensional 

finite element (FE) analysis. Calibration of the model was performed based on the 

experimental results. The simulation enabled to assess the stress distributions in prototype 

components, such as beams and panels, as well as evaluate the global behaviour and load 

transfer mechanism of the connections, and assess their influence in load distribution. 

8.2.4.2 Numerical model description 

 The prototype was modelled by a 3-D finite element analysis with the same geometry of the 

experimentally tested elements. All prototype constituents, i.e. GFRP skins, PU foam core, 

GFRP beams and columns, were modelled using 3D hexahedral deformable solid elements 

with 8 nodes and 3 degrees of freedom per node. After have been conducted some 

preliminary analysis, an approximately size of the elements equal to 10 mm edge was found 

to be optimal in terms of both accuracy convergence and computational time of the 

simulation. The overall FE model for the tested modular floor building submitted to uniform 

static load is shown in Fig. 8.9. Loading and boundary conditions were applied in accordance 

with the particularities of the experimental test setup. In three of the columns, the 

displacement in the z direction of the nodes located in the surface in contact to the supporting 

pavement is prescribed, while in the other column all the displacement degrees of these nodes 

were prescribed. A uniform load of 2 kN/m2 was applied on the top surface of the sandwich 

floor panels. Proper loading arrangement and boundary condition depicting the experimental 

setup is shown in Fig. 8.9. Nonlinear static analysis enabling geometric nonlinearity based on 

direct method ‘Full Newton Solution Technique’ was performed.  
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(a) 

 
 

(b) 

 

 

 

 

 

 

 

 

 

 

(c) 

Fig. 8.9. FE model perspective of the tested panel: (a) overall view; (b) GFRP frame structure; (c) sandwich 

floor panels with constituent materials. 
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Constitutive relation towards material behaviour of sandwich panel components were adopted 

according to the performed material characterization tests. The GFRP skins have a quasi-

isotropic lay-up, so isotropic linear elastic material with an elastic modulus of 9.60 GPa, 

Poisson’s ratio of 0.3 and ultimate strength of 117 MPa were used to represent the GFRP skin 

mechanical behaviour. Based on  equations previously developed by other authors [93], the 

crushable foam core was selected to represent mechanical behaviour of the PU foam core by 

allocating the shear modulus, the elastic modulus and the elastic-plastic constitutive relation 

with a compressive stress being of 3.15 MPa, 6.3 MPa and 0.30 MPa respectively. The GFRP 

pultruted profiles were modelled assuming linear-elastic orthotropic material properties with 

an elastic modulus of 28 GPa and ultimate tensile stress of 415 MPa in the parallel to the 

fibre direction (longitudinal direction), and elastic modulus of 13 GPa and ultimate tensile 

stress of 180 MPa in the perpendicular to the fibre direction (transversal). 

Interaction between all adherent surfaces belonging to a panel (i.e. interfaces between PU and 

GFRP skins, PU and U-shape GFRP profiles, and GFRP skins and U-shape GFRP profiles) 

were modelled as cohesive. The generalized cohesive-behaviour model of ABAQUS [92] 

was used. Comprehensive information could be find in the numerical simulation of Chapter 

6. 

Contact connections between profiles and U-shape GFRP profiles of sandwich panels were 

modelled by a surface interaction: in the normal direction a ‘‘hard’’ contact is assumed, 

meaning that no penetration is allowed between the two surfaces, with no limit to the 

magnitude of contact pressure that can be transmitted when the surfaces are in contact. 

Behaviour in the tangential direction was modelled with Coulomb friction model, with a 

friction coefficient equal to 0.2 and with no adhesion. 

8.2.4.3  FE model results 

A comparison between the experimentally measured deflections and predicted ones by the FE 

simulation at different positions is provided in Table 8.4. Furthermore, experimentally 

obtained tensile strains are also compared with the predicted ones by the FE simulation. In 

general, a good agreement is observed between the results from the FE model and the ones 

measured experimentally in the prototype. This validates the developed model and enables its 

use for predicting the flexural behaviour of the proposed modular floor prototype. 
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Table 8.4. Comparison between experimental and numerical FEM results. 

 Experimental  FEM  

Deflection (mm) 

Panels joint (D6) 16.2 15.9 

Middle of panels (D5 and D7) 11.4 11.04 

Longitudinal beams (D1 and D3) 2.9 2.8 

Transverse beams (D2 and D4) 7.5 6.5 

Strain (mm/m) 

Group one (S5) 0.25 0.33 

Group two (S1,S3) 0.17 0.18 

Group three(S6) 0.15 0.12 

Group four (S2,S4) 0.05 0.06 

Group fifth(S7,S8) 0.35 0.48 

 

The colour representation of the vertical displacement field (in y direction) obtained from the 

FE model is depicted in Fig.8.10. A maximum vertical deflection of 15.89 mm was registered 

in the central part of the pavement, in the join of the two sandwich panels. It is interesting to 

note that, the GFRP connector bridging internally the two panels while was not connected to 

the transversal beams. As a results, the contour plot resembles to the typical one as a 

continuous slab. However, a predominant longitudinal working direction can be observed. 

This is also confirmed by the deflection of the beams where one can notice that deflection in 

the frame beams placed orthogonal to the panels’ length reach a slightly higher deflection 

than beams parallel to them. 

 

 

Fig. 8.10. Deflection representation of the prototype from the FE simulation (in millimetres). 

 

Stresses developed in the longitudinal and transversal directions at the external face of 

bottom GFRP skins in the floor sandwich panels, due to the applied load (2 kN/m2), are 
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shown in Fig. 8.11. Checking the level of stresses revealed that the maximum stresses were 

below the ultimate strength limit with adequate safety factor. A direct conclusion from this 

observation is that the proposed panels withstand the ULS load level as they are only 50% 

above the SLS limit according to Eurocode 1 [85]. The stress field installed in the middle of 

the panels and through their edges evidence that panels are working as a two-way slab, being 

the longitudinal the main working direction.  

 

 

(a)                                                                                       (b) 

Fig. 8.11. Stress in the bottom surface of lower GFRP skin: (a) longitudinal direction; (b) transversal direction 

(stresses, in kPa). 

From Fig. 8.11 it can be observed that the presence of the connections provide some 

restriction along the support, thus contributing to reduce the overall floor sandwich panels 

flexibility. However, the amount of this restriction in reducing sandwich panel’s deflection is 

not clear. It can be seen that the type of connection used does not act as a fully fixed support 

and thus, it would resemble to a semi-fixed connection. Hence, the proposed connection can 

be considered as a spring with a characteristics stiffness sck . Therefore the total deflection at 

panels midspan joint ( ) would be the sum of the deflection due to the fixed support ( c ) 

and the connection flexibility (  ), i.e, c     . 

To overcome that issue, a new simulation was carried out by considering fixed support 

condition between the floor panels and the GFRP beam elements. Fully composite action was 

assumed by using a tie interface between GFRP square profiles and GFRP ‘U’ profiles. Fig. 

8.12 shows the numerical load-midspan deflection obtained by considering fixed-support 

conditions compared with the deflection obtained by considering the real connections. Hence, 
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the difference between the two curves corresponds to the deflection caused by the connection 

flexibility (equal to 5.39 mm).  
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Fig. 8.12. Load-midspan deflection in fixed and semi-fixed connection. 

 

Based on that figure, the proportion on stiffness, defined as the slope between load and 

deflection, may be expressed by Eq. (8.1): 

c c

sc c

k

k

 




                                  (8.1) 

where ck  is the stiffness of panel in fixed support conditions and sck  is the stiffness of panels 

in semi-fixed support conditions. 

Eq. (8.1) could be modified in other term as Eq. 8.2, where   is the stiffness reduction 

factor. 

sc sc c

sc c

k k

k

 



 
                                              (8.2) 

Once computed, coefficient   was calculated to be 0.51. Thus, a direct conclusion drawn 

from here is that, when using the proposed connection in the prototype, which acts as a semi-

fixed support conditions, a stiffness reduction of a 51% respect to a fixed support condition 

can be expected. 
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8.2.4.4 Parametric analysis 

The proposed FE model was shown to be an effective tool for investigating the flexural 

response of the residential floor modular system. A parametric study was then carried out to 

explore the potentiality of the proposed material and structural concept for pavements of 

higher span length in order to have more housing space and, consequently, to extend this 

concept for other markets. 

The parametric study was addressed by changing the thickness of PU foam core ( ch ) and 

span length of the sandwich floor panel ( L ), while keeping the thickness of the GFRP skin 

( fh ) and the width of the sandwich floor panel ( w ) equal to 5 mm and 1200 mm, 

respectively. Both parameters have significant impact on the stiffness of the sandwich floor 

panel. By changing ch  and maintaining fh  constant have the purpose of exploring the 

variation of panel’s stiffness with the minimum cost, since foam is the less expensive 

constituent of this construction system. By varying L  while w  is keeping constant has a 

significant impact on the deformational response of the panel, due to its almost one way slab 

behavioural character. Maintaining w  constant contributes for do not change significantly 

the transport conditions of these components, since by increasing both L  and w  above a 

certain limit the transport costs of these panels will increase. Additionally, the connection 

conditions between GFRP beams’ elements and sandwich floor panels were evaluated for the 

following two scenarios: (i) semi-fixed (i.e. like the actual one on the experimentally tested 

prototype) with the designation of ‘SC’; (ii) fixed connection with the nomination of ‘FC’.

  

A total of 66 models were created and analysed under serviceability load conditions in 

residential houses by assuming a uniform distributed load of 2 kN/m2 on the top surface of 

the sandwich floor panels. For deriving relevant conclusions some of the representative 

results indicated in Table 8.5 were selected. 

Table 8.5 shows that by increasing the panel’s span length the maximum deflection increases 

in the longitudinal beams due to the more pronounced one-way slab character of the panel. 

This increase rate is reduced by the increase of the /c fh h  ratio due to the larger contribution 

of the flexural stiffness of the panel. This observation can be seen in Fig. 8.13. 
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Table 8.5.  Maximum predicted deflection in residential floor modular system components subjected to the 

serviceability load action. 

c

f

h

h
 

L

w
 

Maximum deflection (mm) 

Panels joint Middle of panels Longitudinal beams 
Transverse 

beams 

Sc c sc c sc c sc c 

12 

1.5 9.51 6.41 6.60 5.50 1.11 1.10 5.53 3.85 

2.5 27.84 17.90 19.91 15.71 8.29 7.90 8.90 5.42 

3 44.54 28.71 33.48 26.11 17.35 16.13 10.68 6.13 

3.5 68.23 44.94 54.03 42.08 32.29 29.17 12.39 6.88 

16 

1.5 7.46 5.03 5.60 4.42 0.96 0.92 4.84 3.37 

2.5 21.10 13.66 15.53 12.09 7.22 6.77 8.45 4.69 

3 33.37 21.76 25.71 20.28 13.80 13.20 10.15 5.28 

3.5 51.11 34.98 41.35 33.20 25.45 23.87 11.80 6.02 

20 

1.5 6.76 4.03 4.80 3.60 0.82 0.73 4.77 2.82 

2.5 17.02 10.28 12.53 9.47 5.32 5.16 7.83 3.89 

3 26.18 16.88 21.53 16.15 12.14 10.97 8.21 4.56 

3.5 40.17 26.55 32.54 25.67 20.33 18.90 7.99 4.87 

ch : PU foam core thickness; 
fh : skin thickness; L : length of the floor panel; w : width of the floor 

panel; sc: semi-fixed connection; c: fixed connection 

 

By increasing /c fh h  from 12 to 20 in the shorted panels (L=1800 mm) has provided a 

decrease in the maximum deflection that varied between 14% and 37% when the four 

considered components of the panel and the two connection conditions are analysed, having 

the highest decrease occurred in the panels with “FC” connection conditions. However, the 

range of values of the aforementioned decrease in the maximum deflection has decreased 

with the increase of the panel’s length, having varied between 29% and 41% in the longer 

panels (L=4200 mm). In these longer panels, the higher decrease of the maximum deflection 

occurred in the panel’s joint, regardless the connection conditions (about 41%). 

The maximum deflection for quasi-permanent load conditions (i.e. 30% of the total live load) 

was computed for the mid-span of the floor modular system (
qp ) in each analysis. The 

obtained deflections were subsequently manipulated by employing Eq. (4) to capture the 

long-term performance of the floor modular pavements (
LT ). The results are shown in Fig. 

8.14. It should be noticed that in this figure, the curves are named based on two characters. 

The first character is the /c fh h  ratio, while the second character indicates the type of 

connection between GFRP beams’ elements and sandwich floor panels.  
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Fig. 8.13. Vertical deflection of the residential floor modular system under different /c fh h  ratios and span 

lengths with ‘SC’ support condition (units in millimetres). 

Graphics like the one represented in Fig. 8.14 can be developed for assisting on the design of 

composite sandwich panels for residential building product applications. By taking the 

graphic of Fig. 8.14 as an example of this pre-design approach, and assuming a span length 
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of 3000 mm for the composite floor panel (represented by a vertical dot line), and considering 

the maximum deflection criterion recommended by CNR [80] (plotted by a horizontal dot 

line), the panel ‘20-SC’, and all the panels with ‘FC’ connection conditions are possible 

solutions, being the economic criterion critical for the final decision. For the other sandwich 

panels, do not fulfilling the requirement of maximum deflection, this can be overcome by 

increasing their flexural stiffness through adopting more internal GFRP ribs. 
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Fig. 8.14. Flexural response of the residential floor modular system at different conditions. 

8.3 Second prototype 

8.3.1 Concept and geometry  

The designed temporary building house was composed of a single-story building with a 

rectangular plan of about 6.0 × 3.0 m2, formed by connecting two blocks of about 

3.0 × 3.0 m2 and a height of about 3.0 m. Fig. 8.15 shows a plan and three lateral views, as 

well as a photo of the built prototype. It is important to note that the capability of connecting 

blocks provides the possibility of erecting a pre-selected number of buildings by joining 

different blocks [59]. 

  

(a)                                              (b) 
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Fig. 8.15. Modular system schematic view: (a) Prototype built; (b) Plan view; (c) south view; (d) east view [59]. 

 

The floor module of the building is depicted in Fig. 8.16 and was composed of two main 

components: (i) a frame formed by tubular GFRP pultruded profiles with a cross section of 

120×120 mm2 and a wall thickness of 8 mm (Fig. 8.16a), and (ii) the pavement constituted by 

three sandwich panels formed by two outer GFRP skins of 5 mm thickness and a core of PU 

foam (Fig. 8.16b). For the sake of decreasing segment’s variation in the manufacturing 

process, the same profile was used in both beams and columns of the frame. 

The panels presented an overall thickness of 70 mm, a width of 1000 mm and a length of 

3000 mm. A U-shape GFRP pultruded profile with a cross section of 60×55 mm2 and a wall 

thickness of 5 mm (U60×55×5) was adhesively bonded to the PU foam core during the 

manufacturing process, on the outer side of each panel, enabling the connection of each panel 

to the other elements of the prototype, such as beams and other panels (Fig. 8.16c) For 

increasing the flexural stiffness of the panel, two additional U60×55×5 profiles were installed 

in the interior of each panel. PU foam blocks with a thickness of 60 mm and nominal density 

of 48 kg/m3 were used to form the sandwich panel core, providing the required thermal 

isolation. These blocks were bonded to the GFRP skins with a polyester resin. 

The obtained panels resulted in a light system, each one weighting around 70 kg, taking into 

account every component, i.e. skins, core and the additional U-shape GFRP profiles, which 

facilitates its transportation and on-site installation. 

The connections were designed for an easy and fast assembling / disassembling of the 

prototype, and assure continuity as much as possible between connected elements in order to 

mobilize efficiently their strength capacity (Fig. 8.16c). For beam-panel connections, the 

aforementioned U-shape GFRP profiles placed on the edges of the sandwich panels were 
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attached to a GFRP squared tubular profile of 50 mm edge and 5 mm of thickness that was 

mechanically and adhesively bonded to the GFRP beam. Finally, for panel to panel 

connection, a similar approach as that followed for beam-panel connection was used, by 

attaching the U-shape GFRP profiles to two GFRP squared tubular profiles (also of 50 mm 

edge and 5 mm of thickness) that were mechanically and adhesively connected together. 

 

120

1000

1000

1000

1203400 120

3000

120

3400

120

1000

1000

1000

1203400

120

3000

120

FP 1

FP 2

FP 3

1000
1000

3400

Sec. a-a

Detail 1

 

(a)           (b) 

 

55 300 290 300

1000

300 290 300

1000

300 290 300 55

1000

Detail 2 Detail 3 Detail 4

110 110120 120

120120
 

(c) 

1 34 2 1 3 5 6 7 7 5 6 3 5 768

 

             Detail 1                                     Detail 2                            Detail 3                              Detail 4 

Legend: (1) GFRP beam; (2) GFRP column; (3) GFRP square profile; (4) steel profile; (5) GFRP skin; (6) GFRP U profile; 

(7) PU foam core; (8) steel bolt 

Fig. 8.16. Schematic presentation of the floor prototype: (a) frame structure; (b) frame structure and sandwich 

floor panels; (c) cross section a-a (all units in millimeters). 
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8.3.2  Assembly process 

The floor prototype was developed for disaster areas where special tools and equipment, as 

well as experimented workers, are scarce. Consequently, these issues were also considered in 

the design process of the prototype. Fig. 8.17. 

Fig. 8.17 shows a general view of the process needed to assemble the floor of the developed 

prototype. The process starts by placing the four columns in their positions (note that for the 

floor test proposed in of this paper, short columns with approximately 1/3 of the real height 

were used), and then connecting three of them by beams (Fig. 8.17a and Fig. 8.17b). 

Afterwards, the three sandwich panels were installed. Panels were handled and mounted 

along the beam-panel connections (Fig. 8.17c), placing the panel to panel connectors after 

positioning the first and the second panels (Fig. 8.17d). After assembling the third panel, the 

last beam of the frame was installed and connected (Fig. 8.17e). Fixing ropes were used 

along the process for facilitating the adjustment of the panels. Fig. 8.17f shows the floor 

prototype after has been assembled, which required less than 2 hours and three people 

without any special equipment. 

 

Fig. 8.17. Stages of the assembling process: (a) placing columns; (b) connecting beams to the columns; 

(c) mounting panels along beam-panel connection; (d) placing panel-panel connector; (e) installing the last 

beam; (f) final prototype. 
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8.3.3 Experimental program  

The assembled floor modular prototype was evaluated under a uniform load. Following the 

UNHCR recommendation [86] for an emergency house, a uniform load of 1.6 kN/m2 was 

selected as service load (SLS). That load was increased 1.5 times to evaluate ultimate limit 

state (ULS) of panels as traditionally defined in the Eurocodes. The structure was loaded 

using a swimming pool of circular area and 6.25 m2 as illustrated in Fig. 8.18a. Volume for 

filling the pool was calculated based on the area of the three jointed sandwich panels. A total 

of 2160 litters was needed to reach the maximum value of 2.4 kN/m2.  

The monitoring system adopted for this test is displayed in Fig. 8.18b. Eleven LVDTs (D1 to 

D11) with a stroke ranging from 25 mm to 50 mm were placed at the bottom of the prototype 

to measure vertical deflection, while 15 strain gauges (S1 to S15) were positioned on the 

bottom surface of the beams and panels to register the strains during the loading process.  

 
(a) 



Chapter 8 Residential floor modular prototype 
 

154 

 

S2

S1

D2

D1

S5

S4

S3

D5

D4

D3

S7

S6

D7

D6

D11

D9

D10

D8

S8

S9

S10

S11

S12

S15

S13

S14

5
0
0

5
0
0

5
0
0

5
0
0

5
0
0

5
0
0

1
2
0

1
2
0

C2C1

C4C3

Beam 1

Beam 2

B
e
a
m

 3

B
e
a
m

 4

3
2
4
0

120 3000 120

3240

FP 3

FP 2

FP 1

 
(b) 

Fig. 8.18. Prototype test setup: (a) loading procedure; (b) monitoring system. 

8.3.3.1 Experimental results 

For a more comprehensive analysis of the results obtained in the test with the floor prototype, 

it was verified opportune to group the results measured in LVDTs and strain gauges. The 

arrangement of these groups takes into account the structural symmetry conditions in order to 

determine the average results in each group. Hence, regarding to LVDTs (all subsequent 

LVDTs names are related to Fig. 8.18b), Group DI corresponds to the LVDT placed at the 

centre of the middle panel (D4). Group D2 consists of the LVDTs placed at the middle of the 

interior edges of the panels (D2-D3 and D5-D6). Group DIII are composed of the LVDTs 

placed at the centre of the lateral panels (D1 and D7). Group DIV is formed by the LVDTs 

disposed in the transversal beams (D10 and D11). Group DV corresponds to the LVDTs 

placed on the longitudinal beams (D8 and D9). Similarly, for the case of strain gauges, the 

results were collected in the following seven groups (Fig. 8.18b): Group SI (S12 and S13), 

Group SII (S4), Group SIII (S2 and S6), Group SIV (S1 and S7), Group SV (S14 and S15), 

Group SVI (S9) and Group SVII (S8 and S11). Table 8.6 lists the average values registered 

for each of the mentioned groups at the end of the test (i.e. for a load applied equal to the 

ULS conditions), while the registered deflection-time and strain-time relations are depicted in 

Fig. 8.19. 
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Table 8.6. Registered deflection and strain in the floor prototype. 

 Group I Group II Group III Group IV Group V Group VI Group VI 

Deflection (mm) -33.37 -30.97 -21.63 -13.79 -4.6 --- --- 

Strain (μstrain) 786.19 637.53 569.27 420.08 235.72 101.39 27.33 

  

The end of the loading operation corresponds to the instant when the measured entity 

remained almost constant. Both deflection-time and strain-time relationships revealed that the 

floor prototype developed a linear behaviour for the entire applied loading process. The 

higher deflection registered in the centre of the middle panel (LVDT of Group DI) was 

expected since this corresponds to the centre of the floor, in the panel that was mainly 

supported only by two edges. Conversely, since the lateral panels were supported along three 

edges, the deflection in the centre of these panels (Group DIII) were much smaller. The 

deflection in the groups DI and DIII indicates the floor panels presented a two-way bending 

behaviour, in longitudinal (parallel to the direction of the connection between panels) and 

transverse directions, being bending in the longitudinal direction more pronounced than in 

transverse direction. Confirmation of difference in the load transmission on the panels may be 

also seen by comparing results of the fourth and fifth groups of LVDTs, whose analysis 

showed that the load was not distributed equally by all beams: transversal beams registered 

nearly a triple deflection of that measured in longitudinal beams.  

Furthermore, strains registered on the transverse beams (Group SI) were higher than other 

measured strains (Group SV). This demonstrates that the load was not uniformly distributed, 

but transversal beams carried out more load than longitudinal beams, in which the average 

strain recorded was 30% lower. Comparing the strain measured in the strain gauge located in 

the centre of the middle panel in longitudinal direction (Group SII), with those recorded in 

the strain gauge placed in the middle of the other two panels, also in longitudinal direction 

(Group SIV), a difference of nearly 65% was registered. This result is equivalent to what was 

observed with deflections, and is explained by the support conditions, since middle panel is 

supported on two opposite edges, while exterior ones behaved as panels mainly supported on 

three edges. Because of this, a similar result is obtained when comparing gauges in transverse 

direction (Strains - Group SVI and Strains - Group SVII).  
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(a)                                                                          (b) 

Fig. 8.19. Floor prototype flexural performance: (a) deflection versus time; (b) strain versus time. 

Furthermore, strains registered on transversal beams (Group SI) were higher than other 

strains. This demonstrates that the load was not uniformly distributed, but transversal beams 

carried out more load than longitudinal beams, in which average strain computed was 30% 

lower. 

The long-term maximum deflection of the prototype may be estimated considering the 

experimental results and using Eq. (6.4). For this purpose, and for the deflection 

corresponding to the ULS condition (2.4 kN/m2), deflection registered on the transversal 

beams (13.79 mm) should be subtracted from the deflection registered in the middle panel 

(33.37 mm), resulting a value of 19.58 mm. Substituting this value in Eq. (6.4), an estimated 

long-term deflection of 9.86 mm is obtained. Taking into account that in the prototype the 

length of panels is equal to 3000 mm, the estimated value fulfils the deflection criterion 

recommended by CNR [80] (L/250=12 mm). As in the other conducted tests, the GFRP 

strains were significantly lower than the ultimate strain measured in coupons of GFRP skins. 

8.3.4 Analytical assessment 

As demonstrated in Chapter 6, for the present solution of sandwich panels the contribution of 

shear deformation for the total deflection is marginal. Hence, neglecting shear effects in the 

evaluation of the total deflection of the modular prototype seems perfectly acceptable. 

Accordingly, the classical laminate plate theory (CLPT) can be used to analytically predict 

the floor prototype deformational behaviour. 

The prototype was considered to be subjected to an uniform distributed load. In addition, it 

was considered that the sandwich panels were subjected to two kinds of support conditions: 
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(i) the exterior panels (FP1 and FP3) were considered as simply supported panels along three 

edges, while the other edge of these panels was assumed free of any displacement restriction, 

(ii) middle panel (FP2) was considered supported along only two edges, being the other two 

edges free of any displacement restriction. 

Accordingly, Eqs. (11) and (12) are proposed for calculating the midspan deflection in panels 

FP1-FP3 (exterior panel) and FP2 (interior panel), respectively. Comprehensive information 

of the derivation methods can be consulted elsewhere [28, 31, 99]. 

4

max 0.01302
( )eq

qL
w

EI
                              (8.3) 

4

max 0.0071
( )eq

qL
w

EI
                    (8.4) 

where q  is the uniform distributed load, L  is the length of the panel and ( )eqEI  is the flexural 

stiffness of the panel obtained by Eq. (8.5). 
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where b  is the width of the panel, fE  is the Young’s modulus of the GFRP skin, ft  is the 

thickness of the GFRP skin, ct  is the thickness of the PU foam core, n  is the number of the U-

shape GFRP profiles (both located in the interior of the panel and at edges), and UE , Ut , ub  

are the Young’s modulus, thickness and width of those profiles, respectively.  

From Eq. (8.3) a deflection at midspan of the middle panel (maximum deflection) of 18.7 mm 

was computed for a uniform load of 2.4 kN/m2 and a flexural stiffness determined from Eq. 

(8.5). This value is close to the maximum slab deflection of 19.6 mm which experimentally 

was obtained. In the case of exterior panels, the maximum deflection was occurred at the 

middle span of the free edge, and resulted in a value of 10.2 mm, calculated based on Eq. 

(8.4). Experimental observations showed a deflection of 12.6 mm. Therefore, experimental 

results obtained in the exterior panels are also coherent with the analytical ones. The 

differences found can be explained by the fact that the continuity between panels were 

neglected in this assessment. 
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Finally, load distribution factor (
LDF ) was evaluated to compute the working proportionality 

of the floor prototype in each longitudinal and transverse direction. This factor was assessed 

on the longitudinal and transverse GFRP beams according to Eq. (8.6). 

( )Lb LDF Lb Tb                        (8.6) 

where Lb  and Tb are the experimentally measured beam deflection in ULS condition in the 

longitudinal and transversal direction directions respectively. Since deflection values 

experimentally measured on the transverse and longitudinal beams was 13.8 mm and 4.6 mm, 

respectively, the value of 
LDF  was calculated as 0.75 and 0.25 in transverse and longitudinal 

beams, respectively.  

8.3.5 Numerical simulation 

The methodology herein adopted in the numerical simulation is the same implemented in the 

simulation of the first floor modular prototype. In order to simplify the model, only one-

quarter of the structure was simulated. A uniform distributed load of 2.4 kN/m2 was applied 

on the top surface of the sandwich floor panels to simulate effects of experimentally applied 

uniform loading. The simulation is depicted in the Fig. 8.20. 

 

        (a)                                                                             (b) 

Fig. 8.20. Second floor modular simulation:(a) floor prototype; (b) frame GFRP structure (dimensions in mm). 

8.3.5.1 Numerical simulation results  

Table 8.7 presents the deflection and strain values experimentally measured in the floor 

prototype, at different monitoring positions, and compares them with the results extracted 
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from the FE simulations. There is a good agreement between the results obtained from FE 

model and the ones registered experimentally. Average difference in terms of vertical 

deflection is found to be 1.01, with a Coefficient of Variation (CoV) of 12.40 %, while in 

terms of deformation, average difference is less than 4% with a CoV of 13.00 %. 

Table 8.7. Comparison between experimental and numerical FEM results in the floor prototype. 

 Exp. FE Exp. / FE 

Deflection (mm)    

Midspan of middle panel  33.46 31.01 1.08 

Midspan of side panel  20.62 19.33 1.07 

Midspan of longitudinal beams    4.60   5.59 0.82 

Midspan of transversal beam  13.80 13.08 1.06 

 Average 1.01 

 CoV 12.40% 

Strain (Micro strain)    

Midspan of middle panel  637.53 595.79 1.07 

Midspan of side panel  420.08 435.06 0.97 

Midspan of longitudinal beams  235.72 301.89 0.78 

Midspan of transversal beam  786.19 781.67 1.01 

  Average 0.96 

  CoV 13.00% 

 

The colour representing the vertical displacement field (in y direction) obtained from the FE 

model is depicted in Fig. 8.21. A maximum vertical deflection of 30.63 mm was registered in 

the central part of the pavement, at middle span of middle panel. It is interesting to note that 

the GFRP connector bridging internally the two panels while was not connected to the 

transversal beams. 

 

Fig. 8.21. Deformed shape for the modular FE models (deflections, in millimetres). 

As a results, the contour plot could be classified into two dominates. The first one is related 

to the middle panel which contour related to the maximum deflection, localized in the middle 

of the span. This indicates that the middle panel is mainly working as a one-way slab. This is 

also confirmed by the deflection of the beams where one can notice that deflection in the 

frame beams placed orthogonal to the panels’ length (13.08 mm) reach a higher deflection 

than beams parallel to them (5.59mm). The second dominate could be distinguished at the 

sides panels. Since these panels are supported along the beams, hence side panels working as 
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a panel supported along three-spans and showing the maximum deflection of 19.33 mm along 

the free edge (the edge which is contact with the middle panel). 

Stresses developed at the external faces of bottom and top GFRP skins in the floor sandwich 

panels, due to the load applied (2.4 kN/m2) in the longitudinal and transversal directions, are 

shown in Fig. 8.22. Checking the level of stresses revealed that all the stresses were below 

the ultimate strength limit with adequate safety factor. A direct conclusion from this 

observation is that the proposed panels withstand the ULS load level as they are only 50% 

above the SLS limit according to Eurocode 1 [85]. The stress field installed in the middle of 

the panels and through their edges evidence that panels are working as two-way slabs, being 

the longitudinal the main working direction.  

  
(a) (b) 

  
(c) (d) 

 

Fig. 8.22. Distribution of stress in the GFRP skins: (a) longitudinal direction-bottom skin; (b) transversal 

direction-bottom skin; (c) longitudinal direction-top skin; (d) transversal direction-top skin (stresses, in MPa). 

8.3.5.2 Load distribution factor and beam-panel connection flexibility 

Two new simulations were performed on the floor prototype in order to evaluate the 

influence of the panel-panel and the beam-panel connections. The first, named “full-

connection” model, assumes perfect bond in the panel-beam connection (i.e. considers full 

composite action by using a tie interface between the squared GFRP profiles and the U-shape 

GFRP profiles); and the second, called “continuous-slab” model, defines a continuous slab 

with dimensions that correspond to the sum of the three jointed panels simulated in the floor 

prototype. In this last case, top and bottom skins, as well as PU foam, covered 3×3 m2 

without any interruption, U-shape profiles were placed inside the slab at the same positions 
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that were previously set for the three jointed panels, and since no connection existed, 

connection profiles between panels were not considered.  

Fig. 8.23 compares the mechanical behaviour of the new simulations with the reference one 

(i.e. the original FE model) in terms of load versus deflection registered at the center of the 

slabs. All simulated cases follow a linear-elastic relationship between applied load and 

vertical deflection, but the maximum deflection is clearly different in each one. By estimating 

stiffness as the slope of the load vs deflection curves, it may be found that flexural stiffness is 

about 30% higher in the continuous slab and about 45% higher in the full-connection model, 

than in the reference slab.  
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Fig. 8.23. Load versus maximum deflection in the different system proposed. 

Accordingly, based on the Eq. (8.2) coefficient   was calculated to be 0.57. Thus, a direct 

conclusion drawn from here is that, when using the proposed connection in the prototype, 

which acts as a semi-fixed support conditions, a stiffness reduction of a 57% respect to a 

fixed support condition can be expected. 

The contour plot representing the vertical displacement (in y direction) obtained from FE 

models is presented in Fig. 8.24. In the case of the reference model, the deflection in the 

middle panel was 46% higher than the in the side panels. This represents that the middle 

panel was mainly working in one direction (parallel to panel-panel connections), which is 

confirmed by the deflection of the beams placed orthogonally to the panel’s length: deflection 

of those beams reached 12.87 mm, while deflection of beams parallel to the panel’s length 

had a deflection of only 6.78 mm. However, in the case of the continuous-slabs and full-

connection model, the deflection of the middle panel is only 35% higher than the deflection 

in the side panels, and the flooring system showed a two-way slab behaviour. That confirms 
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the mentioned predominant behaviour of the prototype in one direction, which is explained 

by the existence of the U-shape profiles and by the type of the connection to the side panels.  

 

(a)                                                (b)                                                  (c) 

Fig. 8.24. Deflection contour plots (in mm) for: (a) reference slab composed by three jointed panels; (b) 

continuous-slab model; (c) full-connection model. 

8.3.5.3 Influence of the aspect ratio and the slenderness ratio 

Sandwich panel aspect ratio, r, is defined as L/w, where L and w are the panel’s length and 

width, respectively. Slenderness ratio, rs, is defined as h/w, being h the height of the sandwich 

panel. Both parameters have significant impact on the stiffness and on the deformability of 

the sandwich floor panel. They also have an impact on economic aspects of the floor 

prototype developed: changing the slenderness ratio enables exploring the variation of 

stiffness with a minimum cost, since PU foam is the less expensive constituent of the system. 

Aspect ratio variations relate the deformational response of the panels with their transport 

costs (due to dimensions).  

New simulations, varying both the aspect ratio and the slenderness ratio, were conducted. In 

general, maintaining the width of the panels constant contributes to not changing significantly 

the transport conditions. Therefore, this dimension was kept constant and equal to 1 m in all 

simulations. The values considered for the panels span length were 1.0 m, 1.5 m, 2.0 m, 2.5 

m, 3.0 m, 3.5 m and 4.0 m, which result in aspect ratio values of 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 

and 4.0, respectively. Similarly, the thickness of GFRP skins, was kept constant and equal to 

5 mm in all simulations, because this material is significantly more expensive than PU foam 

core. Values considered for PU foam thickness were 60 mm, 80 mm and 100 mm, which 

leads to panels with a total height of 70 mm, 90 mm and 110 mm and results in slenderness 

ratio values of 0.07, 0.09 and 0.11, respectively. 

Additionally, the connection conditions between GFRP beams elements and sandwich floor 

panels were evaluated for the following two scenarios: (i) semi-fixed (i.e. like the actual one 
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on the experimentally tested prototype) with the designation of ‘SC’; (ii) fixed connection, 

called ‘FC’. 

A total of 42 models were created and analysed under ultimate load conditions in residential 

buildings by assuming a uniform distributed load of 2.4 kN/m2 on the top surface of the 

sandwich floor panels. Selected representative results are indicated in Table 8.8. 

Table 8.8. Maximum predicted longitudinal strain in residential floor system under ultimate uniform load of 2.4 

kN/m2. 

/sr h w  /r L w  

Longitudinal maximum strain (με) 

Middle of 

middle panel 

Middle of 

side panel 

Longitudinal 

beam 

Transversal 

beam 

SC FC SC FC SC FC SC FC 

0.07 1 92.4 91.8 71.8 84.9 19.8 16.9 274.0 228.8 

2 324.1 222.3 216.3 174.7 106.1 121.7 532.9 414.0 

3 595.8 353.6 435.1 280.7 301.9 307.3 781.7 555.5 

4 881.6 523.0 664.2 395.3 613.8 570.9 1043.0 644.6 

0.09 1 71.3 59.1 57.0 66.0 20.4 13.1 259.7 207.9 

2 239.0 175.7 172.5 157.3 94.1 99.0 503.6 365.7 

3 458.5 305.8 368.9 283.5 255.1 256.6 722.2 479.5 

4 733.4 480.3 610.8 440.6 502.3 469.1 966.4 559.6 

0.11 1 62.0 41.3 47.6 56.1 22.5 8.0 250.3 180.6 

2 200.4 144.4 148.8 141.5 77.3 76.8 493.2 309.3 

3 396.9 268.4 330.4 274.6 193.7 201.8 710.0 399.7 

4 662.1 448.7 571.5 459.6 388.5 372.5 967.9 459.0 

ch : PU foam core thickness; 
fh : skin thickness; L : length of the floor panel; w :width of the floor panel; 

sr :slenderness ratio; r :aspect ratio; SC: semi-fixed connection; FC: fixed connection. 

 

Table 8.8 reveals that, in all cases, the maximum strain values in the residential floor system 

under ultimate uniform load are significantly below the ultimate strains obtained in the 

material characterization. It can be seen that the maximum strain is always occurring in the 

transversal beam. On the other hand, increasing the slenderness ratio leads to a reduction on 

the maximum strain in different components, due to contribution of the flexural stiffness of 

the panel.  

Increasing the slenderness ratio from 0.07 to 0.11 in the shortest panels ( 1000L mm ) 

provided a decrease in the maximum strain that varied between 45% and 65% when the four 

considered components of the panel and two connection conditions are analysed. In this case, 

the highest decrease occurred in the modular system with ‘FC’ connection. However, the 

range of the aforementioned values is altered with the increase of panel’s aspect ratio, 

varying between 63% and 82% in the longest panels ( 4000L mm ). 

Predicted vertical deflection of the residential floor system under different slenderness and 

aspect ratios with ‘SC’ support conditions is depicted in Fig. 8.25. In all cases, the maximum 
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deflection occurred at the centre of the middle panel. Increasing geometric aspect ratio range 

from 1 to 4 leads to an increase in the maximum middle span deflection. Conversely, 

increasing slenderness ratio results in decreasing the maximum midspan deflection. In this 

case, the highest deflection occurred in the modular system with geometric aspect ratio and 

slenderness ratio of 4 and 0.07, respectively. 

 

Fig. 8.25. Vertical deflection of the residential floor modular system, considering different slenderness and 

aspect ratios, with ‘SC’ support condition (values in millimeters). 
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The Italian standard CNR [80] is commonly used to verify the performance of composite 

sandwich panels under service conditions. Accordingly, the maximum deflection registered in 

long term for the quasi-permanent load (equal to 30% of the service load) should be less than 

L/250. Deflection in long term for a panel ( LT ) can be estimated as: 

LT SLS Creep                         (8.9) 

where, SLS  is the deflection corresponding to the service condition (in this case, for a 

uniform distributed load of 1.6 kN/m2) ,   is the proportion of the load in quasi-permanent 

load respect to load in service (i.e. 30%), and Creep  is an estimated coefficient due to effects 

of creep.  

Computed results of a creep test previously developed on the studied sandwich panels yielded 

an increment of a 252% in the deflection of panels due to viscoelastic effects after the 5 years 

assumed to be the service life of the structure. Hence, value for coefficient Creep can be set to 

2.52 in this investigation.  

For each of the 42 model studied, the deflection corresponding to long term can be computed 

based on Eq. (8.9). It should be mentioned that since floor sandwich panels are supported on 

exterior beams, comparison to the standard prescribed value should be done by subtracting 

deflection of those exterior beams. Obtained results are depicted in the Fig. 8.26. Results in 

this figure are based on: (i) the aspect ratio; (ii) the slenderness ratio; and (iii) the type of the 

connection between GFRP beam’s elements and sandwich floor panels.  
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Fig. 8.26. Predicted long term deflection in floor panel modular system. 
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Fig. 8.26 could be utilized in the preliminary design of composite sandwich panels to be 

applied in residential buildings. In this figure, maximum deflection criterion recommended 

by CNR [80] is plotted by horizontal dotted lines. Accordingly, all of the proposed panels 

except than the panel designated by 0.07-SC could be selected.  

Fig. 8.26 also shows that in some geometric aspect ratios, the predicted maximum long term 

deflection of the proposed residential pavement is much lower than the serviceability limit 

criteria. This shows a possible overdesign of the modular system, which may be put down. 

Thus, a study that indicates when to reduce the number of U-shape GFRP profiles from 4 

profiles to 3 and from 3 to 2 profiles is interesting to carry out. Hence, in a similar way as 

indicated in the case of floor prototype with 4 U-shape profile, 84 models were studied for 

the floor prototypes with presence of 3 and 2 U-shape profiles. The deflections correspondent 

to the long term with respect to the aspect ratios and slenderness ratios are depicted in Fig. 

8.27. 
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Fig. 8.27.Floor prototype with variation of U-shape profiles: (a) 3 U-shape profile; (b) 2 U-shape profile. 

 

8.4 Conclusion  

This chapter has presented two developed composite floor prototype modulus to be utilized 

as a part of a temporary houses. The prototypes consist of a skeleton of GFRP tubular 

pultruded profiles, and the slabs formed by two sandwich panels (first prototype) and three 

sandwich panels (second prototype). A fitting connection system is utilized to appropriately 

assemble the different components. The developed prototypes are capable of being 

prefabricated and easily transported to the site, and rapidly installed. This functionality 

illustrates the high potential of this system to be used in prefabricated emergency houses. 
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Experimental programs have been conducted, studying the behaviour of modular floor 

prototypes subjected to residential service loads. An analytical assessment has been 

developed to conduct a deeper study of the flexural behaviour of the prototype. Additionally, 

3D finite element simulations have been proposed to assess behaviour of the prototypes and 

to evaluate types of the connection between sandwich panels and GFRP beams element. 

Some parametric studies have been carried out to explore the potentiality of the proposed 

material and structure concept for pavement of higher span length to extend this concept for 

other markets. The main concluding remarks drawn from this work can be listed: 

 The GFRP composite sandwich panels and pultruted profiles were integrated in a floor 

modular prototypes. This made it possible to prefabricate a building that is easily 

transported to the site and rapidly installed; 

 Using the proposed connections and thanks to the lightness of structure members, the 

assembly/disassembly process of the prototypes were performed in less than 2 hours by 

three persons without any special equipment. As such, this functionality illustrates the 

high potentiality of this system to be used as a prefabricated emergency house; 

 The floor prototypes present a flexural behaviour more predominant in one direction. 

However, beam-panel and panel-panel connectors provided the floor panels to behave as 

a two-way spanning slab with load distribution factor of around 75% and 25%, for 

longitudinal and transverse direction, respectively. The excellent performance showed by 

the proposed prototype, along with the fulfilment of long-term behaviour requirements, 

highlighted the potential capacity of the proposed systems for being used as a temporary 

floor building. 

 For the level of the load considered and typical of a building structure, floor modular 

systems present an elastic linear behaviour. Their maximum deflection under service 

loads, taking into account the viscoelastic behaviour, fulfil the requirement established 

by standard [80]. 

 An analytical expression using the classical laminate plate theory was utilized to predict 

maximum deflection in the interior and exterior sandwich panels of modular prototype. 

The predicted result by analytical expressions were also coherent with the experimental 

ones.   

 A FE models were developed. The models showed to be capable of predicting the actual 

behaviour of the modular systems under designed loads. Accordingly, the models were 

used to assess the behaviour of proposed connection between sandwich panels and GFRP 

beam elements. It was noticed that employing the proposed connection provided some 
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degree of freedom in the support and acting this support as a semi-fixed. Stiffness 

reduction factors of 52% and 57% were computed in the case of the first and second 

modular prototype systems. That was meaning that reduction of around those values 

occur in the stiffness of systems respect to a fully fixed support condition, resulting in 

increments in the floor panel flexibilities. 

 Some graphics were developed for assisting on pre-design of composite sandwich panels 

for residential building product applications with different ratios of span/width and 

thickness/ width.  

 Flexural performance of the floor modular prototype with variation of internal GFRP ‘U’ 

profiles was assessed numerically. It was noticed that, by decreasing the number of 

profile from 4 to 3 and 2 resulted in increasing deflection due to decreasing flexural 

stiffness of the panels. It was concluded that removing one U-shape profile had an effect 

in 10% increasing maximum deflection of the prototype. 
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9 Chapter 9: Conclusion and future 

developments 

Building industrialization through prefabrication lead to a reduction in the cost of buildings 

and to the improvement of the manufacturing quality. Moreover, after a natural disaster, 

accessibility to the roads is limited, so low weight of the prefabricated dwellings components 

is a very convenient requisite for their transport. Recently, composite sandwich panels have 

been increasingly used in structural applications due to some main features such as its high 

strength and stiffness to weight ratio, its immunity to corrosion, and a low thermal and 

acoustic conductivity. In the past, efficiency of using sandwich panels has been proved in 

several structural applications such as cladding, facades, roofing and walls. 

Settling down surviving communities in shelters or temporary houses is one of the major 

concerns after a natural disaster. This issue remains difficult to manage despite decades of 

experience. Availability of temporary housing is crucial since it allows people to quickly 

commence their daily activities such as school, working and cooking. Even though there are 

different sorts of temporary buildings made of steel, wood and plastic, many of these 

temporary dwellings do not offer a basic level of security and protection for its occupants, 

and/or result in very complex and expensive solutions. Nowadays, a clear trend is observed in 

the temporary buildings trade towards industrial manufacturing and prefabrication. Not only 

did the proportion of factory production increase, compared to on-site manufacturing, but the 

degree of prefabrication also, increased leading to higher quality control and increasing 

potential for a better production economy. 

The composite solution herein proposed uses GFRP profiles and sandwich panels and fits 

very well into this trend, as it is capable of being prefabricated, transported to the disaster 

area and easily assembled. Likewise, pultruded GFRP composite profiles show a series of 

promising advantages such as low production costs, low maintenance, high durability and 

immunity to corrosion and high strength. 
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The present study was motivated by introducing a residential modular temporary building in 

the scope of the ClickHouse R&D Project for accommodating dislocated families in urgent 

situations such as occurrence of natural disasters. Proposed building is composed of a frame 

structure, panels and a tailored connection system. The frame structure and connection are 

composed of glass fiber reinforced polymer (GFRP) pultruded tubular profiles. While for the 

panels, composite sandwich panels made of polyurethane foam (PU) core and GFRP skins, 

are utilized. A new connection system is defined for connecting adjacent members.  

The main characteristics for designing ‘ClickHouse’ which took into account could be cited 

as: (i) light weight; (ii) ease of transport; (iii) the speed and ease of assembly and 

disassembly; (iv)compliance with regulatory requirements, including structural safety and 

thermal performance, and the latest international recommendations for this type of housing 

system; (v) sel-sufficient with regard to energy supply requirement and water; and (vi) 

competitive cost compared with conventional solutions such as metal and wood.  

This chapter presents all the summaries and concluding remarks from the presented thesis 

and presented in the same logical order depicted from chapters 3-8. 

9.1 Temporary residential building  

The designed temporary house was composed of a single-story building with a rectangular 

plan of 6.12 × 3.12 m2, formed by connecting two blocks of 3.12 × 3.12 m2 and a height of 

3.12 m for accommodating a family of 4-5 members. All of the house’s components 

including walls, floors and roofs were designed in somehow to incorporate all the for water 

supply, drainage, sewage, and electricity. The proposed building is composed by three main 

components namely as: framed members, panels and connection.  

The framed members including beams and columns are selected by using tubular GFRP 

pultruded profiles. However, the panels are composed of a PU foam core sandwiched 

between two layers of GFRP skins, adhered using epoxy resin. Accordingly, three types of 

slabs are proposed to be used in this thesis as:  

(i) floor panels consisted of a sandwich panel of 3.0 m of length, 1.0 m of width and 0.07 

m of height with GFRP skins of 5 mm thickness, a foam core of 60 mm, and two 

interior GFRP ribs made of pultruded U60×55×5 profiles for increasing flexural 

stiffness of the panels and two exterior ribs made of the same profiles used on 
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each side of the panels for allowing connection of the panels to the other elements. 

The roof panel’s weighted around 70±2 kg. 

(ii) roof panels, with a dimension of 3.0 m of length, 1.0 m of width and 0.19 m of height, 

with GFRP skins of 5 mm thickness, and a PU foam core of 180 mm. To allow the 

connection of panels with other panels, three U-shape GFRP pultruded profiles 

(U60×55×5) were place and adhesively bonded on each of the longitudinal outer 

faces of the sandwich panel. The roof panel’s weighted around 100±2 kg. 

(iii)wall panels, have a dimension of 2.88 m of height, 0.96 m of width and 0.64 m of 

thickness, with GFRP skins of 2 mm thickness, and a PU foam core of 60 mm. U-

shape GFRP profile (U60×55×5) were adhesively bonded to the skins and PU 

foam core around the edges of the panels during the manufacturing process in 

order to facilitate the connecting of wall elements to the other elements such as 

wall panel, GFRP beams and GFRP columns. Each panel’s weight was 

approximately 42±2 kg, making them easy to transport and install on-site.  

  

Regarding to the connection system, three types of the connection are proposed as: (i) beam-

column, (ii) beam-panel and (iii) panel-panel.  The beam-column connection is proposed by 

tighten GFRP beams to GFRP columns with a series of M8 bolts and short steel tubular 

profiles. The beam/column-panel connection system is solved by adjusting U-shape profile 

around the panel to a squared tubular profile (this profile is mechanically and adhesively 

bonded to the column and beam). Finally, the panel- panel connection system is proposed by 

a similar approach as in the case of beam/column-panel connection system by adjusting the 

U-shape GFRP profiles around the panel to the two connected GFRP squared tubular profiles 

as a connector.  

9.2 Connection system  

The efficiency of the proposed fitting connection system in jointing sandwich panel 

experimentally assessed by friction and hybrid techniques in both longitudinal and transversal 

directions. In the friction technique a connector (two connected GFRP tubular profiles) is 

placed inside the U-shape GFRP profiles. Likewise, in hybrid technique mechanical fastener 

used for connecting the connector to U-shape profile in the friction technique.  
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The main concluding remarks drawn from this experience can be listed as: 

1- Regarding to the longitudinal direction, both friction and hybrid techniques 

represented the same amount of the ultimate load and using mechanical fastener in 

hybrid technique did not have any influence in increasing flexural capacity of the 

specimens. 

2- In the transversal direction, connected panels with hybrid techniques represented 

higher load than friction technique.  

3- In the longitudinally jointed panels in both friction and hybrid techniques, the same 

failure mode was observed. The failure mechanism started by debonding of PU foam 

core from GFRP skin and eventually progressed by failure of U-shape profile in the 

sandwich panels.  

4- In the transversally connected panels, in the friction technique the failure initiates in 

the GFRP U-shape profiles while in the hybrid technique the failure occurred in the 

connector.  

9.3 Single and jointed floor sandwich panels 

The experimental, analytical and numerical investigations addressed flexural performance 

of single sandwich panels and jointed sandwich panels. The following conclusions may 

be drawn as: 

1- Carried out experimental program on the small scale sandwich panels in the failure 

test showed that, the presence of the end U-shape GFRP profiles have not significant 

effects in flexural strength and stiffness of the panel. In the panel without end U-shape 

profile, the dominate failure is reported as a shear failure while in the panel with that 

profile, the debonding between the bottom face of the GFRP profile and the GFRP 

bottom skin is the dominate failure mechanism. 

2- Long-term behaviour of the small scale panels with two support conditions namely 

without end U-shape GFRP profile and with that profile was studied. It was observed 

that, the support conditions have not any influence for the creep behaviour of the 

panels. 

3- Considering 5 years as a service life for the temporary building, maximum deflection 

is predicted as 2.5 times higher than initial elastic deformation of the panel. 

4- In the full scale tested panels, it is noticed that, ultimate carrying capacity of the 

sandwich panels is substantially greater than the design demand level of the load. 
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Additionally, full scale experimental failure test showed that the failure occurs due to 

a local outward buckling known as wrinkling. 

5- Regarding to the jointed panels, adequate flexural performances in fulfilling the 

requirement standards in both SLS and ULS loading conditions observed. Moreover, 

the proposed connection system demonstrated its effectiveness in transferring loads 

between the panels and guaranteeing deformation compatibility of the panels. 

6- Capability of FSDT in estimating flexural performance of the single sandwich panels 

and jointed panels was observed. Analytical study showed that, in the panel without 

any ribs, the contribution of flexural and shear deformation is about 60% and 40 % 

respectively. However, by increasing the numbers of the ribs, shear contribution is 

decreased by a value of around 7% per each rib. 

7-  Nonlinear three-dimensional finite element simulation showed that, under ULS 

loading conditions, the midspan deflection has increased about 10% and 20% when 

the number of ribs has decreased from 4 to 3 and from 4 to 2. Furthermore, 

effectiveness of the connection in increasing flexural stiffness in jointing panels was 

noticed. It was concluded that the connector caused an increase of flexural stiffness by 

a factor of 1.04 and 1.07 respectively.  

9.4 Axial performance of jointed sandwich wall panels 

A new system for jointing sandwich wall panels was proposed. The behaviour of the single 

panels as well as jointed panels experimentally studied by a self-balanced reaction axial 

loading frame. Experimental results were compared using some analytical equations. The 

following conclusion drawn as: 

1- Linear elastic responses of the single wall panels and jointed wall panels were 

observed prior to the failure.  In both single and jointed panels, the failure initiate as a 

localized failure at compression side of GFRP skin. The localized failure propagates 

towards the GFRP skin and PU foam core due to the load increase.  Finally, all the 

panels failed due to global instability of the system.  

2- It was concluded that in global buckling failure of jointed panels, axial load increased 

by a factor of 2.52 of the buckling failure load obtained in single wall panels. The 

presence of the connector increased the global buckling load by a factor of 1.28. 

However, in the jointed panels that suffered localized GFRP skin wrinkling failure 
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was nearly 2.0 times higher than the corresponding failure load measured in single 

wall panels.  

1. Two kinds of stresses, namely interfacial out-of-plane stress and critical wrinkling 

stress were developed. Interfacial out-of-plane stresses between PU foam core and 

GFRP skins occur, and that these stress values were higher than the tensile strength of 

the PU foam, resulting in debonding in both single and jointed panels. However, the 

calculated critical wrinkling stresses were in good agreement with the experimental 

values measured in both single and jointed panels. 

9.5 Residential floor modular prototype 

Two residential floor modular prototypes are introduced. Experimental programs were 

conducted to evaluate the performances of the developed basic units floor prototypes as a 

structure designed to support serviceability and ultimate load conditions in residential houses. 

The performances included the feasibility of assemblage and fulfilling the requirements by 

standards in short-term and long-terms.  

Some analytical and numerical assessments were undertaken to predict the actual behaviour 

of the modular systems and connection effectiveness under designed load. The main 

conclusion drawn as: 

1- The high potentiality of proposed systems to be used as an emergency house in 

disaster areas was observed due to quick assembly/disassembly process without using 

any special equipment. 

2- For the level of the load considered, the floor modular prototype presented an elastic 

linear behaviour. The maximum deflection under service load tacking into account the 

viscoelastic behaviour, fulfilled the standard requirement. 

3- Nonlinear finite element simulations showed that the proposed fitting connection 

system used for jointing different components of the floor modular prototype, 

working as a semi-fixed connection. It is worth mentioning that, the stiffness 

reduction factor was computed by a value of nearly 50%. 

4- Some graphics were represented in for assisting on pre-design of composite sandwich 

panels for residential building product applications with different ratios of span/width 

and thickness/ width.  
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5- Flexural performance of the floor modular prototype with variation of internal U-

shape GFRP profiles was simulated. It was noticed that, decreasing the number of 

profile from 4 to 3 and 2 resulted in increasing deflection with the value of 10% per 

each profile. 

9.6 Recommendation for Future Work  

The present study proposing a residential floor modular prototype to be used in urgent 

situations for accommodating dislocated families due to natural disasters. A number of major 

achievements have been accomplished in terms of through understanding of flexural 

behaviour, failure modes, axial behaviour and numerical modeling. To further promote 

application of this system in the field of temporary dwellings, the following areas need 

further investigations: 

1- Behaviour of more than two jointed wall panels under axial loading test. 

2- Behaviour of the single wall panels and jointed wall panels under combined 

bending and axial compression loads. The study may investigate slenderness 

effects and overall buckling behaviour of the panels.  

3- Regarding to the wind effects on the jointed wall panels, the high-cycle fatigue 

simulation can be studied. 

4- Investigate the long-term performance of the sandwich wall panel under sustained 

axial loading and different environmental conditions. 

5- Developing design guides and optimizing techniques for residential modular 

buildings. 
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