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Abstract: Among magnetoelectric (ME) heterostructures, ME laminates of the type 

Metglas-like / PVDF (magnetostrictive+piezoelectric constituents) have shown the highest 

induced ME voltages, usually detected at the magnetoelastic resonance of the 

magnetostrictive constituent. This ME coupling happens because of the high cross-

correlation coupling between magnetostrictive and piezoelectric material, and is usually 

associated with a promising application scenario for sensors or actuators. In this work we 

detail the basis of the operation of such devices, as well as some arising questions (as size 

effects) concerning their best performance. Also, some examples of their use as very 

sensitive magnetic fields sensors or innovative energy harvesting devices will be reviewed. 

At the end, the challenges, future perspectives and technical difficulties that will determine 

the success of ME composites for sensor applications are discussed.  

Keywords: magnetoelectrics; magnetoelectric heterostructures; magnetoelectric sensors;  
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1. Introduction 

The magnetoelectric (ME) effect is defined as the electrical field (or voltage) induced under the 

application of a magnetic field (direct ME effect), or vice versa, as the magnetic induction under the 

application of an electrical field (inverse ME effect). In 1894 the intrinsic ME effect was theoretically 

predicted by Pierre Curie, and was experimentally first observed nearly 60 years ago in single-[1] and 

poly-crystals [2] of single-phased materials, but it turn out to be a weak effect observed only at low 

temperatures. To make the magnitude of this effect useful for applications, a good alternative was to 

convert the known ME materials to composite systems in which one of the constituent was purely 

magnetic/magnetostrictive and the other one, purely piezoelectric. These composite heterostructures 

were of the type "particulate" and "laminate" ones. The first particulate composites were made of 

magnetostrictive ferrites and piezoelectric Pb(Zr,Ti)O3 (or PZT) and gave values of the induced 

magnetoelectric voltages up to 0.4 V/cm.Oe [3,4]. However, these new hybrid systems exhibited some 

problems as chemical reactions between the starting materials during the sintering process, or 

mechanical defects that limited the mechanical coupling between the particles of the constituents [5]. 

These problems were overcome in 2001 by using laminate composites, with layers of magnetostrictive 

and piezoelectric phases epoxied together. Ryu et al [6] reported a ME voltage of 4.68 V/cm.Oe in an 

structure consisting in a disc of PZT sandwiched between two discs of Terfenol-D. Nevertheless, despite 

the good performance of this type of magnetoelectric laminates they were still some problems remaining, 

as brittleness, low permeability and the high applied magnetic fields needed to achieve the maximum 

ME effect for the magnetostrictive phase (mostly Terfenol-D), and also brittleness and high resistance 

of the piezoelectric component (mostly PZT) to reduce eddy current losses of the composite. 

New combinations of magnetostrictive/piezoelectric layers were needed; thus, by using high 

permeability magnetostrictive materials such as iron-based Metglas alloys epoxied to poly(vinylidene 

fluoride)(PVDF) piezoelectric polymer [7], signals as high as 7.2 V/cm.Oe at low (sub-resonant) 

frequency and 310 V/cm.Oe at the electromechanical resonance of the composite, were obtained. This 

electromechanical resonance takes place when a mechanical resonant response is excited through the 

magnetostrictive effect of the magnetic constituent of the laminate, or what is equivalent at its 

corresponding magnetoelastic resonance (MER) frequency.  

To account for such results, we have to analyze the ME effect magnitude, that is usually defined as 

the product between the piezomagnetic and piezoelectric effects [8]: 



ME 
dE

dH
 kc



H










E











 (1)  

for laminates with unconstrained longitudinal vibration. In this equation δλ/δH is the piezomagnetic 

coefficient of the magnetic element, δE/δλ is the piezoelectric constant of the dielectric one and kc is the 

coupling constant (arisen from bonding conditions) between both constituents. So, even if 

magnetostriction of Terfenol-D,  > 1000 ppm, is much higher than the magnetostriction of a Metglas-

like amorphous magnetic material with  ≈ 40 ppm in the best cases, the quantity that drives the ME is 
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actually the piezomagnetic coefficient of the magnetic constituent, 



 /H  d33

m ; while for Terfenol-D 

the maximum value of 



d33

m= 1,2 x 10-6/Oe occurs at about 500 Oe applied external magnetic field [9], 

for commercial or home-made Metglas-like amorphous materials this maximum 



d33

m  value is almost 

equal, but it can be achieved at an applied field of only a few Oe. 

Among the piezoelectric compounds some specific functional polymers such as Poly(vinylidine 

Fluoride) (PVDF) polymer and its copolymer Poly(vinylidene fluride/trifluoroethylene) P(VDF-TrFE) 

have been widely used and optimized as piezoelectric matrix on ME structures due to their interesting 

ferroelectric and piezoelectric properties [10]. They have a moderate piezoelectric coefficient of a few 

pC/N, but they show the advantages of being strongly flexible as well as used in film form, which makes 

it very useful to conform surfaces of different shape. Notwithstanding the higher ME coefficients being 

reported on piezoelectric ceramic-based composites, polymer-based ME composites offer more simple 

elaboration process, absence of brittleness and fragility, low electrical resistivity and high dielectric 

losses. 

The mechanism underlying the ME effect in laminates is easy to understand: the magnetostrictive 

constituent will deform under the action of an applied external magnetic field, H. This strain will transmit 

to the piezoelectric material layer through elastic bonding with an epoxy between both constituents. 

Finally, this deformation of the piezoelectric material will give rise to an induced ME voltage through 

piezoelectricity. 

In the following, we present the relevant background to the polymer-based ME laminates fabrication 

and characterization methods and discuss the key considerations in the selection of materials and in the 

design of these ME devices. We summarize the latest results concerning magnetic sensors and energy 

harvesters based on Metglas-like/PVDF ME laminates, as well as address the mains challenges and 

prospective for the near future. 

 

2. Experimental  

2.1. Materials: magnetostrictive and piezoelectric constituents  

Concerning the magnetostrictive constituent, all metallic glasses that appear in this work are Vitrovac 

4040 (Fe39Ni39Mo4Si6B12) or home-made samples with nominal compositions (Fe0.79Co0.21)75+xSi15-

1.4xB10+0.4x (X=0, 3, 6) and Fe85-xCoxB15 with X=21. All these are Fe-based metallic glasses containing 

Fe-Co-Ni-Si-B in their composition and were prepared by the single roller quenching method in the form 

of long ribbons. Different pieces of the same ribbon were cut to perform their magnetic and 

magnetoelastic characterization. Room temperature hysteresis loops were measured by a classical 

induction method, obtaining so saturation magnetization (μoMs) and susceptibility () values. 

Magnetostriction () was determined by using strain gages and from this measurement the 

piezomagnetic coefficient 



d33

m  /H was determined. Extensive magnetoelastic resonance 

measurements have been performed to determine resonant (fr) and anti-resonant (fa) frequencies (figure 

1a, upper) and the signal amplitude at the resonance for all the studied samples, as it will be extensively 

explained in the following subsection. Table 1 summarizes the obtained mean magnetic parameters for 

all the used magnetostrictive alloy compositions [11]. 
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Table 1. Selected magnetic properties of the magnetostrictive sample compositions used in the 

fabrication of all ME laminates appearing in this work. 

 μoMs (T) χ λ (ppm) 



d33

m  /H
 

(ppm/Oe) 

 (Fe0.79Co0.21)75+xSi15-1.4xB10+0.4x 

X=0 1.3 55000 18 1.4 

X=3 1.4 36000 20 1.5 

X=6 1.7 50000 23 2 

 Fe85-xCoxB15 

X=21 1.9 70000 25 2.8 

 Vitrovac 4040 (Fe39Ni39Mo4Si6B12)* 

 0.8 >1000 8 1.4 

*values taken from Ref. [12] 

 

Concerning the piezoelectric polymer it was used PVDF, the well-known piezoelectric polymer 

[10,13]. It shows moderate piezoelectric coefficients, ranging as |



d33

p
 | ≈ 24 – 34 pC/N and 



d31

p
 ≈ 8 – 22 

pC/N. In addition, it has glass transition and melting temperatures about -35 oC and 171 oC, respectively, 

but a Curie temperature of  100 oC.  

Figure 1. Geometry of a (a) bilayer MP and (b) three-layer sandwich-like (L-T type) MPM 

structures. u(t) is the alternating induced ME voltage. Figure taken with permission from 

[16]. 

 

 

Polymer-based ME laminates are typically produced by epoxing magnetostrictive layers (Metglas-

like or Vitrovac; M) to commercial poled β-PVDF (P), following the optimized conditions presented in 

previous studies [14,15]. All the laminates appearing within this work are bilayers (MP) or three-layer 

sandwich-like (L-T type, MPM) laminated composites. 

 

2.2. From the magnetoelastic resonance to the induced magnetoelectric effect 

The Fe-based metallic glasses used on the fabricated ME laminates show an excellent coupling 

between magnetic and elastic properties, and as well as an applied external magnetic field causes 
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magnetostrictive deformation of the magnetic material, the inverse effect also happens. That is, any 

application of a mechanical stress causing a deformation in the ferromagnetic material, will cause a 

change in its magnetic state. This is the so called magnetoelastic or Villari effect. A direct consequence 

of such magnetoelastic coupling is the dependence of elastic constants of magnetostrictive materials 

with applied external magnetic field, which in the case of magnetostrictive amorphous long ribbons 

translates to a clear dependence of longitudinal Young’s modulus with H or E effect. 

It turns out easy to measure since magnetization changes can be detected inductively; thus, if 

longitudinal deformations of the metallic glass ribbon piece are excited through magnetostriction, the 

elastic sound wave induced in the sample will be accompanied by a magnetization one, giving rise to a 

magnetoelastic wave (a detailed mathematical formalism can be found in [17]).  

Driving the induced elastic wave adequately by changing the frequency of the applied external 

magnetic field, the detected magnetoelastic wave will become stationary and will enter to a resonant 

state at a resonant frequency fr . It is possible to use a home-mounted magnetoelastic resonance detection 

apparatus that automatically changes the external applied magnetic field (or bias) Hdc and the value of 

the frequency of the hac magnetic excitation in order to drive the sample to its magnetoelastic resonance 

at a given Hdc, and stores the correspondent frequencies for the maximum (or resonant, fr ) and minimum 

(or anti-resonant, fa) induced signals, together with the signal amplitude at the resonance [18,19]. These 

measured frequencies and mainly the resonant (fr) one will vary with the bias field H, and so it will do 

the Young’s modulus determined as 



E(H)  2Lfr

2
(H) 

2

  (2)  

where L and  are the length and density of the sample. This field-dependence of this elastic modulus is 

known as E effect (E = 1- E(H)/ES, ES being the Young’s modulus measured at magnetic saturation). 

Other useful magnetoelastic parameters that can be determined from these measurements are the 

magnetomechanical coupling coefficient (k = (2/8)(1- (fr/fa)
2)) and quality factor of the resonance (Q = 

f/ fr), all quantities being function of the applied external magnetic field. 

Figure 2(a) shows an example of such magnetoelastic resonance measurements performed on a 30 

mm (length) x 1.8 mm (width) x 30 mm (thickness) long ribbon of as-cast Fe64Co17Si6.6B12.4 amorphous 

magnetostrictive material. The maximum value of the E effect occurs at low fields where 

magnetostriction has not achieved its maximum value (see Figure 2(b)), but the derivative of the 

piezomagnetic coefficient /H has is maximum (inset in Figure 2(b)). Taking into account equation 

(1), it immediately arises the fact that maximum ME induced voltage will be found at the maximum 

value of /H , usually at applied Hdc fields close to the corresponding maximum value of the E effect 

(E(H) minimum value) and always at the electromechanical resonance of the laminate composites.  

Figure 2. (a) Magnetoelastic resonance and (b) magnetostriction (and its field derivative) 

measurements performed on a long ribbon of as-cast Fe64Co17Si6.6B12.4  amorphous 

magnetostrictive material; (c) ME measurements performed in a three-layer L-T sandwich 

configuration: the same previous magnetostrictive ribbon is longitudinally magnetized while 

the piezoelectric polymer (PVDF) is transversely poled. 
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So, in order to measure the ME effect magnitude it is only needed to slightly modify the former 

magnetoelastic resonance apparatus: coaxial solenoids with the ME laminate in its centre apply a net 

magnetic field H(t) = Hdc + Haccost (Hac << Hdc ) on it. It is necessary to first determine the static field 

Hdc needed for maximum amplitude of the magnetoelastic resonance. Under a Hac magnetic excitation 

applied along the length axis, the magnetostrictive ribbons will elongate and shrink along that direction. 

This will make the piezoelectric film of PVDF to undergo an ac longitudinal strain, inducing a dielectric 

polarization change in its transverse direction that is accurately measured as a ME voltage VME by using 

a lock-in amplifier (Figure 2(c)). From this voltage the magnetoelectric coefficient ME can be directly 

Para ver esta película, debe
disponer de QuickTime™ y de

un descompresor .
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obtained as [6]: 



ME 
dE

dH


1

t

VME

Hac









 (3)  

A clear advantage of this measurement method is that the same experimental set-up allows us to 

determine simultaneously (a) the ME response dependence as the bias field Hdc changes and, (b) the 

magnetoelectric voltage dependence against the applied Hac magnetic excitation, the so called sensitivity 

of the ME laminate. 

 

3. Some applications of magnetoelectric laminates 

3.1. Magnetic Field Sensor  

Meeting the nowadays increasing demands for vector magnetometers the anisotropic ME voltage 

response on a Fe61.6Co16.4Si10.8B11.2/PVDF/ Fe61.6Co16.4Si10.8B11.2 laminate has been utilized for the 

development of a magnetic field sensor (2cmx1cm) capable to sense the magnitude and direction of both 

AC and DC magnetic fields (see Figure 3). 

Figure 3. a) ME voltage value variation with the 0-360° angle range at: a) resonance 

frequency and b) non-resonance frequency. Figure taken with permission from [20]. 

 

 

The linearity (92% and 99% for the DC sensor and for the AC sensor respectively), accuracy (99% 

for both AC and DC sensors), and reproducibility (99% for both AC and DC sensors) proved the 

appropriateness of the sensor for device applications. Additionally, the sensitivity of the laminate 

anisotropic magnetic field sensor (15 and 1400 mV/Oe for the DC and AC fields respectively) were the 

highest stated in the literature for polymer-based ME materials. Such performance, combined with the 

versatility, flexibility, low cost, light weight, and low temperature production are enormous advantages 

of developed ME materials for utilization in magnetic sensor device applications [20]. 

Para ver esta película, debe
disponer de QuickTime™ y de

un descompresor .



Sensors 2017, 13 8 

 

 

Once key parameters such as accuracy, sensitivity, linearity, resolution and hysteresis have been 

only unclearly discussed in the literature Reis et al. reported on those performance characteristics on a 

Metglas/PVDF/Metglas ME laminate [21]. 

The sensitivity and resolution determined for the AC magnetic field sensor (992 mV·Oe−1 and 0.3 

μOe) and DC magnetic field sensor (30 mV/Oe and 8 μOe) were positively comparable with the most 

sensitive polymer-based ME sensors (see Figure 4). Furthermore, the correlation coefficient, accuracy 

and linearity obtained values were 0.995, 99.4% and 95.9% for the DC magnetic field sensor and 0.9998, 

99.2% and 99.4% and for the ME AC magnetic field sensor. Consequently, the ME materials developed 

in such work can be used for pioneering AC/DC magnetic field sensors device applications [21]. 

Figure 4. DC magnetic field sensor characterization: (a) linearity, (b) resolution and 

sensitivity (c) accuracy and (d) hysteresis. Figure taken with permission from [21]. 

 

Taking advantage of the same materials and incorporating a charge amplifier, an AC-RMS converter 

and a microcontroller on chip peripheric analogue to digital converter (ADC) it was developed of a DC 

magnetic field sensor with readout electronics (see Figure 5, adapted from [22]).  

Figure 5. (left) ME signal modulation circuit with two distinct stages: i) charge amplification 

resulting in an AC voltage output signal; ii) AC-to-DC voltage converter. (right) Analog-to-

digital converter circuit to which the previous analogue circuit was connected. 

Para ver esta película, debe
disponer de QuickTime™ y de

un descompresor .
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The ME voltage output was not distorted, the linearity was preserved and the ME voltage response 

was found to increase to 3.3 V (α33=1000 V/cm.Oe) with the introduction of the electronic components. 

The sensing device, including the readout electronics, revealed a maximum drift of 0.12 Oe with an 

average total drift of 0.04 Oe, a 70 nT resolution and a sensitivity of 1.5 V/Oe. Such performance was 

for the first time reported on a polymer-based ME device and was favorably comparable with a reference 

Hall sensor that showed a maximum drift of 0.07 Oe and an average error of 0.16 Oe, 5 V/T sensitivity 

and 2 µT resolution. Such device performance associated to the precise HDC fields measurement mark 

this polymer-based device as very attractive for device applications such as digital compasses, Earth 

magnetic field sensing, magnetic field anomaly detectors and navigation, among others. 

3.2. Energy Harvesters  

The use of polymer based ME laminated composites as energy harvesting devices has increased in 

the last years [23, 24]. These type of harvesters are usually fabricated with ferromagnetic metallic glasses 

as the magnetostrictive constituent and the polyvinylidenefluoride (PVDF), not only because of their 

high ME response, but also due to their excellent mechanical properties and low cost of production [25]. 

Also, the performance of such energy harvesting device is proportional to the induced ME voltage, and 

so its best performance will be achieved at the DC magnetic field needed for the maximum ME coupling. 

The low DC magnetic field required for the polymer based ME laminated composites greatly simplifies 

the implementation of the ME laminated composites, in comparison with other ME energy harvesting 

devices, as it will be discussed in the following. 

Due to the ME effect measurement process, to rectify the AC signal coming from the ME laminates 

and convert it into a DC one turns out to be the first important step to be solved. There are in the literature 

many circuits for this purpose that can be used and applied to energy harvesters. In fact, the output power 

showed by the laminates will depend on the characteristics of the circuit used, a key factor which makes 

necessary its optimization. Four are the most common energy harvesting circuits: a full-wave bridge 

voltage rectifier, two Cockcroft-Walton voltage multipliers with one and two stages and a three stages 

Dickson voltage multiplier.  

The full-wave bridge voltage rectifier circuit is widely used in energy harvesting systems that converts 

AC voltage to DC voltage [26, 27]. The main advantages of this circuit are the low energy loss, low 

complexity and high efficiency. This circuit consists of four Schottky diodes (see Figure 6 (a)) which 
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convert the AC output voltage of the ME laminate into a DC one through the two half cycles (positive 

and negative).  

The voltage multipliers efficiently convert the AC signal into a DC one and simultaneously increase 

the output voltage [28]. The Cockcroft-Walton circuit is a half-wave rectifier constituted by n stages, 

each stage formed by two diodes and two capacitors (see Figure 6(b) and (c)). 

Figure 6. Schematic representation of a Full-wave bridge voltage rectifier (a), one-stage 

Cockcroft-Walton voltage multiplier (b), two-stages Cockcroft-Walton voltage multiplier (c) 

and three stages Dickson voltage multiplier (d). VME represents the induced voltage in the 

ME laminate, VD represents forward voltage drop across each diode and VLoad measured 

voltage at the load resistance. Figure adapted from reference [11], with permission of the 

author. 

 

The one-stage Cockcroft-Walton voltage multiplier (see Figure 6 (b)) consists on a clamper 

constituted by the capacitor C1 and the diode D1 and a peak detector constituted by the capacitor C2 and 

the diode D2. The clamper signal is measured in the diode D1 and corresponds to the wave input shifted 

from the negative peak to zero. The peak detector assigns a DC voltage with approximately twice the 

input peak voltage value. The two-stage Cockcroft-Walton voltage multiplier (see Figure 6 (c)) has a 

similar behavior than the previous one but the input signal is increased four times by adding another 

multiplier level.  

The Dickson voltage multiplier circuit is also a half-wave rectifier, which can be constructed with n 

stages, being each one formed by two diodes and two capacitors. The Dickson multiplier showed in Fig. 

S3.2.1, (d) is a three-stage circuit based on the original Dickson charge pump, a DC-DC converter where 

the original DC input is shunted to the ground level and the logic control is replaced by the AC input 
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signal to be harvested [29]. Extensive information about all circuits together with component values can 

be found in [27]. 

These four different circuits were tested using a 3 cm long Fe64Co17Si6.6B12.4/PVDF/ 

Fe64Co17Si6.6B12.4 three-layered ME laminate, working at the L-T configuration and at its magnetoelastic 

resonance frequency, measured to be 41.6 kHz. The total cross section of the ME laminate is 2.5 x 0.078 

mm2 and the metallic glasses have been previously annealed at 300 ºC for 10 minutes in order to release 

the internal stresses arisen in their fabrication. 

The obtained output ME voltage was continuously monitored by a Hewlett Packard 54603 

oscilloscope and subsequently the corresponding output electric power was obtained when varying the 

load resistance from 1 kΩ to 1 MΩ.  

Figure 7. The output electric power as a function of the load resistance for all the studied 

energy harvesting circuits. 

 

 

As it can be observed, the maximum output electric power (6.4 µW) is achieved for the two-stage 

multiplier circuit when a load resistance of 250 kΩ is used. Considering the total volume of the laminate, 

the corresponding power density value has been estimated to be 1.2 mW/cm3. It is remarkable that this 

obtained maximum (magnetoelectric) power generated value is comparable to some previously reported 

power densities for laminates containing PZT and PVDF (see Table 2) as piezoelectric constituents.  

Table 2. Comparison of some power output and power densities values reported so far for 

some ME laminates. fr, Hac and H* refer to the resonance (or working) frequency, the AC 

excitacion field and DC field, respectively, for the maximum ME coupling. Table adapted 

from [23] with permission of the authors. 

fr (kHz) Hac(Oe) H*(Oe) P (µW) P/V (mW/cm3) Materials involved 

41.6 0.45 4.7 6.4 1.2 [23] Fe64Co17Si6.6B12.4 and PVDF 

66.1 1 66.1 0.065 0.7 Ref. [30] Fe0.7Ga0.3 and PZT 
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26.9 0.3 50 917.7 0.956 Ref. [31] FeNi and PZT 

27.0 1 800 20 0.12 Ref. [32] Terfenol-D and PZT 

   93.6 0.1579 Ref. [33] PVDF and PZT 

   75000 0.0051 Ref. [34] APC 855 (piezoelectric) 

 

Therefore, the used two-stage multiplier circuit working with a high performance ME device 

(3cmx10cm) could act as simple and low cost ME effect based energy harvester with good output electric 

power response. It has to highlight that the obtained output value is within the ultra low-power 

consumption devices suitable for biomedical wireless communications systems [35], among others. 

 

4. Size effects on the induced magnetoelectric signal 

When dealing with applications, not only the good bonding between the piezoelectric and 

magnetostrictive constituents plays an important role, but also other factors as size and relative geometry 

of the components are of great importance [36]. In the following we will focus on these aspects that as 

it will be shown strongly affects the magnetoelectric laminates performance. 

4.1. Size effects 

Silva et al. was the first report directed to study the influence of the relative size of the 

magnetostrictive and piezoelectric elements on the ME response [37]. To do this, rectangular pieces of 

magnetostrictive Vitrovac 4040 (Fe39Ni39Mo4Si6B12) and poled -PVDF where cut in several different 

widths and lengths. In this way, ME laminates with different longitudinal size aspect (LAR) ratio and 

different transversal size aspect (TAR) ratio between the PVDF and Vitrovac layers were fabricated (see 

Figure 8).  

The obtained results clearly indicated that the ME induced voltage increases with decreasing the  LAR 

ratio value, while laminates with the lowest TAR resulted in better ME performance when compared 

with higher TAR ratio values. Both those aspect rations, even if being different, further demonstrated a 

clear correlation with the quantity AreaPVDF / AreaVitrovac = AP/AM : the ME response was always 

optimized for values AP/AM  1. 

 

 

 

Figure 8. Graphical definition of the longitudinal size aspect (LAR) ratio and transversal 

size aspect (TAR) ratio between the PVDF and Vitrovac layers. 
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Following this line of work, researchers proceeded to deeply investigate the case of ME laminates 

with equal sizes of piezoelectric and magnetostrictive constituents (value AP/AM  1) and different length 

values of the laminates. To do this, it were fabricated 3, 2, 1 and 0.5 cm long, three-layered Longitudinal-

Transverse (L-T) structures of PVDF located between two magnetostrictive ribbons of composition 

Fe61.6Co16.4Si10.8B11.2 , and the ME response was studied [38]. 

The first observation, as expected, is that the shorter the laminate, the higher the working frequency 

of the device, since this frequency matches with the magnetoelastic resonance (MER) frequency of the 

magnetostrictive constituent (49.1 kHz, 70.8 kHz, 165.5 kHz and 303.7 kHz for the 3, 2, 1 and 0.5 cm 

long laminates, respectively). Concerning the loss of the ME signal arising from the increase of this 

working frequency, it is originated by both the magnetostrictive and piezoelectric constituents, but has 

been quantified to be small enough to be neglected.  

As a direct consequence, the observed loss of the induced ME signal must be inherent to the decrease 

of the size of the laminate. In fact and for the magnetostrictive constituent, demagnetizing effects can 

not be neglected, since they become stronger as the length of the magnetostrictive ribbon used decreases. 

Even if demagnetizing factors for three-layer laminated composites have been already theoretically 

quantified [39], when the thickness of the piezoelectric layer is very thin, it is possible to calculate the 

demagnetizing factor of the whole laminated composite by using the following expression:  

 NN lam
2

3
 (4)  

by considering and averaged value <N>=1/2(Nexp+Ngeo) that takes into account values obtained for the 

experimental [40] and geometrical [41] demagnetizing factors, respectively. The <N> value thus 

obtained has demonstrated to be a good approximation to the real demagnetizing factor for the layered 

ME composites. Now and from the estimated demagnetizing factors for the different lengths laminates, 

is possible to quantify the loss in the ME signal due to the demagnetizing fields, through the definition 

of the reduction factor (RF) corresponding to each laminate [40,42]: 



RF 
1

1 N lam

ME N lam 

ME 0 
 (5)  
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where Nlam is the demagnetizing factor of the laminate, χ is the intrinsic magnetic susceptibility of the 

ferromagnetic alloy and αME(0) is the intrinsic ME coefficient (that is, values corresponding to a very 

long, infinite ribbon and laminate, respectively, not affected by the demagnetizing fields, Nlam = 0) and 

αME (Nlam) is the extrinsic or experimentally measured ME coefficient. This reduction factor gives the 

ratio of the ME voltage that is useful respect to the intrinsic ME coefficient, under consideration of 

demagnetizing fields. Notice that the ME intrinsic value αME(0) represents the maximum induced ME 

voltage that can be extracted from the laminates, independently of their length. 

Figure 9. (left) Measured or effective ME coefficient of the L=3 cm and 1 cm length 

laminates and (right) the corresponding intrinsic ones, both represented as a function of the 

applied magnetic field. 

 

Thus, all estimated intrinsic values should be the same for the different length ME laminates, as can 

be directly seen in Figure 9. Nevertheless the goodness of the estimation made for the ME intrinsic value 

giving about 325 V/cm.Oe, it has also to be pointed that a simple calculation for the reduction factor RF 

gives for the 3 cm long laminate losses of about an 87% of the expected total ME voltage, and this loss 

value increases as reducing the length of the laminates, reaching the 99% for the 0.5 cm long one. 

4.2. Quick and direct comparison of the performance of different ME laminates  

In many cases and in front of ME laminates different with different constituents, one has to afford the 

task to determine quickly which one is going to offer the best performance at working. When dealing 

with different devices of the metallic glass/PVDF/metallic glass type (that is with different 

magnetostrictive constituent but the same PVDF piezoelectric constituent, and also different lengths) in 

order to have a quick and first idea about how well each ME laminate will work, we can use the so called 

figure of merit, FM, that characterize the magnetic performance of the magnetostrictive material in such 

ME devices. This figure of merit is defined as follows [43]: 

sFM   (6)  
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Thus, taking into account the previous values of the measured susceptibility and magnetostriction, it 

is possible to estimate the FM value for each used magnetostrictive ribbon, as summarized in Table 3. 

Table 3. Value of the figure of merit of each used magnetostrictive ribbon (L=3 cm) 

composition, in as quenched state. 

 (Fe0.79Co0.21)75+xSi15-1.4xB10+0.4x Fe85-xCoxB15 

X 0 3 6 21 

FM 0.99 0.72 1.15 1.75 
 

Therefore and from all these values we can expect to get better results for ME measurements for the 

laminates corresponding to the X=0/PVDF system (ribbons in as-queched state) than for the X=3/PVDF, 

despite the higher value of the magnetostriction of this last one. Nevertheless, the X=21/PVDF laminate 

is expected to show the highest ME response, due to its highest magnetostriction value. To confirm this, 

we can draw the obtained maximum ME voltages for all the laminates fabricated with magnetostrictive 

ribbons, versus their corresponding (calculated) FM values.  

Figure 10. Maximum ME voltages of laminates fabricated with different magnetostrictive 

constituents and also different lengths, as a function of the figure of merit of each metallic 

glass. Figure modified from reference [11], with permission of the author. 

 

As directly observed, a good linear dependence is obtained which supports also the goodness of the 

definition given for the FM parameter. Only the 1 cm long X=6/PVDF laminate fails from this behavior. 

This disagreement can be attributed to a bad fabrication of the laminate, most probably due to a bad 

bonding between magnetostrictive and piezoelectric layers. 
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5. Futures perspectives: ME laminates for high temperature applications 

The future tasks that ME laminates will have to afford point towards miniaturization and related 

problems (as previously discussed) and also about working points at high temperatures. Few works have 

been reported so far concerning the ME effect at high temperatures (see for example [44, 45]) and in 

most of them piezoelectric ceramic materials as PZT is often used. Most interesting and innovative 

studies have been mostly carried out by using PVDF (or its copolymer P(VDF-TrFE) as piezoelectric 

constituent. It is important to notice that PVDF melts  160 oC [46], limiting its use in high temperature 

ME laminates. 

Nowadays there is a great interest in synthesizing new piezoelectric polymers for high-temperature 

applications. Among these new classes of piezopolymers, polyimides have received a lot of interest 

lately due to their excellent thermal, mechanical and dielectric properties [47-49]. Although 

investigations in piezoelectric polyimides have only begun recently piezoelectric polyimides have a 

promising future due to their interesting properties, which are suitable for many applications. Z.Ounaies 

et al. [50, 51] have synthesized a polyimide, (-CN)APB/ODPA, containing a single cyano dipolar group 

(-CN) in the repetitive unit and have shown that polyimides still maintain their piezoelectric properties 

at higher temperatures than commercial piezopolymers. Detailed information about synthesis, thermal 

characterization and electric polarization processes can be found in [49, 52]. We only will remark briefly 

that its main parameters are a glass transition temperature of Tg  200 oC and a degradation temperature 

of Td  510 oC, temperatures that make these polyimides suitable for high temperature purposes (see 

Figure 11 (left)). 

In order to combine the best mechanical and piezoelectric response in the same polymer, copolyimides 

can be synthesized (see Figure 11 (right)). They are usually obtained by reaction between the 

dianhydride ODPA and a 50 % mol mixture of two aromatic diamines, namely 1,3-Bis-2-cyano-3-(3-

aminophenoxy)phenoxybenzene (diamine 2CN, good piezoelectric behaviour) and 1,3-Bis(3-

aminophenoxy)benzene (diamine 0CN, good mechanical behaviour) in a two-step reaction. Extensive 

information about synthesis, mechanical and dielectric and properties of these copolyimides can be 

found in [54, 55]. 

Several test were performed concerning the ME response of such metallic glass / piezopolymer / 

metallic glass, being metallic glass = Vitrovac 4040 or home-made amorphous ribbons, and 

piezopolymer = PVDF or the 2,6(-CN) polyimide or other copolyimides [56, 57]. 

 

 

 

 

Figure 11. (left) Measured remnant polarization as a function of temperature for commercial 

PVDF piezoelectric polymer and the 2,6(-CN)APB/ODPA (poli 2,6) polyimide. (right) The 

remnant polarization of three copolyimides as a function of temperature. Reprinted with 

permission of the authors from [53]. Copyright 2013 IEEE Xplore. 
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Figure 12. (upper) Dependence of the magnetoelectric coefficient with temperature for (a) 

L=3 cm Fe61.6Co16.4Si10.8B11.2/PVDF and L=3.7 cm Vitrovac® 4040/poli 2,6  laminated L-T 

composites. (lower) L=1 cm Fe61.6Co16.4Si10.8B11.2/PVDF laminated composite. All the 

measurements were carried out at the magnetoelastic resonance frequency of the laminates. 

Reprinted with permission of the authors from [57]. Copyright 2013 IEEE Xplore. 

 

Figure 12 clearly shows that the behavior of the laminates fabricated with PVDF agrees with the 

temperature dependence of the PVDF polarization value. The change that the measured magnetoelectric 

coefficient undergoes goes from 82 V/cm.Oe at room temperature down to 47 V/cm.Oe at 100 ºC for 

the 3 cm long laminate. If we compare this behavior with the laminate fabricated with the high 

temperature poly 2,6 polyimide, it can be seen that despite the obtained value is much smaller (about 0.5 
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V/cm.Oe), the ME coefficient keeps constant up to 90 ºC, which confirms the great stability that these 

high temperature poly and copolymides shows at high temperatures. Clearly, a future scope within this 

line of research hints for the synthesis of high temperature piezoelectric polymers with high value of the 

remnant polarization (or at least as high as the one of PVDF).  

 

6. Conclusions/Outlook  

Metallic glass / PVDF magnetoelectric (ME) laminated heterostructures show up to date the highest 

values achieved for the induced ME voltage (over 300 V/cm.Oe) despite both constituents, 

piezopolymeric and magnetic, have not the best piezoelectric and magnetostrictive performance among 

their respective class of materials. This is due to the fact that the key parameters turn out to be the 

piezomagnetic value, that in the case of metallic glasses is among the highest ones, and the good bonding 

between magnetostrictive and piezoelectric constituents. Other factors as the relative size of both 

constituents have been analyzed, giving as conclusion that the best performance is achieved when both 

components are of equal size. Nevertheless, reduction in the induced ME voltage as shorter the laminated 

composite is has been quantified, and losses over a 87% have been determined for laminates of 3 cm 

length and below.  

When acting as magnetic field sensors, we have shown that the developed ME laminates work with 

a sensitivity of 1.5 V/Oe , a 70 nT resolution and averaged total drift of 0.04 Oe. Such performance can 

favorably compete with a reference Hall sensor used for comparison. On the other hand, the good 

capability of the reported ME devices to work as energy harvesters has been proved. It was report a 

stored power density value for a 3 cm length ME laminate of about 1.2 mW/cm3. This (magnetoelectric) 

power generated value is comparable to previously reported power densities for similar size laminates 

containing PZT as piezoelectric constituent (with much better piezoelectric performance that PVDF). 

Finally, future tendencies point towards the development of new high temperature piezoelectric 

polymers for applications as directly monitoring of working machinery at the industry or aggressive 

environments (i.e., the desert, a tunnel or fighting a fire). Polyimides and more specifically, co-polymers 

of the type diamine 2CN (with good piezoelectric properties) + diamine 0CN (with good mechanical 

properties) have been tested as a good alternative to PVDF. Despite the modest value of the ME induced 

voltage measured, this new class of piezoelectric polymers shows an stable behaviour against 

temperature that makes them promising constituents of ME laminates in future high temperature 

applications. 
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