
A software framework for the implementation of
dynamic neural field control architectures for

human-robot interaction
Tiago Malheiro, Estela Bicho, Toni Machado,

Luis Louro, Sergio Monteiro, Paulo Vicente
Department of Industrial Electronics and Centre Algoritmi

University of Minho
Canpus de Azurem, 4800–058 Guimaraes, Portugal

Email: {tmalheiro,estela.bicho,tmachado,llouro,sergio,pvicente}@dei.uminho.pt

Wolfram Erlhagen
Department of Mathematics and Applications

Center for Mathematics
University of Minho, Portugal

Email: wolfram.erlhagen@math.uminho.pt

Abstract—Useful and efficient human-robot interaction in joint
tasks requires the design of a cognitive control architecture that
endows robots with crucial cognitive and social capabilities such
as intention recognition and complementary action selection.
Herein, we present a software framework that eases the design
and implementation of Dynamic Neural Field (DNF) cognitive
architectures for human-robot joint tasks. We provide a graphical
user interface to draw instances of the robot’s control architec-
ture. In addition, it allows to simulate, inspect and parametrize
them in real-time. The framework eases parameter tuning by
allowing changes on-the-fly and by connecting the cognitive
architecture with simulated or real robots. Using the case study
of an anthropomorphic robot providing assistance to a disabled
person during a meal scenario, we illustrate the applicability of
the framework.

I. INTRODUCTION

As robot systems are entering into human everyday life the
question of how to design robots capable of acting as socially
intelligent assistants is becoming increasingly important [1]–
[3]. Useful and efficient human-robot interaction requires that
both agents coordinate and synchronize their decisions and
actions in any given joint task. In order to decrease the
workload of the human needing assistance, the robot should
actively contribute to this coordination effort. This means that
the robot should exhibit cognitive and social capacities such
as action understanding and intention recognition.

In an interdisciplinary effort involving cognitive scientists
and roboticists (EU Integrated Project JAST and EU ITN
Marie Curie NETT) we have developed an autonomous an-
thropomorphic robot that integrates in its control architecture
known neurocognitive mechanisms supporting human–human
collaboration in joint tasks. One key idea is that during
observation of an action, a corresponding representation in the
observer’s motor system is activated that allows the observer
to predict the action goal of the partner. During joint action,
the representation of the inferred goal together with represen-
tations of prior task knowledge may then automatically bias

the observer’s decision process towards selecting an adequate
complementary behaviour (review e.g. [4]).

The robot control architecture for human-robot interaction
in joint tasks implements such a context-sensitive, i.e. flexible,
mapping between action observation and action execution (see
Fig. 1). The coordination of actions and decisions among
the two agents is modeled as a dynamic process that builds
on the continuous integration of input from representations
of the inferred goal (Intention Layer) of observed actions
(obtained through action simulation), contextual cues (e.g.,
location of objects in the scene, represented in Objects Me-
mory Layer) and shared task knowledge (e.g., sequence of
steps to serve a drink represented in Common Sub-Goals
Layer). The representation of the complementary action that
gets the strongest support (Action Execution Layer) will win
the dynamic competition process among all possible comple-
mentary behaviours. As a theoretical framework we have used
the Dynamic Neural Field (DNF) approach to robotics [5].
Originally introduced as a simplified mathematical model for
pattern formation in neural populations [6], [7], DNFs have
been later generalized and applied to the cognitive domain
(review see [8]). The architecture of DNFs reflects the hypot-
hesis that strong recurrent interactions in local populations
of neurons form a basic mechanism of cortical information
processing. These interactions support the existence of self-
stabilized representations that allow the cognitive agent for
instance to compensate for temporally missing sensory input,
or to anticipate future environmental inputs that may inform
the decision about a specific goal-directed behaviour.

In summary, the DNF–model of joint action forms a com-
plex dynamical system consisting of a distributed network of
reciprocally connected neural populations that integrate and
represent in their activation patterns task–relevant informa-
tion. The model has been experimentally validated in several
human–robot joint action scenarios [10]–[13]. For each task
scenario, the authors translated the designed model architec-
ture into a C++ language application with all neural fields and
inter–field synaptic connections hand coded into the program978-1-5090-6234-8/17/$31.00 c©2017 IEEE

2017 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
April 26-28, Coimbra, Portugal

978-1-5090-6234-8/17/$31.00 ©2017 IEEE 146

Fig. 1. Schematic view of the cognitive architecture for human-robot
interaction in joint action tasks. It implements a flexible mapping from
observed actions (layer AOL) onto complementary actions (layer AEL) taking
into account the inferred action goal of partner (layer IL), detected errors (layer
EML), contextual cues (OML) and shared task knowledge (CSGL). The goal
inference capacity is based on motor simulation (layer ASL). (for details see
e.g. [9])

(for a mathematical formulation see e.g. [9]). In addition to the
time-consuming work that such a translation process requires,
it is prone to hidden errors which might get noticed only
during the robotics experiments. Furthermore, changes to the
system imply to stop, change, compile, debug, and run cycles.
This may hinder, slow down and shift away the attention from
the development process of the cognitive control architecture.
Moreover, both the adaptation of an existing architecture to
new HRI tasks and its usage in real robotics experiments
by users unfamiliar with DNF theory are limited due to a
significant initial learning effort involved. In order to mitigate
these burdens, we have developed a framework to ease the
designer work and get him/her focused on the design itself and
not on the implementation. The framework is composed of two
main tools - Designer and Engine - and some additional
utilities (e.g. robotic simulation) to help the developer
to describe, implement and evaluate joint action models for
HRI. In addition, the framework supports the developer in the
parameter tuning of the control system by allowing changes
at run-time.

In what concerns related frameworks, Neuron [14] is a
simulation environment for models of biological and artificial
neurons.It allows to specify the dynamic properties of indivi-
dual neurons and to select the mathematical model governing
their dynamics. Brian [15] is a python based simulator for
spiking neural networks. It provides an interface for specifying
the neuron model which is more flexible and user-friendly
than Neuron. However, both frameworks focus on the detailed
simulation of neural firing patterns to allow for comparison
with real neural data. This level of detail makes it difficult to
implement simulations of highly complex cognitive functio-
nalities required for joint action . The Nengo simulator [16]
is based on the Neural Engineering Framework (NEF) [17]

and provides features to facilitate the development of large
scale neural networks to emulated functional activities of the
human brain [18]. It is not designed to meet the real-time
constraints of robotics applications. Neuron, Brian and Nengo
have in common that neural information processing is based on
spiking activity of neurons. In contrast, DNF theory postulates
neural activation patterns representing the mean activity of
neural populations as fundamental information processing
units. As a major advantage for a system developer, this
level of abstraction favors analytical treatment of a complex
dynamical system (e.g., system stability, [5]). Cedar [19] is
a DNF based framework for embodied artificial cognitive
systems. It has been applied thus far for robotics applications
that can be described by a set of continuous variables (e.g.,
movement direction in object manipulation). In its present
version, it cannot be easily scaled to more complex scenarios
involving a large number of neural representations that encode
also more abstract information (e.g., grasping type, action
goal). Here, we present a novel framework for developing
highly complex DNF-based cognitive control architectures and
test the applicability in a simulated human-robot interaction
task.

The remainder of the paper is structured as follows:
next, section II presents the developed software framework;
section III illustrates its application to a case study in which
the robot provides assistance to a disabled person during a
meal scenario. The paper ends in section IV with conclusions
and an outlook on future work.

II. THE SOFTWARE FRAMEWORK

Herein, subsection II-A presents the Designer application
which allows the user to graphically draw an instance of the
control architecture for human-robot interaction for a new
joint task. Subsection II-B introduces the Engine which
processes the architecture instance and allows to monitor it.
Connected to the Engine, there can exist a virtual robot
(e.g. a simulator), a real robot, or any other sensing/actuation
system. In subsection II-C we provide an overview of a set
of tools/utilities developed to ease the connection to
the robot.

A. Designer

The Designer is an application which allows the
user/developer to draw an instance of the DNF cogni-
tive architecture by means of a graphical language. Any
instance of the DNF cognitive architecture is built from
a set of building blocks, such as neural fields,
neural populations, and inter-field synaptic
connections. These are the fundamental entities that allow
to describe the dynamic neural fields hierarchy and their
inter-relations. By means of drag-n-drop, the user can layout
the envisioned architecture. Fields are representations of
Dynamic neural fields, allowing the user to configure their
properties. Populations are representations of the neural
populations essential to the DNF joint action model. These
present always a child relationship towards a neural field and

2017 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
April 26-28, Coimbra, Portugal

147

might have zero or many input and output connections. The
connections are representations of the inter-field synaptic
projections. Furthermore, each field has a number of para-
meters and properties which can be configured and selected
from the same graphical application. Specifically, the appli-
cation allows the user to select properties such as the neural
field interaction kernel (i.e. weight function), output function
type and dynamic reset source. The following parameters
can be tuned for the specific neural field function: resting
level, time constant, field discretization and kernel parameters.
Figure 2 presents a snapshot of the application with an
open dynamic cognitive architecture instance. A first main
area is the application canvas (center large area). Layers,
fields, populations and inter-field synaptic
connections are specified hereby drag-n-drop entities from
the right. Every entity property (excluding hierarchy) can
be set in the secondary left area. Properties are grouped by
category, so that navigation is easier. The current properties
view are attributed to the selected entity in the main area. At
the the bottom of the application is located another secondary
view: inter-field projections weights. In this view the user can
set e.g. all the synaptic weights for the input projections to a
specific dynamic neural field.
At any time, the user can run the drawn instance by sending it
to the Engine. The design specification is serialized and then
loaded by the Engine. This allows for a quick evaluation
of the system. Furthermore, to ease parameter tuning, a
fundamental feature was included: any change to parameters is
sent automatically to the Engine and applied to the running
instance immediately. This direct link aids in understanding
the effect of a parameter change in run-time without requiring
to stop or restart. The user can see the dynamic evolution
of the field activation pattern. Although at run-time structural
changes are limited (e.g. new fields and populations are not
taken into consideration until full reload), most parameters
changes are reflected on-the-fly. Resting level, time constant,
kernel excitation and width, and synaptic weights are examples
of parameters allowed to be changed at run-time without the
need to reload the architecture specification or even restart of
execution.

B. Engine

The High Level Cognition Engine (or simply
Engine) is the counter-part of the Designer Application.
It is able to load an architecture specification written by the
Designer and execute it according to the Dynamic Neural
Field Human-Robot Joint Action model principles, see [9]–
[12]. This application is composed of a GUI (see Fig. 3)
and a C++ lib core. The model equations are implemented
in the core lib which exposes a set of methods allowing
not only to control the execution, but also give inputs, get
outputs, and change configuration at run-time. The GUI part
is responsible for the execution management (start, pause,
stop, clear, and restart), inputs/outputs emulation, plotting and
results file management. Central to the application is the
ability to draw simultaneously several 2D plots at run-time,

see Fig. 3. Properties such as field activity (u), inputs (S),
resting level (h), and multiple synaptic projections can be
draw at a selectable update rate. The plotting allows the user
to have feedback on the fields activity evolution over time.
Additionally, it supports plotting of one 3D graph of a selected
property. The plot runs also in real-time, but it is an external
application dealing with the 3D drawing. As previously noted,
of high importance for the design tuning, the core allows
most of the parameters to be changed at run-time. While the
architecture is being executed, parameters such as field time
constant, resting level, and interaction kernel amplitude can
be changed in the Designer (which automatically sends it
to the Engine) and feedback is provided in real time, e.g.
in the plots. This feature has proven to be of high value for
the user due to the efficacy (low latency,...) between change
and effect. This parameters tuning versatility is not extended
to structural changes in design. As thus, this type of changes
(e.g. a new neural field, new population) do require the engine
to reload the full architecture.

Each designed dynamic of a cognitive architecture instance
might have a unique set of inputs/outputs (e.g. sensory in-
formation from cameras, actuation like motor primitives).
Although the user is able to use the GUI inputs/outputs
emulation controls to provide inputs to the architecture and
get feedback on activated outputs, connection to the real
robot and/or simulator is a must. In order to tackle the sour-
ces variability, as information provider and communication
interface, we have chosen to implement a feature allowing
the user to dynamically load/unload a plugin responsible for
such operations. Such plugin can be implemented as a shared
library and we named it TaskConnector. Because it is
a shared library (DLL, Dynamic Link Library) the user is
free to use the language of choice to detail how the interface
with the robot is implemented. Restriction happens only at
the Application Programming Interface (API) which Engine
expects the DLL to have. Namely, an entry point that will be
called for collecting inputs and a second for outputs. This
allows to abstract the Engine from the sensors/actuators
connections management and thus share it amongst projects.

This TaskConnector mechanism allows one to effecti-
vely switch between IO interaction by means of reloading
of the DLL. In our project, we use it to switch between
connecting the Engine to the real robot or to the simulator.
Each TaskConnector has thus the details of how the
architecture gathers sensory information from the environment
and provides output commands for actuation.

Input/output description starts at the design level. In the
Designer, the user must create a field entity named
“Perceptual Field” for the inputs and a second named
“Motor Control” for the outputs. The Engine will se-
arch for these when the architecture is loaded and connects
them to the TaskConnector. The TaskConnector must,
therefore, be implemented in such a way that it is able to trans-
late sensory information into the “Perceptual Field”
entity. Furthermore, it should be able to interpret the “Motor
Control” information and translate it to the proper robot

2017 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
April 26-28, Coimbra, Portugal

148

Fig. 2. Designer: The application main area is attributed to the design canvas. In this area, the architecture can be graphically detailed, by laying out layers
(rectangles), Fields (black outer ellipses), and neural populations (inner red ellipses) and defining their relationship (parent/child). Arrows are representations
of synaptic projections between two neural populations. An excitatory projection gets a green line color. On the other side, inhibitory projections gets a red
line color.

command.
The Engine includes also another feature: data

storage for post-execution analysis. Field properties input
(S), resting level (h), and activity (u) can be stored into a
selected file. The user can select the result file update rate.
To limit the result file size and required write throughput
to disk, the information is stored in binary format. To ease
post processing usage of the stored data, we provide a data
parser which extracts file contents into multiple files, one per
architecture field and stored property. This parser can output
in binary format (good for example to load it with MatLab)
or tab separated ASCII file, for user readable format.

C. Utilities

The above described framework (Designer and Engine)
is self-contained and the developer can evaluate simple as-
pects of the robot cognitive system by emulating inputs and
analyzing outputs. Nevertheless, for more complex cognitive
capabilities, and to actually interact with the environment,
other utilities can benefit the evaluation. Namely, a simulation
environment and/or an sensor array to gather external influen-
ces and actuators to take actions in the robot’s environment.

To improve the assessment of the designed architecture
under human-robot interaction scenarios, we have developed a
scenario in the state of the art simulator VREP [20] including
a human and a robot in an assistive task (c.f. Figure 5). The
assistive task objective is to help a disabled person to have

coffee. Due to the user physical limitations, he/she cannot
remove the bottle cap by himself/herself. The robot and human
must collaborate in order to achieve the objective. The robot
hand dexterity also does not allow it to grasp the bottle cap
in order to turn the cap and detach it.

The scenario is accompanied by two plugins which enable
robot actions executions and sensory information gathering
from the network using the yarp communication framework
[21]. Robot actions are fully controlled by the plugin, where
trajectories execution and actions such as grasp/release ob-
ject are given by the connected Goal Directed Action
Server (GDAS).

The framework is bundled with some other applications
and services which allow not only the interconnection of the
several involved parties, but provide services such as motion
planning. Figure 4 shows the network of applications used in
the framework and their interconnections.

As previously described, the user inputs the model archi-
tecture into the designer (DyFAD, Dynamic Neural
Field Architecture Designer in Fig. 4). The re-
sult is serialized and sent to the Engine (HLC En-
gine, High Level Cognition Engine). This applica-
tion also gets on-the-fly configuration changes. By means of
TaskConnectors (see subsection II-B, the Engine can be
connected to virtual (simulator) or real robots.

GDAS stands for Goal Directed Action Server.
This application provides a mechanism to translate the selected

2017 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
April 26-28, Coimbra, Portugal

149

Fig. 3. Engine with Intention Detection and Action Execution neural fields
plots. S, h, and u are the neural field input, resting level, and activation,
respectively.

Fig. 4. System Diagram. DyFAD, HLC Engine, and GDAS are the Designer,
Engine and Goal directed action server, respectively.

Fig. 5. Assistive Scenario: Drinking Task. (VREP 3.3.0 rev 1)

Goal directed action of the robot - in the Action Execution
Layer - into chains of motor primitive. This translation also
includes building of motion planner requests and management
of its execution.

The motion planner is implemented as a service provider
which upon a plan request, computes a human-like trajectory
for the robot manipulator. This planner is based on a global
planning method in posture space that allows to integrate
optimization principles derived from experiments with hu-
mans [22].

III. RESULTS: THE CASE STUDY OF A HOME CARE
SCENARIO

As an usage example of the described framework, consider
the scenario introduced above (see Fig 5). In the assistive
task, the robot must support a disabled person to drink coffee.
Due to both actors limitations, the robot’s control challenge is
to pro-actively collaborate in an efficient way (here we give
focus only on the cognitive part) so that its actions properly
complement those of the human. For simplicity, we build
a dynamic cognitive architecture instance with a small set
of possible human and robot actions. Although this limits
robot’s possible actions, it does not hinder the objective here
of presenting the usage of the framework or suitability to deal
with the Joint Action model.

Taking this into consideration, one can start to draft the
dynamic cognitive architecture instance by drawing the requi-
red DNFs (black outer ellipses, see Figure 2) which endow the
robot with the capabilities of action simulation, goal inference,
intention detection and complementary action selection. We
will not consider error detection. Following it, neural fields can
be populated with representations (red inner ellipses) of, e.g.,
the objects in consideration. Furthermore, inter-field synaptic
projections can be added by means of arrows. By setting
the synaptic weight to each projection, the arrow line color
will change to indicate an excitation (green) or an inhibition
(red) projection. This allows to specify the dynamic cognitive
architecture instance targeted for the assistive task proposed.
By adding inputs and outputs, we can define the link to the
sensory and actuation systems. For that, a “Perceptual
Field” and a “Motor Control” field entity should be
included in the design. The Engine will use them to gather

2017 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
April 26-28, Coimbra, Portugal

150

external inputs to the cognitive system and provide outputs (in
this case, goal directed actions) to the robot.

In this study we use a simulated scene to close the loop
between the cognitive system and the environment where robot
and human are embedded. Figure 5 presents a snapshot of
the scenario. As can be seen, both robot and human present
physical limitations which prevent each one from completing
the task alone. Opening the bottle does require the robot
to hold the bottle while the human detaches the bottle cap.
Figure 6 presents a snapshot sequence of the interaction at
key points from the recorded simulation environment.

At the beginning, no action is taken either from the robot
or human. The cognitive system is prepared to, as best as
possible, serve the human. In the lack of a user request, the
robot will take the initiative and start to prepare the drink. In
a more complex setting, the trigger for the robot to serve, e.g.,
water, could come from several sources. Namely, a user’s me-
dication timetable, a program to support the user maintaining
recommended hydration level, etc. In this work, the designer
configured the robot cognitive system to be pro-active and
fast in taking actions even when the human does nothing.
As a consequence, it decides to open the bottle (Figure 7e,
t ≈ 3.6s). This can be explained taking into consideration the
context. The ultimate goal is to serve a drink to the human
user. To that end, several sub-goals must be accomplished
beforehand. Namely, grasp the glass, place the glass up, open
bottle, and fill glass. These sub-goals are represented in the
Common Sub-Goals layer (Figure 7c and 7d). When the
system is presented with the closed bottle and empty glass in-
formation (consider t ≈ 0s), it quickly evolves self-stabilized
activation patterns in the Object Memory Layer (OML) (see
Figure 7a and 7b) and Common Sub-Goals Layer. External in-
formation comes from the perceptual subsystem. Since “Glass
Up” sub-goal is already achieved (positive activation pattern
in “Glass Up” population in CSGPast), the only currently
supported sub-goals is open bottle (note the positive activation
pattern in CSGPresent from start up to t ≈ 20s). This
information together with the activation in the Object Memory
Layer leads to positive excitation in some populations in the
Action Execution Layer (AEL) (see Figure 7e). The comple-
mentary goal directed actions (GDA) ’R cB SG Hout RC’,
’R cB PH SG HOut RC’ and ’Point cB’ compete for overt
expression because they are possible actions the robot could
take which eventually would lead it to satisfy the present sub-
goal. ’Point cB’ would win the competition if the closed bottle
was in the human workspace, leading the robot to request the
human to handover it. It is, thus, the Object Memory Layer
projection which makes the robot to decide to reach for the
closed bottle with side grip and hold out until the human
removes the bottle cap.

When the perceptual system detects the bottle is open
(t ≈ 20s), the Common Sub-Goals layer is updated ac-
cordingly. ’Open Bottle’ population in CSGPresent loses its
positive activation pattern in benefit of ’Fill Glass’. Due to
the contextual information, several goal directed actions are
biased in AEL. Namely, ’handover open bottle’, ’handover

(a) t ≈ 1s, No action (b) t ≈ 20s, Bottle cap detach

(c) t ≈ 43s, Coffee pour into glass (d) t ≈ 70s, Handover full glass

(e) t ≈ 75s, Glass to mouth

Fig. 6. Snapshot sequence showing the interaction at keys points. The snaps-
hots were taken from the simulated interaction scenario. Full video can be seen
in http://marl.dei.uminho.pt/public/videos/CareAssistiveICARSC2017.html.

empty glass’, and ’reach open bottle and fill glass’. Because
both the bottle and the glass are within robot’s reach, it is more
efficient for the overall interaction that the robot reaches for
the open bottle, grasps it and fills the glass. The alternative
would be for the robot to handover the bottle and glass to
human having him/her to pour the beverage. Should the user
have requested for the bottle and glass, the robot would try
to handover them. Last, having a full glass (t ≈ 43s) will
trigger the evolution of a positive activation pattern in ’Glass
to Mouth’ population in CSGPresent field. This bias equally
both ’handover full glass’ (’R fG AG HOut’) and ’point to
full glass’ (’Point fG’) populations in AEL. Nevertheless, the
handover action has a competitive advantage over pointing due
to the additional information coming from the OML signaling
the full glass in the robot’s workspace and not in human’s
workspace.

IV. CONCLUSION

We have presented a software frameworks that eases the
design and implementation of Dynamic Neural Field (DNF)
cognitive control architectures for human-robot interaction in
joint tasks. In a case study, consisting of a robot providing
assistance to a disabled person aiming to drink coffee, we have
illustrated its usability and have demonstrated the key requi-
rements that we identified in section I. Ease of implemen-
tation is achieved by using a graphical drag-n-drop interface
for importing components like layer, dynamic field,
neural populations and inter-field synaptic

2017 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
April 26-28, Coimbra, Portugal

151

(a) OMRobot Side (b) OMHumanSide

(c) CSGPast (d) CSGPresent

(e) Action Execution

Fig. 7. 3D view of several several dynamic neural fields activation over time.
Samples taken with a frequency of 50Hz from a system running at 200Hz.

connections. The framework allows connecting the cog-
nitive architecture with simulated or physical devices such
as sensors and the anthropomorphic robot. Parameters can
be changed on the fly, which facilitates tunning of robot
decisions and actions in time and space. Instances of the
cognitive architecture can be built, simulated, inspected and
parametrized in real time, enabling quick development and
validation.

Future work concerns implementing features which allow
user to specify learning rules for inter-field synaptic projecti-
ons weights auto-tuning [23].

ACKNOWLEDGMENT
The work was funded by Project NETT: Neural Engineering Transfor-

mative Technologies, EU-FP7 ITN (nr.289146), and by FCT - Fundação
para a Ciência e Tecnologia, through the Phd and Posdoc Grants
(SFRH/BD/81334/2011 and SFRH/BPD/71874/2010 respectively, financed
by POPH-QREN-Type 4.1- Advanced Training, co-funded by the Euro-
pean Social Fund and national funds from MEC), and Project Scope:
UID/CEC/00319/2013 together with COMPETE: POCI-01-0145-FEDER-
007043.

REFERENCES

[1] T. Fong, I. Nourbakhsh, and K. Dautenhahn, “A survey of socially
interactive robots,” Robotics and Autonomous Systems, vol. 42, no. 3-4,
pp. 143–166, 2003.

[2] C. Breazeal, “Social interactions in hri: the robot view,” IEEE Tran-
sactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), vol. 34, no. 2, pp. 181–186, 2004.

[3] S. Schaal, “The new robotics-towards human-centered machines,” HFSP
Journal, vol. 1, no. 2, pp. 115–126, 2007.

[4] H. Bekkering, E. R. De Bruijn, R. H. Cuijpers, R. Newman-Norlund,
H. T. Van Schie, and R. Meulenbroek, “Joint action: Neurocognitive
mechanisms supporting human interaction,” Topics in Cognitive Science,
vol. 1, no. 2, pp. 340–352, 2009.

[5] W. Erlhagen and E. Bicho, “The dynamic neural field approach to
cognitive robotics.” Journal of neural engineering, vol. 3, no. 3, pp.
36–54, sep 2006.

[6] S. Amari, “Dynamics of pattern formation in lateral-inhibitory type
neural fields.” Biological Cybernetics, vol. 27, pp. 77–87, 1977.

[7] H. R. Wilson and J. D. Cowan, “A mathematical theory of the functional
dynamics of cortical and thalamic nervous tissue,” Kybernetik, vol. 13,
pp. 55–80, 1973.

[8] G. Schöner, “Dynamical systems approaches to cognition,” in The Cam-
bridge Handbook of Computational Psychology, R. Sun, Ed. Cambridge
University Press, 2008, pp. 101–125.

[9] W. Erlhagen and E. Bicho, “A Dynamic Neural Field Approach to
Natural and Efficient Human-Robot Collaboration,” in Neural Fields,
Theory and Applications, S. Coombes, P. beim Graben, R. Potthast, and
J. Wright, Eds. Springer Berlin Heidelberg, 2014, pp. 341–365.

[10] E. Bicho, W. Erlhagen, L. Louro, and E. Costa e Silva, “Neuro-
cognitive mechanisms of decision making in joint action: A human-
robot interaction study,” Human Movement Science, vol. 30, no. 5, pp.
846–868, oct 2011.

[11] E. Bicho, W. Erlhagen, L. Louro, E. Costa e Silva, R. Silva, and
N. Hipólito, “A dynamic field approach to goal inference, error detection
and anticipatory action selection in human-robot collaboration,” in New
Frontiers in Human-Robot Interaction (Advances in Interaction Studies),
K. Dautenhahn and J. Saunders, Eds. John Benjamins Publishing
Company, 2011, pp. 135–164.

[12] E. Bicho, L. Louro, and W. Erlhagen, “Integrating verbal and nonverbal
communication in a dynamic neural field architecture for human-robot
interaction,” Frontiers in Neurorobotics, vol. 4, no. MAY, pp. 1–13, 2010.

[13] R. Silva, L. Louro, T. Malheiro, W. Erlhagen, and E. Bicho, “Combining
intention and emotional state inference in a dynamic neural field
architecture for human-robot joint action,” Adaptive Behavior, vol. 24,
no. 5, pp. 350–372, 2016.

[14] M. L. Hines and N. T. Carnevale, “The NEURON simulation environ-
ment,” The Handbook of Brain Theory and Neural Network, vol. 2,
2002.

[15] D. F. M. Goodman and R. Brette, “The brian simulator,” Frontiers in
Neuroscience, vol. 3, no. SEP, pp. 192–197, 2009.

[16] T. C. Stewart, B. Tripp, C. Eliasmith, S. TC, T. B, and E. C, “Python
scripting in the nengo simulator.” Frontiers in neuroinformatics, vol. 3,
no. March, p. 7, 2009.

[17] C. Eliasmith, “A Unified Approach to Building and Controlling Spiking
Attractor Networks,” Neural Computing, vol. 17, no. 6, pp. 1276–1314,
2005.

[18] C. Eliasmith, T. C. Stewart, X. Choo, T. Bekolay, T. Dewolf, Y. Tang,
and D. Rasmussen, “A Large-Scale Model of the Functioning Brain,”
Tech. Rep. 6111, 2012.

[19] O. Lomp, M. Richter, S. K. U. Zibner, and G. Schöner, “Developing
Dynamic Field Theory Architectures for Embodied Cognitive Systems
with cedar,” Frontiers in Neurorobotics, vol. 10, no. November, p. 14,
2016.

[20] E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: A versatile and
scalable robot simulation framework,” in IEEE International Conference
on Intelligent Robots and Systems, 2013, pp. 1321–1326.

[21] G. Metta, P. Fitzpatrick, and L. Natale, “YARP: Yet another robot
platform,” International Journal of Advanced Robotic Systems, vol. 3,
no. 1, pp. 043–048, 2006.

[22] E. Costa e Silva, F. Costa, E. Bicho, and W. Erlhagen, Nonlinear
Optimization for Human-Like Movements of a High Degree of Freedom
Robotics Arm-Hand System. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 327–342.

[23] E. Sousa, W. Erlhagen, F. Ferreira, and E. Bicho, “Off-line simulation
inspires insight: A neurodynamics approach to efficient robot task
learning,” Neural Networks, vol. 72, no. November, pp. 123–139, 2015.

2017 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
April 26-28, Coimbra, Portugal

152

