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 A B S T R A C T 

 

The presented work is to develop a numerical computation program to determine the 
distribution of the shear stress in closed tubes with asymmetric single thin wall section 
with a constant thickness and applications to airfoils, and therefore determining the 
position and value of the maximum stress. In the literature, there are exact analytical 
solutions only for some sections of simple geometries such as circular section. Hence 
our interest is focused on the search of approximate numerical solutions for more 
complex sections used in aeronautics. In the second stage the position of the shear center 
is determined so that the section does not undergo torsion. The analytic function of the 
airfoil boundary is obtained by using the cubic spline interpolation since it is given in 
the form of tabulated points. 

1 Introduction 

The calculation of the shear stress in sections of thin-walled tubes, in particular the geometry of an airfoil coating play 
a very important role in the calculation of elasticity [1] and [2]. When the section is subjected to one or two shear forces, 
the section will be loaded by a shear stress along the boundary [1] and [2]. For an aerospace vehicle, most of the structures 
of the materials are manufactured by the thin wall. We talk about the wing, fuselage shell, drift, tail, rails, helicopter blade, 
etc. [1] and [2]. It determines the distribution of shear stress in order to locate the maximum stress with its value for not 
having a break caused by the shear forces. During movement of the aerospace vehicle there will be a pressure distribution 
on the exit surface of the craft. This distribution generally gives an aerodynamic torsor formed by three forces and three 
moments. In a plane section the torsor is formed by two forces one horizontal and the other vertical and a pitching moment 
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[1] and [2]. These external forces are transformed into internal forces. Where the horizontal and vertical shear forces births 
Sx and Sy and a vertical pitch moment present as T in Figure 1. These internal forces are themselves therefore gives a 
distribution of shear stress along the coating. 

 

Fig. 1 - Shear of closed tube section and presentation of the opening section. 

In this first publication we are interested only in the sections formed by a single box. Sections formed by two or more 
boxes are left for future publications. 

This work is then to develop a numerical computation program to determine the distribution of the shear stress of the 
shear force in any closed thin-wall tubes, of one box having a constant thickness and to make applications to airfoils, for 
aim to determine the position and the value of the maximum stress. Given the complexity of the section, the calculation is 
purely numerical. In other words, the exact solution does not exist. 

The calculation is made by the discretization of the boundary that will be considered by straight line segments. The 
segments are defined by their positions of these two nodes. Our application is limited to thicknesses well below the unit t/C 
<0.01. Usually in the actual case, the value of it, is of the order of millimeters around 1 to 2 mm [1] and [2]. 

To determine the distribution of shear stress in closed sections, it is first necessary to cut the section in a point of the 
boundary, to be the trailing edge for example. The same results will be found if the position of the cutting is changed. The 
difference between a closed and the open section is that we must determine the value of the stress at the opening that will 
be added to the stress at each point of the open section. 

Because the number of segments is very important, the calculation becomes numerical. The accuracy of the calculation 
depends on the discretization. More the number of segments increases, there will be a good accuracy. 

Generally boundary of airfoil is given as tabulated points [3], so we have to interpolate them, to determine an analytical 
form of the geometry [5] and [6]. Interpolation chosen is the cubic spline [5]. Among the advantages of this method, it 
keeps the curvature of the airfoil at the leading edge. 

2 Shear Flow in open section 

To start the calculation, it is necessary to cut the section in any place like in Figure 1 [1] and [2]. The value of the shear 
flow at this point is zero for the open section. We chose to make the opening at the trailing edge. A segment of the 
boundary is presented by its end nodes as presented in Figure 2. The coordinates of nodes i and j are known from the mark 
passing through the center of gravity. The numbering of nodes is done in a counter clockwise direction starting from the 
trailing edge 

 

 

 

 

Fig. 2 - Introducing the segment calculation 
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Value of the shear flow at a point (x, y) of the segment number (i) of Figure 2 for the case of open section having a 
constant thickness is given by: 

 
( ) ∫∫ −−=
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Shear stress τ is connected with the shear flow by the following relationship [1] and [2]; 
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The moments of inertia Ixx, Iyy and product of inertia Ixy must be calculated relative to a central axis of the section. For 
more details, consult the references [7].  

From Figure 3, we can write: 
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Substituting the relations (4) into (1) and integrating, we obtain: 
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Where 0,,, )()( sijbijs qSqSq +=
   (7) 

 
According to equation (6), a parabolic distribution of shear flow along the segment length can be seen. From equation 

(6), the value of shear flow at the point j is obtained when s = Lij. We obtain: 
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In equation (7), i=1, 2, 3, ..., NS-1 and j=i+1. The total shear flow point j is calculated by adding the shear flow of the 
opening section.  Then 

 0,,, sjbjs qqq +=    (9) 

For i=1, the shear flow at the point of the opening is equal to zero. Then 

 
0 1, =bq  (10) 

3 Determining the value of qs,0 

The values of qs,0 represents the shear flow at the point of the opening. This calculation is made by the following 
equation [1] and [2]: 
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This value represents the average value of shear flow. In relation (11), the denominator can be approximated by: 
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The result in equation (12) is made by the sum of the lengths of all the segments constituting the discretization. 
According to equation (11) we can write again: 
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Replacing equation (6) into (13) and integrating we obtain after a rearrangement result, which will be replaced in 
equation (11) we obtain the final result for qs, 0. Then: 
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Therefore one can determine the value of stress at the opening by the following relationship: 
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Replacing the result given by equation (14) into equation (9), we can obtain the total value of shear flow at each point 
of the discretization. 

In equations (12), (13) and (14), j=i+1. If i=NS, then j=1. In relation (14), more the number of segments is high, the 
more we will have a good precision. 

Once one determines the distribution of the shear flow by the equation (9), one can easily deduce the distribution of 
shear stress using the relationship (2). 

In the end we can determine the value and the position of the maximum shear stress. We can have two values of 
maximum stress. One for the positive values and the other for negative values. It is necessary that these values are lower 
than the allowable stress +

adτ  and −
adτ  for not having a break. 

4 Shear center 

To eliminate the torsion caused by cutting efforts, it is very interesting to apply these efforts in a sharp point called 
shear center. The determination of this point is in relation to any point. In our study we have chosen the leading edge of the 
airfoil to calculate the moment. 

The position of the shear center of closed thin wall beams is located in the same way as open tubes [1] and [2]. 
However, for determining the position of the shear center of coordinates (ξS, ηS) of the thin-walled closed beam shown in 
Figure 3, we arbitrarily apply a distribution of, shear horizontal Sx and vertical shear Sy at the point S. Then we calculate 
the shear flow qs of the sharp stress and then tying the internal moment to external moment. But at this level, it is 
impossible to equalize the internal moment of the shear flow to the moment of external shear forces for an equation as 
Shear Force Sx and Sy are unknown. For the solution, provided that the shear forces are applied to the shear center to 
produce a zero moment applied. 

The calculation is done by the following equation [1] and [2]: 

 ∫=     dsqdS-ηSξ SxSyS  
 (16) 

For the calculation was chosen counterclockwise from the point O. In equation (16), the symbol d represents the value 
of the lever arm of the point of application of shear flow qS. For a discretization of NS segments on the boundary as 
presented in Figure 6, the relation (16) becomes: 
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The dij value in equation (17) represents the lever arm of the segment connecting the nodes i and j as presented in 
Figure 4. In this case, to determine the value of d, we must first determine the equation of the line connecting the points i 
and j and the equation of the straight line perpendicular to the line connecting the points i and j, and passes through the 
point O. The intersection of these two lines gives the position of the point k as presented in Figure 6. We can consequently 
determine the distance between the points O and k representing the distance dij. Then: 
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The position of O (xO, yO) is given. Evening now the ordered of equations (18) and (19), we can obtain the position of 
point k by : 
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Therefore, the distance dij between the points O and k is calculated by the following equation: 
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We preferred to introduce the indices i and j instead the indices O and k for calculating the value of the lever arm of the 
segment connecting between the nodes i and j. Replacing the equation (7) in equation (17) and integrating along the 
segment connecting the nodes i and j we get the following result: 
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In equation (23) expressions dij, qb,i, qS,0, H1, H2 and Lij are given respectively by the relations (22), (8), (14), (3) and 
(5). The positions of nodes i and j are given. 

From equation (23) to determine the abscissa ξS of the the shear center, we take Sx=0.0 and and Sy arbitrary. In the 
computer program, we took Sy=1.0. To determine the value ηS of the shear center, we set Sy=0.0 and Sx arbitrary. In the 
calculation program was given Sx=1.0. 

 
 

 
 
 
 
 
 

Fig. 3 - Shear center of a closed section. 
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Fig. 4 - Schemes for calculating shear center. 

5 Mesh generation 

It should be noted that the geometry of the airfoil is given as tabulated values. So we used the cubic spline interpolation 
to find an analytical equation of the upper and lower surface. The number of points selected for the mesh generation is 
different from that given for the definition of the geometry of the airfoil. The resulting mesh is formed by straight line 
segments placed on the boundary of the airfoil as presented in Figures 6, 7, 8, 9, 10 and 11. 

5.1 Stretching function 

Due to the curvature of the boundary, it is sometimes used to condense the nodes into a well specified to have a good 
presentation of the boundary, particularly at the leading edge for the subsonic airfoils, where there is a district area in the 
boundary [4]. 

If the stretching function is applied to the EA side (see Figure 5), for example, on the airfoil chord, the standardized 
independent variable is given by: 
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where:   η  may represent x 

We can even give the distribution on the interval [0, 1] by η* with equal sub-intervals.  

The stretching function used is given by [4]: 
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Once the value of s is obtained, it is required to specify the distribution of x. for example 

 )( EAA xxs xx −+=  (26) 

For values of P>1.0, it is possible to condense the nodes to point A. 

 Typical distributions of points on the EA segment for different values of P and Q, are shown in the following figure 7: 

 
 
 
 
 
 
 

Fig. 5 - Distribution of nodes according to equation (25). 
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To obtain the ordinate of the point considered on the boundary, it is sufficient to use the analytic function of the upper 
or lower surface of the airfoil. 

5.2 Connecting segments of the mesh 

The numbering of the nodes of the mesh starts with the trailing edge in the counter clockwise direction. If the number 
of points on the boundary is NN, then the number of segments treated equals NS=NN. 

The problem is to assemble these segments to get the result for the entire section. To get results, we must have to know 
the numbers of nodes of each segment, see Figure 3. For the number (i) (i = 1, 2, 3, ..., NN), the node j=i +1. For the last 
segment, the number of node j=1 (closed boundary). This segment is in the lower surface with a node that is the trailing 
edge.  

6 Results and comments 

In Figures 6, 7, 8, 9, 10 and 11 mesh chosen in our calculation. It is formed by segments of the boundary. We took the 
following parameters P=1.9, Q=2.00 for the upper surface and P=0.01, Q=2.00 for the lower surface. The airfoil selected in 
these figures is the DOUGLAS LA203A unsymmetrical with camber. The definition of the geometry is presented by 51 
points as Table 1 shows [3].  

Note that the numbering of the nodes on the upper begins from the trailing edge to the leading edge whereas for the 
lower surface, the numbering of nodes starts from leading edge to the trailing edge. The mesh is made so that there is 
condensation of nodes to the leading edge to see the curvature. This procedure is especially important for subsonic and 
transonic airfoil. 

In these figures were taken respectively NS=15, 30, 60, 100, 200 and 350 segments of the boundary to see the position 
of the nodes. Note that the developed program can make unlimited mesh presentation. For applications, we took the 
number of segments to one Million. 

 

Fig. 6 - Discretization of the boundary of the airfoil by NS=15. 

 

Fig. 7 - Discretization of the boundary of the airfoil by NS=30. 

 

Fig. 8 - Discretization of the boundary of the airfoil by NS=60. 

 

Fig. 9 - Discretization of the boundary of the airfoil by NS=100. 

 

Fig. 10 - Discretization of the boundary of the airfoil by NS=200. 

 

Fig. 11 - Discretization of the boundary of the airfoil by NS=350. 
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Table 1 - Defining points of the surface of the airfoil DOUGLAS LA203A. 

   Upper surface  
In (%) of C 

 Lower surface 
In (%) of C 

 x/C (%)  y/C (%)  y/C (%) 
01 0.0000  0.0000  0.0000 
02 0.0887  0.6000  -0.8018 
03 0.3544  1.5836  -1.5137 
04 0.7963  2.3336  -2.1544 
05 1.4127  3.0677  -2.6516 
06 2.2015  3.8031  -2.9638 
07 3.1599  4.5492  -3.1320 
08 4.2846  5.3047  -3.2209 
09 5.5715  6.0636  -3.2676 
10 7.0162  6.8190  -3.2867 
11 8.6135  7.5641  -3.2657 
12 10.3579  8.2919  -3.2692 
13 12.2432  8.9956  -3.2407 
14 14.2628  9.6688  -3.2024 
15 16.4095  10.3048  -3.1557 
16 18.6758  10.8970  -3.1016 
17 21.0538  11.4389  -3.0405 
18 23.5350  11.9234  -2.9724 
19 26.1106  12.3424  -2.8967 
20 28.7718  12.6854  -2.8125 
21 31.5090  12.9435  -2.7184 
22 34.3127  13.1182  -2.6124 
23 37.1729  13.2075  -2.4919 
24 40.0796  13.2090  -2.3512 
25 43.0226  13.1219  -2.1826 
26 45.9916  12.9436  -1.9830 
27 48.9759  12.6743  -1.7533 
28 51.9653  12.3176  -1.4947 
29 54.9490  11.8770  -1.2099 
30 57.9167  11.3566  -0.9052 
31 60.8579  10.7640  -0.5917 
32 63.7621  10.1087  -0.2822 
33 66.6193  9.4063  0.0143 
34 69.4194  8.6797  0.2917 
35 72.1524  7.9995  0.5448 
36 74.8087  7.2292  0.7686 
37 77.3791  6.5291  0.9596 
38 79.8545  5.8545  1.1145 
39 82.2261  5.2086  1.2313 
40 84.4856  4.5936  1.3087 
41 86.6250  4.0113  1.3484 
42 88.6369  3.4630  1.3448 
43 90.5141  2.9490  1.3056 
44 92.2500  2.4700  1.2302 
45 93.8385  2.0258  1.1218 
46 95.2740  1.6162  0.9838 
47 96.5516  1.2408  0.8211 
48 97.6665  0.8985  0.6392 
49 98.6151  0.5883  0.4425 
50 99.3938  0.3044  0.2384 
51 100.0000  0.0000  0.0000 
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The points of the table 1 are used to determine the analytical function of the extrados and intrados, using cubic spline 
interpolation. 

6.1 Effect of discretization on the convergence 

We will justify the convergence of the numerical results to the exact solution by making the change in the number of 

segments on the section and see the convergence of the calculation parameters 0,sτ , 
+
maxτ , 

−
minτ , Sξ , Sη . Taking the 

example of a circle of radius R=1.0. The center located at the point xG=R, yG=0.0 as presented in Figure 12. For this 
example we took t=0.01. In this case, the values of the moments and product of inertia with respect to the central axis 
(horizontal and vertical) are given by [7]: 

 
1415926535.3)/()/( 33 == tRItRI yyxx   (27) 

 
0.0=xyI

 (28) 

The values of 0,sτ , 
+
maxτ , 

−
minτ , Sξ , Sη  for some values of number of segments are presented in tables 2 and 3. In 

these tables, we took Sx=1.0 and Sy=1.0. Note that 0,sτ , 
+
maxτ , 

−
minτ  depend on Sx and Sy, and that Sξ , Sη  do not depend 

on Sx and of Sy. 

 

Fig. 12 - Presentation of the thin-walled circle. 

Table 2 - Effect of discretization on the convergence of 0,sτ , 
+
maxτ et 

−
minτ  for the circle. 

NS 0,sτ  +
maxτ  −

minτ  
10 32.120821 46.114908 -47.060181 
20 31.830346 45.893652 -46.075668 
50 31.837888 45.178012 -45.306287 

100 31.839597 45.059774 -45.121430 
200 31.836513 45.021131 -45.051751 
300 31.834777 45.019860 -45.036059 
500 31.833184 45.018975 -45.025069 
700 31.832476 45.017202 -45.021673 

1000 31.831951 45.016513 -45.019245 
2000 31.831394 45.016210 -45.017048 
5000 31.831112 45.015888 -45.016115 
8000 31.831075 45.015874 -45.015984 

10000 31.831064 45.015860 -45.015940 
20000 31.831020 45.015832 -45.015853 
50000 31.830997 45.015824 -45.015826 

105 31.830993 45.015823 -45.015824 
106 31.830992 45.015823 -45.015823 
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In Figures 13, 14, 15, 16 and 17 were presented respectively the variation of parameters 0,sτ , +
maxτ , −

minτ , Sξ ,  Sη

depending on the number of segments to see the convergence of these parameters to the exact solution. We see clearly from 
this figure and tables 2 and 3, the convergence of these parameters. It is present setting decimal digits, plus the number of 
segments increases, which interprets the convergence settings to the exact solution. Stability occurs for the parameters from 
NS=300 segments. So to have an accuracy of ε=10-3, we have about 300 segments. For a precision ε=10-6, it takes about 
40000 segments. 

Table 3 - Effect of discretization on the convergence of values Sξ et Sη  for the circle. 

NS Sξ  Sη  
10 0.8899922873 0.0383217545 
20 0.9543224561 0.0041862997 
50 0.9868014410 0.0000310035 

100 0.9950410087 -0.0000623843 
200 0.9981762532 -0.0000273174 
300 0.9989907237 -0.0000144579 
500 0.9995234514 -0.0000060630 
700 0.9997101922 -0.0000033406 

1000 0.9998296578 -0.0000017599 
2000 0.9999398717 -0.0000004839 
5000 0.9999860454 -0.0000000820 
8000 0.9999931018 -0.0000000322 

10000 0.9999951684 -0.0000000255 
20000 0.9999986939 -0.0000000034 
50000 0.9999999355 -0.0000000007 

105 0.9999999834 -0.0000000004 
106 1.0000000000 0.0000000001 

 

 

Fig. 13 - Variation of 0,sτ versus the number of segments NS for the circle. 

 

 

Fig. 14 - Variation of +
maxτ  versus the number of segments NS for the circle. 
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Fig. 15 - Variation of −

minτ  versus the number of segments NS for the circle. 

 
Fig. 16 - Variation of Sξ   versus the number of segments NS for the circle. 

 
Fig. 17 - Variation of Sη   versus the number of segments NS for the circle. 

The variation of shear stress along the wall of a circle for some values of Sx and Sy are shown in Figures 18, 19 and 20. 
In these examples, we took NS=10000. Then for each value of Sx and Sy may have a distribution of shear stress. 

 
Fig. 18 - Variation of the shear stress along the wall circle for Sx=1.0 and Sy=1.0. 
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Fig. 19 - Variation of the shear stress along the wall circle for Sx=0.0 and Sy=1.0. 

 
Fig. 20 - Variation of the shear stress along the wall circle for Sx=0.0 and Sy=10.0. 

The second example chosen is that the airfoil DOUGLAS LA 203A with C=1.0. For this example we always take the 
thickness t=0.01. 

The variation of the shear stress for this airfoil for different values of Sx and Sy are shown in Figures 21, 22 and 23. 

 
Fig. 21 - Variation of the shear stress along the wall of the airfoil DOUGLAS LA203A when Sx=0.0 and Sy=1.0. 

 

 
Fig. 22 - Variation of the shear stress along the wall of the airfoil DOUGLAS LA203A when Sx=1.0 and Sy=1.0. 
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Fig. 23 - Variation of the shear stress along the wall of the airfoil DOUGLAS LA203A when Sx=1.0 and Sy=0.0. 

The figure 24 shows the variation of the maximum value of +
maxτ et −

minτ versus Sx and Sy. So, the more vertical shear Sy 

is large, more +
maxτ et −

minτ  becomes high. 

The figure 25 shows the variation of the maximum value of +
maxτ et −

minτ versus Sx when Sy=0.0. This figure is the 

compliment of Figure 24. In this case +
maxτ  is almost equal to −

minτ  in absolute value. 

 

 
(a)  : Variation of ySt  /  ) (  max ×

+τ . 

(b)  : Variation of ySt  /  ) (  min ×− −τ . 
Fig. 24 - Variation of ySt  /  ) (  max ×

+τ  and ySt  /  ) (  min ×− −τ  versus yx SS /  for the airfoil DOUGLAS LA203 A. 

 

 
 

(a)  : Variation of t  max ×
+τ  

(b)  : Variation of t  min ×− −τ  

Fig. 25 - Variation of +
maxτ et )min( −−τ versus Sx when Sy=0.0 for the airfoil DOUGLAS LA 203 A. 

0 1 2 3 4 5 
Sx 

0.0 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 

(a) 

(b) 

0 1 2 3 4 5 
Sx / Sy 

3.0 

3.5 

4.0 

4.5 

5.0 

5.5 

(a) 

(b) 

0.0 0.2 0.4 0.6 0.8 1.0 
x / C 

-80 
-60 
-40 
-20 

0 
20 
40 
60 

Upper surface 

Lower surface 

80 

6.0 

4.0 



86 JOURNAL OF MATERIALS AND ENGINEERING STRUCTURES 1 (2014) 73–88 

 

6.2 Results for different airfoils 

The values in tables 4 and 5 are obtained for a discretization of one million points on the boundary of the airfoil when 
Sx=Sy=1.0. The thickness is taken to be t/C=0.01. 

Moments and product of inertia Ixx, Iyy and Ixy are presented in references [7]. 

The airfoils selected in this publication regarding all airlines. It took 33 airfoils as presented in the table 4. 

Airfoils that have ηS=0.0 mean that this airfoil is symmetrical. In this case, the shear center is located from the 
horizontal symmetry axis, inwardly a distance ξS relative to the leading edge. These results are found for the airfoil number 
1 (NACA 0012), Number 5 (NACA 62), Number 6 (RAF 30), Number 17 (NACA M1) according to table 5. 

The values of 
+
maxτ et 

−
minτ depends on Sx and Sy. The airfoils which have a maximum, the greatest possible constraint 

is one that is in high demand airfoil. We find this case for the NACA M1 (number 17) profile. It is otherwise for the 
WORTMANN FX2 airfoil (number 16). 

If the shear forces Sx and Sy in the center of shear presented in Table 5 are applied, it will not in this case the 
phenomenon of torsion. 

Table 4 - References of the airfoils and the value of the shear stress tS  / 0,τ  at the opening airfoils. 

N° Airfoils names tS  / 0,τ  
1 NACA0012 4.425044 
2 NACA 63-412 4.279588 
3 RAE 2822 4.397287 
4 NACA 0010-34 5.578217 
5 NACA 62 4.472229 
6 RAF 30 4.186719 
7 E-385 4.646177 
8 NACA 23009 5.845371 
9 NACA 2412 4.357741 

10 NASA AMES A-01 5.113134 
11 AQUILA 9.3% 5.208383 
12 AVISTAR 3.770983 
13 CHEN 3.949288 
14 FAUVEL 14% 3.752219 
15 EIFFEL 385 3.742358 
16 WORTMANN FX 2 2.693112 
17 NACA M1 8.688636 
18 ONERA OA209 5.719238 
19 OAF 128 3.967910 
20 ONERA NACA CAMBRE 4.711216 
21 NASA LANGLEY RC-08 B3 6.772725 
22 NASA LANGLEY RC-08 N1 6.794713 
23 TRAINER 60 2.898697 
24 TSAGI 8% 6.743970 
25 TSAGI 12% 4.564709 
26 EPPLER 520 3.462827 
27 EPPLER 635 4.647121 
28 LOCKHEED L-188 ROOT 3.814667 
29 NACA 63-415 3.460841 
30 NACA 63-210 5.188818 
31 NACA 64-108 6.629517 
32 NASA LANGLEY 64-012 4.443705 
33 DOUGLAS LA203A 3.030211 
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Table 5 - Stress maximum and the position of the shear center of some airfoils. 

N° t  max ×
+τ  t  min ×− −τ  Sξ

 
Sη  

1 4.52045 5.97929 0.26271 0.00000 
2 4.30303 6.16136 0.28294 -0.02562 
3 4.39762 5.90114 0.29757 -0.00473 
4 5.57882 6.66320 0.37108 -0.01610 
5 4.57211 6.00023 0.27083 0.00000 
6 4.29871 5.72350 0.25998 0.00000 
7 5.37088 7.66141 0.48236 -0.05314 
8 5.87193 8.16689 0.24929 -0.01736 
9 4.35786 5.96744 0.26520 -0.02452 

10 5.13433 6.76407 0.28596 -0.01637 
11 5.30166 7.65885 0.25105 -0.04905 
12 3.77942 4.92719 0.30335 -0.02657 
13 3.95733 6.05067 0.21267 -0.05685 
14 3.98370 5.65741 0.20043 -0.02052 
15 3.83989 5.70550 0.29287 -0.06941 
16 2.71198 3.33076 0.38476 -0.03429 
17 8.71315 11.20230 0.29570 0.00000 
18 5.78284 7.79007 0.27693 -0.01452 
19 3.97155 6.30563 0.20024 -0.01207 
20 4.77201 6.29418 0.27596 -0.01287 
21 6.79972 8.29754 0.34428 -0.01264 
22 6.83759 9.07613 0.29337 -0.01759 
23 3.04167 4.19153 0.28811 -0.00042 
24 6.78046 8.82729 0.29785 -0.01418 
25 4.62205 5.95387 0.30307 -0.02083 
26 3.66332 4.84449 0.25938 0.00000 
27 4.81587 6.61000 0.24172 -0.02480 
28 3.81757 5.00155 0.41267 -0.02385 
29 3.48340 4.98324 0.27203 -0.02559 
30 5.18989 7.41203 0.26124 -0.01302 
31 6.64367 9.17045 0.26857 -0.00660 
32 4.61766 6.15478 0.26559 0.00000 
33 3.10454 4.56410 0.33329 -0.06192 

 

7 Conclusion 

This work allows us to determine the distribution of shear stress in closed tubes, thin-walled mono box and made an 
application to the airfoils used in the field of aeronautics. Can be drawn from this work the following points: 

• The discretization is done by straight line segments on the boundary of the section. 
• Applications are made for values less than or equal to 0.01 for the thickness. 
• To study a closed section must be an opening in this section in any location, and to study first, the stress distribution 

in the open section. 
• We must determine the value of the shear stress in the point of opening of the closed sections. 
• The shear stress is applied tangentially to the wall. 
• A very important parameter that can be considered to calculate the shear stress appointed by shear flow. 
• Section should be set in the reference mark through the center of gravity of the section. 
• Determining center of gravity of the section is necessary. 
• The calculation of the moments and product of inertia must be made with respect to the central axis. 
• All airfoils considered are presented in tabulated values. The cubic spline interpolation is used in this case to obtain 

an analytic function of the upper and lower surface. 
• The airfoils studied involving only the field of incompressible and compressible subsonic and transonic area. 
• The discretization of the domain can be done with any number of segments. Application is made for a discretization 

of one Million segments. 
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• Condensation nodes to the leading edge of the airfoil is used to refine the points to the edge having the large 
curvature in this region. 

• The application of shear to the shear center allows for the elimination of the twisting section. 
• The position of the shear center does not depend on the value and position of the application of shear. 
• As prospects. We can study the distribution of shear stress in sections multi boxes. Applications can be made for 

three boxes with and without effect of stiffeners (booms). In this case we must make an opening in each box, which 
it has its own constraints. 0,Sτ . 
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Appendix A. Nomenclature 

  (xi , yi) Coordinates of a node. 
  NS Number of segments. 
  NN Number of nodes on the boundary of the section. 
  Ix , Iy Central moments of inertia of the section. 
  Ixy Central product of inertia of the section. 
  Sx  Horizontal shear. 
  Sy Vertical shear. 
  qb Shear flow in the open tube. 
  qs Shear flow in the closed tube. 
  qs,0 Value of shear flow at the opening. 
  τ Shear stress. 
  τs,0 Value of the shear stress at the opening. 
  T Pitching moment. 
  L Total length of the section. 
  d Lever arm. 
  η* Normalized variable. 
  P , Q Parameters for the control of mesh points (Stretching function). 
  C Chord of the airfoil. 
  t Thickness of the segment and the airfoil. 
  ξS, ηS  Coordinates of the shear center.  
  (xO, yO) Position of point for calculation of moment. 
  Ε Accuracy. 
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