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A B S T R A C T 

 

In this paper, a refined trigonometric shear deformation theory is applied for the bending 
analysis of isotropic and orthotropic plates under the various loading conditions. The 
two unknown variables are involved in the present theory. The present theory satisfies 
the shear stress free condition at top and bottom surface of the plates without using shear 
correction factors. The governing equations and boundary conditions are obtained by 
using the principle of virtual work. A closed form solution is obtained using Navier 
Solution Scheme. A simply supported isotropic and orthotropic plate subjected to 
sinusoidally distributed, uniformly distributed and linearly varying loads are considered 
for the detailed numerical study. The results obtained using present theory are compared 
with previously published results. 

1 Introduction 

The composite plates are widely used in the various fields of engineering like aerospace, ships, automotive and civil. 
Therefore, various plate theories have been developed by researchers to predict the correct bending behavior of composite 
plates. Kirchhoff [1] has developed a classical plate theory (CPT) for thin plate analysis, which is not suitable for the thick 
plate due to neglect of the shear deformation effect. Therefore Mindlin [2] has developed first order shear deformation 
theory (FSDT) considering the effect of transverse shear deformation for the analysis of plates. But, this theory does not 
satisfy the zero shear stress condition at the top and bottom and require a shear correction factor.  Various higher order 
shear deformation theories have been reported in the literature, which considers the transverse shear deformation effect and 
satisfies the zero shear stress conditions at the top and bottom surfaces of the plates without shear correction factor. Among 
these higher order theories, Reddy’s [3] theory is most commonly used for the analysis of composite plates.  Ghugal and 
Shimpi [4] has presented a review of such displacement and stress based refined theories for isotropic and anisotropic 
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plates. Levy [5] was first to developed a refined theory using trigonometric functions in the displacement field in terms of 
thickness coordinate for the thick isotropic plate. Stein [6] also proposed such theory and applied to isotropic plates in the 
modified form. But Stein’s theory does not satisfy the zero shear stress conditions at the top and bottom surfaces of the 
plate. Touratier [7] has developed a trigonometric shear deformation theory for bending, buckling and vibration analysis of 
laminated composite and sandwich plates. Shimpi and Ghugal [8] have developed a layer wise trigonometric shear 
deformation theory for flexural analysis of two layered laminated plates. Shimpi et.al [9] proposed a trigonometric theory 
for static and free vibration analysis of isotropic, orthotropic and layered composite plates. Ghugal and Sayyad [10, 11] 
have developed trigonometric shear deformation theory considering the effects of transverse shear and normal deformations 
for bending analysis of thick isotropic and orthotropic plates. Mantari et al. [12, 13] also uses the trigonometric function in 
the displacement field and developed a new higher order shear deformation theory for bending analysis of isotropic, 
laminated composite and sandwich plates.  Recently, Neves et al. [14-16] have developed a quasi 3D higher order shear 
deformation theories using a sine and hyperbolic sine function for static, free vibration and buckling analysis of isotropic, 
sandwich and functionally graded plate. Sayyad [17] has applied an exponential theory for the bidirectional bending 
analysis of the isotropic plate. This theory is further extended by Sayyad and Ghugal [18] for the analysis of orthotropic 
composite plate. Thai and Vo [19] have developed a trigonometric shear deformation theory for the bending analysis of 
functionally graded plates. Refined plate theory using parabolic function is developed by Shimpi and Patel [20] which 
involves only two unknown variables for bending and free vibration analysis of orthotropic plates.   

In the present paper, a two variable plate theory using trigonometric function in the displacement field is applied for the 
bending analysis of isotropic and orthotropic plates. The theory is designated as two variable trigonometric shear 
deformation theory. This theory neglects the need of a shear correction factor. Governing equations and boundary 
conditions are obtained by using the principle of virtual work. A Navier’s double trigonometric series technique is used to 
obtain the closed form solution. The present results are compared with exact solution given by Pagano [21].  

2 Theoretical Formulation 

2.1   The displacement field  

A square plate of the sides ‘a’ and total thickness ‘h’ as shown in Figure 1 is considered. The plate is made up of linearly 
elastic orthotropic material. The downward z-direction is taken positive. The plate occupies the region 0 ≤ x ≤ a, 0 ≤ y ≤ 
b, -h/2 ≤ z ≤ h/2 in Cartesian coordinate system. A transverse load q(x, y) is applied on the upper surface of the plate. 

 

Figure 1. Orthotropic plate coordinate system. 

  The displacements u in x-direction, v in y-direction and w in z-direction consists of bending and shear components. 
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Here u, v and w are displacements in the x, y and z directions of a point having coordinates (x. y and z) in the plate domain.
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The non-zero normal and shear strain components are obtained using strain displacement relations given by Jones [22].   
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2.2   Constitutive Relation  

The constitutive relationships for the orthotropic plate can be given as, 
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where, ijQ are the plane stress reduced elastic constants taken from Jones [22] 
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2.3 Governing equations and boundary conditions 

The variationally consistent governing equations of equilibrium and boundary conditions associated with the present theory 
can be derived using the principle of virtual work. The analytical form of principle of virtual work can be written as: 
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where δ be the arbitrary variations. Integrating Eq. (6) by parts and collecting the coefficients of andb sw wδ δ  to obtain 
the governing equations of equilibrium and boundary conditions associated with the present theory. The governing 
equations of equilibrium are as follows: 
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where ij ij ij ijD ,Bs ,Ass , Acc  are the stiffness coefficients which are given as: 
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where 

 ( ) ( )sin and cosh z zf z z g z
h h
π π

π
= − =   (10) 

2.4    Navier solution for simply supported plates 

The Navier solution scheme is used to obtain closed form solution for the bending analysis of isotropic and orthotropic 
plates simply supported on all four edges. The plate is subjected to transverse load q(x, y) at upper surface i.e. z = -h/2. The 
load is presented in double trigonometric series as, 
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where qmn is the coefficient of Fourier expansion given as below for various static loadings. 
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where q0 is maximum intensity of distributed load at the centre of plate. The following solution form is assumed for 
unknown displacement variables  bwδ  and swδ satisfying the boundary conditions of simply supported plates exactly.  

 sin sin and sin sinb bmn s smnw w x y w w x yα β α β= =   (12) 

where andbmn smnw w are the unknown functions, m a=α π  and n b=β π . Substitution this form of solution and 
transverse load q(x, y) into the governing equations (7) - (8) leads to the following matrix form. 
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where elements of stiffness matrix [K] are as follows:  
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From the solution of Eq. (13), unknown coefficients andbmn smnw w  can be obtained. Having obtained values of these 
unknown coefficients one can then calculate all the displacement and stress components within the plate. Shear stresses are 
obtained by using constitutive relations and integrating equations of equilibrium of theory of elasticity. 
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3 Numerical Results  
To prove the efficiency of the present theory, it is applied for the bending analysis of isotropic and orthotropic plates 
subjected to various static loadings such as a) SDL b) UDL c) LVL.  The following material properties are used to obtain 
the numerical results. 

 Isotropic: 
( )1 2 12 21 12 13 23210 0 25

2 1
EE E E GPa, . , G G G G= = = = = = = = = =
+

µ µ µ
µ

 (15) 

 Orthotropic: 1 2 12 12 13 2 23 225 0 25 0 5 0 2E E , . , G G . E ,G . E= = = = =µ   (16) 

 
The numerical results of displacements and stresses are presented in the following non-dimensional form. 
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4   Discussion of Results 

The non-dimensional displacement and stresses obtained using present theory are compared and discussed with those 
obtained by the classical plate theory (CPT) of Kirchhoff [1], first order shear deformation theory (FSDT) of Mindlin [2], 
higher order shear deformation theory (HSDT) of Reddy [3], exponential shear deformation theory (ESDT) of Sayyad [16, 
17], trigonometric shear deformation theory (TSDT) [9] and Exact elasticity solution given by Pagano [21]. 

4.1   Bending analysis of simply supported isotropic plates 

Comparison of maximum non-dimensional displacements and stresses at critical points for an isotropic square plate 
subjected to sinusoidal distributed load is shown in Table 1. The plate is made up of isotropic. The numerical results are 
obtained for aspect ratios (a/h) 4 and 10. The present theory and HSDT give a more accurate value of in-plane 
displacement than that is given by ESDT, TSDT, FSDT and CPT as compared to exact values. Through thickness 
distribution of in-plane displacement for aspect ratio 10 is shown in Figure 2. The values of in-plane normal stresses 
obtained using present theory and HSDT are excellent agreement with each other.  
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Figure 2. Thickness distribution of in-plane displacement ( u ) for isotropic plate subjected to SDL at a/h = 10. 



8 JOURNAL OF MATERIALS AND ENGINEERING STRUCTURES 2 (2015) 3–15 

 

   
Table 1- Comparison of displacements and stresses for the isotropic   square (b = a) plate subjected to 

sinusoidally distributed load 
 

a/h Quantity Exact Present TSDT HSDT FSDT CPT 

4 u  0.0454 0.046 0.044 0.046 0.044 0.044 

 w  3.6630 3.793 3.653 3.787 3.626 2.803 

 xσ  0.2040 0.210 0.226 0.209 0.197 0.197 

 yσ  0.2040 0.210 0.226 0.209 0.197 0.197 

 xyτ  --- 0.113 0.133 0.112 0.106 0.106 

 CR
xzτ

 
0.2361 0.247 0.244 0.237 0.159 --- 

 EE
xzτ  --- 0.235 0.232 0.226 0.239 0.238 

 CR
yzτ  0.2361 0.247 0.244 0.237 0.159 --- 

 EE
yzτ  --- 0.235 0.232 0.226 0.239 0.238 

        

10 u  0.0443 0.044 0.044 0.044 0.044 0.044 

 w  2.9425 2.960 2.933 2.961 2.934 2.803 

 xσ  0.1988 0.199 0.212 0.199 0.197 0.197 

 yσ  0.1988 0.199 0.212 0.199 0.197 0.197 

 xyτ  --- 0.107 0.110 0.107 0.106 0.106 

 CR
xzτ

 
0.2383 0.246 0.245 0.238 0.235 --- 

 EE
xzτ  --- 0.238 0.235 0.229 0.239 0.238 

 CR
yzτ  0.2383 0.246 0.245 0.238 0.235 --- 

 EE
yzτ  --- 0.238 0.235 0.229 0.239 0.238 

 

The TSDT overestimate the values of normal stresses whereas FSDT and CPT underestimate those as compared to 
exact values. Through thickness distribution of normal stress is shown in Figure 3.The value of in-plane shear stress 
obtained by present theory is in excellent agreement with the values of other refined theories. Transverse shear stresses 
when obtained by constitutive relations using present theory are on higher side, however, use of equilibrium equations yield 
more accurate results in case of present theory. For aspect ratio 10, present theory predicts exact value of transverse shear 
stresses. Through thickness distribution via equilibrium equation is plotted in Figure 4. The displacements and stresses of 
isotropic square plate subjected to uniformly distributed and linearly varying load are as shown in Table 2 and 3 
respectively. The non-dimensional results are obtained for aspect ratio 4 and 10 and compared with the other higher order 
theories, FSDT, CPT and exact value. From Table 2 and 3 it is observed that displacement and stresses obtained by the 
present theory are in close agreement with the other theories.  
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Figure 3. Thickness distribution of in-plane normal stress ( xσ ) for isotropic plate subjected to SDL at a/h = 10. 

Table2-Comparison of displacements and stresses for the isotropic square (b = a) plate subjected to uniformly 
distributed load. 

a/h Quantity Exact Present ESDT TSDT HSDT FSDT CPT 

4 u  0.072  0.0791 0.079  0.074 0.079  0.074  0.074  

 w  5.694 5.857 5.816 5.680 5.869 5.633 4.436 

 xσ  0.307 0.2933 0.300 0.318 0.299 0.287 0.287 

 yσ  0.307 0.2900 0.300 0.318 0.299 0.287 0.287 

 xyτ  --- 0.2193 0.223 0.208 0.218 0.195 0.195 

 CR
xzτ

 
0.460 0.4881 0.481 0.483 0.482 0.330 --- 

 EE
xzτ  --- 0.5420 0.472 0.420 0.452 0.495 0.495 

 CR
yzτ  0.460 0.4881 0.481 0.483 0.482 0.330 --- 

 EE
yzτ  --- 0.5420 0.472 0.420 0.452 0.495 0.495 

 
        

10 u  0.073  0.0745 0.075  0.073  0.075  0.074 0.074  

 w  4.639 4.6657 4.658 4.625 4.666 4.670 4.436 

 xσ  0.289 0.2896 0.289 0.307 0.289 0.287 0.287 

 yσ  0.289 0.2895 0.289 0.307 0.289 0.287 0.287 

 xyτ  --- 0.2001 0.204 0.195 0.203 0.195 0.195 

 CR
xzτ

 
0.487 0.5078 0.494 0.504 0.492 0.330 --- 

 EE
xzτ  --- 0.6220 0.490 0.481 0.486 0.495 0.495 

 CR
yzτ  0.487 0.5078 0.494 0.504 0.492 0.330 --- 

 EE
yzτ  --- 0.6220 0.490 0.481 0.486 0.495 0.495 
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Figure 4. Thickness distribution of transverse shear stress ( EE
xzτ ) for isotropic plate subjected to SDL at a/h = 10. 

Table 3-Comparison of displacements and stresses for the isotropic square (b = a) plate subjected to linearly 
distributed load. 

a/h Quantity Exact Present ESDT TSDT HSDT FSDT CPT 

4 u  0.036 0.0395 0.0395 0.037 0.0395 0.037 0.037 

 w  2.847 2.928 2.908 2.84 2.9345 2.8165 2.218 

 xσ  0.1535 0.1466 0.15 0.159 0.1495 0.1435 0.1435 

 yσ  0.1535 0.145 0.15 0.159 0.1495 0.1435 0.1435 

 xyτ  --- 0.1096 0.1115 0.104 0.109 0.0975 0.0975 

 CR
xzτ

 
0.23 0.2440 0.2405 0.2415 0.241 0.165 --- 

 EE
xzτ  --- 0.271 0.236 0.21 0.226 0.2475 0.2475 

 CR
yzτ  0.23 0.2440 0.2405 0.2415 0.241 0.165 --- 

 EE
yzτ  --- 0.271 0.236 0.21 0.226 0.2475 0.2475 

         

10 u  0.0365 0.0372 0.0375 0.0365 0.0375 0.037 0.037 

 w  2.3195 2.3328 2.329 2.3125 2.333 2.335 2.218 

 xσ  0.1445 0.1448 0.1445 0.1535 0.1445 0.1435 0.1435 

 yσ  0.1445 0.1447 0.1445 0.1535 0.1445 0.1435 0.1435 

 xyτ  --- 0.1000 0.102 0.0975 0.1015 0.0975 0.0975 

 CR
xzτ

 
0.2435 0.2539 0.247 0.252 0.246 0.165 --- 

 EE
xzτ  --- 0.311 0.245 0.2405 0.243 0.2475 0.2475 

 CR
yzτ  0.2435 0.2539 0.247 0.252 0.246 0.165 --- 

 EE
yzτ  --- 0.311 0.245 0.2405 0.243 0.2475 0.2475 
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4.2   Bending analysis of simply supported orthotropic plates. 

The non-dimensional displacements and stresses for the orthotropic square plate under sinusoidally distributed load are 
listed in Table 4.The plate is made up of orthotropic. The examination of Table 4 reveals that, the present theory slightly 
overestimates the in-plane displacement and underestimates the transverse displacement. The in-plane normal stress ( )xσ  

predicted by present theory is in good agreement with exact value, but in-plane normal stress ( )yσ  is on the lower side. 

The values of in-plane shear stress obtained by all the theories theory are in excellent agreement with exact other. The 
transverse shear stress ( )EE

xzτ  predicted by present theory is in excellent agreement with that of exact solution and 

transverse shear stress ( )EE
yzτ  is identical with those obtained by CPT. Through thickness distributions of in-plane 

displacement, in-plane normal stresses and transverse shear stress are shown in Figures 5 through 8 respectively. The non-
dimensional results obtained of orthotropic plate subjected to uniformly distributed and linearly varying load by the present 
theory are presented in Table 5 and 6 respectively. The results obtained for displacement and stresses for the aspect ratio 4 
and 10. From Table 5 and 6 it is observed that present theory gives the results of displacement and stresses more or less 
similar to those obtained using other theories.    

Table 4-Comparison of displacements and stresses for the orthotropic square (b = a) plate subjected to sinusoidally 
distributed load. 

 

a/h Quantity Exact Present ESDT HSDT FSDT CPT 

4 u  0.0093 0.0096 0.0094 0.0092 0.0060 0.0068 

 w  1.5978 1.4973 1.5828 1.6206 1.6616 0.4310 

 xσ  0.7276 0.7725 0.7765 0.7379 0.4784 0.5387 

 yσ  0.0727 0.0383 0.0667 0.0640 0.0579 0.0267 

 xyτ  --- 0.0306 0.0312 0.0427 0.0358 0.0213 

 CR
xzτ  0.3620 0.3427 0.3938 0.3903 0.2692 --- 

 EE
xzτ  --- 0.3895 0.3764 0.3532 0.4039 0.4397 

 CR
yzτ  0.0738 0.1371 0.0717 0.0714 0.0491 --- 

 EE
yzτ  --- 0.0377 0.0697 0.0694 0.0736 0.0377 

        

10 u  0.0071 0.0072 0.0071 0.0071 0.0066 0.0068 

 w  0.6340 0.6141 0.6327 0.6371 0.6383 0.4310 

 xσ  0.5680 0.5770 0.5809 0.5700 0.5385 0.5387 

 yσ  0.0360 0.0286 0.0348 0.0347 0.0339 0.0267 

 xyτ  --- 0.0228 0.0229 0.0257 0.0246 0.0213 

 CR
xzτ  0.4220 0.3506 0.4375 0.4290 0.2877 --- 

 EE
xzτ  --- 0.4316 0.4265 0.4225 0.4315 0.4397 

 CR
yzτ  0.0460 0.1402 0.0466 0.0458 0.0306 --- 

 EE
yzτ  --- 0.0377 0.0455 0.0455 0.0459 0.0377 
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Table 5-Comparison of displacements and stresses for the orthotropic square (b = a) plate subjected to uniformly 
distributed load. 

a/h Quantity Exact Present ESDT HSDT FSDT CPT 

4 u  0.0146  0.0156 0.0156  0.0147 0.0092   0.0104  

 w  2.3590 2.2992 2.3368 2.3886 2.4375 0.6497 

 xσ  0.9640 1.1216 1.0754 1.0188 0.7041 0.7867 

 yσ  0.0780 0.0871 0.0740 0.0746 0.0727 0.0245 

 xyτ  --- 0.0754 0.0805 0.0739 0.0742 0.0464 

 CR
xzτ  0.6160 0.5997 0.6542 0.6567 0.4906 ---  

 EE
xzτ  --- 0.4912 0.6244 0.6166 0.7359 0.7806 

 CR
yzτ  0.2060 0.2653 0.2172 0.2183 0.1575 --- 

 EE
yzτ  --- 0.2457 0.2175 0.1885 0.2362 0.1846 

        

10 u  0.0112   0.0112 0.0113  0.0111  0.0102  0.0104  

 w  0.9470 0.8958 0.9444 0.9506 0.9520 0.6497 

 xσ  0.8210 0.8551 0.8341 0.8246 0.7707 0.7867 

 yσ  0.0360 0.0262 0.0353 0.0355 0.0353 0.0245 

 xyτ  --- 0.0563 0.0514 0.0497 0.0540 0.0464 

 CR
xzτ  0.7310  0.6208 0.7564 0.7469 0.5154 --- 

 EE
xzτ  ---  0.8158 0.7259 0.6813 0.7731 0.7806 

 CR
yzτ  0.1880  0.3975 0.1935 0.1909 0.1299 --- 

 EE
yzτ  --- 0.1625 0.1870 0.1810 0.1949 0.1846 
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Figure 5. Thickness distribution of in-plane displacement ( u ) for orthotropic plate subjected to SDL at a/h = 10. 
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   Table 6-Comparison of displacements and stresses for the orthotropic square (b = a) plate subjected to linearly 
varying load. 

a/h Quantity Exact Present ESDT HSDT FSDT CPT 

4 u  0.0073 0.0078 0.0078 0.0073 0.0046 0.0052 

 w  1.1795 1.1496 1.1684 1.1943 1.2187 0.3248 

 xσ  0.482 0.5608 0.5377 0.5094 0.3520 0.3933 

 yσ  0.039 0.0435 0.037 0.0373 0.0363 0.0122 

 xyτ  --- 0.0377 0.0402 0.0369 0.0371 0.0232 

 CR
xzτ  0.308 0.2998 0.3271 0.3283 0.2453 --- 

 EE
xzτ  --- 0.2456 0.3122 0.3083 0.3679 0.3903 

 CR
yzτ  0.103 0.1326 0.1086 0.1091 0.0787 --- 

 EE
yzτ  --- 0.1228 0.1087 0.0942 0.1181 0.0923 

        

10 u  0.0056 0.0056 0.0056 0.0055 0.0051 0.0052 

 w  0.4735 0.4479 0.4722 0.4753 0.476 0.3248 

 xσ  0.4105 0.4275 0.4170 0.4123 0.3853 0.3933 

 yσ  0.018 0.0131 0.0176 0.0177 0.0176 0.0122 

 xyτ  --- 0.0281 0.0257 0.0248 0.027 0.0232 

 CR
xzτ  0.3655 0.3104 0.3782 0.37345 0.2577 --- 

 EE
xzτ  --- 0.4079 0.3629 0.3406 0.3865 0.3903 

 CR
yzτ  0.0940 0.1987 0.0967 0.0954 0.0649 --- 

 EE
yzτ  --- 0.0812 0.0935 0.0905 0.0974 0.0923 
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Figure 6. Thickness distribution of in-plane normal stress ( xσ ) for orthotropic plate subjected to SDL at a/h = 10. 
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Figure 7. Thickness distribution of in-plane normal stress ( yσ ) for orthotropic plate subjected to SDL at a/h = 10. 
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Figure 8. Thickness distribution of transverse shear stress ( EE
xyτ ) for orthotropic plate subjected to SDL at a/h = 10. 

5    Conclusions 

In the present study, a two variable trigonometric shear deformation theory is applied for the bending analysis of isotropic 
and orthotropic plates. The present theory satisfies the shear stress free conditions at top and bottom surfaces of plate 
without using shear correction factor. From the numerical results and discussion, it is concluded that present theory is in 
good agreement while predicting the bending behaviour of isotropic and orthotropic plates. 
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