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1 Introduction

The composite plates are widely used in the various fields of engineering like aerospace, ships, automotive and civil.
Therefore, various plate theories have been developed by researchers to predict the correct bending behavior of composite
plates. Kirchhoff [1] has developed a classical plate theory (CPT) for thin plate analysis, which is not suitable for the thick
plate due to neglect of the shear deformation effect. Therefore Mindlin [2] has developed first order shear deformation
theory (FSDT) considering the effect of transverse shear deformation for the analysis of plates. But, this theory does not
satisfy the zero shear stress condition at the top and bottom and require a shear correction factor. Various higher order
shear deformation theories have been reported in the literature, which considers the transverse shear deformation effect and
satisfies the zero shear stress conditions at the top and bottom surfaces of the plates without shear correction factor. Among
these higher order theories, Reddy’s [3] theory is most commonly used for the analysis of composite plates. Ghugal and
Shimpi [4] has presented a review of such displacement and stress based refined theories for isotropic and anisotropic
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plates. Levy [5] was first to developed a refined theory using trigonometric functions in the displacement field in terms of
thickness coordinate for the thick isotropic plate. Stein [6] also proposed such theory and applied to isotropic plates in the
modified form. But Stein’s theory does not satisfy the zero shear stress conditions at the top and bottom surfaces of the
plate. Touratier [7] has developed a trigonometric shear deformation theory for bending, buckling and vibration analysis of
laminated composite and sandwich plates. Shimpi and Ghugal [8] have developed a layer wise trigonometric shear
deformation theory for flexural analysis of two layered laminated plates. Shimpi et.al [9] proposed a trigonometric theory
for static and free vibration analysis of isotropic, orthotropic and layered composite plates. Ghugal and Sayyad [10, 11]
have developed trigonometric shear deformation theory considering the effects of transverse shear and normal deformations
for bending analysis of thick isotropic and orthotropic plates. Mantari et al. [12, 13] also uses the trigonometric function in
the displacement field and developed a new higher order shear deformation theory for bending analysis of isotropic,
laminated composite and sandwich plates. Recently, Neves et al. [14-16] have developed a quasi 3D higher order shear
deformation theories using a sine and hyperbolic sine function for static, free vibration and buckling analysis of isotropic,
sandwich and functionally graded plate. Sayyad [17] has applied an exponential theory for the bidirectional bending
analysis of the isotropic plate. This theory is further extended by Sayyad and Ghugal [18] for the analysis of orthotropic
composite plate. Thai and Vo [19] have developed a trigonometric shear deformation theory for the bending analysis of
functionally graded plates. Refined plate theory using parabolic function is developed by Shimpi and Patel [20] which
involves only two unknown variables for bending and free vibration analysis of orthotropic plates.

In the present paper, a two variable plate theory using trigonometric function in the displacement field is applied for the
bending analysis of isotropic and orthotropic plates. The theory is designated as two variable trigonometric shear
deformation theory. This theory neglects the need of a shear correction factor. Governing equations and boundary
conditions are obtained by using the principle of virtual work. A Navier’s double trigonometric series technique is used to
obtain the closed form solution. The present results are compared with exact solution given by Pagano [21].

2 Theoretical Formulation

2.1 The displacement field

A square plate of the sides ‘a’ and total thickness ‘h’ as shown in Figure 1 is considered. The plate is made up of linearly
elastic orthotropic material. The downward z-direction is taken positive. The plate occupies the region 0 <x<a, 0 <y <
b, -h/2 <z <h/2 in Cartesian coordinate system. A transverse load q(x, y) is applied on the upper surface of the plate.

i

W
Figure 1. Orthotropic plate coordinate system.

The displacements u in x-direction, v in y-direction and w in z-direction consists of bending and shear components.

u(x, y,Z)=—Z—aWba(:' y)—[z—%sin%zj—awsé:’ Y)
_ oW (xy) (o hoowz) oW (X Y)
vV(x,y,2)=-2 Y [z ”sm hj Y )

W(X, y) =W, (X, y) +Ww,(X,y)

Here u, v and w are displacements in the x, y and z directions of a point having coordinates (x. y and z) in the plate domain.
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The non-zero normal and shear strain components are obtained using strain displacement relations given by Jones [22].

ou o*w, h . zz)ow,
g =—=—1—%—|Z——sin— |—*,
OX OX Vs h ) ox
ov o*w, h . 7zz)0w,
gyzaz— Zay2 — Z—;S| T 7 1
2 2
7xy :a_u+@:_22m_2(z_ﬂsinﬁ_z)% (3)
oy OXx OX 0y T h Joxoy
= c:os”—Z ow,
Yy h oy
7z OW,
Ve =C0S—
h ox
2.2 Constitutive Relation
The constitutive relationships for the orthotropic plate can be given as,
Oy Q. Q, O 0 0 &x
o, Q, Q, 0 0 O g,
Tyr= 0 0 Q. 0 O Y 4)
Tyz O O O Q44 0 sz
Ty 0 0 0 0 Qg] (s
where, Qij are the plane stress reduced elastic constants taken from Jones [22]
E E E
Qu =, Qw =£, Qy =t Qss =Gpv Qss =Gi3, Quu =Gy ()
1- Hia Moy 1- Haa Mo 1- Haa Mo

2.3 Governing equations and boundary conditions

The variationally consistent governing equations of equilibrium and boundary conditions associated with the present theory
can be derived using the principle of virtual work. The analytical form of principle of virtual work can be written as:

T i T [axégx +0,08, + 7,07, +7,0y, + sz57xz] dzdydx—j j gowdydx =0 (6)
0 0 -h/2 0 0

where O be the arbitrary variations. Integrating Eq. (6) by parts and collecting the coefficients of Sw, and Sw, to obtain

the governing equations of equilibrium and boundary conditions associated with the present theory. The governing
equations of equilibrium are as follows:

o'w, o'w, o'w, o'w, o'w, o'w,
Dll#+ 2(Dy, + 2Dy )0)(2—8;2+ D,, Wf+ BS“W“SJF 2(Bs,, +2Bsy) aXZa;z +Bs,, 8y4s =q 7)
o*w, o'w, o'w, 0w, 0w, 0w,
lel aTAb+ 2( BSlZ + ZBSBB) axza;Z + BSZZ ay4b + ASSH aT'f‘ Z(ASSlZ + ZASSBB )axz—ayz+ ASSZZ W = q (8)
where D;,Bs; , Ass;; , Acc;; are the stiffness coefficients which are given as:
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1Dy} =0Q; [ {Z*}az; (i==128)

hi2

{Bs;,Ass; } =Q; j f(z){z, f(z)}dz; (i=7=126) 9)
{Ace,}=Q; [ [o(2)] dz (i=j=45)
where
h . nz nz
f(z)= z-—sin=—= and g(z):cosT (10)

2.4 Navier solution for simply supported plates

The Navier solution scheme is used to obtain closed form solution for the bending analysis of isotropic and orthotropic
plates simply supported on all four edges. The plate is subjected to transverse load q(x, y) at upper surface i.e. z = -h/2. The
load is presented in double trigonometric series as,

a(x, y)=i i d,, Sinaxsin By (11)

m=1 n=1

[N

where g, is the coefficient of Fourier expansion given as below for various static loadings.

Gy =0 (m=n=1) Sinusoidally Distributed Load (SDL)
d,, :ﬂqo2 (m=n=135,...) Uniformly Distributed Load (UDL)
mnmn
U =8L°2 cosmn  (m=n=135,...) Linearly Varying Load (LVL)
mnmn

where qo is maximum intensity of distributed load at the centre of plate. The following solution form is assumed for
unknown displacement variables Sw, and ow; satisfying the boundary conditions of simply supported plates exactly.

W, =W,

mn

sinaxsinBy and w,=w__sinaxsingy (12)

where w,,,, and w,, are the unknown functions, ¢ =mz/a and S =nz/b. Substitution this form of solution and
transverse load q(x, y) into the governing equations (7) - (8) leads to the following matrix form.

|: Kll K12 :|{Wbmn } — {qmn } (13)
K21 K22 Wsmn qmn
where elements of stiffness matrix [K] are as follows:

Ky = 110‘4 + 2(D12 + 2Dee)a2132 + D22ﬁ4,
Ky, =Ky, = Bs,a® +2(Bsy, +2Bsg, ) o’ 7 +Bs,, 8, (14)

Ky, = Assyar’ +2(Assy, + 2Assg ) o’ B2 + Ass,, B* + Accgar” + Acc,, B

From the solution of Eq. (13), unknown coefficients w,,, and w,, can be obtained. Having obtained values of these

unknown coefficients one can then calculate all the displacement and stress components within the plate. Shear stresses are
obtained by using constitutive relations and integrating equations of equilibrium of theory of elasticity.
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3 Numerical Results

To prove the efficiency of the present theory, it is applied for the bending analysis of isotropic and orthotropic plates
subjected to various static loadings such as a) SDL b) UDL c) LVL. The following material properties are used to obtain
the numerical results.

Isotropic: E, =E, =E =210 GPa, s, = p1,, =1 =0.25,G, =G, =G, =G = E (15)

2(1+ ,u)
Orthotropic: E, = 25E,, 1, =0.25,G,, =G,; = 0.5E, ,G,, =0.2E, (16)

The numerical results of displacements and stresses are presented in the following non-dimensional form.

2 3 2
O
a a a

Qo Qo Yo (17)

h? h? h
gy[i,g,_ﬂjzcy . ?Xy[O,O.—E]=Txy—2, ;XZ(O’B’()J:TXZh, ?yz[ﬁlolo)ztyz
22 2 0o 2 o 2 god 2 gpa

4 Discussion of Results

The non-dimensional displacement and stresses obtained using present theory are compared and discussed with those
obtained by the classical plate theory (CPT) of Kirchhoff [1], first order shear deformation theory (FSDT) of Mindlin [2],
higher order shear deformation theory (HSDT) of Reddy [3], exponential shear deformation theory (ESDT) of Sayyad [16,
17], trigonometric shear deformation theory (TSDT) [9] and Exact elasticity solution given by Pagano [21].

4.1 Bending analysis of simply supported isotropic plates

Comparison of maximum non-dimensional displacements and stresses at critical points for an isotropic square plate
subjected to sinusoidal distributed load is shown in Table 1. The plate is made up of isotropic. The numerical results are
obtained for aspect ratios (a/h) 4 and 10. The present theory and HSDT give a more accurate value of in-plane
displacement than that is given by ESDT, TSDT, FSDT and CPT as compared to exact values. Through thickness
distribution of in-plane displacement for aspect ratio 10 is shown in Figure 2. The values of in-plane normal stresses
obtained using present theory and HSDT are excellent agreement with each other.

0.50 —

—<—  Present
zIh —o— Reddy[HSDT]

—A—  Mindiin [FSDT]

—=*— Kirchhoff [CPT]

|

-0.050 -0.025 0.050

-0.25

-0.50

Figure 2. Thickness distribution of in-plane displacement (U ) for isotropic plate subjected to SDL at a/h = 10.
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Table 1- Comparison of displacements and stresses for the isotropic square (b = a) plate subjected to
sinusoidally distributed load

a’/h  Quantity Exact Present TSDT HSDT FSDT CPT

4 o 00454 0.046 0044 0046 0044 0.044
w 36630 3.793 3653 3787 3.626 2.803
G, 02040 0210 0226 0209 0197  0.197
G, 02040 0210 0226 0209 0197  0.197
7, 0113 0133 0112 0106 0.106
TR 02361 0247 0244 0237 0159 -
Tor 0235 0232 0226 0239 0.238
T 02361 0.247 0244 0237 0159 -
T 0.235 0232 0226 0239 0238

10 T 00443 0.044 0044 0044 0044 0.044
W 29425 2960 2933 2961 2934 2803
o, 01988 0199 0212 0199 0197  0.197
G, 01988 0199 0212 0199 0197  0.197
Ty 0107 0110 0107 0106 0.106
T 02383 0246 0245 0238 0235 -
ToF 0.238 0235 0229 0239 0.238
T 0.2383  0.246 0.245 0238 0235 -
ToF 0.238 0.235 0229 0239 0.238

The TSDT overestimate the values of normal stresses whereas FSDT and CPT underestimate those as compared to
exact values. Through thickness distribution of normal stress is shown in Figure 3.The value of in-plane shear stress
obtained by present theory is in excellent agreement with the values of other refined theories. Transverse shear stresses
when obtained by constitutive relations using present theory are on higher side, however, use of equilibrium equations yield
more accurate results in case of present theory. For aspect ratio 10, present theory predicts exact value of transverse shear
stresses. Through thickness distribution via equilibrium equation is plotted in Figure 4. The displacements and stresses of
isotropic square plate subjected to uniformly distributed and linearly varying load are as shown in Table 2 and 3
respectively. The non-dimensional results are obtained for aspect ratio 4 and 10 and compared with the other higher order
theories, FSDT, CPT and exact value. From Table 2 and 3 it is observed that displacement and stresses obtained by the
present theory are in close agreement with the other theories.
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0.50 —
z/h —<—  Present
0.25 — —S—  Reddy [HSDT]
—4&—  Mindlin [FSDT]
—+%—  Kirchhoff [CPT]

’ ‘ U.UVYU ‘ ‘
2020 -010,%000 010 020
20.25 — ox

-0.50 —

Figure 3. Thickness distribution of in-plane normal stress (G, ) for isotropic plate subjected to SDL at a/h = 10.

Table2-Comparison of displacements and stresses for the isotropic square (b = a) plate subjected to uniformly
distributed load.

alh  Quantity Exact Present ESDT TSDT HSDT FSDT CPT

4 T 0072 00791 0079 0074 0079 0074 0.074
W 5694 5857 5816 5680 5869 5633 4.436
g, 0307 02933 0300 0318 0299 0287 0.287
a, 0307 02900 0300 0318 0299 0287 0.287
Ty 02193 0223 0208 0218 0195 0.195
T 0460 04881 0481 0483 0482 0330 -
Tor 0.5420 0472 0420 0452 0495 0.495
T 0460 04881 0481 0483 0482 0330 -
T 05420 0472 0420 0452 0495 0.495

10 T 0073 00745 0075 0073 0075 0074 0.074
W 4.639  4.6657  4.658  4.625 4666  4.670  4.436
G, 0289 0289 0289 0307 0289 0287 0287
&, 0289 02895 0289 0307 0289 0287 0287
T, 02001 0204 0195 0203 0195 0.195
T 0487 05078 0494 0504 0492 0330 -
ToF 0.6220 0490 0481 0486 0495 0.495
TCR 0487 05078 0494 0504 0492 0330 -

Tt --- 0.6220 0490 0481  0.486 0495 0.49
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0.50 —S—  Reddy [HSDT]
—4A—  Mindiin [FSDT]
—=*— Kirchhoff [CPT]
0.25 —
z/h 0.00 | | | )
000 005 010 015 020 2 025
ya .
-0.25 —
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Figure 4. Thickness distribution of transverse shear stress (rXEZE ) for isotropic plate subjected to SDL at a/h = 10.

Table 3-Comparison of displacements and stresses for the isotropic square (b = a) plate subjected to linearly
distributed load.

a/h  Quantity Exact Present ESDT TSDT HSDT FSDT CPT

4 u 0.036 0.0395 0.0395 0.037 0.0395 0.037 0.037
W 2.847 2.928 2.908 2.84 29345 28165 2.218
0.1535 0.1466 0.15 0.159 0.1495 0.1435 0.1435
o 0.1535 0.145 0.15 0.159 0.1495 0.1435 0.1435
T, --- 0.1096 0.1115 0.104 0.109 0.0975  0.0975
0.23 0.2440 0.2405 0.2415 0.241 0.165 ---

Tor 0271 0236 021 0226 02475 0.2475
o 023 02440 02405 0.2415 0241 0165 -
T 0271 0236 021 0226 02475 0.2475
10 T 00365 0.0372 00375 0.0365 0.0375 0.037  0.037
W 23195 23328 2329 23125 2333 2335 2218

0.1445 0.1448  0.1445 0.1535 0.1445 0.1435 0.1435
ol 0.1445 0.1447  0.1445 0.1535 0.1445 0.1435 0.1435
T, 0.1000  0.102  0.0975 0.1015 0.0975 0.0975
0.2435 02539  0.247 0252 0.246  0.165 -

T*E 0.311 0.245  0.2405 0.243  0.2475 0.2475
TR 0.2435 02539  0.247 0252 0246 0165 -

ToF 0.311 0.245  0.2405 0.243  0.2475 0.2475
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4.2 Bending analysis of simply supported orthotropic plates.

The non-dimensional displacements and stresses for the orthotropic square plate under sinusoidally distributed load are
listed in Table 4.The plate is made up of orthotropic. The examination of Table 4 reveals that, the present theory slightly

overestimates the in-plane displacement and underestimates the transverse displacement. The in-plane normal stress (G, )

predicted by present theory is in good agreement with exact value, but in-plane normal stress (6 ) is on the lower side.

y

The values of in-plane shear stress obtained by all the theories theory are in excellent agreement with exact other. The

transverse shear stress (?EE) predicted by present theory is in excellent agreement with that of exact solution and

Xz

transverse shear stress (?YEZE) is identical with those obtained by CPT. Through thickness distributions of in-plane

displacement, in-plane normal stresses and transverse shear stress are shown in Figures 5 through 8 respectively. The non-
dimensional results obtained of orthotropic plate subjected to uniformly distributed and linearly varying load by the present
theory are presented in Table 5 and 6 respectively. The results obtained for displacement and stresses for the aspect ratio 4
and 10. From Table 5 and 6 it is observed that present theory gives the results of displacement and stresses more or less
similar to those obtained using other theories.

Table 4-Comparison of displacements and stresses for the orthotropic square (b = a) plate subjected to sinusoidally
distributed load.

a/h  Quantity Exact Present ESDT HSDT FSDT CPT

4 T 0.0093 00096  0.0094 0.0092 0.0060 0.0068
W 15978 1.4973 15828 16206 1.6616 0.4310
a, 0.7276 07725 07765 0.7379 0.4784 0.5387
z, 0.0727 00383  0.0667 0.0640 0.0579 0.0267
7, 0.0306 00312 0.0427 0.0358 0.0213
T 03620 03427 03938 0.3903 0.2692 -
7. 03895 03764 0.3532 0.4039  0.4397
T 00738 01371 00717 00714 00491 -
7 0.0377  0.0697 0.0694 0.0736 0.0377
0 T 0.0071 00072 0.0071 0.0071 0.0066 0.0068
W 06340 06141 06327 06371 0.6383 0.4310
c, 05680 05770 05809 05700 0.5385 0.5387
5, 0.0360 00286 0.0348 0.0347 0.0339 0.0267
\ 00228 00229 00257 0.0246 0.0213
" 04220 03506 0.4375 0.4290 02877 -
T 04316 04265 04225 04315 0.4397
TR 0.0460 01402  0.0466 0.0458 0.0306 --

ToE --- 0.0377 0.0455 0.0455 0.0459 0.0377
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Table 5-Comparison of displacements and stresses for the orthotropic square (b = a) plate subjected to uniformly
distributed load.

a/h  Quantity Exact Present ESDT HSDT FSDT CPT

4 T 0.0146 00156 0.0156 0.0147 0.0092 0.0104
W 23590 2.2992 23368 2.3886 2.4375 0.6497
G, 09640 11216 1.0754 10188 0.7041 0.7867
3, 00780 00871  0.0740 0.0746 0.0727 0.0245
Y 0.0754  0.0805 0.0739 00742 0.0464
TR 06160 05997  0.6542 06567 04906 ---
T 04912 06244 06166 07359 0.7806
T 02060 02653 02172 02183 01575 -
T 02457 02175 0.1885 0.2362 0.1846
0 T 00112 00112 00113 00111 0.0102 0.0104
W 09470 0.8958  0.9444 09506 0.9520 0.6497
G, 0.8210 08551  0.8341 08246 0.7707 0.7867
3, 0.0360 00262 00353 0.0355 0.0353 0.0245
Y 0.0563  0.0514 0.0497 0.0540 0.0464
" 07310 0.6208  0.7564 0.7469 05154 -
T 08158  0.7259 0.6813 0.7731 0.7806
7 01880 03975 01935 0.1909 01299 -
T.oc 0.1625 ~ 0.1870 0.1810 0.1949 0.1846

0.50 —
z/h
—&—  Present
NSO —&—  Reddy [HSDT]
—A—  Mindlin [FSDT]
—£%—  Kirchhoff [CPT]
| e | |
-0.010 -0.005 0.00 0.005 0.010
u
-0.25 —
-0.50 —

Figure 5. Thickness distribution of in-plane displacement (U ) for orthotropic plate subjected to SDL at a/h = 10.
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Table 6-Comparison of displacements and stresses for the orthotropic square (b = a) plate subjected to linearly

varying load.
a/h  Quantity Exact Present ESDT HSDT FSDT CPT
4 a 0.0073 0.0078  0.0078 0.0073  0.0046 0.0052
W 1.1795 1.1496  1.1684 11943  1.2187 0.3248
G, 0.482 05608 05377 05094  0.3520 0.3933
a, 0.039 00435 0.037 00373  0.0363 0.0122
" 0.0377  0.0402 0.0369  0.0371 0.0232
T 0.308  0.2998  0.3271 0.3283  0.2453 -
7o 02456 03122 0.3083  0.3679 0.3903
T 0.103 01326  0.1086 0.1091  0.0787 -
T 01228 01087 0.0942  0.1181 0.0923
10 T 0.0056 0.0056  0.0056 0.0055  0.0051 0.0052
W 0.4735 0.4479  0.4722 04753 0476  0.3248
g, 0.4105 0.4275  0.4170 0.4123  0.3853  0.3933
G, 0.018 00131 00176 0.0177  0.0176 0.0122
7, 0.0281  0.0257 0.0248  0.027  0.0232
T 0.3655 0.3104  0.3782 0.37345 0.2577 -
7o 04079 03629 0.3406  0.3865 0.3903
T 0.0940 0.1987  0.0967 0.0954  0.0649 -
T 0.0812  0.0935 0.0905  0.0974 0.0923
0.50 —
Present
Reddy [HSDT]
Mindlin [FSDT]
Kirchhoff [CPT]

-0.60

-0.50 —

Figure 6. Thickness distribution of in-plane normal stress (Ex ) for orthotropic plate subjected to SDL at a/h = 10.
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0.60



14 JOURNAL OF MATERIALS AND ENGINEERING STRUCTURES 2 (2015) 3-15
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0.50
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Figure 8. Thickness distribution of transverse shear stress (rXEyE) for orthotropic plate subjected to SDL at a/h = 10.

5 Conclusions

In the present study, a two variable trigonometric shear deformation theory is applied for the bending analysis of isotropic
and orthotropic plates. The present theory satisfies the shear stress free conditions at top and bottom surfaces of plate
without using shear correction factor. From the numerical results and discussion, it is concluded that present theory is in
good agreement while predicting the bending behaviour of isotropic and orthotropic plates.
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