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A

In this paper, the use of extended versions of basic Particle Swarm Optimization (PSO) 

to Reinforced

extended versions of basic particle swarm optimization techniques to seek the global 

optima by maximizing the explorations area and minimizing the exploration time. 

Optimal sizing and reinfo

employing these techniques. The algorithms are coded in C++ and their effectiveness 

was tested in some benchmark mathematical functions. The different variables of each 

structural element have been consid

appropriately to imbibe the practical relevance of the present study.

 

 1  Introduction  

An excellent response of reinforced concrete in terms of compressive strength, durability and low maintenance cost has 

enhanced its popularity in construction industry still the material cost is an important issue in the design and construction

reinforced concrete structures. The material cost can be reduced considerably by an intelligent exploration in the initial 

stages of construction. Good engineers are those capable of designing low cost structures without compromising its 

function or violating code requirements of strength and serviceability. The structural design codes normally do not deal on 

the optimization front and this factor is mostly based on the experience of a particular designer 

be considered a substitute for the tested and validated principles of optimization techniques. But, for the vast varieties of 

structural options to a given requirement and big number of variables involved, any particular technique cannot cater to all 
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A B S T R A C T 

In this paper, the use of extended versions of basic Particle Swarm Optimization (PSO) 

to Reinforced Concrete (RC) structural elements has been presented. The aim of 

extended versions of basic particle swarm optimization techniques to seek the global 

optima by maximizing the explorations area and minimizing the exploration time. 

Optimal sizing and reinforcement of RC structural members have been found by 

employing these techniques. The algorithms are coded in C++ and their effectiveness 

was tested in some benchmark mathematical functions. The different variables of each 

structural element have been considered as continuous functions and rounded off 

appropriately to imbibe the practical relevance of the present study.

An excellent response of reinforced concrete in terms of compressive strength, durability and low maintenance cost has 

enhanced its popularity in construction industry still the material cost is an important issue in the design and construction

ed concrete structures. The material cost can be reduced considerably by an intelligent exploration in the initial 

stages of construction. Good engineers are those capable of designing low cost structures without compromising its 

requirements of strength and serviceability. The structural design codes normally do not deal on 

the optimization front and this factor is mostly based on the experience of a particular designer - which in any case cannot 

e tested and validated principles of optimization techniques. But, for the vast varieties of 

structural options to a given requirement and big number of variables involved, any particular technique cannot cater to all 
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structural optimization problems. A given optimization technique that gives good result in a particular situation may not 

hold good for other situations, or for that matter on other fronts in the same situation.  This leads to a point where it is 

important to be able to identify the usefulness of a particular technique in a given situation and also to explore the factors 

that increases the efficiency of the technique. Many evolutionary optimization methods have been developed during last 

few decades for solving linear and nonlinear optimization problems such as genetic algorithms, harmony search, simulated 

annealing, particle swarm optimization and ant colonies, to explore solutions for constrained problems and researchers have 

tried to take advantage of all these optimization techniques to fulfill the requirement of safe and low cost structural designs.  

 

2    Review of related works and motivation 

A number of optimization techniques have been applied for optimum design of reinforced concrete structural elements 

with varying degree of success. Some notable research works on optimization of RC structural elements in the last decade, 

have shown the study of optimization of RC beams using Genetic Algorithm (GA) [1] and Augmented Simulated 

Annealing (SA) method [2]. The application of GA for the optimum detailed design of reinforced concrete continuous 

beams based on Indian Standard (IS) specifications has been presented in [3,4]. Optimum detailed design of reinforced 

concrete continuous beams using the Harmony Search (HS) algorithm is proposed in [5]. The values of all the variables are 

required to be selected from a design pool which contains discrete values for these variables. The cost optimization of 

structural RC beams and PC (prestressed concrete) beams using the genetic algorithm has been presented [6]. The optimum 

design of biaxial columns was visualized in [7]. However, a large number of papers have been available on optimization of 

RC frame structures in which beam and column members are optimized separately. Optimum detailed design of RC frame 

as per IS code requirements has been performed in [8]. The flexural design of reinforced concrete frames as per ACI code 

provisions using a genetic algorithm has been suggested in [9, 10]. The authors employed Harmony search algorithm to 

optimize RC frames in [11,12].An integrated genetic algorithm complemented with direct search has been applied for 

optimum design of RC frames based on predetermined section database in which a database of all possible cross sections 

has been formulated and, then sorted them according to their strengths [13, 14]. The CO2 optimization of reinforced 

concrete frames by simulated annealing has been studied in which authors related the optimum design of a reinforced 

concrete frame to the amount of CO2 gas emitted in order to minimize pollution [15]. Many researchers have used hybrid 

optimization techniques to get the optimum design of RC frames. The optimum design of reinforced concrete frames using 

a hybrid of two different methods: Heuristic big bang-big crunch (HBB-BC), which is based on big bang-big crunch (BB-

BC) and a harmony search (HS) scheme to deal with the variable constraint, and  (HPSACO) algorithm, which is a 

combination of particle swarm with passive congregation (PSOPC), ant colony optimization (ACO), and harmony search 

scheme (HS) algorithms has been researched in [16-17]. Optimum design of reinforced concrete frames using a 

combination of particle swarm optimization and multi-criterion decision making has been presented in [18]. 

 A considerable research in the field of design optimization of RC structural members has shown that the researchers 

adopted different methodologies, optimization techniques and code specifications in their studies. Among all, ‘genetic 

algorithm’ (GA) - an artificial intelligent method, inspired by biological phenomenon has been widely used for many RC 

structural design problems. It has also been viewed that only a few studies have been carried out for optimum design of RC 

structural members as per Indian specifications. In present study, an endeavor has been made to use enhanced versions of 

PSO to optimize the RC frame elements as per Indian design standards. An advantage of PSO is that, GAs has many 

parameters, to be tuned in comparison to PSO. PSO has only few parameters to adjust that make it particularly attractive 

from a practitioner's point of view. Secondly PSO showed fast convergence than GA in many benchmark and real life 

problems. Although the enhanced versions of basic PSO had been applied for several truss and other structural design 

problems [19-22], yet not been tested for RC structural elements. The one of the objectives of the present work is to study 

the efficiency of enhanced PSO algorithms for optimum design of RC elements with the help of examples. Secondly, guide 

designers to a methodology for the optimum cost design of RC members which improves the overall design of the 

structure. The methodology consists of formulating the optimization problem on the basis of design variables. The present 

paper is organized as follows: In section 3, the background of basic PSO and extended versions of PSO have been 

discussed. Section 4 presents formulation of the problem. The application of all these techniques has been presented in 

section 5 and conclusions drawn are discussed in section 6. 
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3 PSO and extended versions: Theoretical background 

3.1. Standard particle swarm optimization (SPSO) 

Standard particle swarm optimization technique (SPSO) - a heuristic optimization technique developed by Kennedy 

and Eberhart, 1995 - is based on bird and fish flock movement behaviour [23-24]. The technique uses swarm intelligence of 

birds for searching food, and is implemented to search an optimal solution, which is explored from a set of moving particle 

vectors, based on a fitness function. Each ��� particle vector represents a potential solution and has a position ��� and a 

velocity  ���   at 	�� iteration in the problem space. Each i
th

 vector keeps a record of its individual best position   
�� , which 

is associated with its own best fitness achieved so far, at any time in the iteration process. This value has been denoted as 

‘pbest’. Moreover, the optimum position among all the particles obtained so far in the swarm is stored as the global best 

position 
�� . This location has been called ‘gbest’. The new velocity of particle is updated as follows: 

��,
��� = ���,
� + �����
�,
� − ��,
� � + �����
�,
� − ��,
� �           (1)

              

��,
��� = ��,
� + ��,
���           (2)

              

Thus, ��,
�  and ��,
�  are the velocity and position of particle ‘i’ at 	�� iteration.  � is the inertia weight at 	�� iteration 

which represents the memory of a particle during search. The inertia weighting function at each iteration is given as: 

� = ���� − ����� − ����� × � �/� ����         (3) 

 ����  and ���� are the maximum and minimum values of inertia weight respectively. The lower values of inertia 

weights speed up the convergence and higher values of inertia weights increase exploration of the search space. � ����  is 

the maximum number of iterations and � �  is the current iteration number. The first right hand term in (1) is the ‘inertia 

component’ which enables each particle to perform a global search by exploring a new search space and is  responsible for 

keeping the movement of particles in the same direction in which they are originally heading, whereas the last two terms 

represent ‘cognitive component’ and ‘social component’ respectively in which �� and �� are positive numbers illustrating 

the weights of the acceleration terms that guide each particle toward the individual best and the swarm best positions 

respectively. �� and �� are uniformly distributed random numbers in the range 0 to 1, and N is the number of particles in the 

swarm. Each particle changes its position based on the updated velocity according to equation (2) which is known as flight 

formula. In this way, ‘velocity updating’ (1) and ‘flight formula’ (2) help the particles to locate an optimal solution in the 

search space. In order to keep the particles from moving too far beyond the search space, their velocities have been 

clamped by limiting the maximum velocity ′ ���� ′  of each particle. Most of the time, value of maximum velocity is 

selected empirically, according to the characteristics of the problem. If the value of this parameter is too high, the particles 

move erratically thereby going beyond a good solution, and if it is too small, the particle’s movement is limited and the 

optimal solution may not be obtained.  

3.2. Constriction factor particle swarm optimization (CFPSO) 

An improvement over standard PSO (introduced by Clerc, 1999) has been considered in the present work to improve 

the rate of convergence. An additional convergent agent known as constriction factor  ′"′  to speed up the convergence 

(shown below) has been introduced: 

 

" = �
�#∅#|∅&#'∅|               (4) 

             

The characteristic of convergence for any system can be controlled by the convergence factor ∅ (∅ = �� + �� > 4). As 

∅  increases, the constriction factor ′"′  decreases and diversification is reduced, yielding slower response. Unlike other 

evolutionary computation methods, this approach ensures stability and convergence of the search procedure based on the 

mathematical theory. Therefore, the constriction factor approach generates higher quality solutions, whereby it prevents the 

particles to converge on local optima. Moreover, it is difficult to set an appropriate value for ����  due to its main effect on 

the convergence rate. Hence, to omit this obstacle, the constriction factor approach has been considered. The velocity 

equation (1) takes the form of equation (5) in this case, and new position of the particles is determined as in equation (6) by 
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same flight formula as given in equation (2). 

  ��,
��� = " {��,
� + �����
�,
� − ��,
� � + �����
�,
� − ��,
� � }                  (5) 

��.
��� = ��,
� + ��,
���                    (6)   

                    

3.3. Democratic particle swarm optimization (DPSO) 

Particle swarm optimization (PSO) technique has proven itself a powerful search technique through its application in a 

wide variety of optimization problems in several fields. The interaction between particles to determine the best position of 

particles is the base of PSO. All the particles communicate with each other in search of best position and adjust its velocity 

according to particle’s own position and the global best position of all the particles. Though the simplicity and fair search 

potential are positive traits of the algorithm, but less exploration capability and chances to get trapped in local optima 

encouraged many researchers to improve its performance through their continuous efforts. Kaveh and Zolghadr [19] 

introduced democratic PSO as an extended version of the standard PSO to improve its limitations. DPSO is an effort to 

provide a better tactic for searching the solution domain by taking the experiences of all kinds of particles either good 

particles or bad particles and this strategy can avoid the premature convergence. The improvement is obtained by adding a 

new term to the velocity vector. The velocity vector of DPSO is expressed as below: 

 

��,
��� = "[� ��,
� + ���� (
�,
� − ��,
� � + ���� �
�,
� − ��,
� � + �.�./�,
� ]              (7) 

�.  is a parameter which control the weight of the democratic vector. /�,
�  stands for jth variable of the vector D for the 

i
th

 particle. The vector D denotes the democratic influence of the other particles of the swarm on the movement of the i
th

 

particle and is considered as: 

 

1� = ∑  3����4� �5� − 5�)                                                    (8) 

 3�� is the weight of the kth particle in the democratic movement of the ith particle and is calculated as: 

 

3�� =  6789:;<=9�8�
∑ 67>?>@A 9:;<=9 �>�

                   (9) 

in which f is cost function value. In addition, f best is the value of cost function for the best particle in current iteration, X 

is the particle’s position vector, and E is the eligibility parameter. For minimization problems E is defined as: 

 

B�� = C1       E ���#E ���
EFGH<=#E:;<= > �IJ/ ∪ L�	� < L���

0       OPQO
R            (10) 

            

LSTUV� is the value of cost function for worst particle, and LWXV� is the value of cost function for best particles in the 

current iteration. After calculating velocity by Eq. (7), the new positions of the particles in DPSO algorithm are defined 

similar to the standard PSO. 

��,
��� =  ��,
� + ��,
���                     (11) 

in which the velocity vector can be added to the position vector. It is clear that the information produced by all of 

members of the swarm is utilized by DPSO with the purpose of determine the new position of each particle.  

 

 



 JOURNAL OF MATERIALS AND ENGINEERING STRUCTURES 00 (2017) 000–000  5 

 

3.4. Probabilistic particle swarm optimization (PPSO) 

The enhanced version of PSO has been introduced in which probabilistic functions are added to operate global and 

local search more efficiently. The velocity of particles is governed as following equation (12) and position is updated as 

(2). 

��,
��� = Y���,
� + Z�����
�,
� − ��,
� � + [�����
�,
� − ��,
� �              (12) 

Where α, β, and γ are probabilistic functions and are defined as: 

Case1: Y ≠ 0,   Z = 1,   [ = 1.         
 �L ] <  ]�   P^�IP QOI��ℎ  ^�I�/Q  ℎO �^`a�JI �^J ^L bP^aIP IJ/ P^�IP aOQ . 

Case2:   Y = 0, Z = 1,   [ = 1.        
← P^�IP QOI��ℎ  ^�I�/Q  ℎO �^`a�JI �^J ^L bP^aIP IJ/ P^�IP aOQ . 

Case 3: Y = 0, Z = 0, [ = 1.         �L ] >  ]�             
← P^�IP QOI��ℎ  ^�I�/Q  ℎO bP^aIP aOQ  

       p is a random number in the interval [0, 1] and p1 and p2 are predefined levels of probabilities set by the user. β and 

γ  are parameters for selection of the type of search. β = 1 provides local search towards local best and γ =1 provides local 

search towards global best. Thus the values of β and γ were selected to be 0 or 1. On the other hand, α controls the amount 

of global search and it should be chosen from a range of real numbers rather of 0 or 1. Inertia weight is a factor used to 

better control the scope of search. Thus, in this study another way is considered for α to find the best one as given below.  

i. The constant value of 1 is considered for α.  

ii. A linear varying value in the format of Eq. (13) is assigned to α: 

 

Y = 1 − ��XU
��XU ���                   (13) 

iii. A random number in the interval [0, 1] is considered to define Y. 

As per [20], the third strategy to define Y improves the exploration and exploitation capabilities of the algorithm 

simultaneously. 

 

Table 1- Enhanced versions of basic particle swarm optimization (PSO) 

S. No. Versions of PSO Features Velocity Equation 

1. 
SPSO (Standard Particle 

Swarm Optimization) 

Search optimal solution but 

sometimes struck in local 

optima 

��,
��� = [� ��,
� + ����(
�,
� − ��,
� � + ���� �
�,
� − ��,
� � 

2. 

CFPSO (Constriction 

Factor Particle Swarm 

Optimization) 

Fast convergence than SPSO 

using constriction factor ("� 
��,
��� = "[ ��,
� + ���� (
�,
� − ��,
� � + ���� �
�,
� − ��,
� �] 

3. 

DPSO (Democratic 

Particle Swarm 

Optimization) 

Each particle plays a significant 

role in search of global optima 

��,
��� = "[� ��,
� + ���� (
�,
� − ��,
� � + ���� �
�,
� −��,d	+�3�3/�,d	] 

4. 

PPSO (Probabilistic 

Particle Swarm 

Optimization) 

Increases exploration using 

probabilistic functions α, β, γ. 

��,
��� = [Y� ��,
� + Z����(
�,
� − ��,
� � + [���� �
�,
� −��,d	 
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4 Formulation of optimization problem 

Elastic behavior of the structure has been considered and limit state method has been adopted for design of different 

elements. Formulation of design problem includes the definition of objective function, design variables and all code 

constraints of IS456: 2000 (Plain and Reinforced Concrete – Code of Practice) [25]. Some of the important design 

considerations for all frame elements are: 

• The lower and upper bound of cross sectional dimensions are 300mm and 1000mm respectively. 

• At least four bars are used in four cross sides of column. 

• The minimum cover of concrete is taken as 40mm. 

• Minimum diameter of transverse steel is 10mm. 

 

4.1. Objective function 

The cost of reinforced concrete structural element primarily includes cost of concrete and steel. Therefore objective 

function takes the following form 

f =  fV�gV�  +  fhgh                                          (14) 

f is the total cost of structural element; fV�  cost of steel per unit volume of steel; gV�  total volume of steel ; fh  cost of 

concrete per unit volume of concrete; gh  total volume of concrete. Dividing equation (14) by fh  as follows, 

f
fh

= fV�fh
 gV� + gh  

Substituting  h
hi = j (Objective function),  

h<=
hk =  Y (Cost ratio), and  gh =  gl − gV� in the above equation, it becomes 

j = �Y − 1�gV� + gl                                (15) 

Since fh is a constant parameter for a given place, the objective function j represents total cost of the RC structural 

member that shall be minimized. Volume of steel (gV�) depends upon area of steel and its provided length. Area of steel 

includes both longitudinal as well as transverse steel. Similarly, gross volume of the element (gl) depends upon its cross 

sectional area and length.  

 

4.2. Design variables and constraints for beam optimization 

In the present study, all input design parameters have been considered fixed.  These include span of beam, grade of 

reinforcement and concrete, intensity of dead and live loads, effective cover of concrete and cost ratio. The independent 

design variables of the beam considered in present model are width (
Bb ) and effective depth (

Bd ) of the beam. The areas 

of longitudinal reinforcement and shear reinforcement are calculated as dependent design parameters. Designs constraints 

considered in the present study not only considers Indian codal provisions for RC beam design (IS 456: 2000), but also few 

practical aspects [25-27].  

4.2.1. Moment capacity consideration 

For a given beam, the cross-sectional dimensions (depth and width) and area of steel to be provided at the ends and at 

bottom shall be such that its design moment of resistance is greater than actual moments to be borne by it at the respective 

sections.  

h

Bck

stendy

Bstendy M
bf

Af
dAf >








−87.0  
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S

Bck

stmidy

Bstmidy M
bf

Af
dAf >








−87.0

 

stendA   = Area of steel at the beam end;
 stmidA = Area of steel in the middle of the beam;  

hM = Hogging moment applied at the beam end; 
S

M = Maximum sagging moment; 

ckf = Characteristic compressive strength of concrete; yf  = Characteristic strength of steel 

 

4.2.2. Deflection consideration 

For spans up to 10 m, the vertical deflection of a continuous beam shall be considered within limits if the ratio of its 

span ( l ) to its effective depth is less than 26. For spans above 10 m, factor 26 is multiplied by
l

10
 . Mathematically, it can 

be expressed as: 

26≤

Bd

l
 , when span ≤  10 m 









≤

ld

l

B

10
26 , when span > 10 m ( l  and 

Bd  are in meter) 

4.2.3. Minimum width of beam  

From practical consideration, the beam shall be wide enough to accommodate at least two bars of tensile steel of given 

diameter. Minimum width has been kept as input parameter. 

minBB bb ≥
 

minBb  = Minimum width of beam 

 

4.2.4. Depth of neutral axis 

To ensure that tensile steel does not reach its yield stress before concrete fails in compression so as to avoid brittle 

failure, the maximum depth of neutral axis has been restrained.  

B

m

BBck

stendy

d

x

dbf

Af
<

36.0

87.0
 and 

B

m

BBck

stmidy

d

x

dbf

Af
<

36.0

87.0

 

mx = Limiting depth of neutral axis 

 

B

m

d

x
 value varies with the grade of steel and is given as: 

B

m

d

x
 = 0.53, when yf  = 250 N/mm

2
 

B

m

d

x
= 0.48, when yf  = 415 N/mm

2
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B

m

d

x
= 0.46, when 

yf  = 500 N/mm2 

4.2.5. Minimum and maximum reinforcement steel  

The minimum and maximum area of tensile steel to be provided shall be taken as  

y

BB
stend

f

db
A

85.0
(min) ≥  ; BBstend DbA 04.0(max) ≤

 

y

BB
stmid

f

db
A

85.0
(min) ≥

 

BBstmid DbA 04.0(max) ≤
 

(min)stmidA  = Minimum area of steel at the beam mid; (max)stmidA  = Maximum area of steel at the beam mid 

 

4.3. Design variables and constraints for column optimization 

Column optimization consists in determination of depth and width of the columns, with ‘percentage area of 

longitudinal reinforcement’ and ‘ratio of depth of neutral axis to depth of column’ as design variables. Following 

constraints have been considered:  

4.3.1. Axial load capacity of column 

The axial load carrying capacity of the column shall be greater than the load to be borne by it.  

^. 36Ln�an	1n +  o�LV�
�

�4�
− Ln�� ]� Wkpi100 ≥ 
 

an IJ/ 1n  - Width and depth of column; 	1n  - Depth of NA from extreme compression fibre;LV� IJ/ Ln� - Stresses in 

the reinforcement and concrete at the i
th

 row of reinforcement; n- Number of rows of reinforcement; P- Actual value of 

axial load as applied on the column. ]� = Percentage area of steel in the i
th

 row of reinforcement. 

 

4.3.2. Moment capacity of column 

The moment carrying capacity of the column shall be greater than the moment to be borne by it.  

0.36Ln�an	1h� �0.5 − 0.416	� + o�LV�
�

�4�
− Ln��� s7�ttEk8

� u v�1h
w ≥ x 

v�  = Distance of the ith row of reinforcement steel, measured from the centroid of the section. It is positive towards the 

highly compressed edge and negative towards the least compressed edge. 

x= actual value of bending moment as applied on the column. 

 

4.3.3. Longitudinal reinforcement in column 

The cross-sectional area of longitudinal reinforcement shall vary between 0.8 to 4 percent of the gross cross-sectional 

area of the column (although the Indian code denotes higher limit to be 6 percent, but due to practical difficulties in placing 

and compacting of concrete at places where bars are to be lapped, a lower percentage has been recommended).  

8.0≥p
  

and  0.4≤p
 

]= Percentage area of longitudinal reinforcement 

 

4.3.4. Minimum number of longitudinal rebars 
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The number of longitudinal bars provided in a column shall not be less than 4.  

4
inf

≥

baroneofarea

orcementreallongitudinofareatotal
 

 

4.3.5. Maximum peripheral distance between longitudinal rebars 

The spacing of longitudinal bars measured along the periphery of column shall not be more than 300 mm.  

300≤pd
 

pd = Maximum peripheral distance among longitudinal bars of the column 

 

5 Evaluation of performance  

5.1. Performance evaluation of some benchmark functions 

To evaluate the performance of Standard PSO (SPSO) and other versions of PSO, some benchmark functions are tested 

before its application to real life problem. A set of solution is obtained by applying SPSO, CFPSO, PPSO and DPSO 

algorithms separately. The constant parameters of the algorithms those will be found fine tuned with them are as follows: 

Table 1- Values of algorithm’s constant parameters 

Algorithm  

Constant 

parameter 

         SPSO CFPSO PPSO DPSO 

Swarm size 20 20 20 20 

 f� 1.0 2.05 1.0 2 

 f� 1.0 2.05 1.0 2 

 f. - - - 4 

�  0.9 to 0.4  0.9 to 0.4 0.9 to 0.4 

Χ - 0.729 - 0.5 

]� - - 0.6 - 

]� - - 0.8 - 

 

The population size and maximum number of iterations are fixed parameters taken as 20 and 1000 respectively for 

applied algorithms. The stopping criterion is maximum number of iterations in each case. It is necessary to define the upper 

and lower bounds of design variables of each element for the random selection of the population. 

The design procedures for each structural element are developed in a generalized form which accepts different 

parametric values related to geometry of the structure, loads acting on it and properties of material. All optimization runs 

are carried out on a standard PC with a Intel® Core™ i3 CPU M350 @2.27 GHz frequency and 3 GB RAM memory. The 

algorithm has been coded in Turbo C++ installed in Window 7. (32 bit operating system).  

f�  and f�   are the cognitive and social coefficients, f.  is the coefficient to control democratic vector in DPSO, � is 

the inertia weight , χ  is the constriction factor to avoid divergence and ]�  &  ]�  are the predefined levels of probabilities 

in PPSO. The 20 runs of each minimization optimization cycle are performed and their results are tabulated as follows: 

Table 2- Minimization results of some benchmark functions 
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Mathematical function Dim 
Range of 

functions 

Standard 

PSO 

Democratic 

 PSO 

 

Probabilistic  

PSO 

y�  ��� =  o ���
�

�4�
 20 [-5.12.5.12] 8.387e-14 6.46e-24 

6.46e-24 

y���� = o����
�

�4�
− �^Q�18���� 2 [-1,1] -1.999 -2.0 

-2.0 

y���� = 4��� − 2.1��' + 1
3 ��| + ���� − 4��� + 4��' 2 [-5,5] -1.036 -1.036 -1.036 

 

The enhanced versions of basic PSO has proven to be very efficient for balancing between the global and local exploration 

abilities. For this reason, these techniques are used in research problems. 

 

5.2 Performance evaluation of RC structural elements 

 

5.2.1. Optimal beam design 

In order to evaluate the performance of the above techniques, a beam (5m) span which is a part of any frame has been 

selected. The given set of loads for the beam, namely gravity load ‘w’ (30 kN/m) and end moments ‘M1’ (50 kN-m) and 

‘M2’ (100 kN-m) are shown in Fig.1.The configuration and steel reinforcement are the design variables those are 

considered to be optimized so as to reach the objective criteria. Grades of concrete and steel (Ln� = 30 N/mm2 and L} =415 

N/mm
2
 respectively) as well as cost ratio (100) have been considered as input variables. Effective cover to the 

reinforcement has been considered as 40mm. The maximum depth to width ratio has been kept between1.5 to 3, to avoid 

thin sections. 

 

Fig. 1- Loading conditions of beam 

 

For the above mentioned parameters, optimum algorithms suggests the optimum depth and optimum width of the beam as 

500 mm and 300 mm respectively and the optimum percentage of steel has been obtained as 1.53% of cross sectional area. 

The design improvements by PSO’s extended versions are shown in Fig.2, Fig.3 & Fig.4. 

The beam design example of simply supported beam with one row of reinforcing steel (Camp & Pezeshk, 2003) [8] was 

also tested and optimized by PSO’s versions. Although, the results of present optimum design when compared with those 

obtained by RC-GA program - used in the previous study - were found in good agreement with each other,  the required 

computational time was much less than RC-GA program. The present optimum design procedure required about ‘four 

seconds’ of computing time for twenty thousand evaluations as compared to long time quoted in the previous study.   
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Fig.2-Convergence trend for optimum beam design using SPSO and PPSO 

 

Fig.3- Convergence trend for optimum beam design using SPSO and DPSO 

 

 

Fig.4- Convergence trend for optimum beam design using SPSO and CFPSO 

 

5.2.2. Optimal column design 

The reinforced concrete columns are considered as uniaxial ones, and their design is dependent on stresses in the 

reinforcing steel [27]. The generalized sectional view of the column is shown in Fig.5. 
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Fig. 5- Generalized sectional view of column 

 Feasible solutions were generated based on the restrictions and specifications outlined in section 4.3. A computer 

aided design program has been developed that considers all possible load and moment combinations for a given cross 

section, for calculating the strength of a column. A column that is part of a given frame has been designed using PSO’s 

extended versions, for a given axial load of 960 kN and uniaxial moment of 250 kN-m. The minimum dimension of the 

column is considered not to be less than 300 mm. Similarly, the ‘cover ratio’ and minimum ‘column depth to width ratio’ 

are set as 0.1 and 1.0 respectively.  The grades of concrete and steel are taken as Ln� = 30 N/mm
2
 and L} = 415 N/mm

2
 

respectively. The unsupported length of column is considered to be 3 m. Also, effective length ratio for the columns is kept 

1.2 and cost ratio as 100. For these given set of input values, optimum design parameters obtained were cross-sectional 

dimensions of the column, namely 730 mm depth and 300 mm width, and optimum percentage of longitudinal 

reinforcement as 0.8%  of cross- sectional area. The CFPSO algorithm showed convergence at 344 iterations and 

convergence curves are shown in Fig. 6, Fig. 7, & Fig. 8. The time taken for optimum design of column was ‘four seconds’. 

The generalized cross sectional view of the column in which number of longitudinal bars may vary as per the design is 

illustrated.  

 

Fig.6- Convergence trend for optimum column design using SPSO and CFPSO 
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Fig.7- Convergence trend for optimum column design using SPSO and PPSO 

 

 

Fig.8- Convergence trend for optimum column design using SPSO and DPSO 

6. Conclusions 

This paper presents the use of additional new variants as enhanced versions of PSO to achieve better performance of 

existing standard PSO. The performance is evaluated on the basis of convergence rate, better solution and exploration 

capability in the problem of optimum design of RC structural members. The limitation of classical velocity updating 

scheme in SPSO is that its steady form does not allow dynamically alternate exploration and exploitation to the 

optimization process in the current iteration which has been overcome in PPSO by introducing the probabilistic functions in 

it. Also three different searches can be performed i.e. global search, local search towards global best and local search 

towards the combination of global and local best. The DPSO showed the concept of democratize the search space while 

choosing the global optimum solution. The advantages of DPSO over SPSO are to achieve enhanced exploration capability, 

participation of all particles and to reduce premature convergence The CFPSO showed the better convergence behaviour. 

Although, the idea of using DPSO and PPSO are more appropriate in the problems those have a variable global optimum 

but its successful implementation in the design of RC structural members have improved the reliability and quality of 

solution in terms of time and convergence rate.  
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