
Proceeding PESAT (Psikologi, Ekonomi, Sastra, Arsitektur, & Sipil) Vol.3 Oktober 2009
Universitas Gunadarma - Depok, 20-21 Oktober 2009 ISSN: 1858-2559

SOFTWARE COST ESTIMATION

1 Diana Leonita
 2 Suherman

 3 Dewi Agushinta R

1, 2 Accounting Information System, dianaleonita@gmail.com
3 Information System Post Graduate Program, dewiar@staff.gunadarma.ac.id

Gunadarma University

ABSTRACT

Software cost estimation is the process of predicting the effort, schedule and cost
required to develop a software system. The fundamental equation for estimating the cost
of a software activity is simple in concept, but very tricky in real life. In this paper, we
explain how important the software estimate is. Then, we also provide the strengths and
the weaknesses of its metrics. There are many estimation techniques and models have
been introduced and proposed in software technology, but as a project manager, we
must decide what the most appropriate models that we use for are. This paper also
provides commercial software estimating tool, COCOMO II that has used by many
project managers. The last we also describe about the software risk analysis to give
more information to all software estimator. Software cost estimation is used to define
the project cost or schedule, to inform investment decisions or to assess whether
process or technology improvements are effectives. Even it is difficult to do but we have
to face it wisely. In spite of the fact that the software estimates outputs may not always
be believed, modern software cost estimating tools are now capable of serving a variety
of important project management functions. In addition, the accuracy and precision of
such tools is now high enough to merit their use for business agreements such as
contracts and outsource agreements.
Keywords: Cost estimation, Effort estimation, COCOMO II

INTRODUCTION
In recent years, software has

become the most expensive component
of computer system projects. Software
also has achieved a bad reputation as a
troubling technology. Software projects
have tended to have a very high
frequency of schedule and cost overruns,
quality problems, and outright
cancellations. While this bad reputation
is often deserved, it is important to note
that some software projects are finished
on time, stay within their budgets, and
operate successfully when deployed
(Jones, 2007). It is also the reasons why
organizations that get the projects, need
to make software effort and cost
estimates. Estimation will answer these

following questions i.e. how much effort
is required to complete an activity, how
much calendar time is needed to
complete an activity and what is the total
cost of an activity.

Project cost estimation and
project scheduling are normally carried
out together, the cost of development are
primarily the cost of the effort involved,
so the effort computation is used in both
the cost and the schedule estimate.
Accurate software cost estimate can be
used for generating request for
proposals, contract negotiations,
scheduling, monitoring and controlling.
Underestimating the costs may result in
management approving proposed system

Software Cost Estimation
(Diana Leonita)

B65

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Gunadarma University Repository

https://core.ac.uk/display/143964327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Proceeding PESAT (Psikologi, Ekonomi, Sastra, Arsitektur & Sipil) Vol.3 Oktober 2009
Universitas Gunadarma - Depok, 20-21 Oktober 2009 ISSN: 1858-2559

that then exceed their budgets, with
underdeveloped functions and poor
quality, and failure to complete on time.
Overestimating may result in too many
resources committed to the project or
during contract bidding, result in not
winning the contract, which can lead to
loss of jobs.

Accurate cost estimation is
important because it can help to classify
and prioritize development projects with
respect to an overall business plan, it can
be used to determine what resources to
commit to the projects and how well
these resources will be used, it can be
used to assess the impact of changes and
support re planning, projects can be
easier to manage and control when
resources are better matched to real
needs and customers expect actual
development costs to be in line with
estimates costs.

There is no simple way to make
accurate software cost estimate to
develop a software system. Although
cost and effort are closely related, they
are not necessarily related by simple
transformation function. Effort is often
measured in person-months of the
programmers, analysis and project
managers. This effort estimate can be
converted into a dollar cost figure by
calculating an average salary per unit
time of the staff involved, and then
multiplying this by the estimated effort
required.

Many development methods
and techniques have been introduced for
the last three decades. Each estimation
technique has its own strengths and
weaknesses. In this paper, we will
discuss about the most main publish
model/ technique, and some basic
terminologies relating them, followed by
a discussion of current trend, the

implications of this trend, and finally the
risk analysis in software cost estimates.
SOFTWARE PRODUCTIVITY

Project manager need
productivity estimates to help defined
the project cost or schedule to inform
investment decisions or to assess
whether process or technology
improvements are effective. Productivity
estimates are usually based on measuring
attributes of the software and dividing
this by the total effort required for
development. There are two types of
metrics that have been used
(Sommerville, 2004) :
1. Size-related metrics based on some

output from the software process.
This may be lines of delivered source
code, object code instructions, etc.

2. Function-related measures based on
an estimate of the functionality of the
delivered software.

Function points are the best
known of this type of measure. For the
size-related metric we would like to
discuss about Lines of Source Code
(LOC)/ Source Line of Code (SLOC)
estimates that can be used to estimate
size through analogy – by comparing the
new software’s functionality to similar
functionality found in other historic
application.

These are the advantages of LOC/ SLOC
:
a. SLOC directly relate to the software

to be built, the software can then be
measure after completion and
compared with your initial estimates.

b. SLOC is easy to count. We can
compute SLOC by counting the total
number of lines of source of code
that are delivered, then divide the
count by the total time in
programmer-months required to
complete the project.

For example :

 Software Cost Estimation
 (Diana Leonita)

B66

Proceeding PESAT (Psikologi, Ekonomi, Sastra, Arsitektur, & Sipil) Vol.3 Oktober 2009
Universitas Gunadarma - Depok, 20-21 Oktober 2009 ISSN: 1858-2559

Figure 1. System Development Times

As the best known of function-
related measure, function point is not a
single characteristic but is computed by
combining several different
measurements or estimates
(Sommerville, 2004). These
measurements are external inputs and
outputs, user interaction (inquiry types),
external interfaces and files used by the
system.
The function-point metric takes all of
above into account by multiplying the
initial function-point estimate by a
complexity-weighting factor.
UFC = ∑ (number of elements of given
type) X (weight)

Table 1.

Function Point Computation
 Sim

ple
Aver
age

Com
plex

Tot
al

Inputs 3X 4X
2

6X
2

20

Outputs 4X
1

5X
3

2X 19

Inquiries 7X 7X 15X 0
Files 5X 10X

1
17X 10

Interface
s

6X 8X 10X
1

10

UNADJUSTED FUNCTION
POINTS = 59

The total of these products was adjusted
by the degree of complexity based on
the estimator’s judgments of the
software’s complexity. Complexity
judgments are domain-specific and
include factor such as data
communications, distributed data

processing, performance, transaction
rate, on-line data entry, end-user
efficiency, reusability, ease of
installation, operation, change, or
multiple site use. Function points are
biased towards data-processing systems
that are dominated by input and output
operations. For this reason, some people
think that function points are not a very
useful way to measure software
productivity (Furey and Kitchenham,
1997; Armour, 2002 from
Sommerville). In short, these are the
differences between SLOC and the
function point methods :

 Ana
lysis

Des
ign

Cod
ing

Testi
ng

Doc

Assembly
Code

3
wee
ks

5
wee
ks

8
wee
ks

10
week

s

2
wee
ks

High-level
language

3
wee
ks

5
wee
ks

4
wee
ks

6
week

s

2
wee
ks

 Size Effort Productivit
y

Assembly
Code

5000
lines

28
weeks

714 lines/
months

High-level
language

1500
lines

20
weeks

300 lines/
months

Table 2.

Source Line of Code Versus Function Point
Source Line

of Code Function Point

Analogy
Based

Specification
Based

Language
Dependent

Language
Independent

Design
Oriented User’s Oriented

Variation a
Function of
Languages

Variation a
Function of
Conventions

Convertible
to Function

Point

Expandable to
Source Line of

Code

Cost and Schedule Estimation
Techniques

Deciding which of the
techniques is the most appropriate for

Software Cost Estimation
(Diana Leonita)

B67

Proceeding PESAT (Psikologi, Ekonomi, Sastra, Arsitektur & Sipil) Vol.3 Oktober 2009
Universitas Gunadarma - Depok, 20-21 Oktober 2009 ISSN: 1858-2559

your program usually depends on
availability of data, which is in turns
depends on where you are in the life
cycle or your scope definition (GSAM
Version 3.0).
Of these techniques, the most
commonly used is parametric modeling.
As mention above, determining which
method is most appropriate is driven by
the availability of data. Regardless of
which method used, a thorough
understanding of your software’s
functionality, architecture, and
characteristics, and your contract is
necessary to accurately estimate
required effort, schedule and cost.

Algorithmic Cost Modeling

Algorithmic cost modeling use
mathematical formula to predict project
cost based on estimates of the project
size, the number of software engineers,
products factors, and other process. An
algorithmic cost model can be built by
analyzing the costs and attributes of
completed projects and finding the
closest fit formula to actual experience.
 An algorithmic cost estimate for
software cost can be expressed as
(Sommerville, 2004).

Effort = A X Size B X M
A : Constant factor that depends on

local organizational practices and
the type of software that is
developed.

Size : Size may be either an assessment
of the code size of the software or
a functionality estimate expressed
in function points.

B : The value of exponent B usually
lies between 1 and 1,5.

M : Multiplier made by combining
process, product and
development attributes, such as
the dependability requirements
for the software and the
experience of the development
team.

Most algorithmic estimation
models have an exponential component
(B) that is associated with the size
estimate. This reflects the fact that costs
do not normally increase linearly with
project size. The larger the system, the
larger the value of this exponent.

An algorithmic model has the
disadvantages. It is difficult to estimate
size at an early stage in a project when
only a specification is available. And
the estimates of the factors contributing
to B and M are subjective. It depends on
the estimator’s background and
experience with the type of system that
is being developed.

The accuracy of the estimates
produced by an algorithmic model
depends on the system information that
is available. As the software process
proceeds, more information becomes
available, so estimate becomes more
and more accurate. If you use an
algorithmic cost estimation model, you
should develop a range of estimates
(worst, expected and best) rather than a
single estimate and apply the costing
formula to all of them.

THE CONSTRUCTIVE COST
MODEL (COCOMO)

The COCOMO model is an
empirical model that was derived by
collecting data from large number of
software product. This formula link the
size of the system and product, project
and team factors to the effort to develop
the system. The model estimates cost
using one of three different
development modes: organic,
semidetached and embedded (Kelley
Cyr, 2007).

Many people, including
Sommerville have chosen to use the
COCOMO for several reasons, that are
well documented, available in the public
domain and supported by public domain
and commercial tools, it has been

 Software Cost Estimation
 (Diana Leonita)

B68

Proceeding PESAT (Psikologi, Ekonomi, Sastra, Arsitektur, & Sipil) Vol.3 Oktober 2009
Universitas Gunadarma - Depok, 20-21 Oktober 2009 ISSN: 1858-2559

widely used and evaluated in a range of
organizations and it has a long pedigree
from its first instantiation in 1981 to its
most recent version, COCOMO II,
Published in 2000.

COCOMO 81 assumed that the

software would be developed according
to a waterfall process, using standard
imperative programming languages
such as C or FORTRAN (Sommerville,
2004). While, the COCOMO II supports
a spiral model of development and
embeds several sub models that produce
increasingly detailed estimates. The
sub-models that are part of the
COCOMO II are in figure 2.

Software Risk Analysis

All software estimating tools
typically perform the eight of the nine
functions discussed here: 1) Sizing
project deliverables, 2) Estimating
defect levels and removal efficiency; 3)
Selecting project activities; 4)
Estimating staffing levels; 5) Estimating
effort; 6) Estimating costs; 7)
Estimating schedules; 8) Estimating
requirements changes during
development. The ninth function is not
always present in software cost
estimation tools: risk analysis. The
major risks that need to be analyzed
include outright cancellation of the
project, the odds of litigation for breach
of contract, poor quality control and

excessive requirements changes. The
software industry has long been
troubled by major schedule slippage,
major cost overruns, and a high
incidence of outright failure.

Table 3.

Software Project Outcomes By Size of
Project

Probability of Selected Outcomes

Early On-
Time

Delay
ed

Cancel
ed

Sum

1 FP 14.68
%

83.16
%

1.92
%

0.25 % 100
%

10 FP 11.08
%

81.25
%

5.67
%

2.00 % 100
%

100 FP 6.06
%

74.77
%

11.83
%

7.33 % 100
%

1000 FP 1.24
%

60.76
%

17.67
%

20.33
%

100
%

10000
FP

0.14
%

28.03
%

23.83
%

48.00
%

100
%

100000
FP

0.00
%

13.67
%

21.33
%

65.00
%

100
%

Average 5.53
%

56.94
%

13.71
%

23.82
%

100
%

(Source : International Thomson Press, 1995)

As can easily be seen from

Table 3, small software projects are
successful in the majority of instances,
but the risks and hazards of cancellation
or major delays rise quite rapidly as the
overall application size goes up. Indeed,
the development of large applications in
excess of 10,000 function points is one
of the most hazardous and risky
business undertakings of the modern
world. Of all the troublesome factors
associated with software, schedule slips
stand out as being the most frequent
source of litigation between outsourcing
vendors and their clients. Schedule slips
are also the main reason for executive
frustration with software for internal
projects. Fortunately, as of 2008,
objective empirical data is beginning to
become available in significant
quantities. The International Software
Benchmark Standards Group (ISBSG)

Software Cost Estimation
(Diana Leonita)

B69

Proceeding PESAT (Psikologi, Ekonomi, Sastra, Arsitektur & Sipil) Vol.3 Oktober 2009
Universitas Gunadarma - Depok, 20-21 Oktober 2009 ISSN: 1858-2559

was founded in 1997. Now that it has
been operational for more than 10 years,
the volume of measured historical data
has reached about 5,000 software
projects.

Table 4.
Approximate Distribution of U.S. Outsource

Results After 24 Months

Since the loser of the case may
end up paying the legal fees and costs of
both sides, the total legal costs can top
$12,000,000 or $1,200 per function
point. This does not include any fines,
damages, or other awards that judges or
juries might award to the winning side.
Not only are there directs costs for legal
fees and expert witnesses, but both
parties can expect to lose at least 6
months of productive and effective time
on the part of the managers and
executives who were involved in the
project that is under litigation.

At the end of the day, neither the
plaintiff nor the defendant is likely to
end up ahead. Litigation is usually a
loose-loose situation where neither party
gains much of value. This brings up the
final point of litigation risk analysis.

Contracts should be clear and
unambiguous about four key topics
changes to requirements, quality control
activities, volumes of delivered defects
and progress tracking during
development. A litigation and software
project failure is an unfortunate by
product of poor training and preparation
on the part of management on both sides
of the case.

CONCLUSION

Software estimating is simple in
concept, but difficult and complex in
reality. The difficulty and complexity

required for successful estimates exceeds
the capabilities of most software project
managers to produce effective manual
estimates. The commercial software
estimating tools can often out perform
human estimates in terms of accuracy,
and always in terms of speed and cost
effectiveness. However, no method of
estimation is totally error-free. The
current “best practice” for software cost
estimation is to use a combination of
software cost estimating tools coupled
with software project management tools,
under the careful guidance of
experienced software project managers
and estimating specialists. In addition to
normal development estimation, large
projects in the 10,000 function point size
range should also include specific risk
estimates and deal with the problems
that are known to cause trouble i.e.
estimating accuracy, quality control,
change control and status reporting. The
strongest point that can be made is that
producing excellent software is cheaper
and takes less time than producing
buggy software that is likely to fail or
run late. Producing software that is
cancelled or ends up in court will be
between 15% and 250% more costly
than creating excellent software of the
same size and type. To quote Phil
Crosby’s famous book, “Quality is
Free”. For software, not only is quality
free but it costs a great deal less than
buggy software and can be produced
faster as well.

Results Percent of Outsource
Arrangements

Both parties generally
satisfied 70%

Some dissatisfaction
by client or vendor 15%

Dissolution of
agreement planned 10%

Litigation between
client and contractor
probable

4%

Litigation between
client and contractor
in progress

1%

REFERENCES

 Software Cost Estimation
 (Diana Leonita)

B70

Proceeding PESAT (Psikologi, Ekonomi, Sastra, Arsitektur, & Sipil) Vol.3 Oktober 2009
Universitas Gunadarma - Depok, 20-21 Oktober 2009 ISSN: 1858-2559

[1] Anonymous.1984. An Approach to
Software Cost Estimation. NASA
Goddard Space Flight Center
Software Engineering Laboratory.
(SEL-83-001) February, 1984.

[2] Anonymous. 2002. NASA Cost
Estimation Handbook.
http://www.jsc.nasa.gov/bu2/NCEH/i
ndex.htm. May 2002.

[3] Boehm, B. 1981. Software
Engineering Economics. Englewood
Cliffs. Prentice-Hall, New Jersey.

[4] Boehm, B. 1985. “COCOMO:
Answering the Most Frequent
Questions,” In Proceedings, First
COCOMO Users’ Group Meeting.
Wang Institute Tyngsboro. MA. May
1985.

[5] Boehm, et al. 2000. Software Cost
Estimation with COCOMO II.
Prentice Hall. Upper Saddle River.
N.J.

[6] Cyr, Kelley. 2009. Basic
(Constructive Cost Model)
COCOMO.
http://cost.jsc.nasa.gov/COCOMO.ht
ml. August 2009.

[7] Jones, Capers. 2007. Estimating
Software Costs; McGraw Hill, New
York.

[8] Sommerville, Ian. 2004. Software
Engineering. 7th Edition. Addison
Wesley. USA.

Software Cost Estimation
(Diana Leonita)

B71

