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Abstrak

Based on sjtigren und sjolander's Mode-coupling(MC)-Model, we have re-

formulated and calculated the memory kernel (MK) of the velocity autocorre-

lation function (vACF)on a Ni6.2Zrs.3-liquid. Reformulating means here that

we have constructed the memory kernel of vACF for our binary system, in-

stead of one for one atomic system of the Sjtigren und Sjolander's model. The

data required for the theoretical calculations have been obtained from molec-

ular dynamics (MD) simulations. The theoretical results then are compared

with those directly obtained from computer simulation. we found, although

it exists a qualitative agreement between theoretical predictions and simula-

tion results, that quantitatively there is an deviations between both results,

especially for Zr-subsystem.

I. INTRODUCTION

Since last decade and until today, one important goal of modern research in condensed

matter is to find a good quantitative description of the glassy dynamics in liquids. Theo-

retically there is a established theory, the so-called mode-coupling theory (MCT)' that can

describe and predict important parameters and quantities in glassy systems qualitatively

good. \Vork in the last decade has provided evidence [1] that MCT [2] is able to describe

the slow dynamics of Jragile liquids in the rveakly supercooled state. The recent work of

Kob et.al. [3] has also showed that theory able to accurately describe the non-ergodicity

parameters of simple as rvell as of netrvork-forming liquids. The one important statement of

the MCT is that the dynamics processes at long times is drirren by a memory kernel rvhich

is included in IvICT's integro-differential equation.
In previousiy paper [ ] we have studied the memory kernel of incoherent intermediate

scattering function. Further, we have compared the memory kernels Mf (q,t) evaluated

from the IvICT formula with the kernels M!(q,t) from inverting the time evolution of the

intermediate scattering functions. The comparison shows encouraging agreement at 900 to

1100 K while significant deviations are found at 1200 K. it is an open question whether. for

this temperature an improved agreement between calculated Mi@,t) and estimated Ml(q,t)

can be obtained by inclusion of the coupling to transversal currents in the memory kernel

formula as provided, e.8., by Gudowski et.al. [5].
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The main objective of paper is to give one of the answer of above open question. But

nstead of the memory kernel of incoherent intermediate scattering function, we investigated

rhe memory kernel K(t) of the velocity autocorrelation function (VACF) for temperature

I : 1500 K. By calculating the memory kernel we included all coupling as proposed by

Sjogren und Sjolander's Mode-Coupling(MC)-Model [6]. The calculated memory function

ahen is compared with the kernel from inverting the time evolution-of VACF.

Our paper is organized as follows: In Section III, we present the model and give sorne

cetails of the computations. Section II gives a brief discussion of some aspects of the Sjtigren

rnd Sjolander's Mode-Coupling(MC)-Model as used here. Results of our N{D-simulations

aad their analysis are then presented and discussed in Section IV'

II. SJOGREN-SJOLANDER'S MODE COUPLING MODEL

As we know, the VACF can be studied through the formalism developed b1' Zrvanzig and

Uori [10], which is based on a following integral equation:

ry: - Io' n4)r(t - r)dt' (1)

In this paper the Sjrigren und Sjolander's (SS) Ir'lode-Coupling(N'lC)-Model [6] is used.

In rhis model memory kernel K(t) ofVACF r/(t) was proposed for asimple liquid according

to a combination of kinetic and mode coupling concepts.
The basic idea of the model is that memory-kernel can be divided into two term. The first

rerm comes from the uncorrelated binray collisions and the other from correlated collisions.

The former is related to the fast decay of kernel at short times. The latter is expresses the

mode-coupling term which incorporate more sophisticated processes ihat appear at longer

times. Ivloreover, this term is based on the idea that the motion of a tagged particle is

iufluenced by constraints collectively imposed by its neighboring particles. The memon'

kernel K(t) of VACF take also the following relation

K(t)  :  KB(t)  + KMC Q) Q)

According to SS-Model the mode-coupling effects take into account four different

coupling-term: density-density coupling, two contributions from density-longitudinal current

couplings, and density-transverse current coupling (s. Sjtigren (1980/81) [11,12], Gudowski

et.al .  (1993) [5] ,  Canales et.al .  (1997) [13]) .
To compute the memory kernel of VACF, we follow method used by Sjogren (1980181),

Gudowski et.al. (1993), Canales et.al. (1997). If by these authors one atomic systems

only were investigated, here we investigate a binary system. AIso we have to develop and

construct the formulation of coupling terms for our binary system.
Here are the results of our reformulation of K(t) for our binary system. The binary term

is defined by [14]

K n.(t) : {l2n o exp (-t2 I r!),

rvhere O2u. is the Einstein-frequency of a-component [15],

(3)
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and ro can be determined by the following equation

erro 1. . . .

6: -iotol

The coupling terms is expressed bY

K,e) = lftr,1r1+ froo,(") +Kn,Q)frnr"Q)l lx

with

X = 1 * Eor.(r) - Ks.1"lEt-.Q) -

17",(r) * fr,oou(z) +Ta,k)R*"Q1f n22.Q1

where Eio 
^r" 

the Laplace transform of "recollision" terms Rai"ft).
systems &i"(t) can be expressed as follows

ft00.(t) : 
ffii un ("F)'(a, t) A,F"o(q, t)d,q,

("F)"(q,t) :  [c."(q)12 F,,(q,t) +
2co,(q)cop(q)Fop(4,t) +lc.p(q)7' F.,. ' (q,t);  a * F

(4)

(5)

xY* (t) = Kooo(t) + Kot"(r) + K.'."{t) + K22"(t). (6)

Here Ks6o(d) describes the density-density coupling, Ksr"(t) and K11o(f) the density-

longitudinal currents couplings, and K22,(t\ the density-transrerse current coupling.

The taplace transforms of these terms can be rvritten

tro*{t) = Eoo.,(r),

Kor.(r) : fr'or.,(")lT"'(") +KQ)),

K rr.(") : R B'Q) Err.Q)ft 
"Q),

K"ro: IFu,(r) + ]?oo"(z) +Ka.Q)fr',.(")] 8 ro1"7E.,1"1,

where K".b) md rt"Q) are repectively the Laplace transform of the binary term and the

total memory kernel. The Laplace transform of the total lvlemory kernel is as follows

(7)

(8)

(e)

(10)

(1 1)

(  12)

Assuming isotropic

with
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rvith

with

fto," (r) : - *# i o' @r),tq, t) aF".(q, t)dq,

(LF'),(q,t) : c..(q)lr",tnl * #",,ta)] 
r;"te , r) *

c,'o(o) 
1,,,a 

(il * # "., (d] r'.u 10, ty +

c.B (il 
1t,..'(il 

* # "".(d] r;u1u, t1 +

c.B(dlt".a(d *#",u(df r;u1a,ty; o

I  r^
l) /+\ -Rr t "(t) 

:  - 
6?tr4,p I o" @ c t) "(q, 

t) L F'"(q, t) dq,

1R
T- t''

(15)

(16)

(17)

(1e)

(20)

(BCy)"(q, t ) :

Rzzo(t)  :

wttn

(TCr),(q,t)  :  [^ i r .o(q)]2 Cr. .(q, t)  +

2n .,,,(q) "rr. p (q) C r 
" 
p (s, t) * llr' B (q)l' C, oo (q, t)

r  m 9 12

!!!J|",.@)l C 2"^(q, t) +
Tndrd J

* @"*@1frr.u(ql * Ytr.u(q)] cr.o6(q,t) *
Tnatra lL rr taT1 I

r  m) t2

W".uk) l  cr , , (q, t ) ;a#0 (18)
trlatf ) -

lt".'(il +

zlt"..fu)

lt,,u(d +

I  v, ,^^-ffiW I t"(TCr)"(q, t)A4"(q,t)dq,

Here coo(q) is the Fourier transform of au- direct correlation function, lu"(q) and 7r""(g)
are g -dependent quantities, which are defined in Balucani ll4l. Cr""(g, t) und Cyoo(q,t) are
the transverse and longitudinal current correlation functions of the oo- parts. A4"(q, t)
is the difference between F,o(q,t) and Foo(q,t), where Foo(q,t): exp(-(kBTl2m,)q2t2)
expresses the free-particle-form of intermediate incoherent scattering function.
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III. SIMULATIONS

The simulations are earried out as state-of-the-art isothermal-isobaric (lf, ?, p) calcula-

tions. The Newtonian equations of .lf = 648 atoms (130 Ni and 518 Zr) are numerically

integrated by a fifth order predictor-corrector algorithm with time step At : 2.5 10-r5s in a

cubic volume with periodic boundary conditions and variable box length L. With regard to

the electron theoretical description of the interatomic potentials in transition rnetal alloys

by Hausleitner and Hifner {7], we model the interatomic couplings as in [8].bv a volume

dependent electron-gas term 8,6{V} and pair potentials {(r) adapted to the equilibrium

distance, depth, wid1h, and zero of the Hausleitner-Hafner potentials [Z] for NizoZrao [9].
For this rnodel, simulations rvere started through heating a starting configuration up to

2000 K which leads to a homogeneous liquid state. The system then is cooled.continuously

to various annealing temperatures with cooling rate -\tT : 1.5 1012 K/s. Afterrvards the

obtained configurations at various annealing temperatures (here 1500-800 K) are relaxed

by carrying out additional isothermal annealing runs. Finally the time evolution of these

relaxed configurations is modelled and analyzed. More details of the simulations are given
.  r^ l
rn tvt .

IV. RESULT AND DISCUSSION

We have calculated the total memory kernel K.(t) of VACF in range 0,024 1 q I 4,796

A-1. The input data are all correlation functions that are analyzed from I\'iD data. For

simplifying rve have only calculated the memory kernel at T = 1500 K. The reason for this

is, because (i) according to some authors, except binary term and density-density coupling,

the other couplings could be neglected by lower temperature, i.e., the contribution of the

other couplings are very small, and more smaller than the contribution of the binary term and

density-density coupling [16], (ii) after our experience there is a coupling contribution which

decays slorvly at lower temperature. These slowly decays make us technically a problem by

the Laplace transform of couplings.
The figures (1) and (2) shows our results of the memory kernel K"(t) of \ACF. MD

results can be computed over the equation (1). From figures lve can see that the results of

SS-model do not have a good agreement with MD-results, escpecially those for Zr-atom- By

Zr-atomthe run of the memory kernel K"(l) shows some of oscillations that by iVlD-results

do not appear. These oscilations are primaly from the density-density coupling. According

to eq.(14) the intermediate coherent scattering functions F(q,t) are responsible for thoee

oscialtions. The deviations between SS-models results and MD-results can also be shown b5r

results in computingrh!), e.g., on figures (3) and (a)'

As shown in figures (1) and (2) the most significant contributions come from the densit5r-

density coupling, the second from the density-longitudinal current density coupling, and thc

least from the density-transverse current coupling.
gezeigt haben, kommt der gr<iBte Beitrag aus der Dichte-Dichte Kopplung, der 2.grdBta

uurt", bi.ht.-longitudinalen Strom Kopplung, und der kleinste Beitrag aus der Dichte-

transversalen Strom Kopplung.
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V. CONCLUDING REMARKS

we have calculated the memory kernel of vACF based on SS-model. The

used by calculating have produced from MD-simulation. We have compared the SS-n

results and MD-results. Both results are shown a qualitative agreement, although

itatively there is a deviations between both results, especially' for Zr-subsystem- 1

results are agreed with the generall Mode Coupling Theory's predictions [2], nafelV

the most significant contributions are resulted from the density-density coupling. This

pling always is dominant when the temperature of system is lowered, and especially I

the temperature of system is near the critical glass temperature ['
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