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The rapid growth of third and development of future generation mobile systems has led
to an increase in the demand for image and video services. However, the hostile nature
of the wireless channel makes the deployment of such services much more challenging,
as in the case of a wireline system. In this context, the importance of taking care of user
satisfaction with service provisioning as a whole has been recognized. The related user-
oriented quality concepts cover end-to-end quality of service and subjective factors such
as experiences with the service. To monitor quality and adapt system resources,
performance indicators that represent service integrity have to be selected and related
to objective measures that correlate well with the quality as perceived by humans. Such
objective perceptual quality metrics can then be utilized to optimize quality perception
associated with applications in technical systems.

In this paper, we focus on the design of reduced-reference objective perceptual
image quality metrics for use in wireless imaging. Specifically, the normalized hybrid
image quality metric (NHlQM) and a perceptual relevance weighted Lp-norm are
designed. The main idea behind both feature-based metrics relates to the fact that the
human visual system (HVS)is trained to extract structural information from the viewing
area. Accordingly, NHlQM and Lp-norm are designed to account for different structural
artifacts that have been observed in our distortion model of a wireless link. The extent
by which individual artifacts are present in a given image is obtained by measuring
related image features. The overall quality measure is then computed as a weighting
sum of the features with the respective perceptual relevance weight obtained from
subjective experiments. The proposed metrics differ mainly in the pooling of the
features and amount of reduced-reference produced. While NHlQM performs the
pooling at the transmitter of the system to produce a single value as reduced-reference,
the Lp-norm requires all involved feature values from the transmitted and received
image to perform the pooling on the feature differences at the receiver. In addition, non-
linear mapping functions are developed that relate the metric values to predicted mean
opinion scores (MOS) and account for saturations in the HVS. The evaluation of
prediction performance of NHIQM and the Lp-norm reveals their excellent correlation
with human perception in terms of accuracy, monotonicity, and consistency. This holds
not only for the prediction performance on images taken for the training of the metrics
but also for the generalization to unknown images. In addition, it is shown that the
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£-mail addresses: ulrich.engelke@bth.se (U. Engelke). mkusuma@staff.gunadarma.ac.id (M. Kusuma), hans-jurgen.zepernick@bth.se (H.-J. Zepernick),

mcaldera@gqaas.com.au (M. Caldera).

0923-5965/$ - see front matter © 2009 Elsevier B.V.All rights reserved.
doi: ID.1016fj.image.2009.06.005



526 U. Engelke et al. / Signal Processing: Image Communication 24 (2009) 525-547

NHIQM approach and the perceptual relevance weighted L
prominent objective quality metrics in prediction performance.

© 2009 Elsevier s.v. All rights reserved.

1. Introduction

The development of advanced transmission techniques
for third generation mobile communication systems and
their long-term evolution has paved the way for the
delivery of mobile multimedia services. Wireless imaging
applications are among those services that are offered on
modern mobile devices to support communication op-
tions beyond the traditional voice services. As the
bandwidth resources allocated to mobile communication
systems are scarce and expensive. digital images and
videos are compressed prior to their transmission.
In addition. the time-varying nature of the wireless
channel caused by multi path propagation. the changing
interference conditions within the system. and other
factors cause the channel to be relatively unreliable. As a
consequence. the quality of wireless imaging services are
impaired not only by the lossy compression technique
adapted but also by the burst error mechanisms induced
by the wireless channel.

The performance evaluation of mobile multimedia
systems has conventionally been based on link layer
metrics such as the signal-to-noise ratio (SNR) and the
bit error rate (BER) [24]. Similarly. performance of image
compression techniques is often quantified by fidelity
metrics such as the mean squared error (MSE) and the
peak signal-to-noise ratio (PSNR) [44]. In the case of
communicating visual content. however. it has been
shown that these metrics do not necessarily correlate well
with the quality as perceived by the human observer
[12.43]. As a result. user-oriented assessment methods
that can measure the overall perceived quality have gained
increased interest in recent years. It is expected that these
methods will facilitate more efficient designs of mobile
multimedia systems by establishing trade-offs between
the allocation of system resources and quality of service
(QoS) [26.32]. In other words. not only metrics associated
with the underlying technical system are considered but
also quality indicators that can accurately predict the
visual quality as perceived by human observers.

1.1. Visual quality assessment

A wide range of approaches has been followed in the
design of such visual quality metrics ranging from simple
numerical measures [8] to highly complex models
incorporating those characteristics of the human visual
system (HVS) that are considered as being crucial for
visual quality perception [21.29,36]. Specifically. the
phenomenon that the HVS is adapted to extraction of
structural information has received strong attention for
metric design [1.3.39]. These psychophysical approaches.
which are based on modeling various aspects of the HVS.
correlate well with human visual perception and are

usable over a wide range of applications. However. these
benefits often come at the expense of high computational
complexity. In contrast. methods following an engineering
inspired approach are mainly based on image or video
analysis and feature extraction. which does not exclude
that certain aspects of the HVS are considered in the
metric design.

Most of the proposed HVS-based metrics are following
the full-reference (FR) approach [6.19.33.42]. meaning.
that they rely on the reference image being available for
the quality assessment. Clearly. this limits their applic-
ability to wireless imaging as a reference image would
generally not available at the receiver where quality
assessment takes place. Thus. a no-reference (NR) metric
may be more appropriate since it measures the quality
solely based on the received image. Although it is easy for
humans to judge the quality of an image without any
reference. it is extremely difficult for an automated
algorithm to execute.

As a consequence. metrics following the NR approach
such as [11.23.35] usually provide inferior quality predic-
tion performance as compared to metrics that take into
account some amount of reference information from the
transmitted image. or process the whole original image
itself as in case of FR metrics. Furthermore. as NR metrics
provide an absolute measure about the quality of a
received image. it may be difficult to distinguish quality
degradations that have been induced during image
transmission from those that have already been present
in the image prior to transmission. Hence. there would be
strong limitations to execute link adaptation and resource
management procedures based upon this type of metrics.

In this respect. a good compromise between the FR and
NR methods are the reduced-reference (RR) metrics. These
metrics rely only on a set of image features. the reduced-
reference. instead of the entire reference image. These
features are simply extracted from an image prior to its
transmission and used at the receiver for detecting quality
degradations. The reduced-reference may then be trans-
mitted over an ancillary channel. piggy backed with the
image. or embedded into the image using data hiding
techniques [41].

Wang et al. [40] have proposed an RR metric based on a
natural image statistic model in the wavelet domain and
Carnec et al. [2] define the C4 criterion which is an RR
metric based on an elaborate model of the HVS. Both
metrics have been shown to correlate well with human
perception. which comes at the cost of a high computa-
tional complexity. This may restrict their application in
the context of wireless imaging where computational
resources are very limited. in particular in the mobile
device. Yamada et al. [45] and Chono et al. [5] propose RR
metrics that can accurately predict PSNR. The former
metric is based on a selection of representative luminance
values. whereas the latter metric utilizes distributed
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source coding to communicate the RR signal. These
metrics may be applicable for usage in an image
communication context due to their low computational
complexity. However, the ability of these metrics to
accurately predict perceived visual quality is doubtful
due to the poor quality prediction performance of PSNR.

1.2. Overview of the proposed metric design

In view of the above, this paper focuses on the
development of RR objective perceptual image quality
metrics that are applicable in a wireless imaging context.
As such, image impairments representative for a wireless
imaging system are produced to constitute the basis of the
design framework. In addition, particular care has been
taken to limit the overhead needed for communicating
reduced-reference information and hence conserve the
scarce bandwidth resources allocated to wireless systems.
Furthermore, feature extraction algorithms are selected to
have small computation complexity in order not to drain
battery power at the wireless hand held device and in turn
support longer service time.

Specifically, images in the widely adopted Joint Photo-
graphic Experts Group (JPEG)format are examined with
typical impacts of a mobile communication system
included through a simulated wireless link. This system
under test enabled us to produce artifacts beyond those
inflicted purely by lossy source encoding but to account
also for end-to-end degradations caused by a transmission
system. In particular, the artifacts of blocking, blur,
ringing, masking, and lost blocks have been observed
ranging from extreme to almost invisible presence.

The information about the individual artifacts in an
image can be deduced from related image features such as
edges, image activity (lA) and histogram statistics. The
extent by which the considered artifacts exist in a given
image can therefore be quantified by using selected image
feature extraction algorithms. As some artifacts influence
the perceived quality stronger than others, perceptual
relevance weights are given to the associated image
features. Clearly, subjective experiments and their analy-
sis are not only instrumental but critical in the process
of revealing the specific values of perceptual relevance
weights. For this reason, we conducted subjective image
quality experiments in two independent laboratories.
The particular values of the weights were deduced as
Pearson linear correlation coefficients between the related
features and the mean opinion scores (MOS) from the
subjective experiments. In this respect, the perceptual
relevance weights obtained from analyzing the subjective
data constitute a key component in the transition from
subjective quality prediction methods to an automated
quality assessment that would be suitable for real-time
applications. Given these perceptual relevance weights, an
objective perceptual image quality metric may then be
designed to exploit image feature values and their weights
within a suitable pooling process. In this paper, we
consider two feature-based objective perceptual quality
metrics that mainly differ in the pooling process and the
amount of reduced-reference as follows.
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Firstly, the normalized hybrid image quality metric
(NHIQM) is designed. It operates on extreme value
normalized image features from which it produces a
weighted sum with respect to the relevance of the
involved features. The result is a single value that can be
communicated from transmitter to receiver where it is
utilized as reduced-reference information. The same
processing is performed on the received image resulting
in the related NHIQM value. The absolute difference
between the NHIQM values of the transmitted and
received image constitutes the objective perceptual
quality metric and is used to detect distortions.

Secondly, we consider a perceptual relevance
weighted Lp-norm as a means of pooling the image
features. Specifically, the Lp-norm is applied here to
detect differences between features [7,10]. In this case,
the pooling at the transmitter is omitted but requires
the features being transmitted over the channel to the
receiver. At the receiver, the difference between the
transmitted and received features are combined to an
overall quality metric. This approach allows to track
degradations for each of the involved features. On the
other hand, the amount of reduced-reference overhead is
increased compared to the NHIQM-based approach.

The design of both feature-based RR metrics, NHIQM
and Lp-norm, follows the same methodology. It comprises
the selection of suitable feature extraction algorithms, the
feature extraction for image samples of a training set,
normalization of the calculated feature values, and the
acquisition of the perceptual relevance weights from the
subjective experiments. A non-linear mapping function is
derived in a final step that relates the objective perceptual
quality metric to predicted MOS. In this way, non-
Iinearities in the HVS with respect to the processing of
quality degradations can be accounted for. The non-linear
mapping function is derived using curve fitting methods
where, again, the MOS from the subjective experiments
are essential in deriving the parameters of the mapping
functions.

A comprehensive evaluation of the prediction perfor-
mance of NHIQMand the Lp-norm is provided in terms of
accuracy, monotonicity, and consistency [34]. These
performance measures are given for the metric design
on a training set of images and the generalization to
unknown images. It turns out that the proposed feature-
based metrics outperform other considered RR and FR
metrics in the context of wireless imaging distortions and
with respect to the above prediction performance mea-
sures.

1.3. Contributions of this work

Considering the above, this paper contributes a frame-
work for image quality metric design in a wireless
communication system. As such, the metrics proposed in
this paper have been designed to be able to measure
quality degradation during image transmission using an
RRapproach. Unlike other RRmetrics from the literature,
the metrics in this paper are designed based on a set of
test images that take into account the complex nature of a
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wireless communication system, rather than just account-
ing for source coding artifacts or additional noise.
Furthermore, low computational complexity and low
overhead in terms of reduced-reference have been major
design issues in order to put low burdens on the
communication system.

A statistical analysis of experiments that we conducted
in two independent laboratories reveals insight into the
subjectively perceived quality of wireless imaging distor-
tions. In addition, a statistical and correlation analysis of
objective feature metrics provides further insight into the
artifacts observed in wireless imaging and the perfor-
mance of the feature metrics that were used to quantify
the related artifacts. Comparison of the proposed RR
quality metrics to other contemporary quality metrics
reveals the ability of the proposed metrics to predict
perceived quality in the context of wireless imaging.

This paper is organized as follows. Section 2 provides
an overview of RRobjective quality assessment in wireless
imaging and the particular system under test as consid-
ered in this paper. A detailed description of the conducted
subjective quality experiments is contained in Section 3
along with a statistical analysis of the experiment out-
comes. The objective feature extraction metrics, which
build the very basis of the metric design, are discussed
in Section 4. An additional analysis of the feature
metrics provides insight into their performance to
measure artifacts in the images. On the basis of both the
subjective and objective data, the RR metric design for
objective perceptual quality assessment is then described
in detail in Section 5. In Section 6, the prediction
performance of NHIQM and Lp-norm is evaluated and
compared to other prominent objective quality metrics.
Finally, conclusions are drawn in Section 7.

2. Reduced-reference objective perceptual quality
assessment in wireless imaging

A typical link layer of a wireless communication
system is shown in Fig. 1. Here, the functional blocks in

shaded boxes relate to the components that would need to
be included for performing the operations related to RR
objective perceptual quality assessment. As such, the
system is able to monitor quality degradations that are
incurred during transmission unlike in the case of
deploying an NR quality assessment method, where an
absolute quality of the received image would be obtained.
Given the strict limitations on system resources such as
bandwidth, the overhead induced by the reduced-refer-
ence becomes a critical metric design issue. It is therefore
beneficial to extract and pool representative features of an
image t, at the transmitter (t) in order to condense the
image content and structure to a few numerical values.
The transmission of the source encoded image may then
be accompanied by the reduced-reference, which could be
communicated either in-band as an additional header or
in a dedicated control channel. Subsequently, channel
encoding, modulation and other wireless transmission
functions are performed on the source encoded image and
the reduced-reference. At the receiving side, the inverse
functions are performed including demodulation,
channel decoding, and source decoding. The reduced-
reference features are recovered from the received data
and the related features of the reconstructed image l, at
the receiver (r) are extracted and pooled to produce the
related metric value. The difference between metric
values for the images i, and I, can then be explored for
end-to-end image quality assessment. The outcome of the
RR quality assessment may drive, for instance, link
adaption techniques such as adaptive coding and modula-
tion, power control, or automatic repeat request strategies
provided a feedback link would be available.

2.1. System under test

In the scope of this paper we consider a particular
setup of the wireless link model as shown in Fig. 1 which
turned out to results in a set of test images covering a
broad range of artifact types and severities. In particular,
the JPEG format has been chosen to source encode the

Feature
Extraction

Transmitter

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Wireless Channel
Receiver

I,

Feature
Extraction
r-p~~ii~g-l~ JQuality

metric

Fig. 1. Overview of reduced-reference objective perceptual quality assessment deployed in a wireless imaging system.

RR
Quality

Assess-
ment
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images prior to transmission. It is noted that ]PEG is a
lossy image coding technique using a block discrete cosine
transform (Ocr)-based algorithm, thus, facilitating an
easy transition to state-of-the-art Ocr-based video eo-
decs, such as H.264. Due to the quantization of ocr
coefficients, artifacts may already be introduced during
source encoding. A (31,21) Bose-Chaudhuri-Hocquen-
ghem (BCH) code was then used for error protection
purposes and binary phase shift keying (BPSK) for
modulation. An uncorrelated Rayleigh flat fading channel
in the presence of additive white Gaussian noise (AWGN)
was implemented as a simple model of the wireless
channel. Severe fading conditions may cause bit errors or
burst errors in the transmitted signal which are beyond
the correction capabilities of the channel decoder and as a
result, artifacts may be induced in the decoded image in
addition to the ones purely caused by the source encoding.
To produce severe transmission conditions, the average bit
energy to noise power spectral density ratio Eb/NO was
chosen as 5 dB.

It should be noted that the RR objective quality metric
design is based upon this particular setup. However, the
proposed metric design framework can be easily adopted
to other specific system components, given that the
objective data (test images) and subjective data (MOS)
sets are available that are crucial for the metric design.
This may for instance include an extension from ]PEG to
]PEG2000 or to measuring spatial artifacts in video, such
as H.264.

2.2. Artifacts in wireless imaging

The system under test as outlined in Section 2.1 turned
out to be beneficial with respect to generating impaired
images ranging from extreme artifacts to images with
almost invisible artifacts. Specifically, the range of arti-
facts spanned beyond those typically induced by source
encoding such as blocking and blur but also composed of
ringing, intensity masking, lost blocks, and combinations
thereof. These artifacts will be briefly discussed in the
following sections. In addition, some example images are
shown in Fig. 2 to illustrate the observed artifacts.

2.2.1. Blocking
Blocking artifacts are inherent with block-based image

compression techniques such as ]PEG or H.264. Blocking
or blockiness can be observed as surface discontinuity at
block boundaries and is a direct consequence of the
independent quantization of the individual blocks of
pixels. In particular, in ]PEG compressed images blocking
is present on the 8 x 8 block borders due to independent
quantization of the ocr coefficients.

2.2.2. Blur
Blur relates to the loss of spatial detail and is observed

as texture blur. In addition, blur may be observed due to a
loss of semantic information that is carried by the shapes
of objects in an image. In this case, edge smoothness
relates to a reduction of edge sharpness and contributes to
blur. In relation to compression, blur is a consequence of
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Fig. 2. Distorted image samples showing different artifacts: "Lena" with
blocking, "Goldhill" with blur in 8 x 8 blocks (top); "Pepper" with
ringing and intensity masking. "Barbara" with extreme artifacts
(bottom).

the coarse quantization of frequency components and the
associated suppression of high-frequency coefficients.
In case of ]PEG compression blur is usually observed
within the 8 x 8 blocks rather than on a global scale.

2.2.3. Ringing
The artifact of ringing appears to the human observer

as periodic pseudo-edges around the original edges of the
objects in an image. Ringing is caused by improper
truncation of high-frequency components, which in turn
can be noticed as high-frequency irregularities in the
reconstruction. Ringing is usually more evident along high
contrast edges, especially if these edges are located in
areas of smooth textures.

2.2.4. Intensity masking and lost blocks
In general, masking occurs when the visibility of a

stimulus is reduced due to the presence of another
stimulus [43]. In this context, intensity shifts in parts of
an image, or the whole image, may result in either a
darker or brighter appearance of the area as compared to
the original image and thus cause such a reduction in
visibility. This phenomenon, which we refer to as intensity
masking, is a typical artifact in wireless image commu-
nication appearing in the presence of strong multi path
fading. In the worst case, entire image blocks are lost
resulting in parts of the image being black.

3. Subjective image quality experiments

The methodology used for the subjective assessment of
image quality is described hereafter. In particular, the
laboratory environment, the test material, the panels of
viewers, and the test procedure adapted in the subjective



screen given it displays only black level in a dark room to
the luminance when displaying peak white was approxi-
mately 0.01. The display brightness and contrast was set
up with picture line-up generation equipment (PLUGE)
according to Recommendations ITU-R BT.814 [13) and
ITU-R BT.815 [14). The calibration of the screens was
performed with the calibration equipment ColorCAL from
Cambridge Research System Ltd.. England. while the
DisplayMate software was used as pattern generator.

Due to its large impact on the artifact perceivability.
the viewing distance must be taken into consideration
when conducting a subjective experiment. The viewing
distance is in the range of four times (4H) to six times (6H)
the height H of the CRT monitors. as stated in Recom-
mendation ITU-R BT.1129-2 [15). The distance of 4H was
selected here in order to provide better image details to
the viewers.
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experiments are given in detail. According to the guide-
lines outlined in Recommendation BT.500-11 [16) of
the radio communication sector of the International
Telecommunication Union (ITU-R). subjective experi-
ments were conducted in two independent laboratories.
The first subjective experiment (SE 1) took place at the
Western Australian Telecommunications Research Insti-
tute (WATRI) in Perth. Australia and the second subjective
experiment (SE 2) was conducted at the Blekinge Institute
of Technology (BIT) in Ronneby, Sweden.

3.1. Laboratory environment

The general viewing conditions were arranged as
specified in the ITU-R Recommendation BT.500-11 [16]
for a laboratory environment.

The subjective experiments were conducted in a room
equipped with two 17 in cathode ray tube (CRT) monitors
of type Sony CPD-E200 (SE 1) and a pair of 17 in CRT
monitors of type DELLand Samtron 75E (SE 2). The ratio of
luminance of inactive screen to peak luminance was kept
below a value of 0.02. The ratio of the luminance of the

Fig. 3. Reference images showing low texture human faces: "Lena",
"Elaine" (top); "Tiffany", "Barbara" (bottom).

3.2. Test material

Seven reference images of dimension 512 x 512 pixels
and represented in grey scale have been chosen to cover a
variety of textures. complexities. and arrangements.
The images are shown in Figs. 3 and 4 where the images
in Fig. 3 represent humans and human faces and the
images in Fig. 4 represent more complex structures and
natural scenes. The wireless link simulation model as
explained in Section 2.1 has then been utilized to create
test images that exhibit the wide variety of distortions as
discussed in Section 2.2. In particular. two sets of
40 images each . .J'j and .J'2. were created to be used in
the two subjective experiments SE 1 and SE 2. respec-
tively. The images were chosen such as to cover a wide
variety of artifacts and also a b~oad range of severities for
each of the artifacts. from almost invisible to highly
distorted. Thus. the metric design is based on a set of test
images that incorporates distortions near the just notice-
able differences regime to artifacts widely covering the
suprathreshold regime.

3.3. Viewers

The viewers are the respondents in the experiment.
Experienced viewers. i.e. individuals that are profession-
ally involved in image quality evaluation/assessment at
their work. are not eligible to participate in the subjective
experiments. As such. only inexperienced (or non-expert)

Fig.4. Reference images showing complex textures: "Goldhill", "Pepper", and "Mandrill" (left to right).
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viewers were allowed to take part in the conducted
subjective experiments. In order to support generalization
of results and statistical significance of the collected
subjective data, the experiments were conducted in two
different laboratories involving 30 non-expert viewers in
each experiment. Thus, the minimum requirement of at
least 15 viewers, as recommended in [16], is well satisfied.
In order to support consistency and eliminate systematic
differences among results at the different testing labora-
tories, similar panels of test subjects in terms of occupa-
tional category, gender, and age were established.
In particular, 25 males and five females, participated in
SE 1. They were all university staff and students and their
ages were distributed in the range of 21- 39 years with the
average age being 27 years. In the second experiment, SE
2, 24 males and six females participated. Again, they
were all university staff and students and their ages were

distributed in the range of 20-53 years with the average
age being 27 years.

3.4. Test procedure

3.4.1. Selection of test method
Different test methodologies are provided in detail in

[16] to best match the objectives and circumstances ofthe
assessment problem. The methodologies are mainly
classified into two categories, as double-stimulus and
single-stimulus. In double-stimulus, the reference image
is presented to the viewer along with the test image.
On the other hand, in single-stimulus, the reference image
is not explicitly presented and may be shown transpar-
ently to the subject for judgement consistency observa-
tion purpose. As we consider RR metric design in this
paper, where partial information related to the reference
image is available, we chose to deploy a double-stimulus
method, the double-stimulus continuous quality scale
(DSCQS). Moreover, DSCQS has been shown to have low
sensitivity to contextual effects [16,34]. Contextual effects
occur when the subjective rating of an image is influenced
by presentation order and severity of impairments. This
relates to the phenomenon that test subjects may tend to
give an image a lower score than it might have normally
been given if its presentation was scheduled after a less
distorted image.

3.4.2. Presentation of test material
The test sessions were divided into two sections. Each

section lasted up to 30 min and consisted of a stabilization
and a test trial. The stabilization trials were used as
a warm-up to the actual test trial in each section.
In addition, one training trial was conducted at the very
beginning of the test session to demonstrate the test
procedure to the viewer and allow them to familiarize
themselves with the test mechanism. Clearly, the scores
obtained during the training and stabilization trials are
not processed but only the scores given during the test
trials are analyzed. In order to reduce the viewer's fatigue,
a 15 min break was given between sections.

Given the DSCQS method, pairs of images A and Bare
presented in alternating order to the viewers for assess-
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ment, with one image being the original, undistorted
image and the other being the distorted test image. As the
DSCQS method is quite sensitive to small quality differ-
ences, it is well suited to not just cope with highly
distorted test images but also with cases where the
quality of original and distorted image is very similar.

3.4.3. Grading scale
The grading is performed with reference to a five-point

quality scale (excellent, good, fair, poor, bad), which is
used to divide the continuous grading scale into five
partitions of equal length. Given the pair of images A and
B, the viewer is requested to assess their quality by placing
a mark on each quality scale. As the reference and
distorted image appear in pseudo-random order, A and E
may refer to either the reference image or the distorted
image, depending on the actual arrangement of images in
an assessment pair.

3.5. Subjective data analysis

The outcomes of the subjective experiments are
discussed in the following by means of a statistical
analysis. In this respect, a concise representation of the
subjective data can be achieved by calculating conven-
tional statistics such as the mean, variance, skewness, and
kurtosis of the related distribution of opinion scores.
The statistical analysis of these data reflects the fact that
perceived quality is a subjective measure and hence may
be described statistically.

3.5.1. Statistical measures
Let the MOS value for the kth image in a set % of size K

be denoted here as f..I.k' Then, we have

(1)

where Uj,k denotes the opiruon score given by the jth
viewer to the kth image and N is the number of viewers.
The confidence interval associated with the MOS of each
examined image is given by

(2)

The deviation term Ilk can be derived from the standard
deviation O'k and the number N of viewers and is given for
a 95% confidence interval according to [16] by

(3)

where the standard deviation O'k for the kth image is
defined as the square root of the variance

(4)

The skewness measures the degree of asymmetry of
data around the mean value of a distribution of samples
and is defined by the second and third central moments



m2 and m3, respectively, as a
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m3
fJ=~m2

where the lth central moment m, is defined as

1 N
m, = - L(Uj -11)'

N j=l

The peakedness of a distribution can be quantified by
the kurtosis, which measures how outlier-prone a dis-
tribution is. The kurtosis is defined by the second and
fourth central moments m2 and m4, respectively, as

(5)

(6)

y _ m4
- m~

It should be mentioned that the kurtosis of the normal
distribution is obtained as 3. Ifthe considered distribution
is more outlier-prone than the normal distribution, it
results in a kurtosis greater than 3. On the other hand,
if it is less outlier-prone than the normal distribution, it
gives a kurtosis less than 3. A distribution of scores
is usually considered as normal if the kurtosis is between
2 and 4.

(7)

3.5.2. Statistical analysis
Figs. 5(a) and (b) show the scatter plots of MOSfor SE1

and SE 2, respectively. The 40 images in each experiment
are ordered with respect to decreasing subjective ratings
in MOS. It can be seen from the figures that the material
presented to the viewers resulted in a wide range of
perceptual quality ratings indeed for both subjective
experiments. As such, both experiments contained
the extreme cases of excellent and bad image quality
while the intermediate quality decreases approximately
linearly in between. It is also observed that the spread of
ratings around the MOS in terms of the 95% confidence
interval is generally narrower for the images at the upper
and lower end of the perceptual quality scale. Thus, the
viewers seemed to be more confident with giving their
quality ratings in case that the quality of the presented
images was either of very high or very low quality. On the
other hand, in the middle ranges of quality the confidence
of viewers on the quality of an image was significantly
lower.

Figs. 6(a)-(d) show the MOS,variance, skewness, and
kurtosis, respectively, for each image sample that was
rated in the two subjective experiments. The image
samples in all four figures are, as in Fig. 5, ordered
with respect to decreasing MOS. In addition to the image
samples the figures depict the related fits to these
statistics, which reveal good agreement among the data
for the two subjective experiments as the fits progress
closely in the same manner over the ordered image
samples. This indicates that the two experiments have
been very well aligned with each other and also that the
two viewer panels, even though originating from different
countries, seem to have given similar quality scores for the
test images they have been shown.

Fig. 6(a) depicts the impaired image samples with
respect to decreasing MOS along with the linear fit

100
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Fig.5. Perceived quality ordered according to decreasing MOSwith error
bars indicating the 95% confidence intervals: (a) SE 1. (b) SE 2.

through these data. It can be seen from the figure that
the linear fit for both experiments are very close
indicating that the set of image samples used in the two
independent experiments at WATRIand BITcomposed of a
similar range of quality impairments.

Fig. 6(b) shows the variance of all opinion scores for
each image sample. The variance can be regarded as a
measure of how much the viewers agree on the perceived
quality of a certain image sample. In other words, the
smaller the variance, the more pronounced the agreement
between all viewers. It can clearly be seen from the figure
that the variance is relatively small for images that have
obtained either excellent or bad subjective quality ratings.
In contrast, in the region where perceptual quality of
the impaired images ranges between good and poor, the
variance tends to be larger with the peak at about the
middle of the quality range. This is an interesting result
since it indicates that the viewers appear to be rather sure
whether an image sample is of excellent or bad quality
while opinions about images of average quality differ to a
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wider extent. These conclusions are supported by the
confidence intervals shown in Figs. Sea) and (b), which are
narrower for images rated as being excellent and bad.

Fig. 6(c) shows the skewness of the opinion scores
distribution for each image sample, In the context of
the subjective ratings of image quality, a negative or
positive skewness translate to the subjective scores being
more spread towards lower or higher values than the
MOS, respectively, For the images that were perceived as
being of high quality, the negative skewness indicates that
subjective scores tend to be asymmetrically spread
around the MOS towards lower opinion scores and thus,
that a number of viewers gave significantly lower quality
scores as compared to the MOS. In the other extreme of
image quality being perceived as bad, the positive
skewness points to an asymmetrically spread around
the MOS towards higher opinion scores, However, the
positive skewness is not as distinct as the negative

skewness at the high quality end, indicating that
the agreement of low quality was higher as compared to
the agreement about high quality, The asymmetry in
subjective scores for the extreme cases of excellent and
bad quality is thought to be due to the rating scale being
limited to 100 and 0, respectively. As such, subjective
scores have to approach the maximal and minimal
possible rating from below or above, respectively. The
skewness of around zero for the middle range of qualities
reveals that the subjective scores seem to be symmetri-
cally distributed with respect to MOS, even though the
variance for images of average quality is larger.

Fig. 6(d) provides the kurtosis for each impaired image
sample. It can be seen from the figure that the distribution
of subjective scores for some of the images scoring high
MOS values in both experiments give kurtosis values
much greater than of a normal distribution, This is a
strong indication for outliers, meaning, that a few of the
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viewers gave the image quality a low rating. whereas the
majority of viewers agreed on a high image quality. With
the progression of images towards decreasing MOS. the
associated kurtosis fits quickly level out around the value
3. pointing to a normal distribution of the opinion scores
around MOS. It is interesting to point out that the high
kurtosis in the high quality end does not occur at the bad
quality end. This means that the entire viewer panel
agreed on the bad quality images with no outlier scores
being present. This result is also evident in the skewness
distribution where the decline towards lower values at the
high quality end is much more pronounced as compared
to the incline of the skewness at the low quality end.

4. Objective structural degradation metrics

The design of the RRmetrics proposed in this paper is
based on the extraction of structural information from
the images. In this section we will discuss the objective
feature metrics that were deployed to measure the
artifacts as observed in the test images (see Section 2.2).
An analysis of the objective measures provides further
insight into the feature metrics performance of quantify-
ing the artifacts.

4.1. Feature metrics

Given the set of artifacts as observed in the test images.
algorithms for feature extraction can be deployed to
capture the amount by which each of the artifacts is
present in the images. The selection of the algorithms to
be used is driven by three constraints. namely. a reason-
able accuracy in capturing the characteristics of the
associated artifact. a representation of the feature that
incurs low overhead in terms of reduced-reference
(conserve bandwidth). and computational inexpensive-
ness (conserve battery power). The features and feature
extraction algorithms deployed here to measure and
quantify the presence of the related artifacts are listed in
Table 1 and will be described in the following sections.

4.1.1. Feature L: block boundary differences
The first feature metricj', is based on the algorithm by

Wang et al. (38) and comprises three measures. The first
measure. B. estimates blocking as average differences
between block boundaries. Two image activity measures
(lAM). A and Z. are applied as indirect means
of quantifying blur. The former lAM computes absolute
differences between in-block image samples and the latter
lAMcomputes a zero-crossing rate. All three measures are

Table 1
Image features, feature extraction algorithms, and related artifacts.

computed in both horizontal and vertical direction and
combined in a pooling stage as follows:

i, =a+/3BY'N'ZY3 (8)

where the parameters a. /3. Y1' Y2. and Y3 were estimated
in (38) using MOS from subjective experiments. Despite
the two lAMincorporated inj1' we found that this metric
accounts particularly well for blocking artifacts in JPEG
compressed images. This might be due to the magnitude
ofY1' being reported in (38) as relatively large compared
to Y2 and Y3' giving the blocking measure a higher impact
on the metric j r-

4.1.2. Feature f-: edge smoothness
The extraction of feature metric j2 relates purely

to measuring blur artifacts and follows the work of
Marziliano et al. (22). It accounts for the smoothing effect
of blur by measuring the distance between edges. It was
found that it is sufficient to measure the blur along
vertical edges. which allows for saving computational
complexity as compared to computation on all edges.
Therefore. a Sobel filter is applied to detect vertical edges
in the image. The edge image is then horizontally scanned.
For pixels that correspond to an edge point. the local
extrema in the corresponding image are used to compute
the edge width. The edge width then defines a local
measure of blur. Finally. a global blur measure is obtained
by averaging the local blur values over all edge locations.
This metric was chosen to complement the lAM inj1 since
it does not just account for in-block blur but rather
contributes a global blur measure.

4.1.3. teatures j ; andj4: image activity
Ringing artifacts are observed as periodic pseudo-

edges around original edges. thus increasing the activity
within an image. The feature metrics j', and j', provide an
indirect means of measuring ringing artifacts and are
based on two lAM by Saha and Vemuri [30).

Here.j', quantifies image activity based on normalized
magnitudes of edges in an edge image B(I)as follows:

j3= (M~N~B(I)) xl00

where M and N denote the image dimensions. Since r.
does not depend on the direction of the edge. it also very
well complements the blocking measure in i.. which is
purely designed to measure on the 8 x 8 block boundaries
in JPEGcoded images.

On the other hand. r. measures lA in an image I(i,j)
based on local gradients in both vertical and horizontal

(9)

Feature Related artifactAlgorithm

Block boundary differences
Edge smoothness
Edge-based image activity
Gradient-based image activity
Image histogram statistics

Wang et al. 1381
Marziliano et al. [22J
Saha et al. [30J
Saha et al. [30J
Kusuma et al. [18J

Blocking
Blur
Ringing
Ringing
Intensity masking, lost blocks
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more, the normalization factor 15; in (13) is given by

J4 = M ~ N (~~ I/(i,J) -/(i + 1,j)1

+t~I/(i,j) -/(i,j + 1)1)
In [30], the lAMwere evaluated and in particular J4 has

been found to quantify lAvery accurately. We have further
identified that both J 3 and J 4 account well for measuring
ringing artifacts and also other high-frequency changes
within the image.

(10)

4.1.4. Feature J5: image histogram statistics
Finally, feature metric t, accounts for intensity mask-

ing and lost blocks using an original algorithm [18]. Both
these artifacts cause an intensity shift in parts of an image
or the whole image, which may result in either a darker or
brighter appearance of the area as compared to the
original image. As such we found that a simple computa-
tion of the standard deviation in the first-order image
histogram provides an adequate measure of both intensity
masking and lost blocks. We have thus adapted feature
metric j', as follows:

1~ -2- L(h; -h)
L ;=0

where h; denotes the number of pixels at grey level i, h
denotes the mean grey level, and L is the maximum grey
level of 255 when using 8 bits per pixel.

(11)

4.2. Feature normalization

The proposed NHIQMfollows the design philosophy of
our previous work that resulted in the hybrid image
quality metric (HIQM) [17,18].Although HIQM inherently
uses feature relevance weights, the actual feature valuesj',
have generally different meaning and different value
ranges. As a consequence, it may be difficult to explore
the resulting feature space for classification purposes and
quality assessment if only relevance weighting was used
as with HIQM. It is therefore suggested here to perform
also an extreme value normalization to the features. This
allows for a more convenient and meaningful comparison
of the contribution of each normalized feature f; to the
overall metric, as they are then taken from the same value
range as

O~f;~l (12)

Specifically, let us distinguish among 1 different image
features. The related feature values J;, i= 1, ... , I, shall be
normalized as follows [25]:

f _J, - mink=l. .K if"k)
, - 15, i= 1, ... ,1

where the feature values Ji.k' k = 1, ... ,K are taken from a
set ff of size K. In our case, these features were extracted
from the images used in the subjective experiments,
including all reference images and test images. Further-

(13)
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15; = max if; k) - min if; k)
k=1.. ...K· k=I ....,K'

(14)

As far as the extreme value normalized features defined
by (13) are concerned, it should be mentioned that the
boundary conditions apply to those normalized feature
values f;,k which are associated with the feature values
J;,k E ff of the images used in the experiments. In a
practical system, it may also be beneficial to clip the
normalized feature values that are actually calculated in a
real-time wireless imaging application to fall in the
interval [0, 1] as well. For instance, severe signal fading
in a wireless channel can result in significant image
impairments at particular times causing the user-per-
ceived quality to fall in a region where the HVS is
saturated to notice further degradation.

4.3. Feature metrics performance analysis

In order to gain deeper knowledge and understanding
about the feature extraction, it is of interest to examine
the extent to which different features are present in
the stimuli and to quantify a relationship between the
feature metrics and MOS.Given the context of RR metric
design in wireless imaging, where we are interested in the
difference between the quality of the received image as
compared to the quality of the transmitted image, let us in
the following consider the magnitude of normalized
feature differences

(15)

where fu and fr.i denote the ith feature value of the
transmitted and received image, respectively.

4.3.1. Feature magnitudes over MOS
Figs. 7(a) and (b) show the magnitudes of the normal-

ized feature differences ilf; for the image samples that
were presented in SE 1 and SE2. For each experiment, the
related 40 feature differences are ranked with respect to
image samples of decreasing MOS. It can be seen from
these figures that the wireless link scenario indeed
inflicted all five features but with different degrees of
severity. While for the image samples of high perceptual
quality ratings, feature differences are almost absent, the
feature differences tend to increase with decreasing MOS.
Especially, the level of ilfl' relating to blocking, contained
in the image samples shows the widest spread and
becomes more pronounced when progressing from
images of excellent to bad perceptual quality. A similar
behavior is observed for edge-based image activity ilh
but appears not as pronounced as for ilfl' As far as the
remaining three features are concerned, these become less
prevalent for most of the images but large for some of the
stimuli. In particular, gradient-based image activity ilf4
and intensity masking ilfs occur very distinctively with
selected image samples while being almost absent from
the majority of image samples.
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Fig. 7. Magnitude of differences between normalized feature values for the considered image samples ranked according to decreasing MOS: (a) SE 1.
(b) SE 2.

43.2. Feature statistics
As with the MOSgathered from the subjective experi-

ments, the statistical analysis may be extended to the
actual feature differences in order to obtain a better
understanding of the underlying objective quality degrada-
tions. However, overall statistics for the whole set of data,

instead of image dedicated statistics, shall be presented
hereafter. Accordingly,for all five feature differences t.fi the
mean, variance, skewness, and kurtosis have been com-
puted over all images that have been shown in experiments
SE 1 and SE 2 (see Fig. 7). The results of all statistics are
presented for both experiments in Tables 2 and 3.
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Table 2 Table 4
Statistics of magnitudes of feature differences !!.fi for SE 1 Correlations between feature differences for SE 1.

!!.f, !';.h !';.fJ !!.f. !!.fs !!.f, !';.h !!.f3 !!.f. !';.fs

Mean 0.253 0.120 0.102 0.053 0.022 !!.f, 1.000 0.625 0.821 0.016 0.027
Variance 0.043 0.017 0.014 0.015 0.009 !';.h 1.000 0.440 0.649 0.112
Skewness 0.627 1.425 1.124 3.518 6.015 !!.f3 1.000 0.056 -0.061
Kurtosis 2.082 4.120 3.241 15.010 37.466 !!.f. 1.000 0.000

!!.fs 1.000

Table 3 Table 5
Statistics of magnitudes of feature differences !';.fi for SE 2 Correlations between feature differences for SE 2.

!!.f, !';.h !!.f3 !';.f. !!.fs !!.f, !!.f2 !!.f3 !!.f. !!.fs

Mean 0.263 0.094 0.115 0.049 0.061 !!.f, 1.000 0.376 0.640 -0.014 0.115
Variance 0.029 0.013 0.010 0.021 0.035 !!.f2 1.000 0.486 0.753 0.316
Skewness 1.066 2.495 1.072 5.461 3.785 !!.f3 1.000 0.323 -0.272
Kurtosis 4.056 9.531 3.843 32.434 17.063 !!.f. 1.000 0.170

!!.fs 1.000

From comparison of the two tables one can observe
that for all four statistics and for all five feature
differences, the magnitudes of the values are very much
in alignment between the two experiments SE 1 and SE2.
This indicates that the stimuli, in terms of the distorted
test images, had similar characteristics in both experi-
ments. Thus, not only subjective data are in alignment but
also the composition of objective features among the test
material. In particular, it can be seen from both tables that
the mean of the blocking differences dominates over the
other features. This is a direct result of the jPEG source
encoding of which it is well known that blocking artifacts
are dominant over other artifacts such as blur. The mean
values of feature differences IlI4 and Ills are particularly
small; however, these features exhibit instead a very high
skewness and kurtosis as compared to the other features.
Clearly, this quantifies the progression of feature differ-
ences in the stimuli as shown in Figs. 7(a) and (b) 1lf4and
Ills being either negligibly small or distinctively devel-
oped.

4.3.3. Feature cross-correlations
Even though the feature metrics were selected to

account for a particular artifact, one may expect some
overlap in quantifying the different artifacts. To further
understand the performance of the feature metrics in
comparison to each other, Tables 4 and 5 show the
Pearson linear correlation coefficient between each of
the feature metrics for both SE 1 and SE2. In this context,
the cross-correlation measures the degree to which two
features are simultaneously affected by a certain type and
severity of an artifact. As expected, the correlation of a
feature with itself exhibits the maximum magnitude of 1.

It can be seen from the tables that the cross-
correlations between the features vary strongly in their
magnitudes. A particularly pronounced cross-correlation
can be observed between feature metrics IlIl (block
boundary differences) and Ilh (edge-based lA)for both SE

1 and SE2. This is thought to be due to both metrics being
based on measuring edges of an image. However, it should
be noted again that feature metric IlIl only considers the
8 x 8 block borders of the jPEG encoding, whereas feature
metric Ilh quantifies image activity based on edges in all
spatial locations and directions. Furthermore, feature
metrics Ilh (edge smoothness) and IlI4 (gradient-based
lA) exhibit pronounced cross-correlations in the test sets
of both experiments which may be a result of both metrics
being designed to quantify smoothness in images based
on gradient information. As for feature metric Ills (image
histogram statistics), it can be seen that this metric is only
negligibly correlated to any of the other feature metrics.
This is a highly desired result since the feature metrics
other than Ilfs should be widely unaffected by intensity
shifts.

5. Objectiveperceptual metric design

In this section we will in detail describe the RR
objective quality metric design. In this respect, the quality
ratings obtained in the subjective experiments are instru-
mental for the transition from subjective to objective
quality assessment.

5.1. Metric training and validation

As foundation of the metric design, the 80 images in
fl (SE 1) and f2 (SE 1) from the two experiments were
organized into a training set fT containing 60 images and
a validation set f v containing 20 images. For this purpose,
30 images were taken from fl and 30 images from f2 to
form fT while the remaining 10 images of each set
compose fv. Accordingly, a training set and a validation
set were established with the corresponding MOS, here
referred to as MOST and MOSv. The training sets, fT
and MOST, are then used for the actual metric design.
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Fig. 8. Framework for designing feature-based objective perceptual image quality metries.

The validation sets. Jv and MOSv. are used to evaluate the
metrics ability to generalize to unknown images.

5.2. Metric design framework

A block diagram of the framework used in this paper
to design RRobjective perceptual image quality metrics is
shown in Fig. 8. A brief overview of the design process is
given in the sequel with reference to this figure.

The first key operation in the transition from subjective
to objective perceptual image quality assessment is
executed within the process of feature weights acquisi-
tion. As a prerequisite of weights acquisition. the different
features of the transmitted and received image are
extreme value normalized to allow for a meaningful
weight association. As the RR design is focused on
detecting distortions between related features. the
weights acquisition is performed with respect to feature
differences ~h i= 1, ... ,5. Given the MOS values MOST
for the images in the training set JT and the related
feature differences ~fj for each image. correlation coeffi-
cients between subjective ratings and feature differences
are computed as weights w., i= 1, ... ,5 to reveal the
feature relevance to the subjectively perceived quality.
It is then straightforward to compute a feature-based
objective quality metric by applying a pooling function to
condense the information to a single value x. Here. two
metrics are proposed. namely LlNHIQM and the relevance
weighted Lp-norm.

The second essential component in moving from
subjective to objective quality assessment relates to the
curve fitting block as shown in Fig. 8. Its inputs are the
MOS values MOST for the images in the training set JT
and the values of the objective perceptual quality metric x
for each of these images. The relationship between
subjective quality given by MOST and objective quality
represented by x is then modeled by a suitable mapping
function. The parameters of potential mapping functions
can be obtained by using standard curve fitting techni-
ques. The selection of suitable mapping functions is
typically based on both goodness of fit measures and
visual inspection of the fitted curve. The obtained
mapping function fIx) can then be used to calculate
predicted MOS values. MOSx• for given values of the
quality metric value x.

Table 6
Perceptual relevance weights of feature differences L'.f; for the images in
the training set.

Metric Weight Value

L'.fl W, 0.819
L'.f2 W2 0.413
L'.h W3 0.751
L'.f4 W4 0.182
L'.fs Ws 0.385

5.3. Perceptual relevance of features

The Pearson linear correlation coefficient rp has been
chosen to reveal the extent by which the individual
feature differences contribute to the overall perception of
image quality. In this sense. it captures prediction
accuracy referring here to the ability of a feature
difference to predict the subjective ratings with minimum
average error. Given a set of [( data pairs (Ub Vk). this
ability can be quantified by

rp = L~=1 (Uk - ii)(Vk - 17) (16)

VL~=1(Uk - ii)2VL~=1 (Vk - 17)2

where Uk and Vk are the feature difference and the
subjective rating related to the kth image. respectively.
and ii and 17 are the means of the respective data sets.

This choice is motivated by the fact that the correlation
coefficient explicitly characterizes the association be-
tween two variables. which are given here by pairs of
ratings and difference feature metrics. The sign of the
correlation value may be neglected as it only represents
the direction (increase/decrease) in which one variable
changes with the change of the other variable. In view of
the above. the absolute values of the Pearson linear
correlation coefficients rp are computed as the perceptual
weights w, of the related features. A higher correlation
coefficient then corresponds to a feature that more
significantly contributes to the overall quality as perceived
by the viewer. while a lower correlation coefficient means
less perceptual significance. Also. if the correlation
coefficient approaches to the zero value. the relationship
between the perceptual quality and the examined feature
is not strongly developed.
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Table 6 shows the values of the Pearson linear
correlation coefficients, or feature weights, that were
obtained for each of the five feature differences 11/;. i =
1, ... , 5 for the training set when correlated to the
associated MOST values. Accordingly, block boundary
differences (l1fl) appear to be the most relevant feature
followed by edge-based image activity (l1fJ), edge
smoothness (l1f2)' image histogram statistics (Ms), and
gradient-based image activity (l1f4)' This relates to
blocking being the most annoying artifact followed by
ringing due to edge-based image activity, blur, intensity
masking, and ringing due to gradient-based image
activity. Similar findings have also been made by Farias
et at. [9) who observed that blocking is more annoying
than blur. The same group also found [10) that ringing is
the least annoying artifact. This agrees with our feature
metric I1f 4 which also received the smallest weight. On
the other hand, the feature metric I1f3 deployed in our
paper measures ringing as well but received a higher
weight. We believe that this outcome can be related to I1f 3
having a strong correlation with I1fl (see Tables 4 and 5),
thus not only accounting for ringing but also for blocking
artifacts.

It should be noted here that the relevance weights in
Table 6 were obtained for the particular case of jPEG
source encoding where blocking artifacts are predominant
over other artifacts such as blur. This may also contribute
to the higher correlation weights for the edge-based
features I1fl and I1f3 as compared to the gradient-based
features I1f2 and I1f4' Hence, the relevance weights may
not be purely related to the perceptual relevance but also
to the particular artifacts that are observed in the visual
content. As such, one may obtain different relevance
weights in case of other source encoders, such as
jPEG2000.

5.4. RR objective metric computation

In the following two sections, we will consider two
different pooling functions that are based on weighted
combinations of the feature metrics. Firstly, we introduce
NHIQM, which linearly combines extreme value normal-
ized image features to a single quality value. Secondly, a
perceptual relevance weighted version of the Lp-norm is
proposed, which calculates a weighted sum of image
feature differences between original and impaired image.
In both cases, the respective image features are extracted
with the metrics as summarized in Section 4.1, while the
actual weights used for feature combination have been
deduced as discussed in Section 5.3.

5.4.1. Normalized hybrid image quality metric
The proposed NHIQM is defined as a weighted sum of

the extreme value normalized features as

I

NHIQM= LwJ;
bl

(17)

where w; denotes the relevance weight of the associated
feature f;. Clearly, this RR metric is particularly beneficial
for objective perceptual quality assessment in wireless
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imaging, as the reduced-reference is represented by only
one single value for a given image. Accordingly, NHIQM
can be communicated from the transmitter to the receiver
whilst imposing very little stress on the bandwidth
resources.

Regarding applications in wireless imaging, NHIQM
can be calculated for the transmitted image It and
received image l., resulting in the corresponding values
NHIQMc and NHIQMr at the transmitter and receiver,
respectively. Provided that the NHIQMc value is commu-
nicated to the receiver, structural differences between the
images at both ends may simply be represented by the
absolute difference

.dNH1QM = INHIQMc - NHIQMrl (18)

5.4.2. Perceptual relevance weighted Lp-norm
The Lp-norm, also referred to as Minkowski metric, is a

distance measure commonly used to quantify similarity
between two signals or vectors. In image processing it has
been applied, for instance, with the percentage scaling
method [28) and the combining of impairments in digital
image coding [27).

In this paper, we incorporate the relevance weighting
for the extreme value normalized features into the
calculation of the Lp-norm. This modification of the
Lp-norm shall be defined as follows:

[

1 ] lip
Lp = L wflfu - fr,;lP

t=1

(19)

where fu and fr,; denote the ith feature value of the
transmitted and the received image, respectively,

The Minkowski exponent p may be determined
experimentally [28). Alternatively, the Minkowski expo-
nent p may be assigned a fixed value, In both cases, a
higher value of p increases the impact of the dominant
features on the overall metric. In the limit of p approach-
ing infinity, we obtain

Loo = max lfu - fr.;I
1=1,. ..,1

(20)

meaning that the largest absolute feature value difference
solely dominates the norm. We have found [7) that values
beyond p = 2 do not improve the quality prediction
performance of the modified Lp-norm given in (19). We
believe that this characteristic is because of the perceptual
relevance weights obtained for each feature inherently
accounting for the dominance of the particular features. In
the sequel, we therefore consider the modified Lp-norm
for Minkowski exponents of p = 1 and 2 only,

Although the Lp-norm belongs to the class of RR
metrics, it requires more transmission resources com-
pared to .dNHIQM, as all feature values need to be
communicated from the transmitter to the receiver.
On the other hand, the information about each of the
feature degradations may provide further insights into
the channel induced distortions. Hence, overhead may be
traded off at the expense of a reduction about structural
degradation information by neglecting feature metrics
that received low perceptual relevance weights.
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m

L PjXj Polynomial Exponential function
j=O DJ eb,x

m
MOSx~ L aj ebjX Exponential (22)

j=O
100 Logistic

D1 eb,x + Q2eb2X

1 + e-1\(x-l,)

5.5. Mapping functions

Due to non-linear quality processing in the HVS,
artifacts and quality do not follow a linear relationship.
To account for this phenomenon, a mapping function is
applied to the quality metrics. In general, an objective
quality metric x may be mapped using a non-linear
mapping functionf(x). The mapping function may then be
used to determine the predicted mean opinion score MOSx
for a given x as

MOSx =f(x) (21 )

Specifically, we will consider the following three classes
of mapping functions:

where the coefficients Po, ... ,Pm of the polynomial
function of degree m, the initial value a1"" am and
growth/decay b1 ... , bm of the exponential function of
order m, and the parameters 11,12 of the logistic function
are to be determined through curve fitting based on the
given experimental data from the training set.

These three classes of mapping functions have been
chosen as candidates for quality prediction due to the
following reasons:

• Polynomial functions provide sufficient flexibility to
support simple empirical prediction.

• Exponential functions are imposed to enable a good fit
to experimental data over the middle-to-upper range
of the quality impairment measure [20] and may be
less prone to overfitting compared to functions with
many parameters.

• Logistic functions facilitate the mapping of quality
impairment measures into a finite interval. They
produce scale compressions at the high and low
extremes of quality while progressing approximately
linear in the range between these extremes.

Standard curve fitting techniques have been used to
deduce the parameters of the mapping functions that
mathematically describe best the relationship between
subjective ratings and objective perceptual quality metric
with respect to a given goodness of fit measure.
A mapping function obtained in this way translates an
objective perceptual quality metric x into predicted MOS,
MOSx. The goodness of fit between MOS and predicted
MOS,can be specified by either of the following statistics:

• R2 captures the degree by which variations in the MOS
values are accounted for by the fit. It can assume any
value in the interval [0,1]with a good fit being close to 1.

• Root mean squared error (RMSE) is referred to as the
standard error of the fit with a good fit indicated by an
RMSEvalue close to O.

Table 7
Mapping functionsf(x) = MOSNH1QM• x = IlNHIQM and their goodness of fit.

Polynomial RMSE SSEParameters

P,X + Po PI = -97.8
Po = 77.45

94720.71 12.78

p,x' + P,X + Po p, = 149.5
PI = -199.4
Po = 87.88

0.79 11.07 6982

0.82 10.17 5792P3 = -493.9
p, = 672.2
P, = -338.3
Po = 94.87

a, = 88.79
b, = -2.484

10.76 67140.79

a, = 69.76
bl = -1.719
a, = 32.05
b, = -17.39

0.83 10.01 5612

al = 63.18
b, = -3.056
0,=-175
b, = 0.1434
03 = 198.2
b3 = 0.041

0.80 11.12 6678

Logistic function
100/[1 + e-1,(x-")1 I1 = -4.613

I, = 0.262
0.72 12.63 9263

• Sum of squares due to error (SSE) represents the total
deviation between predicted MOS and MOS from the
experiments. The smaller the SSE value, the better
the fit.

The Matlab Curve Fitting Toolbox was used to find the
parameters of the considered mapping functions.
The mapping functions have been derived for both
LlNHIQM and the relevance weighted Lp-norm, however,
only the results for t1NHIQM will be presented in the
following. The results are provided in Table 7 along with
the different goodness of fit measures. A visual examina-
tion of the fitted mapping functions is supported by
Figs. 9-11, which also show the 95% confidence interval
for each fit.

As far as the polynomial functions are concerned, it
could be concluded at first sight from looking only at the
goodness of fit statistics that the cubic polynomial would
perform similarly favorable in perceptual quality predic-
tion as the exponential functions. However, visual inspec-
tion of Fig. 9 suggests the opposite as the good fit applies
only for the given data range but tends to diverge outside
this range. For example, an increase of the objective
perceptual quality metric beyond the value of 0.8 would
actually predict "negative" MOS values (see Fig. 9(c)).
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Fig. 9. Polynomial mapping functions: (a) linear, (b) quadratic, (c) cubic.

As higher-degree polynomials may even result in more
severe overfitting, the class of polynomials has little to
offer for use in objective perceptual quality assessment,
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Fig. 10. Exponential mapping functions: (a) exponential, (b) double
exponential. (c) triple exponential.

In contrast to the polynomial functions, favorable
fitting has been obtained for all three considered
exponential mapping functions. not only in terms of
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goodness of fit measures but also confirmed by visual
inspection (see Fig. 10). However, it can be observed that
the triple exponential function performs similarly to the
exponential function but at the price of a larger computa-
tional complexity due to its more involved analytical
expression. As such, the triple exponential function may
not be considered further.

As for the logistic mapping function, the goodness of fit
measures indicate a rather poor fit to the data from
the subjective experiments. Especially, the compression at
the high end of the quality scale produces disagreement
with MOS(see Fig. 11).

In light of the above findings, both the exponential and
double exponential mapping are selected for further
consideration in the metric design.

6. Evaluation of image quality metrics

With the exponential and double exponential mapping
being identified as suitable models for objectively
predicting perceptual image quality, an evaluation of the
prediction performance of LJNH1QM and Lp-norm on the
training set (60 images in fT and related MOST) and its
generalization to the validation set (20 images in fv and
related MOSv) is given in this section.

6.1. Other objective quality merncs for comparison

We have selected contemporary quality metrics that
have been proposed in recent years to allow for a
performance comparison with the proposed feature-based
LJNHIQM and the Lp-norm. Specifically, the reduced-refer-
ence image quality assessment (RRIQA)technique pro-
posed in [40] is chosen as a prominent member of the
class of RR metrics. In addition, the structural similarity
(SSIM) index [39), the visual information fidelity (VIF)
criterion [31), the visual signal-to-noise ratio (VSNR)[4].
and the peak signal-to-noise ratio (PSNR)[25] are chosen
as the FRmetrics. It is noted that FRmetrics would not be
suitable for the considered wireless imaging scenario but
rather serve to benchmark prediction performance, which
can be expected to be high due to the utilization of the
reference image.

• RRIQA: This metric [40) is based on a natural image
statistic model in the wavelet domain. The image
distortion measure is obtained from the estimation of
the Kullback-Leibler distance between the marginal
probability densities of wavelet coefficients in the
subbands of the reference and distorted images as
follows:

0= log, (1 + ~ot li(pkllqk)l)

where the constant, po is used as a scaler of the
distortion measure, d (Pkllqk) denotes the estimation
of the Kullback-Leibler distance between the prob-
ability density functions pk and qk of the kth
subband in the transmitted and the received
image, and K is the number of subbands. The overhead

(23)

needed to represent the reduced-reference is given as
162 bits [40].

• SSIM: The SSIMindex [39] is based on the assumption
that the HVS is highly adapted to the extraction of
structural information from the visual scene. As such,
SSIM predicts structural degradations between two
images based on simple intensity and contrast mea-
sures. The final SSIMindex is given by

SSIMx = (2J.lxJ.ly + Cl )(2()xy + C2)
(,Y) (J.l~ + J.l~ + Cl )«)~+ ()~+ C2) (24)

where J.lx' J.ly and ()x, ()y denote the mean intensity and
contrast of image signals x and y, respectively. The
constants Cl and C2 are used to avoid instabilities in
the structural similarity comparison that may occur for
certain mean intensity and contrast combinations
(J.l~ + J.l; = 0, ()~ + (); = 0).

• VIF: The VIF criterion [31] approaches the image
quality assessment problem from an information
theoretical point of view. In particular, the degradation
of visual quality due to a distortion process is
measured by quantifying the information available in
a reference image and the amount of this reference
information that can be still extracted from the test
image. As such, the VIFcriterion measures the loss of
information between two images. For this purpose,
natural scene statistics and, in particular, Gaussian
scale mixtures (GSM) in the wavelet domain are
used to model the images. The proposed VIFmetric is
given by

(25)

-->
where C deno~s the SSM, N denotes the number of
GSMused, and E and F denote the visual output of an
HVS model, respectively, for the reference and test
image.

• VSNR: The VSNR [4] metric deploys a two-stage
approach based on near-threshold and suprathreshold
properties of the HVS to quantify image fidelity. The
first stage determines whether distortions are visible
in an image. For this purpose, contrast thresholds for
distortion detection are determined using wavelet-
based models of visual masking. If the distortions are
below the threshold, the quality of the image is
assumed to be perfect and the algorithm is terminated.
If the distortions are visible, a second stage imple-
ments perceived contrast and global precedence
properties of the HVS to determine the impact of
the distortions on perceived quality. The final VSNR
metric is then given as

(
CCI) )VSNR= 2010glO d

!Xdpc + (1 - !X~

where CCI) denotes the root-mean-squared contrast of
the original image I, dpc and dgp are, respectively,
measures of perceived contrast and global precedence

(26)
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disruption, and IX is a weight regulating the relative
contributions of dpc and dgp.

• PSNR: Image fidelity is an indication about the
similarity between the reference and distorted images
and measures pixel-by-pixel closeness between those
pairs. The PSNR [25] is the most commonly used
fidelity metric. It measures the fidelity difference of
two image signals IR(x,y) and Io(x,y) on a pixel-by-
pixel basis as

112
PSNR = 1010gMSE (27)

where 11 is the maximum pixel value, here 255. The
mean square error is given as

1 x Y
MSE = xy L L [IR(x,Y) - Io(x,y)f (28)

x=l y=l

where X and Y denote horizontal and vertical image
dimensions, respectively. Despite being an FR metric,
PSNR usually does not correlate well with the visual
quality as perceived by a human observer [37].

6.2. Computational complexity and amount of reference
information

In the following, we will discuss the computational
complexity of the considered metrics and the amount of
reference information that is needed in order to assess the
quality of a test image. The details are summarized in
Table 8.

The computational complexity is measured in terms of
the time that each of the metrics needs to assess the
quality of a single image in our sets .J"1 and .J"2. Here, we
have computed each metric over all 80 images and then
determined the average time. The metrics were run on a
laptop computer containing an Intel T2600 Dual Core
processor with 2.16 GHz and 4 GB of RAM. In order to
allow for a fair comparison, the publicly available Matlab
implementation of each metric was used even though
there may be other implementations available for some of
the metrics. It can be seen from Table 8 that the
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Table 8
Computational complexity of the metrics and amount of reference
information needed.

Metric Computation time/image (s) Reference information

Type Name

RR ANHIQM 1.55 17 bits
Lp-norm 1.55 85 bits
RRIQA 7.12 162 bits

FR SSIM 0.37 Full image
VIF 0.92 Full image
VSNR 0.33 Full image
PSNR 0.05 Full image

computational complexity of all FR metrics is lower as
compared to the RR metrics. Amongst the FR metrics,
PSNR outperforms by far the other considered metrics in
terms of computational complexity. Regarding the RR
metrics, it is observed that both LlNHIQM and Lp-norm are
significantly less complex than RRIQA.

In the context of wireless imaging, the amount of
reference information needed for quality assessment
determines the overhead of data that needs to be
transmitted over the channel along with the actual image.
From Table 8 one can see that the reference information is
significantly lower for both LlNHIQM and Lp-norm as
compared to RRIQA. The particularly small reference
information for LlNHIQM results from the fact that only a
single value NHIQMr needs to be transmitted. On the other
hand, with the Lp-norm five features need to be trans-
mitted resulting in a five times higher overhead. However,
as discussed in Section 5.4.2, the number of features used
may be traded off with the transmission overhead by
neglecting features of low perceptual relevance. As for the
FR metrics, the reference image is needed for the quality
assessment and as such, the size of the image determines
the amount of reference information. Independent of the
image size, however, the amount of reference information
would be magnitudes higher as compared to the RR
metrics.

6.3. Prediction performance measures

The quality prediction performance of the considered
objective metrics will be quantified in terms of accuracy,
monotonicity, and consistency as recommended by the
Video Quality Experts Group (VQEG) [34].

The prediction accuracy of each objective quality
metric will be quantified using the Pearson linear
correlation coefficient as defined in (16). The prediction
monotonicity will be measured by the non-parametric
Spearman rank order coefficient

(29)
rs = J K - 2 J K - 2

Lk=l (Xk - X) Lk=l (Yk - y)

where Xk and Yk denote the ranks of the predicted scores
and the subjective scores, respectively, and X and y are the
midranks of the respective data sets. This measure is used
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6.4. Linear regressionto quantify if changes (increase or decrease) in one
variable is followed by changes (increase or decrease) in
another variable, irrespective of the magnitude of the
changes.

The prediction consistency is identified by the outlier
ratio. A data pair (Ub Vk) may be declared as an
outlier when the absolute difference between Uk and v»
is greater than a certain threshold. As suggested in [34].
the threshold shall be chosen at least twice as much as the
MOS standard deviation (lv, such that

(30)

Then, the outlier ratio can be calculated as

ro = Ro/R (31 )

where Ro denotes the total number of outliers and R is the
size of the data set.
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Fig.12. MOS versus predicted MOS. MOSNH1QIA: (a) exponential mapping.
(b) double exponential mapping.

Prior to the evaluation of prediction performance for
the considered objective image quality metrics, the
favorable mapping functions will be used to relate
the predicted MOS values to the actual MOS values from
the subjective experiments. The predicted scores, MOST

and MOSv, respectively, are calculated for each image in
the training set ~T and the validation set ~v.

As an example, Fig. 12 shows the result for .1NHIQM

using the exponential and double exponential mapping
functions. Here, the MOS values from the subjective
experiments are plotted versus the predicted MOS values,
MOSNHIQM, for the images in the training set ~T' In
addition, a linear function has been fitted to the data set
and is presented along with the 95% confidence interval.
It should be mentioned that the fitting curves for both
exponential and double exponential mapping produce the
desired linear relationship between predicted MOS and
MOS. Specifically, the range between 0 and 100 is nicely
captured for predicted MOS and MOS. The prediction
performance measures will be calculated for these post-
mapped relationships in addition to the actual metric
values.

6.5. Analysis of mapping parameters

The evaluation of the prediction performance of
.1NHIQM, LI-norm, and Lrnorm will be presented here
and compared to RRIQA, SSIM, VIF, VSNR, and PSNR. For
this purpose, the parameters of the exponential and
double exponential mapping functions have been derived
for all of these metrics, following the methodology as
outlined in Section 5.5.

Table 9 presents the parameters of the prediction
functions deduced from curve fitting of the considered
quality metrics to the MOS values in the training set of
images using the exponential and double exponential
mapping. It can be seen from the numerical values of the
parameters that distinct exponential mapping functions
are produced in terms of growth and decay. The negative

Table 9
Parameters of prediction functions for objective quality metrics using
exponential and double exponential mapping.

Metric Exponential Double exponential

Type Name a, b, a, b, a2 b2

RR LlNHIQIA 88.79 -2.484 69.76 -1.720 32.04 -17.39
L,- 87.63 -1.840 68.15 -1.251 34.31 -13.46
norm
Lr 90.20 -2.820 69.83 -1.950 32.28 -16.24
norm
RRIQA 102.1 -0.160 101.3 -0.157 -3.486 x 10- '4 3.701

FR SSIM 13.91 1.715 31.34 0.446 3.964 x 10-7 18.58

VIF 4.291 2.886 14.06 1.366 7.721 x 10-'4 33.98
VSNR 25.662 0.033 21.964 0.041 -1.388 x 10-6 0.387

PSNR 18.33 0.036 22.68 0.0290 0.029



U. Engelke et a/. / Signal Processing: Image Communication 24 (2009) 525-547 545

decay parameter for the feature-based objective percep-
tual quality metrics LlNH1QM. LI-norm. Lrnorm. as well as
RRIQA relate to the fact that these RR metrics represent
image degradation. Thus. larger values of these metrics
correspond to lower perceptual quality. In contrast. the FR
metrics SSIM. VIF. VSNR. and PSNR measure image
similarity of some sort. which is represented by the
positive decay parameter in their exponential mapping
functions. In these cases. a larger metric value corre-
sponds to higher perceptual quality. As for the double
exponential mapping functions. these are pronounced
only for the feature-based objective perceptual quality
metrics of LlNHIQM and the LI- and L2-norm. Specifically.
the growth and decay parameters for both involved
exponential functions are substantially different to zero.
This is not the case for the other considered quality
metrics. RRIQA SSIM. VIF. and VSNR. with the double
exponential mapping functions degenerating to an ex-
ponential function for small metric values. Due to the
initial value a2 being close to zero. the second exponential
function can contribute to the prediction only for
extremely large metric values although this may still be
insignificant to the first exponential function involved.
In the case of PSNR. the initial value of the second
exponential function is actually obtained from the curve
fitting as being zero. Accordingly. the double exponential
mapping function in fact degenerates to an exponential
mapping function.

6.6. Evaluation of quality prediction perjormcnce

Given the parameters of the prediction functions for
the examined quality metrics. the prediction performance
of these metrics is presented in Table 10. In particular. the
prediction accuracy is quantified by the Pearson linear
correlation coefficient. It has been calculated on the basis
of the 60 images in the training set ..Y'rand the 20 images
of the validation set ..Y'v. Moreover. prediction accuracy
has been calculated for the relationship between MOS and
the pure metric as well as for the relationship between
MOS and predicted MOS using exponential mapping and
double exponential mapping.

As can be seen from the numerical results in Table 10
for the metric training. the prediction accuracy of the
feature-based metrics. LlNHIQM. LI-norm. and L2-norm.
outperform the other considered metrics. RRIQA. SSIM.
VIF. VSNR. and PSNR. This applies for the training with
respect to all three cases. i.e. the pure metric prior to
mapping and after mapping with exponential and
double exponential functions. The comparison between
the feature-based quality metrics indicate the comparable
performance of LlNHIQM and the Lp-norms.

Similar observations about accuracy can be made for
metric validation. In terms of metric generalization to
these unknown images from the validation set. the
feature-based quality metrics significantly outperform
the other considered metrics in accuracy. While LlNHIQM

and the Lp-norms provide an accuracy over 80% and in
some cases close to 90%. all other considered metrics fall
below the 80% threshold of generalization accuracy. It is
also observed that the largest accuracy being rp = 0.91 for
LlNHIQM on the training set using double exponential
mapping does not generalize as well as for the pure
metric or exponential mapping. This indicates that fitting
LlNHIQM to a double exponential mapping may already
produce some degree of overfitting. Similar trends to
overfitting using double exponential mapping can be
observed with the L2-norm and VIF. In view of this and
the degeneration of double exponential mapping
to exponential mapping with some metrics. the
exponential function may in fact constitute the most
preferred mapping in the considered context of wireless
imaging.

Let us now compare the prediction monotonicity of the
proposed image quality metrics with the other state of the
art image quality metrics. As all relationships follow
strictly decreasing or increasing functions. differentiation
between metric. exponential. and double exponential
mapping is not required as ranks are kept the same for
all three cases. The results shown in Table 10 reveal that
the feature-based LlNHIQM approach and the Lp-norms
perform favorably over the remaining four metrics with
prediction monotonicity well above 80% for both metric
training and validation. From the other metrics. only VIF
shows a satisfactory prediction monotonicity of rs = 0.813

Table 10
Prediction performance of objective quality metrics. predicted MOS using exponential mapping. and predicted MOS using double exponential mapping.

Metric Accuracy Monotonicity Consistency

Type Name Metric Exponential 2-Exponential Metric. Mapping Exponential 2-exponential

rp.T Tp,v Tp.T rp,v Tp.T rp.v rS.T rs.v TO,T ro,v TO.T To,v

RR ,1NHIQM 0.843 0.840 0.892 0.888 0.910 0.860 0.867 0.892 0.017 0 0 0.050
LI-norm 0.833 0.841 0.873 0.897 0.895 0.893 0.854 0.901 0.017 0 0.017 0
L2-norm 0.845 0.846 0.888 0.884 0.903 0.878 0.875 0.890 0.017 0 0 0
RRIQA 0.821 0.772 0.829 0.749 0.831 0.752 0.786 0.758 0.050 0.050 0.050 0.050

FR SSIM 0.582 0.434 0.632 0.511 0.701 0.605 0.558 0.347 0.117 0.050 0.100 0.050
VIF 0.713 0.737 0.789 0.788 0.877 0.795 0.813 0.729 0.083 0 0.033 0
VSNR 0.766 0.696 0.758 0.686 0.783 0.686 0.686 0.510 0.083 0 0.050 0.050
PSNR 0.742 0.712 0.738 0.709 0.741 0.711 0.638 0.615 D.100 0 0.150 0
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Acknowledgmentsfor the trammg but does not generalize well to the
unknown images.

Finally, the prediction consistency for the training of
both feature-based metrics, LJNH1QM and Lp-norms, is
superior compared to the other four metrics. It is also
observed that the prediction consistency for the validation
of LJNH1QM is better when using the exponential mapping
compared to the double exponential mapping.

7. Conclusions

In this paper, the design of RR objective perceptual
image quality metrics for wireless imaging has been
presented. Instead of focusing only on artifacts due to
source encoding, the design follows an end-to-end quality
approach that accounts for the complex nature of artifacts
that may be induced by a wireless communication system.
As such, the proposed image quality metrics constitute
alternatives to traditional link layer metrics and
may readily be utilized for in-service quality monitoring
and resource management purposes. Specifically,
both LJNH1QM and the perceptual relevance weighted
Lp-norm are designed with respect to low computational
complexity and low overhead, to measure quality
degradations in a wireless communication system, and
to account for different structural artifacts that have
been observed in our distortion model of a wireless link.
Here, structural artifacts are detected by related feature
metrics.

The general framework for the design of RRobjective
perceptual image quality metrics is outlined. It comprises
feature extraction, feature normalization, calculation of
difference features, relevance weight acquisition, and
feature pooling. In addition, curve fitting techniques are
used to find the parameters of suitable mapping functions
that can translate objective quality metrics into predicted
MOS.The transition from subjective to objective percep-
tual quality is executed in the process of relevance weight
acquisition and the derivation of the mapping functions.
In both these parts ofthe design framework, the results of
subjective experiments are engaged to train our feature-
based quality metrics. Moreover, a detailed description
and statistical analysis of the subjective data gathered in
these experiments and related objective feature data is
provided.

The evaluation of the quality prediction performance
reveals that LJNH1QM and the perceptual relevance weighted
Lp-norm both correlate similarly well to human percep-
tion on images. This holds not only for the training of the
metrics but also for the generalization to unknown
images. Furthermore, the numerical results show that
both feature-based RR metrics outperform even the
considered state of the art FR metrics in prediction
performance. As the reduced-reference overhead asso-
ciated with the calculation of LJNH1QM is condensed to only
a single number, this approach may be the more favorable
choice for use in wireless imaging applications compared
to the perceptual relevance weighted Lp-norm, which
requires all involved features to be communicated from
the transmitter to the receiver.

The authors wish to thank staff and students of the
Western Australian Telecommunications Research Insti-
tute, Perth, Australia and the School of Engineering at the
Blekinge Institute of Technology, Ronneby, Sweden for
participating in the subjective experiments. We would
also like to thank the anonymous reviewers for their
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improve the quality of this article.
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