
WOSOC 2008 - Workshop on Open Source and Open Content, 1-3 December 2008, Bali - Indonesia

68

Natural Language Communication With Virtual Actor

MUSLIM Aries, KARYATI Cut Maisyarah (1)

Gunadarma University

Jakarta-Indonesia amuslim@staff.gunadarma.ac.id,

csyarah@staff.gunadarma.ac.id

KURNIAWAN Robby (2)

Gunadarma University

Jakarta-Indonesia

Robby_kurniawan@student.gunadarma.ac.id

Abstract

The development of realistic virtual actors in many

applications, from user interface to computer entertainment,

creates expectations on the intelligence of these actors

including their ability to understand natural language. Based

on our research in that area over the past years, we highlight

specific technical aspects in the development of

language-enabled actors. The embodied nature of virtual

agents lead to specific syntactic constructs that are not unlike

sublanguages: these can be used to specify the parsing

component of a natural language interface. However, the

most specific aspects of interacting with virtual actors

consist in mapping the semantic content of users’ input to the

mechanisms that support agents’ behaviours. We suggest

that a generalisation of speech acts can provide principles for

this integration. Both aspects are illustrated by results

obtained during the development of research prototypes..

1. INTRODUCTION

The increased visual realism of virtual agents naturally creates

expectations on their intelligence and, as many of these are

either interface agents or virtual actors, their ability to

understand human language. In this paper, we focus on some

key technical problems aspects in the design of

language-enabled virtual agents.

Virtual agents are embodied in a physical (although

virtual) environment: apart from the properties of any specific

task they have to carry, this embodiment is at the heart of

understanding the requirements for NLP. The embodiment of

virtual agents requires that their understanding of language is

entirely translated into actions in their environment. Although

this problem has been described as early as 1970s in the

SHRDLU system, no systematic account has been attempted

until the mid-90s.

 The most generic representation of an agent

behaviors is a plan. This is why the semantics of actions can

be described as relating the utterance content to plans to be

executed by the agent. Previous work from Webber et al. has

classified various forms of language statements in terms of

the complexity of actions that should result from them. This

classification distinguishes, among others, doctrine

statements, purpose clauses and procedural instructions.

Doctrine statements express “general policy Natural

Language Communication with Virtual Actors 149

regarding behavior in some range of situations”, such as

avoid confrontation as much as possible. These very

high-level statements can only be understood by an agent

possessing sophisticated reasoning mechanisms.

Purpose clauses are instructions that convey the

goal of an action. One example in a computer games corpus

is shoot a barrel to get rid of most of the pink demons. It is

not so much the explanatory nature of this statement that

matters as the implicit instructions that it carries. In other

terms, it means that the character should wait for the pink

demons to come in close proximity to the barrels before

opening fire. Both doctrine statements and purpose clauses

require complex inference mechanisms that can only be

implemented within autonomous agents with intentions.

Procedures correspond to actions to be taken

immediately or in the near future, subject to specific

pre-conditions being met. These can however relate to

complex action sequences, including some variability due to

specific configurations or changes in the virtual world. In this

paper, we investigate two main aspects of interacting in

natural language with embodied virtual actors. We do so

through different research experiments we have been

conducting over the past few years, whose evolution reflects

the progress in the integration between natural language

processing and the agents’ behavioral mechanisms. The first

one deals with the basic requirements of linguistic processing

and explores how traditional parsing problems should be

approached in this context. The latter attempts to relate the

semantic content of natural language input to the

mechanisms that support agent behaviors.

2. THE THEORY

There are still few real-world applications in which

a user would interact with a virtual actor. In order to study the

corresponding technical requirements in a realistic

environment,we explored the possibility for a human player

to control the characters in a computer game using natural

language instructions. Computer games provide large scale

environments and limited but well-defined tasks; we selected

a classical game at the time of our experiments, DOOM™,

for which many on-line resources were available, and

designed a natural language interface for part of the game.

The first step was logically to carry a corpus study in order to

establish a list of the most relevant linguistic phenomena.

The DOOM™ “spoiler” corpus we used was an on-line

corpus available from http://www.gamers.org. It described in

natural language the traversal of DOOM™ levels. Typical

spoilers alternate the description of landmarks, item

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Gunadarma University Repository

https://core.ac.uk/display/143963332?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

WOSOC 2008 - Workshop on Open Source and Open Content, 1-3 December 2008, Bali - Indonesia

69

locations, and describe sequences of actions to be taken by the

player. Here is a typical excerpt from a DOOM™ spoiler:

Enter the door with the skull on it and push the switch. Walk

out of the room and turn

right. There are now stairs going into the wall, which is fake.

Enter the teleporter,

you’re now in a circular room; find the secret door (the wall

with the face on it) to go to the next circular room and enter

the teleporter.

Fig. 1. Natural Language Instructions to a DOOM™ game Emulator

Most importantly, they correspond to some kind of

briefing that would be given to a player before his gaming

session. Such a briefing incorporates advice along a

description of a temporal sequence of actions to be taken,

including the consequences of previous actions (e.g. “Enter

the teleporter, you’re now in a circular room”). These actions

are in limited number and essentially include various

displacements, collecting objects as well as combat moves.

Yet, there is a great deal of variability in issuing instructions

to carry out these elementary actions, which justifies the use

of linguistic processing.

This corpus shows many regularities suggesting

sociolectal aspects, which could be characterized as a

sublanguage [4]. This would bear significant implications in

terms of natural language processing. On the other hand, a

common method to design natural language interaction is by

means of habitable languages [5]. These are formally defined

controlled languages, which are designed to facilitate

language processing in a given application by making parsing

tractable. They approach natural communication by defining a

sufficient number of formally specified variants of standard

expressions that can be encountered in the task domain. In

habitable languages, the practical approach consists in

identifying the system actions targeted, investigating the most

frequent surface variants for the associated commands, and

generating a set of variation rules.

Communication with virtual actors finds itself in-between

these two paradigms: on one hand, depending on the nature

of the application (e.g. computer games), it is possible to

recognise the emergence of actual sublanguages. On the

other hand, limitations in speech recognition and parsing

might make recourse to habitable language a necessity.

3. RESEARCH METHOD

We have based our parser on a simplified variant of

Tree-Adjoining Grammar (TAG) [9], Tree-Furcating

Grammar (TFG) [10]. TFG have been shown to be less

powerful than TAG, as some constructs cannot be

represented in TFG [11]. This, however, does not affect our

parser whose coverage is meant to be limited to the habitable

language we have defined.

Fig. 2. Parsing in the TFG Formalism

3. 1 The Parsing Algorithm

Parsing consists in combining all trees in a forest until a

single tree of root S can be produced or no further operations

are possible. In the TFG formalism, trees are combined

through two elementary operations: substitution and

furcation. Substitution replaces a pre-defined substituable

node, acting as a placeholder (e.g. the N0 node in Figure 2.)

with a compatible tree of similar category (e.g. a N tree).

From a semantic perspective, the substituable nodes are often

placeholders for action parameters. For instance in the tree

Run-for-N0, N0 stands for the object to be collected.

As an example of tree fusion operations, in Figure 2,

the nominal phrase the stimpack, of type N, will be

substituted in the initial tree at leaf N0. Furcation adjoins an

auxiliary tree to its target tree, thus adding an extra branch to

it. It is a simplified variant of the adjunction operation that

was initially described by De Smedt and Kempen [12]. While

substitution can only take place at determinate node, nodes

for furcation are determined dynamically.

For instance, furcation of an auxiliary tree of type N

takes place on the rightmost N leave of the target tree [10].

One of the advantages of furcation is that it results in trees of

moderate depth, which speeds up tree traversal at further

stages of parsing for successive furcations. As we have seen,

furcation generally involves modifiers such as adjectives (of

N* root), which can add their semantic information to the

tree they modify during the furcation process. The “flatter”

trees obtained with furcation evidence the prevalence of

dependency over constituency structures.

WOSOC 2008 - Workshop on Open Source and Open Content, 1-3 December 2008, Bali - Indonesia

70

Adjacent trees in a forest are thus combined

left-to-right, until the forest is reduced to a single tree of root S,

or no further operations are possible. Part of the parsing

algorithm is actually compiled into a compatibility table that

states for each pair of adjacent trees the kind of fusion

operation that can be applied to them. We have previously

described the frequency and importance of prepositional

phrases for natural language instructions to virtual actors, and

the associated syntactic ambiguities they generate. Spatial

prepositions attachment (e.g. N-at-N0, see Figure 2.) is based

on a nearest-neighbour heuristic that states that the attachment

should relate to the closest compatible noun phrase.

Fig. 3. Syntactic Disambiguisation with Selectional

Restrictions

3.2 Integrating Syntax and Semantics

After we discussed about how natural language processing

flow works, how do we implemented the parsing result into

virtual shape?. That kind of question can be answered by

using syntax – semantics integration process.

Fig. 4. Syntax-Semantics Integration

Semantic processing is carried out in parallel with

syntactic parsing. Two elementary semantic operations

support the construction of semantic structures. The first one

is the establishment of semantic relations: it mainly

corresponds to substitution in verb phrases or furcation of *V

groups such as *V-with-N0, which associate actions with

their instruments. The other one is the aggregation of

semantic content through furcation operations, e.g. for the

processing of nominal descriptions.

While the semantic relations in the semantic

representation provide the argument structure for the

message, there is a need to identify system actions and

objects from the set of semantic features in the initial

semantic representation. System actions are usually

straightforward to identify on the basis of their feature

descriptions, which appear on top of the semantic

representation. Most of the interpretation is hence dedicated

to the identification of discourse objects. The main

specificity of reference resolution in this kind of agents’

environment is that it cannot be entirely performed on a sole

linguistic basis, as it contains indexical elements or elements

referring to the agent’s situation in its environment.

Objects can be identified by aggregating the

semantic features of their nominal description, such as the

door with a skull on it or more simply the large red door. As

we have seen, these features are initially part of the semantic

structure for each lexicalized tree, which represents the

semantic content of the main anchor (see Figure 4). The

integrated parsing process produces more complex feature

structures, as features are aggregated from nominal

descriptions, adverbial phrases, etc. Upon reference

resolution, the NLP module can thus pass directly relevant

object identifiers to the animation module. This is mainly the

case for landmark objects whose designation is unambiguous

(doors of a given colour, with specific patterns, specific walls

or stairs, etc.). For instance, when processing the command

go to the door with a skull on it, the reference resolution

process can unambiguously return a single object identifier.

It is thus passed to the animation system through its identifier.

Reference resolution is not always possible on the basis of

linguistic information only. Some designations are highly

contextual, depending for instance on the relative position of

the character in the virtual world. This is for instance the case

for spatial expressions such as the barrel near the door on the

right, which refer to the relative orientation of the character

and can only be computed by accessing its actual position.

As a consequence, reference resolution is a dynamic process,

which is shared by the natural language interpreter and the

animation system.
The overall goal of parsing is to produce a semantic structure
rather than a syntactic one. In most of the cases, this semantic
structure describes an action to be carried out by the agent, i.e.
a case structure with the action arguments and parameters.
These can be used to trigger corresponding scripts to be
executed by the virtual actors.

4. From Semantics to Agents’ Behaviours

The interactive story is inspired from a popular

sitcom and consists for the main character “Ross” to invite

the main female character (“Rachel”) on a date. Each

character’s role is based on a plan, which is implemented

using Hierarchical Task Networks (HTN) Planning. HTN

planning is a knowledge-based formalism supporting

forward-search refinement planning and is well-adapted to

applications that have a strong knowledge content. This

means that they accommodate the baseline authoring of the

story rather than generate agents’ behaviours from first

principles. The baseline plans for the characters contain the

sequence of tasks that constitute their role, though the actual

WOSOC 2008 - Workshop on Open Source and Open Content, 1-3 December 2008, Bali - Indonesia

71

choice of tasks as well as their outcome is determined

dynamically and underlies story variability. For instance,

Ross’ tasks to invite Rachel out consist in gaining information

about her, gaining her friendship, finding a way to talk to her

in private, etc. The system is implemented as a real-time 3D

animation using a computer.

The storytelling dimension of speech influence

mostly consists in either contrasting or favouring the

perceived actions of the virtual characters. In that sense the

spoken input should take the form of realistic advice rather

than commands and be embedded within the story. For

instance, rather than saying “go talk to Phoebe” the user will

say something like “Phoebe has the information you need”.

These more natural forms of expression, based on implicit

background information, characterise the influence paradigm

of speech interaction as another implementation of speech

acts. The speech act nature of spoken advice can be illustrated

by considering the meaning of the same sentence in different

contexts. An utterance such “Phoebe is in Rachel’s room” will

convey different information depending on the context in

which it is uttered. If Ross is trying to reach Phoebe in order to

obtain information about Rachel, it will give him Phoebe’s

location (information provision). However, if Ross is trying to

acquire the same information by stealing Rachel’s diary in her

room, it can also signal to Ross that he won’t be able to do so,

because Phoebe will object to that (warning).

Fig. 6. Providing Virtual Actors with Information

Natural language interaction with autonomous virtual actors
is a complex process in which the semantic content of user
utterances has to match an agent’s representations for actions.
The linguistic processing benefits from the description of
appropriate sublanguages, in which spatial expressions play a
significant role. This makes possible to design efficient
parsers integrating syntactic and semantic processing, as the
ultimate goal of parsing is to produce a semantic structure for
the user instruction. The original work of Webber et al. has
provided a first classification of natural language interaction
with an agent’s plan. We have extended this work by actually
relating the semantic content of linguistic input to the
implementation of agents’ plans. In doing so, we have
however considered plans as control structures rather than as
resources as initially suggested. The latter approach, while
useful as a descriptive tool for analysis, is still open to too
many interpretations to support a proper implementation. We
have introduced a speech acts approach to the interpretation of
linguistic input, which also opens several research directions
for the mapping of semantic content to descriptions of the
plans’ operators.

5. Implementation
 DiNAbot (Non-human Digital Assistant) is a

program chatterbot text-based database, which means that

the program code that is divided into several classes require a

script as a text-based vocabulary and grammar rules for the

chatterbot. DiNAbot is a chatterbot derived from the

previous chatterbot Eliza (Charles Hayden), which also

created using the Java programming language, although

created with Java are not closing the possibility of making

chatterbot using other programming languages such as C,

Phyton, VB etc.. . As well as other chatterbot-chatterbot, the

concept of combining method is DiNAbot parsing logic with

AI implemented into the conversation, so DiNAbot able to

understand the results of input from the human form of

grammar and responded with a grammar that is also

understandable that people stranded human conversation

properly with the man. The fundamental difference between.

 DiNAbot with chatterbot-chatterbot other is located

on the type of language understandable. DiNAbot at stake to

learn and to understand the conversation in Indonesia, also a

process of response and word processing into a whole

sentence. Another difference between the chatterbot

common with DiNAbot is in the function, DiNAbot system is

designed to become experts who answer questions for a

website (in this essay, DiNAbot will be implemented to the

site in the SME credit) so that the vocabulary of the DiNAbot

will be limited cloning answers questions from the public

about the site. To interface, DiNAbot use the applet tag as the

frame.

 Eliza, Eliza class (for reasons of clarity of the

original program, the authors deliberately create classes with

the original name of the program) contains the rules and

parameters including Rhaglennig info. In this class also

declared Public Void blocks that determine the function

execut Rhaglennig and the beginning of the program. In this

class also declared url reserve where the script is positioned

to buffer when the script called in the main failed to tag

Rhaglennig (after the pilot appeared to prioritize the Java

script that is running the script, which is located on a server

with the same class and Rhaglennig). Block, which runs the

function and Rhaglennig url is as follows:

static String scriptPathname = "c:\\cch\\eliza\\script";

 static String testPathname = "c:\\cch\\eliza\\test";

 static String scriptURL =

"http://www.monmouth.com/~chayden/eliza/script";

 static String testURL =

"http://www.monmouth.com/~chayden/eliza/test";

 //static String testURL =

"http://www-gbcs.mt.att.com/~cch/eliza/test";

 boolean useWindow = true;

 boolean local = false;

public void start() {

WOSOC 2008 - Workshop on Open Source and Open Content, 1-3 December 2008, Bali - Indonesia

72

 String script = getScriptParam();

 String test = getTestParam();

 if (local) {

 script = scriptPathname;

 test = testPathname;

 }

 showStatus("Loading script from " + script);

 eliza.readScript(local, script);

 showStatus("Ready");

 if (useWindow)

 eliza.runProgram(test, this);

 else

 eliza.runProgram(test, null);

 }

 public boolean handleEvent(Event e) {

 return eliza.handleEvent(e);

 }

 String getScriptParam() {

 String script = getParameter("script");

 if (script == null) script = scriptURL;

 return script;

 }

 String getTestParam() {

 String test = getParameter("test");

 if (test == null) test = testURL;

 return test;

 }

 public String[][] getParameterInfo() {

 String[][] info = {

 {"script", "URL", "URL of script file"},

 {"test", "URL", "URL of test file"}

 };

 return info;

 }

 public String getAppletInfo() {

 return "Eliza v0.1 written by Aries,Cut,Robby";

 }

6. Acknowledgements.

Research in natural language instructions and the

development of the natural language interface to DOOM™

were carried out in collaboration with Ian Palmer (University

of Bradford). The (ongoing) research in Interactive

Storytelling is joint work with Fred Charles and Steven J.

Mead at the University of Teesside.

7. References

[1] Cavazza, M. and Palmer, I.J., 1999. Natural Language

Control of Interactive 3D Animation and Computer Games.

Virtual Reality, 3, pp. 1–18.

[2] Cavazza, M., Charles, F. and Mead, S.J., 2001. AI-based

Animation for Interactive Storytelling. Proceedings of IEEE

Computer Animation, Seoul, Korea.

[3] Webber, B., Badler, N., Di Eugenio, B., Geib, C., Levison,

L., and Moore, M., 1994. Instructions, Intentions and

Expectations. Artificial Intelligence Journal, 73, pp.

253–269..

[4] Sager, N., 1986. Sublanguage: Linguistic Phenomenon,

Computational Tool. In: R. Grishman and R. Kittredge (Eds.),

Analyzing Language in Restricted Domains, Hillsdale (New

Jersey), Lawrence Erlbaum Associates.

[5] Ogden, W. C. and Bernick, P., 1996. Using Natural

Language Interfaces. In: M. Helander (Ed.), Handbook of

Human-Computer Interaction, Elsevier Science Publishers

(North-Holland).

[6] Zoltan-Ford, E. 1991. How to get people to say and type

what computers can understand. The International Journal of

Man-Machine Studies, 34:527–547.

[7] Microsoft. Guidelines for Designing Character

Interaction. Microsoft Corporation. Available on-line at

http://www.microsoft.com./workshop/imedia/agent/guidelin

es.asp

WOSOC 2008 - Workshop on Open Source and Open Content, 1-3 December 2008, Bali - Indonesia

73

[8] Wauchoppe, K., Everett, S., Perzanovski, D., and Marsh,

E., 1997. Natural Language in Four Spatial Interfaces.

Proceedings of the Fifth Conference on Applied Natural

Language Processing, pp. 8–11. 162 M. Cavazza

[9] Joshi, A., Levy, L. and Takahashi, M., 1975. Tree Adjunct

Grammars. Journal of the Computer and System Sciences,

10:1.

[10] Cavazza, M. 1998. An Integated TFG Parser with

Explicit Tree Typing, Proceedings of the Fourth TAG+

Workshop, Technical Report, IRCS-98-12, Institute for

Research in Cognitive Science, University of Pennsylvania.

[11] Abeillé, A., 1991. Une grammaire lexicalisée d’arbres

adjoints pour le francais: application a l’analyse automatique.

These de Doctorat de l'Université Paris 7 (in French).

[12] De Smedt, K. & Kempen, G., 1990. Segment Grammars:

a Formalism for Incremental Sentence Generation. In: C.

Paris (Ed.) Natural Language Generation and Computational

Linguistics, Dordrecht, Kluwer.

[13] Nau, D.S., Smith, S.J.J., and Erol, K., 1998. Control

Strategies in HTN Planning: Thoery versus Practice.

Proceedings of AAAI/IAAI-98, pp. 1127–1133.

[14] Cavazza, M., Charles, F. and Mead, S.J., 2002.

Interacting with Virtual Characters in Interactive Storytelling.

Proceedings of Autonomous Agents and Multi-Agent Systems

2002, Bologna, Italy, in press.

[15] Cavazza, M., Charles, F. and Mead, S.J., 2002. Sex, Lies

and Video Games: anInteractive Storytelling Prototype. AAAI

Spring Symposium in Artificial Intelligence and Interactive

Entertainment, Stanford, USA.

[16] J. G. Carbonell and J. Siekmann, Extraction in the Web

Era – Natural Language Communication for Knowledge

Acquisition and Intelligent Information Agents, Springer.

2003.

