
Design Space Exploration for Sobel Application using
OpenIMPACT(Opensource Retargetable Compilation for

VLIW Architecture)

1Debyo Saptono
2Vincent Brost

3Fan Yang

1Gunadarma University(debyo@staff.gunadarma.ac.id, debyo.saptono@u-bourgogne.fr)
2,3LE2I-CNRS 5158 Laboratory University of Burgundy

Abstract

Retargetable compilation infrastructure bring to growth of application-specific programmable systems
which directly supporting the different target architectures and design space exploration (DSE) for the
instruction set architecture and microarchitecture of the processor under development. There are three
categories in this technology costumized„ semiretargetable and retargetable compiler. In DSE retargetable
compilation methodology , permit to determine the optimal combination of hardwired components for
example IALU, FALU ,Memory,Branch and programmable elements to get better performance that be mea-
sured by cycle count/total execution. DSP TI Processor Model as target architecture implemented, we have
simulated for Sobel Application on VLIW architecture for observing optimal hardwired component needed
in embedded system. With Optimization facility in compiler , result of simulation at variant model defined
on system, giving information of Superblock and Hyperblock types can generate code that be executed
processor better than Classical type. Model unroll looping in Optimization improved performance simula-
tion until 50% unless in Classical type.
keywords : Retargetable compilation, DSE, VLIW architecture, DSP TI Processor Model, Sobel Application

1 Introduction

Developing of efficient retargetable compilation In-
frastructures will make the good growth of appli-
cation specific programmable systems because di-
rectly supporting the different target architectures
and the design space exploration for the architec-
ture and micro-architecture of the

processor being developed.
The evaluation of any candidate architecture

needs a compiler to map the applications to the ar-
chitecture and a simulator to measure the perfor-
mance. Because it is desirable to evaluate multi-
ple candidates, a retargetable compiler (and sim-
ulator) is highly valuable. The difference between
non retargetable/customization and retargetable il-
lustrated in Figure .1.

General-purpose register files and usages of the
registers also need to be specified. This type of ma-
chine description system serves as the interface be-
tween the machine-independent and the machine-
dependent part of the compiler implementation.

A fully retargetable compiler is aimed at min-
imizing the coding effort for a range of tar-
gets by providing a friendlier machine descrip-

tion interface. Retargetable compilers are im-
portant for application-specific instruction-set pro-
cessor (ASIP) (including digital signal processor
[DSP]) designs.

Table 1: Comparison of Retargetability compiler
Type Re-

usability

Define

Archi

Example

Compiler

Status

Parameterizable Little Closed VEX C Openfree

SemiRetargetable Midle Undefined LCC, GCC Opensource

FullyRetargetable High Using ADL OpenIMPACT Opensource

Different degrees of retargetability exists to
achieve this goal. According to the classification in
[9], compilers can be assigned to one of the follow-
ing classes:

Parameterizable: Such compilers can only be re-
targeted to a specific class of processors sharing the
same basic structure. The compiler source code is
largely fixed. The machine descriptiononly consists
of numerical parameters such as register file sizes,
word lengths, the number of functional units, or
different instruction latencies.

User retargetable: An external machine descrip-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Gunadarma University Repository

https://core.ac.uk/display/143963329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: The difference between non-retartegable
and retargetable

tion given in a dedicated language contains the re-
targeting information. All information required for
code generation is automatically derived from this
description. The specification does not require in-
depth compiler knowledge and hence, can be per-
formed by an experienced user.

Developer retargetable: Retargeting is also based
on an external target description. However, the
specification requires extensive compiler expertise
usually possessed only by very experienced users or
compiler designers.

2 Concept of DSE Retargetable
Compiler VLIW Architecture

2.1 Design Space Definition

With the OpenIMPACT simulation environment, the
source code of each application that will be im-
plemented on target architecture posseses its own
MAKEFILE . At the first time, Architecture Pro-
cessor Model can be developed using HMDES ar-
chitecure description languages (ADLs). In Retar-
getable Compiler, source code will be converted
to Lcode assembly with optimization corresponding
with processor model defined in HMDES. Simulat-
ing process in this environment can use superscalar,
EPIC or VLIW architecture with according to target
definition in Retargetable simulator[9]

2.2 DSE with OpenIMPACT Compiler

OpenIMPACT compiles the original source code
into an assembly intermediate representation (IR)
called Lcode.

The Lcode produced is optimized for ILP, but not
for a specific machine. The compilation and simu-
lation tools for this evaluation were provided by the
OpenIMPACT compiler, produced by group of Wen-
mei Hwu at the University of Illinois [3]. The Open-
IMPACT environment includes a trace-driven simu-
lator and an ILP compiler. The simulator enables
both statistical and cycle-accurate trace-driven sim-
ulation of a variety of parameterizable architecture
models, including both VLIW and in-order super-
scalar datapaths. The Open IMPACT compiler sup-
ports many aggressive compiler optimizations in-
cluding procedure inlining, loop unrolling, specu-
lation, and predication. IMPACT organizes its opti-
mizations into three levels:

• Classical(O) : performs only traditional local
optimizations .

• Superscalar/Superblock(S) : adds procedure
inlining, loop unrolling, and speculative exe-
cution.

• Hyperblock(HS) : adds predication (condi-
tional execution).

The OpenIMPACT compiler enables an architecture
independent analysis through their low-level inter-
mediate representation, Lcode. The Lcode repre-
sentation is essentially a large, generic instruction
set of simple operations like those found on typical
RISC architectures, but not biased towards any par-
ticular architecture. Such a generic instruction set
enables architecture-independent evaluation.

2.3 DSP TI Prossesor Model

Information about the machine needed by the com-
piler is broken down into six types of information,
each of which has an associated hierarchy of sec-
tions. Register information

captures the types and overlap of registers. For-
mat information specifies what operands are al-
lowed by each type of operation. Resource informa-
tion captures the resource usage patterns. Latency
information specifies the latencies for the sources
and destination of operations. Operation informa-
tion specifies the opcodes of the machine

and associates each opcode with a format, re-
source usage and latency information. Compiler
specific information captures other information
needed by the compiler[8].

Figure 2: The Structure of TMS320 C6201 architec-
ture

With using HMDES ADLs [6], we can define slot
for TI model using SECTION Resource as part of
Resource information like bellow :

{
$for(I in $0..${LAST_SLOT})
(slot${I} (slot(${I}));}

$for (I in $1..${WIDTH})
(decoder${I} ();}

Lunit1();Lunit2();Munit1();Munit2();
Dunit1();Dunit2();Sunit1();Sunit2();
}

2.4 VLIW Processor

VLIW processor use a long instruction word that
is a combination information about the machine
needed by the compiler is broken down into six
types of information, each of which has an asso-
ciated hierarchy of sections. Register information
several operations combined into one single long
instruction word. This allows a VLIW microproces-
sor to execute multiple operations in parallel [1]
[2] [4][6].

3 Methodology

DSE is important in computer architecture design
because no single design is optimal in every as-
pect. DSE also helps to determine the optimal
combination of hardwired components and pro-
grammable elements. With HMDES ADLs, we de-
fine DSP TI processor model with variant in num-
ber of IALU, FALU, Memory Unit, and Branches il-
sutrated in table2. For this experiment used model
1 (IALU=FALU=Memory Unit= Branches=1) until
model 8.

Table 2: Configuration of VLIW DSP TI Processor
Model

Comp\Model 1 2 3 4 5 6 7 8
IALU 1 2 3 4 5 6 7 8
FALU 1 2 3 4 5 6 7 8
Memory unit 1 2 3 4 5 6 7 8
Branch unit 1 2 3 4 5 6 7 8

Figure 3: DSE Retargetable Compiler Methodology

Figure 4: Process flow diagram loops on Using So-
bel Edge Detection and . Sobel Kernel Algorithm

Figure 5: Grayscale bmp with 20x20 for input (left)
and output(right) images

Sobel application choose be simulated by simula-
tor because there is loop processing that can be ob-
served related with unroll loop mode in the Open-
IMPACT compilator and simulator toolchain. The
simulator executes the code and produces perfor-
mance metrics such as cycle count (total execution
). The metrics are analyzed and used to guide the

tuning of the architecture description. The process
iterates until a satisfactory cost-effective architec-
tural trade-off is found.

4 Experiment Result

In figure 5, total instruction that be generated by
compiler is 11618 instruction and total execution
(cycles) in processor model 4 (4905 cyles) better
than others for Classical Optimization.

Figure 6: Total execution for each processor model
in Classical for Sobel application

In figure 6, total instruction that be generated by
compiler is 11540 instruction and total execution
(cycles) in processor model 3 (4905 cycles) better
than others for Superblock Optimization without
unroll looping.

Figure 7: Total execution for each processor model
in Superblock without unroll for Sobel application

With unroll looping mode for Superblock as
shown at figure 9, total execution for each proces-
sor model is relative less than without unroll at the
same optimization unless at model 1.

In figure 9, total instruction that be generated by
compiler is 11820 instruction and total execution
(cycles) in processor model 3 better than others for
Superblock Optimization without unroll looping.

With unroll looping mode for Hyperblock as
shown at figure 9, total execution for each proces-
sor model is relative less than without unroll at the

Figure 8: Total execution for each processor model
in Superblock with unroll for Sobel application

Figure 9: Total execution for each processor model
in Hyperblock without unroll for Sobel application

same optimization unless model 1.

Figure 10: Total execution for each processor
model in Hyperblock with unroll for Sobel appli-
cation

5 Conclusion and Perspective

In this papers, we have presented a VLIW archi-
tecture design space exploration methodology us-
ing the OpenIMPACT compiler and implemented it
for sobel application. We have proposed criteria
based on optimization tools to analyze performance
which allows us to get better setting for VLIW DSP

TI Processor model. Our results show that Su-
perblock optimization with unroll and model pross-
esor number of 4 is better setting for obtain extract
significant amount of ILP (Instruction Level Paral-
lelism) from sobel application.

In future work, we hope to embed VLIW archi-
tecture on reconfigurable component FPGA using
the OpenIMPACT compiler, because modern FPGA
chips, with their large memory capacity and recon-
figurable potential, are opening new frontiers in
rapid prototyping of embedded systems.

References

[1] F. Yang D. Saptono, V. Brost and E. Prasetyo.
Concept and development of modular vliw pro-
cessor based on fpga. ICSEM2010, 2010.

[2] F. Yang D. Saptono, V. Brost and E. Prasetyo.
Design space exploration for a custom vliw ar-
chitecture : Direct photo printer hardware set-
ting using vex compiler. In In Proc of the 4th
International Conference of SITIS 2008, Novem-
ber 2008.

[3] Gelato.org. Impact advanced compiler technol-
ogy, 2009.

[4] P. Faraboschi J.A. Fihser and C. Young. Embed-
ded Computing : A VLIW Approach to Archite-
cure, Compilers and Tools. 2005.

[5] W. Mei Hwu J.C Gyllenhaal and B.R Rao.
Hmdes version 2.0 specification technical re-
port impact-96-3. 1996.

[6] Weng Fook Lee. VLIW Microprocessor Hardware
Design For ASIC and FPGA. Mc Graw Hill Proffe-
sional, 2008.

[7] R. Leupers. Retargetable Code Generation for
Digital Signal Processors. Kluwer Academic
Publishers, 1997.

[8] M. Pandaivone V. Brost, F. Yang and N. Farru-
gia. Multiple modular vliw processors based
on fpga. Journal of Electronic Imaging, SPIE,
16(2):110, April-June 2007.

[9] P. Shankar Y.N Srikant. Compiler Design Hand-
book, Optimizations and Machine Code Genera-
tion. CRC Press, 2003.

