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Abstract

The chromatic number of a latin square L, denoted χ(L), is defined as the minimum number
of partial transversals needed to cover all of its cells. It has been conjectured that every
latin square L satisfies χ(L) ≤ |L|+ 2. If true, this would resolve a longstanding conjecture,
commonly attributed to Brualdi, that every latin square has a partial transversal of length
|L|−1. Restricting our attention to Cayley tables of finite groups, we prove two results. First,
we constructively show that all finite Abelian groups G have Cayley tables with chromatic
number |G|+2. Second, we give an upper bound for the chromatic number of Cayley tables
of arbitrary finite groups. For |G| ≥ 3, this improves the best-known general upper bound
from 2|G| to 3

2 |G|, while yielding an even stronger result in infinitely many cases.

Keywords: latin square (05B15); graph coloring (05C15); strongly regular graphs (05E30);
Cayley table; partial transversal
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Glossary

Cayley table

Of a group G = {g0, g1, . . . , gn−1}, an n × n array L = L(G) in which the cell Li,j
contains the group element gigj . We say that row i and column j are bordered by
gi and gj , respectively.

chromatic index

Of a graph or hypergraph, the minimum number of colors needed to properly color
its edges.

coloring of a latin square

A partition of the cells in a latin square L into disjoint partial transversals. The
chromatic number of L is the minimum k such that L can be colored with k

partial transversals.

dicyclic group

Of order 4n, the extension with normal subgroup Z2n and quotient group Z2 given by
the presentation 〈a, x | a2n = 1, an = x2, xax−1 = a−1〉.

dihedral group

Of order 2n, the group of symmetries of an n-gon. It is defined abstractly by the
presentation 〈r, s | rn = s2 = 1, srs = r−1〉.

equivalent latin squares

Two latin squares L1, L2 such that L2 can be obtained from L1 via the composition
of an isotopy and a parastrophy.

essentially identical latin squares

A pair of latin squares which can be obtained from one another by changing the
symbols used (but not reordering rows or columns).

finite projective plane

Of order n, a pair (P,L) containing a set P of n2 + n+ 1 “points” and a set L ⊆ 2P

of n2 +n+1 “lines,” such that every point is incident to n+1 lines, every line contains
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n+1 points, any two distinct lines intersect in exactly one point, and any two distinct
points are jointly contained in exactly one line.

hypergraph

A pair H = (V,E) of vertices V and hyperedges E ⊆ 2V . A hypergraph in which
each edge has size 2 is a graph.

isotopy

A triple of bijections (σ, τ, φ) between the rows, columns, and symbols (respectively)
of two latin squares of the same order. Two squares are isotopic if there exists an
isotopy between them. The classes induced by the equivalence relation “Is isotopic to”
are called isotopy classes.

k-plex

In a latin square, a collection of cells which intersects each row, column, and color class
exactly k times. A partition of a latin square into k-plexes is known as a k-partition.

latin square

Of order n, an n× n array of cells containing entries from an alphabet of size n in
which no entry appears more than once in any row or column. We refer to the set of
cells containing any fixed symbol as a symbol class of L.

latin square graph

A strongly-regular graph Γ(L), defined with respect to a latin square L of order n,
which is formed from an n × n grid of vertices by placing a clique of size n on each
row, column, and class of symbols in L.

Möbius ladder

A cubic circulant graph formed from the cycle C of length 2n by adding an edge
between each pair of vertices at distance n in C. We refer to two vertices at distance
n− 1 in C as near-antipodal.

main class invariant

A property of latin squares which is not changed by moving to an equivalent latin
square.

multiset

An unordered collection of objects in which repetition is allowed. The multiplicity
of an element in a multiset is the number of times it occurs. A multiset is simple,
referred to as a simple set or just “a set,” if every element has multiplicity 1.
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orthogonal array

Denoted OA(k, n), a k × n2 grid with symbols from an alphabet of size n such that
the n2 ordered pairs of symbols defined by any two rows are all distinct.

orthogonal latin squares

Latin squares A and B of common order such that, when A is superimposed on B,
each possible ordered pair of symbols occurs exactly once. We refer to (A,B) as an
orthogonal pair, and say that B is A’s orthogonal mate.

parastrophy

A map between latin squares which permutes the roles played by rows, columns, and
symbols.

partial transversal

A collection of cells in a Latin square that intersects each row, column, and symbol
class at most once. In a latin square of order n, a partial transversal of size n is referred
to simply as a transversal, while a transversal of size n− 1 is a near transversal.

semidirect product

A group G in which every element can be written as the product of an element of
a normal subgroup H / G and an element of a (not necessarily normal) subgroup K
under the condition K∩H = {idG}. We say that G is the internal semidirect product
in this case. It is also possible to define an external semidirect product, but doing so
is beyond the scope of this thesis.

solvable group

A group which possesses a subnormal series G = Ga .Ga−1 . · · · .G1 .G0 = {1} in
which all of the quotient groups Gi/Gi−1 are Abelian.

Sylow p-subgroup

Of a group G, where p is prime and |G| = pkm with gcd(pk,m) = 1, a subgroup of
order pk. The famous Sylow Theorems state that, for any p dividing |G|, there exists
a Sylow p-subgroup, and furthermore any two Sylow p-subgroups of G are isomorphic.

vertex-transitive

A graph Γ = (V,E) such that, for every pair of vertices v1, v2 ∈ V , there exists an
automorphism of Γ (i.e. a bijective map α : V → V in which xy ∈ E if and only if
α(x)α(y) ∈ E) sending v1 to v2.
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Chapter 1

Introduction

Colorings of latin squares naturally generalize the notion of possessing an orthogonal
mate. Determining the chromatic number of an arbitrary latin square seems to be rather
difficult. In 2016, Besharati et al. conjectured that every latin square of order n can be
properly (n+2)-colored. If true, this would imply a long-standing conjecture of Brualdi that
all latin squares possess a near-transversal. When we restrict our attention from general latin
squares to Cayley tables of finite groups, however, the chromatic number question becomes
more tractable.

This thesis presents work in two directions towards determining the chromatic number
of all Cayley tables of finite groups.1 First, we completely resolve the chromatic number
question for Cayley tables of finite Abelian groups. The heretofore unknown values are
established constructively, as in all of these cases the chromatic number meets a trivial
lower bound. Second, we explore the relationship between colorings of a group’s Cayley table
and colorings of the Cayley tables corresponding to its subgroups. This work culminates
in a general upper bound which restricts the chromatic number of every Cayley table to
an interval of size strictly less than half the order of the underlying group. Although the
chromatic number question for general Cayley tables remains open, our work suggests that
its resolution is within reach.

In this thesis we use standard terminology from graph theory, group theory, and the
study of latin squares. For more information, we refer the reader to [6], [41], and [29],
respectively. Unless stated otherwise, we assume throughout that L refers to a latin square
of order n and G refers to a group of order n.

1Several authors have used the term “Cayley table” to describe the operation table of any set closed
under a binary operation, and in this sense all latin squares are Cayley tables. In this work, however, when
we use the term Cayley table we are strictly referring to group-based latin squares.
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10 21 02 33
03 32 11 20
31 00 23 12
22 13 30 01

r 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
c 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
s1 1 2 0 3 0 3 1 2 3 0 2 1 2 1 3 0
s2 0 1 2 3 3 2 1 0 1 0 3 2 2 3 0 1

Figure 1.1: An orthogonal pair of latin squares, L,L′, of order 4 and the corresponding
OA(4, 4), which contains the column (i, j, b, c)T if and only if Lij = b and L′ij = c.

1.1 Latin squares and orthogonality

Latin squares are classical, widely utilized mathematical objects. They arise in many
diverse contexts, from the construction of Steiner triple systems [11], to the design of exper-
iments across the sciences [19], and even the recreational activities of the general public in
the form of Sudoku puzzles. The study of latin squares as combinatorial objects can roughly
be divided into three areas: completion, enumeration, and orthogonality. The work in this
thesis falls within the third category.

Two latin squares L,L′ of order n are orthogonal if, superimposing L′ on L, each
possible ordered pair of symbols occurs exactly once. See Figure 1.1 for an example of
superimposed, orthogonal latin squares of order 4. Orthogonal latin squares have been
studied systematically since at least the time of Euler [20], who proved that there is a pair
of orthogonal latin squares of order n whenever n 6≡ 2 (mod 4). He then conjectured that
this sufficient condition was in fact necessary for the existence of an orthogonal pair of
order n, popularizing the idea with his famous “thirty-six officers problem.” This problem,
which is equivalent to asking whether there exist orthogonal latin squares of order 6, was
resolved in 1900 when Tarry [46] formally established the nonexistence result predicted by
Euler. This new evidence in support of Euler’s conjecture likely inspired the slew of failed
attempts to resolve Euler’s conjecture in the early 20th century (e.g. [32, 35]).

In the end, it turns out that Euler’s conjecture is false. Counterexamples were given
independently by Bose and Shrikhande [8] and Parker [38] in 1959. Later that year, Bose,
Shrikhande, and Parker [9] joined to show that Euler was in fact spectacularly wrong: there
exists an orthogonal pair of latin squares of order n whenever n 6∈ {2, 6}. This landmark
result shifted attention to a related question around which a vibrant body of research was
already growing: what is the maximum size of a set of mutually orthogonal latin squares
(MOLS) of order n? This number is denoted N(n).

There is an extensive body of research concerning the construction and extension of
sets of MOLS [16]. Despite this, we know very little about the value of N(n) for general n.
Thanks to the work of Guérin, Hanani, and Wilson [53, 25], among others, we know that
N(n) ≥ 4 for all n ≥ 23 and N(n) ≥ 6 for all n ≥ 76. For n < 23, there are numerous lower
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bounds known in specific cases [47, 44, 54], but much is still unknown. For example, we do
not know whether N(10) is greater than 2. Concerning upper bounds for N(n), even less is
known. A simple combinatorial argument shows that a set of MOLS of order n has size at
most n−1. We refer to a set of MOLS whose size meets this bound as complete. Complete
sets of MOLS provide an intimate connection between latin squares and finite geometry:
using a complete set of MOLS one can construct a finite projective plane, while every finite
projective plane corresponds to at least one complete set of MOLS.

It has long been known that, for every prime p and every positive integer k, there exists
a finite projective plane of order pk (see [29] p. 176), and thus there exists a complete
set of MOLS of order pk. Conversely, it is widely believed that every projective plane has
prime power order. However, there are very few known results ruling out the existence of
projective planes of non-prime power order. Tarry’s resolution of the 36 officer problem
mentioned above implies there is no projective plane of order six, while Lam et al. [30]
showed, with extensive computer assistance, that there is no projective plane of order 10.
The only known result that rules out infinitely many values as potential orders of projective
planes is due to Bruck and Ryser [12]: for every n congruent to 1 or 2 modulo 4 that has
a square free prime factor of the form 4k + 3, there is no projective plane of order n. This
rules out projective planes of order 6, 14, 21, 22, etc.

At times it is convenient to restate results concerning MOLS in terms of orthogonal
arrays. Following [22], we define an orthogonal array with positive integer parameters k
and n, denoted OA(k, n), as a k × n2 grid with symbols from an alphabet of size n such
that the n2 ordered pairs of symbols defined by any two rows are all distinct. We can think
of a latin square L of order n as an OA(3, n) in which the first two rows enumerate [n]× [n]
and the column with i in the first row and j in the second has the symbol from Lij in
its third row (see Figure 1.1). Furthermore, a set of m MOLS of order n is equivalent to
an OA(m + 2, n). For an example of how thinking in terms of orthogonal arrays can be
beneficial, see [10] or Section 1.4 below.

1.2 Transversals, partial transversals, and colorings of latin
squares

Given a pair of orthogonal latin squares (L,L′), consider the set T ⊆ L corresponding
to a fixed symbol class in L′. Examining T , we see that it (a) intersects each row and each
column of L exactly once, and (b) contains exactly one occurrence of each symbol in L. We
refer to a set T ⊆ L satisfying properties (a) and (b) as a transversal of L.

Transversals were first introduced to the study of latin squares as a means of simplifying
the search for orthogonal mates. Indeed, a slight extension of the remark made at the start
of the previous paragraph shows that a latin square has an orthogonal mate if and only if its
cells can be partitioned into disjoint transversals. However, possessing a single transversal is

3



1 2 3 4 5 6
2 1 6 5 4 3
3 4 1 2 6 5
4 6 5 1 3 2
5 3 2 6 1 4
6 5 4 3 2 1

Figure 1.2: A Latin square with a transversal (whose entries are given in italics) but no
orthogonal mate.

in general not sufficient for the existence of an orthogonal mate. This fact is demonstrated
by Figure 1.2 (recall that there are no orthogonal latin squares of order 6). Working from
a transversal framework can be useful in studying orthogonality. For example, Wanless and
Webb [51] proved that, for every n ≥ 4, there is a latin square of order n with no orthogonal
mate by constructing a latin square of the given order in which some entry did not appear
in any transversal. More generally, it is much easier to formulate a proof that a given latin
square possesses no transversals than that it has no orthogonal mate (see [39]).

Although it is much easier to find a transversal in a latin square than to find an or-
thogonal mate, the search for transversals is challenging in its own right. Indeed, there
are several seemingly simple conjectures on the subject that have proven extraordinarily
difficult to resolve. For example, consider the following conjecture of Ryser.2

Conjecture 1.1 (Ryser). Every latin square of odd order possesses a transversal.

In fact, Ryser [43] made the stronger conjecture that the number of transversals in a latin
square of order n is congruent to n modulo 2. This is known to be true for even n thanks
to Balasubramanian [3]. However, as noted in [14], there are numerous known examples of
latin squares of order 7 with an even number of transversals. Ryser’s enumerative conjecture
has therefore been weakened to the existential form of Conjecture 1.1. We will see below
that colorings of latin squares are intimately tied to the existence of transversals. For more
information on the enumeration of transversals in latin squares, see Section 7 of [50].

Thanks to Euler [20], it has been known since the 18th century that, for every even
number n, there is a latin square of order n that does not possess a transversal. Concerning
these latin squares, it is natural to ask how close we can get to a transversal. In fact, it has
been shown that we can get very close, and it has been conjectured that we can get even
closer.

2This should not be confused with the more famous Ryser’s Conjecture on matchings and coverings in
r-partite r-uniform hypergraphs.
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To answer this question formally, we define a partial transversal in a latin square as
a collection of cells that intersects each row, each column, and each symbol class at most
once. Note that we could define a transversal of a latin square L as a partial transversal
of length n. A partial transversal of length n− 1, meanwhile, is commonly referred to as a
near transversal. Many believe that near transversals are ubiquitous, as expressed by a
well-known conjecture which is commonly attributed to Brualdi.

Conjecture 1.2 (Brualdi). Every latin square possesses a near transversal.

With multiple claimed proofs which were subsequently withdrawn (see [27] and [14]), this
conjecture has become somewhat infamous for its specious simplicity. The most profitable
means of attacking this conjecture has been via approximation. Starting in the 1960s there
was a steady series of results pushing up the lower bound for the length of the largest partial
transversal in an arbitrary latin square. This culminated in the early 1980s when Shor [45]
showed that every latin square possesses a partial transversal of length n−O(log2(n)). Since
then there has been work improving the constant inside the big-O [26], but Shor’s bound
remains the asymptotic state of the art.

We can also attack Conjecture 1.2 by generalizing the problem. We define a k-coloring
of a latin square L as a partition of its cells into k partial transversals, and the chromatic
number of L, denoted χ(L), as the minimum k for which L is k-colorable. Colorings of
latin squares naturally generalize the notion of possessing an orthogonal mate; because a
partial transversal has size at most n, χ(L) = n if and only if L can be partitioned into
disjoint transversals. Furthermore, showing that every latin square L satisfies χ(L) ≤ n+ 2
would establish Conjecture 1.2. Indeed, if every partial transversal in L has length at most
n− 2, then any set of n+ 2 partial transversals covers at most (n− 2)(n+ 2) = n2− 4 cells.

Although colorings of design-theoretic objects have been studied for several decades
[42, 34], latin square colorings did not appear in the literature until very recently.3 In 2015-
2016, Besharati et al.[5] and Cavenagh and Kuhl [15] independently showed that all circulant
latin squares (i.e. all Cayley tables of cyclic groups) are (n + 2)-colorable.4 Furthermore,
both groups proposed the following.

Conjecture 1.3. Let L be a latin square of order n. Then

χ(G) ≤

n+ 1 if n is odd,

n+ 2 if n is even.
(1.1)

3It is worth noting that, according to one of the reviewers of [5], the chromatic number of latin squares
had been considered by several different groups of researchers. The reviewer asserted that the idea had been
mentioned in multiple conference talks, but no results had been published.

4This is a slight mischaracterization of [15]. In fact, Cavenagh and Kuhl were only able to show χ(L) ≤
n+ 3 in the case n ≡ 6 (mod 12).
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This is a very strong conjecture. We have already seen that it implies Conjecture 1.2,
and in fact it also implies Conjecture 1.1 by a similar argument. Conjecture 1.3 is the focal
point of this thesis. As would be expected from the preceding remarks, it is currently far
from being resolved. There is, however, reason to believe it is true. It has been verified in [5]
for all latin squares of order at most 8, it is true asymptotically (a fact which we describe
more precisely in Section 1.4), and there is an expanding list of infinite families for which
it is known to hold (a list which we will add to in Chapter 2).

1.3 Isotopy and equivalent latin squares

So far we have been treating a latin square as an array with a fixed arrangement of
symbols. However, when studying colorings – and indeed in most combinatorial analysis of
latin squares – it is not necessary to impose such strict structure. Given a latin square L
and a partial transversal T ⊆ L, suppose we permute the rows, columns, and symbols of L
to obtain a new latin square L′. It is not hard to see that applying these same permutations
to T yields a partial transversal T ′ ⊆ L′. By extension, permuting the rows, columns, and
symbols of latin square preserves the existence of a k-coloring.

We formalize this idea as follows. For i = {1, 2}, let Li be a latin square of order n
defined over the alphabets Ai. An isotopy from L1 to L2 is a triple of bijections (σ, τ, φ)
such that, applying σ : [n] → [n] to the rows of L1, τ : [n] → [n] to the columns, and
φ : A1 → A2 to the symbols, we obtain L2. If there exists an isotopy from L1 to L2, we say
that the two squares are isotopic. It is easy to check that “is isotopic to” is an equivalence
relation; we refer to the classes induced by this relation as isotopy classes. As mentioned in
the previous paragraph, isotopies preserve partial transversals, thereby preserving colorings.
Notice that the definition of isotopy allows for the introduction of new symbols. This is done
to deemphasize the alphabet being used in any given definition of a latin square and focus
instead on its structure.

There is an additional notion of equivalence between latin squares which is obscured
by their traditional matrix representation. Thinking of a latin square as an OA(3, n), we
see that the roles played by rows, columns and symbols are interchangeable. We define
a parastrophy between two latin squares L1, L2 as a permutation of the rows in the
OA(3, n) corresponding to L1 which produces the OA(3, n) corresponding to L2. Notice
that the definition of partial transversal is symmetric with respect to rows, columns, and
symbols. Thus, latin square colorings are invariant under parastrophy.

In general, two latin squares L1 and L2 are said to be equivalent if L2 can be obtained
from L1 by composing a isotopy with a parastrophy. An equivalence class under this relation
is known as a main class. Many properties of latin squares depend only on a square’s
main class (for some examples see p. 17 of [29] ). Such properties are called (main class)

6



invariants. Combining the remarks made at the end of the first and third paragraph in
this section, we see that the chromatic number of a latin square is a main class invariant.
As such, in what follows we freely translate between members of a main class in trying to
determine the chromatic number of a given latin square.

1.4 Graph representations of latin squares

As is often the case with combinatorial objects, there are numerous graph-theoretic
representations of latin squares appearing in the literature. Perhaps most well-known is the
translation between latin squares of order n and n-edge-colorings of the complete bipartite
graph Kn,n. If we label one side of the bipartition with the rows of L, and the other side
with its columns, then we have exactly one edge for each cell. Coloring every edge with
the symbol contained in the corresponding cell yields a proper edge-coloring, as no row or
column can contain any symbol more than once. This idea has been utilized in determining
when a partial latin squares is completable [13] and in characterizing families of latin squares
with rigid structural properties [48].

Representing a latin square as an edge-colored bipartite graph can also be helpful in
the study of transversals. Given an edge-colored graph, we define a rainbow matching
as a collection of disjoint edges no two of which have the same color. A partial transversal
in a latin square is then equivalent to a rainbow matching in the corresponding coloring of
Kn,n. There are several conjectures stated in terms of rainbow matchings which generalize
Conjecture 1.1 and Conjecture 1.2, and there are several interesting partial results known
towards these conjectures [1]. The work of Aharoni and Berger cited in the previous sentence
also contains an interesting generalization of latin square induced edge-colorings of Kn,n.

Given an n-edge coloring of Kn,n, we can define a 3-partite 3-uniform hypergraph by
adding n new vertices, one for each color, and turning an edge rc with color s into the 3-edge
(r, c, s). This gives us a means of representing every latin square L with a hypergraph H(L)
on the vertex set R ∪ C ∪ S, where R, C, and S are sets of size n representing the rows,
columns, and symbols of L. Observe that a partial transversal of L corresponds to a set of
disjoint hyperedges in H(L). Thus, χ(L) is just the chromatic index of H(L).

Determining the chromatic index of a hypergraph is remarkably difficult, but it is a
problem which has been studied for many years. Although not much is known in terms
of exact values, there have been several compelling asymptotic results on the subject. In
1989, Pippenger and Spencer [40] proved that every family of uniform hypergraphs in which
the minimum degree is asymptotic to the maximum degree and the maximum codegree is
asymptotically negligible compared to the maximum degree has chromatic index asymptotic
to maximum degree. It was pointed out by Cavenagh and Kuhl [15] that H(L) fits these
conditions and has maximum degree n, giving us the following theorem.
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Theorem 1.4 (Pippenger, Spencer [40]). For every δ > 0, there exists an n0 > 0 such that
every latin square L of order n ≥ n0 satisfies χ(L) ≤ (1 + δ)n. In other words,

χ(L) = n+ o(n).

This result gives us confidence in Conjecture 1.3. However, that is the extent to which
the hypergraph representation of latin squares will be useful to us. Instead, we utilize a
family of strongly-regular graphs first introduced by Bose in [7]. Given a latin square L,
the associated latin square graph Γ = Γ(L) has a vertex corresponding to each cell of L
and an edge between (r1, c1, s1) and (r2, c2, s2) if and only if exactly one of the equations
r1 = r2, c1 = c2, or s1 = s2 holds. See Figure 1.3 for an example. These are referred to
as row edges (denoted ER(Γ)), column edges (EC(Γ)), and symbol edges (ES(Γ)),
respectively. We will often refer to sets of cells in constructing induced subgraphs of Γ. For
example, the first row R1 ⊆ L induces the subgraph Γ[R1] ∼= Kn.

L =

0 1 2
1 2 0
2 0 1

Γ(L) =

Figure 1.3: A latin square L and its associated latin square graph Γ(L) with the cells in
color class 2 and the edges of the corresponding clique in red.

Informally, Γ(L) is formed from an n × n grid of vertices by placing a clique of size n
on each row, column, and class of symbols in L. Notice that independent sets in Γ = Γ(L)
correspond to partial transversals of L. Thus, χ(L) is simply the traditional, graph-theoretic
chromatic number of Γ. Thinking of colorings in terms of Γ(L) immediately provides us with
a couple of bounds on χ(L) for n ≥ 3. Because Γ(L) contains a clique of size n (indeed it
contains many cliques of size n), we know χ(L) ≥ n. On the other hand, as every vertex of
Γ(L) has degree 3n− 3, Brooks’ theorem (see Section 3.3) tells us that χ(L) ≤ 3n− 3.

It is worth noting why we have made the distinction n ≥ 3 in determining these bounds.
If L is a latin square of order 2, then Γ(L) is a 3-regular simple graph on 4 vertices. The only
such graph is K4, and we are therefore no longer able to apply Brooks’ Theorem. The fact
that χ(Γ(L)) = 4 whenever |L| = 2 will force us to be careful about how we state several
results below. However, it does not change the substance of our program; we already know
that all latin squares of order less than 3 satisfy Conjecture 1.3.
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Although the bounds n ≤ χ(L) ≤ 3n− 3 are easily obtained, a careful consideration of
the structure of latin square graphs can tell us much more about their chromatic number.
In Chapter 2 and Chapter 3 we demonstrate how this graph-theoretic framework can be
used to provide significantly better upper bounds for χ(L).

1.5 Cayley tables and complete mappings of finite groups

For the rest of this paper we restrict our attention from general latin squares to Cayley
tables of finite groups. Given a group G = {g0, g1, . . . , gn−1}, the Cayley table of G,
denoted L(G), is the n× n array in which the cell Li,j contains the group element gigj . We
say that the ith row and ith column of L(G) are bordered by the group element gi. It
follows directly from the group axioms ([18] p. 16) that L(G) is a latin square.

Observe that L(G) does not depend on the ordering we have chosen for G, as any two
orderings produce isotopic latin squares. Once we fix an ordering of G, we switch freely
between using (i, j) and using (gi, gj) to index the cell of Li,j ∈ L(G). We refer to colorings
of Cayley tables as colorings of the corresponding group, with χ(G) denoting the chromatic
number of the latin square L(G).

Given a set X ⊆ L(G) and a group element g ∈ G, define the shift of X by g as

Xg = {(x, yg) : (x, y) ∈ X}.

Shifting X preserves its structure in the sense that Γ[X] ∼= Γ[Xg]. Indeed, for any z1, z2, g ∈
G, we have z1g = z2g if and only if z1 = z2. In particular, given any partial transversal
T ⊆ L(G), the shift Tg is also a transversal. Actually, we can say something even stronger.
Notice that any distinct pair g1, g2 ∈ G satisfies Tg1 ∩ Tg2 = ∅. Thus, whenever L(G)
contains a transversal T , it in fact possesses an n-coloring of the form {Tg | g ∈ G}; we need
only find a single transversal in L(G) to show that χ(G) = n.

This observation motivated a series of papers on the combinatorial structure of finite
groups. A complete mapping of a group G is a bijection θ : G→ G such that the derived
mapping η : G→ G defined by η(g) = g ·θ(g) is also a bijection. The map η is often referred
to as an orthomorphism. Notice that a complete mapping of G, say θ, is equivalent to
the transversal in T = {(g, θ(g)) : g ∈ G} ⊆ L(G). Thus, a Cayley table has an orthogonal
mate if and only if its underlying group possesses a complete mapping.

Complete mappings were introduced by Mann in the early 1940s [33] as a means of
constructing MOLS. He noted that a group G has a complete mapping if and only if its
Cayley table has an orthogonal mate. Shortly thereafter, Paige proved the following [36].
As this result will be important to our arguments in Chapter 3, we present its proof here.

Proposition 1.5. Every group of odd order has a complete mapping.
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Proof. Let G be a group of order 2k+1 for some k ∈ N. We claim that the identity mapping
is complete. To establish this, it is sufficient to show that the map η : G → G defined by
η(g) = g2 is injective. And indeed, for every g, h ∈ G such that g2 = h2, we have

g = gg2k+1 = g2k+2 = (g2)k+1 = (h2)k+1 = h2k+2 = hh2k+1 = h.

By the comments made preceding Proposition 1.5, we have the following result on the
chromatic number of Cayley tables.

Corollary 1.6. Let G be a group of odd order n. Then χ(G) = n.

The task of characterizing groups which contain complete mappings began with Paige’s
1947 paper [36] in which he proved Proposition 1.5. Then, in 1950 Bateman [4] showed that
every infinite group possesses a complete mapping. In the early 1950s Hall and Paige [37, 23]
laid the groundwork for a complete characterization. They conjectured the following, which
was finally proven by Bray, Evans, and Wilcox in 2009 [21, 52].

Theorem 1.7. Let G be a group of order n. Then the following are equivalent:

1. χ(G) = n.

2. χ(G) ≤ n+ 1.

3. L(G) has a transversal.

4. G has a complete mapping

5. There is an ordering of the elements of G, say g1, g2, . . . , gn, such that g1g2 · · · gn = e

(where e is the identity element of G).

6. Syl2(G) is either trivial or non-cyclic.

Proof. Observe that 1 trivially implies 2, while 2 implies 3 by the contrapositive: a latin
square without a transversal can only cover (n+ 1)(n−1) = n2−1 of its n2 cells with n+ 1
partial transversals. Having shown that 3 implies 1 and that 3 and 4 are equivalent earlier
in this section, we see that 1, 2, 3, and 4 are equivalent.

Turning to the difficult part of the proof, Paige showed that 4 implies 5 in [37], before
Hall and Paige [23] showed that 5 implies 6. It was also shown in [23] that 6 implies 4
for every solvable group, which was used by Dénes and Keedwell [17] to show 5 and 6
are equivalent. Finally, in 2009 Bray, Evans, and Wilcox showed that 6 implies 4 for all
non-solvable groups using the classification of finite simple groups.
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In [5], Besharati et al. used this theorem to construct a (n+ 2)-coloring for every cyclic
group Zn. We will show in Chapter 2 that this construction can be generalized to build an
(n+ 2)-coloring of any finite Abelian group. Then, in Chapter 3 we provide a general upper
bound for χ(G) which relies on a characterization of groups which do not satisfy property
6 of Theorem 1.7.
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Chapter 2

The chromatic number of Abelian
groups

The main result of this chapter is the following theorem which characterizes the chro-
matic number of every finite Abelian group.

Theorem 2.1. Let G be an Abelian group of order n. Then

χ(G) =

n if Syl2(G) is either trivial or non-cyclic,

n+ 2 otherwise.

Thanks to Theorem 1.7, proving this main result amounts to constructing an (n + 2)-
coloring for every Abelian group with nontrivial cyclic Sylow 2-subgroups. To this end, set
t := 2l for some l ≥ 1 and let G be an Abelian group of order n = tm, where m is odd and
Syl2(G) = Zt. By the fundamental theorem of finite Abelian groups, G ∼= Zt × H, where
H = Zm1 × Zm2 × · · · × Zmk

is an Abelian group of odd order m =
∏k
i=1mi.

This chapter is devoted to producing an optimal coloring of Γ = Γ(G). Considered
broadly, our construction can be broken into three steps. First, we find a particularly nice
m-coloring of H. Then, we use this coloring to construct a partition of V (Γ), say P, in
which the induced subgraph Γ[P ] is “nearly bipartite” for every P ∈ P. Finally, we modify
P to separate Γ into n

2 + 1 bipartite induced subgraphs, and use a disjoint pair of colors for
each of these subgraphs to obtain an (n+ 2)-coloring of Γ.

Throughout this chapter and the next, we make use of maps R, C, and S, defined
as follows. Given a group G = {g0, g1, . . . , gn−1} with Cayley table L = L(G), we define
projections R,C : L→ [n] by R(Lij) = i and C(Lij) = j, and S : L→ G by S(Lij) = gigj .
We then extend these functions to sets A ⊆ L by letting R(A) = {R(a) : a ∈ A} be the
multiset of rows containing cells in A and defining C(A) and S(A) similarly as multisets
of columns and symbols, respectively. To simplify notation, we write x(k) ∈ M to mean x
occurs with multiplicity (at least) k in the multiset M .
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We also use maps R′, C ′, and S′, which differ from R, C, and S in that they ignore
multiplicities, mapping sets of cells to simple sets (i.e. multisets in which each element has
multiplicity 1) of rows, columns, and symbols. For example, if X is the row of L bordered
by gi, then R(X) = {i(n)}, R′(X) = {i}, C(X) = C ′(X) = [n], and S(X) = S′(X) = G.

2.1 Coloring Abelian groups of odd order with right diago-
nals

Although the chromatic number of G does not depend on how we order the rows and
columns of its Cayley table, fixing an illustrative ordering can greatly simplify our argument.
Given a k-fold Cartesian product of ordered sets X = X1×X2×· · ·×Xk, a lexicographical
ordering of X is defined by the relation (a1, a2, . . . , ak) < (b1, b2, . . . , bk) if and only if
there is some index j ∈ {1, 2, . . . , k} such that ai = bi for all i ∈ {1, . . . , j − 1} and aj < bj .
For example, the lexicographical ordering of {1, 2}× {1, 2} is {(1, 1), (1, 2), (2, 1), (2, 2)}. In
what follows, we assume that H = Zm1 × Zm2 × · · · × Zmk

= {h0, h1, . . . , hm−1} is ordered
lexicographically with respect to the canonical ordering of Zmi = {0, 1, . . . ,mi−1} for each
i ∈ {1, 2, . . . , k}.

To see why it is profitable to arrange L lexicographically, consider which sets of cells
are natural candidates in the search for transversals. For every group H of odd order,
Proposition 1.5 tells us that the main diagonal of L(H) is a transversal so long as we
arrange its rows and columns in the same order. With the additional assumption that H
is Abelian, we can say even more. Given a latin square L of order n, define the dth right
diagonal of L as

TLd := {Li,i+d : 0 ≤ i ≤ n− 1}, (2.1)

where indices are expressed modulo n. When it is clear which latin square we are discussing,
we drop the superscript and simply write Td. We show that the partition of L(H) into its
right diagonals is an m-coloring via the following technical lemma. In the statement and
proof of this lemma, indices are expressed modulo m.

Lemma 2.2. Let H = Zm1 ×Zm2 × · · · ×Zmk
= {h0, h1, . . . , hm−1} be an Abelian group of

odd order m with elements ordered lexicographically, and let s be a positive integer satisfying
gcd(s+ 1,m) = 1. Then the map φ : H → H given by φ(hi) = hi+c + hsi+d is injective for
every c, d ∈ [m].

Proof. Fix arbitrary integers c, d ∈ [m]. We proceed by induction on |H|. If H = Zm then

φ(h) = (s+ 1)h+ c+ d (mod m) (2.2)
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for all h ∈ H. Having assumed gcd(s+ 1,m) = 1, we know s+ 1 is a generator of Zm. This
yields the identity

{(s+ 1)r : r ∈ Zm} = Zm. (2.3)

Now consider a, b ∈ H such that φ(a) = φ(b). It follows from (2.2) that

(s+ 1)a ≡ (s+ 1)b (mod m).

But then (2.3) implies a = b, which establishes the base case of our induction and allows us
to assume that H is not cyclic.

We may assumeH = Zm1×H ′, whereH ′ = Zm2×· · ·×Zmk
is a nontrivial Abelian group

of odd order q := m
m1

. Observe that, if we order H ′ = {g0, g1, . . . , gq−1} lexicographically,
then, for every i ∈ [m],

hi =
(⌊

i

q

⌋
, gi (mod q)

)
.

Now, define the map ψ : H ′ → H ′ by ψ(gi) = gi+c (mod q) +gsi+d (mod q) and consider indices
i, j ∈ [m] for which φ(hi) = φ(hj). This is equivalent to the identity(⌊

i+ c

q

⌋
+
⌊
si+ d

q

⌋
, ψ(gi)

)
=
(⌊

j + c

q

⌋
+
⌊
sj + d

q

⌋
, ψ(gj)

)
, (2.4)

with the first coordinate expressed modulo m1. Because gcd(q, s + 1) = 1, the induction
hypothesis tells us that ψ is injective. Thus, i ≡ j (mod q) and we may assume j = i + rq

for some r ∈ [m1]. But then the identity induced by the first coordinates in (2.4) implies⌊
i+ c

q

⌋
+
⌊
si+ d

q

⌋
≡
⌊
i+ rq + c

q

⌋
+
⌊
si+ srq + d

q

⌋
=
⌊
i+ c

q

⌋
+ r +

⌊
si+ d

q

⌋
+ sr (mod m1),

which is equivalent to (s+ 1)r ≡ 0 (mod m1). Because 0 ≤ r < m1 and s+ 1 is coprime to
m1, it must be the case that r = 0, which implies i = j.

The following result, which is essentially a corollary of Lemma 2.2, shows that right
diagonals form an m-coloring of H. See Figure 2.1 for an example of such a coloring in the
group Z3 × Z3.

Lemma 2.3. Let H = Zm1 × Zm2 × · · · × Zmk
be an Abelian group of odd order m. If the

rows and columns of the Cayley table L = L(H) are ordered lexicographically then Td is a
transversal for every d ∈ [m].

Proof. Index the elements of H = {h0, h1, . . . , hm−1} by their lexicographical order. It
follows immediately from (2.1) that R(Td) = C(Td) = [n]. To complete the proof, we must
show that S(Td) is simple. This is tantamount to showing that, for each h ∈ H, there is a
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unique index i ∈ [m] such that

hi + hi+d (mod m) = h.

But this follows directly from an application of Lemma 2.2 with s = 1 and c = 0.

00a 01b 02c 10d 11e 12f 20g 21h 22i
01i 02a 00b 11c 12d 10e 21f 22g 20h
02h 00i 01a 12b 10c 11d 22e 20f 21g
10g 11h 12i 20a 21b 22c 00d 01e 02f
11f 12g 10h 21i 22a 20b 01c 02d 00e
12e 10f 11g 22h 20i 21a 02b 00c 01d
20d 21e 22f 00g 01h 02i 10a 11b 12c
21c 22d 20e 01f 02g 00h 11i 12a 10b
22b 20c 21d 02e 00f 01g 12h 10i 11a

Figure 2.1: Subscripts indicating a 9-coloring of L(Z3 × Z3) using right diagonals.

It is worth noting that, when H is non-cyclic, the coloring of L(H) obtained from its
right diagonals cannot be realized as the set of shifts of any fixed transversal, making it
fundamentally different from the colorings described in the proof of Theorem 1.7.

2.2 Finding Möbius ladders as induced subgraphs

We are now in a position to find a partition of L = L(G) in which the subgraphs of
Γ = Γ(L) induced on each part are isomorphic. Specifically, each part will induce a graph
isomorphic to a Möbius ladder. Expressing indices modulo 2n, we define theMöbius ladder
of order 2n, denotedMn, as having vertex set {v0, v1, . . . , v2n−1} and edge set E1∪E2, where
E1 := {vivi+1 : i ∈ [2n]} and E2 := {vivi+n : i ∈ [n]}. Note that E1 forms a Hamilton
cycle in Mn while edges in E2 connect opposite vertices in this cycle. We refer to E1 as the
“rim” of the Möbius ladder and to edges in E2 as its “rungs.”

For each i ∈ [n], we refer to the pair {vi, vi+n} as an antipodal pair of vertices, while
{vi, vi+n+1} and {vi, vi+n−1} are called near-antipodal pairs. Alternatively, we may define
a near-antipodal pair as two vertices u, v ∈ V (Mn) such that the shortest path from u to
v along the rim of Mn has length n − 1. Two drawings of M18 with a highlighted pair of
near-antipodal vertices is given in Figure 2.2.

We are interested in Möbius ladders because they admit the following family of well-
structured colorings.
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Figure 2.2: Two drawings of the Möbius ladder M18 with a near-antipodal pair of vertices
highlighted.

Proposition 2.4. For n ≥ 3, letMn be the Möbius ladder of order 2n, and let {vi, vi+n+1} ∈
V (Mn) be a near-antipodal pair. Then Mn has a 3-coloring in which one of the color classes
is exactly {vi, vi+n+1}.

Proof. Throughout this proof we express indices modulo 2n. By reindexing if necessary,
we may assume without loss of generality that i = 2n − 1. Consider the greedy coloring
c : Mn → N given by the vertex ordering v0, v1, . . . , v2n−1. This coloring will alternate

c(v0) = 1, c(v1) = 2, c(v2) = 1, . . .

until we reach vn. If n is odd then this alternating pattern will proceed around the rim,
so that c is a 2-coloring. We then construct the desired coloring c′ by setting c′(v2n−1) =
c′(vn) = 3 and c′(vj) = c(vj) for all j ∈ [2n− 1] \ {n}.

If n is even then c(vn) = 3, after which c will follow the alternating pattern

c(vn+1) = 1, c(vn+2) = 2, c(vn+3) = 1, . . . , c(v2n−2) = 2.

Notice that c maps the neighborhood of v2n−1 to {1, 2}. Thus, c(v2n−1) = 3 and c is as
desired.

Before we can make use of Proposition 2.4, we must show how to partition V (Γ) into sets
that induce Möbius ladders. As in Lemma 2.3, this is merely a matter of finding the correct
ordering for the rows and columns of L. Given integers a and b satisfying gcd(a, b) = 1
and two totally ordered sets W = {w0, w1, . . . , wa−1}, Z = {z0, z1, . . . , zb−1}, we define the
mod-counting ordering of W × Z as

(w0 (mod a), z0 (mod b)), (w1 (mod a), z1 (mod b)), . . . , (wab−1 (mod a), zab−1 (mod b)).
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00 11 02 10 01 12
11 02 10 01 12 00
02 10 01 12 00 11
10 01 12 00 11 02
01 12 00 11 02 10
12 00 11 02 10 01

00
11

02

10

01

12
00

11

02

10

01

12

Figure 2.3: A pair of right diagonals T0 ∪T1 ⊆ L(Z2×Z3) and the corresponding induced
subgraph Γ′ ⊆ Γ(L(Z2 × Z3)), which is isomorphic to the Möbius ladder M6.

Recall that G ∼= Zt × H, where m = |H| and t = 2l are relatively prime. Thus, G has a
well-defined mod-counting order, and we can state the following lemma.

Lemma 2.5. Let G = Zt × H be a group of order n = tm, where t = 2l for l ≥ 1 and
H = Zm1 × Zm2 × · · · × Zmk

is an Abelian group of odd order. If we arrange the rows and
columns of L = L(G) in mod-counting order with respect to the lexicographical ordering of
H = {h0, h1, . . . , hm−1} and the canonical ordering of Zt = {0, 1, . . . , t − 1}, then the latin
square graph Γ = Γ(L) satisfies Γ[TLd ∪ TLd+1] ∼= Mn for every d ∈ [n].

Proof. In this proof indices are expressed modulo n unless otherwise stated. Fixing d ∈ [n],
let Γ′ := Γ[TLd ∪TLd+1], and apply the labels Ai := Li,i+d, and Bi := Li,i+d+1 to the elements
of V ′ = V (Γ′). Recall that E′ = E(Γ′) can be partitioned into the sets E′R, E′C , and E′S ,
corresponding to “row edges,” “column edges,” and “symbol edges,” respectively. It follows
from (2.1) that E′R = {AiBi : i ∈ [n]} and E′C = {Ai+1Bi : i ∈ [n]}. Thus, the vertex
sequence

A0, B0, A1, B1, . . . , An−1, Bn−1

corresponds to a Hamilton cycle in Γ′ that uses all of the edges in E′R ∪ E′C . An example
with G = Z2 × Z3 and d = 0 is shown in Figure 2.3.

For i ∈ [n], define the function r(i) = i + n
2 (mod n). It is left to show that E′S =

{AiAr(i) : i ∈ [n]} ∪ {BiBr(i) : i ∈ [n]}. Let ai, bi denote the symbols in the cells Ai and
Bi, respectively. By definition,

ai = (2i+ d, hi + hi+d (mod m)) and bi = (2i+ d+ 1, hi + hi+d+1 (mod m)), (2.5)

with the first coordinate expressed modulo t. We then see that E′S contains no edges of the
form AiBj , as the first coordinates of ai and bj always have different values modulo 2.
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Fixing i ∈ [n], suppose there is some nonzero x ∈ [n] such that ai = ai+x. By (2.5), this
implies the identities

(I1) 2i+ d ≡ 2i+ 2x+ d (mod t), (I2) hi + hi+d = hi+x + hi+x+d, (2.6)

where in (I2) indices are expressed modulo m. Applying Lemma 2.2 to (I2) with c = 0 and
s = 1, we see that i ≡ i + x (mod m), which means x ≡ 0 (mod m). On the other hand,
(I1) implies 2x ≡ 0 (mod 2l), from which we may conclude x ≡ 0 (mod 2l−1). Because m
is odd, the only nonzero x ∈ [n] that is divisible by both m and 2l−1 is 2l−1m = n

2 . As
x = n

2 satisfies (2.6), we conclude that AiAj ∈ E′S if and only if j = r(i). A nearly identical
argument shows that BiBj ∈ E′S if and only if j = r(i), completing the proof.

2.3 Optimal colorings of Abelian groups

The results proven so far in this chapter already show Cayley tables of finite Abelian
groups of order at least 3 satisfy χ(L) ≤ 3

2n: simply partition L into n/2 sets, each of which
induces a Möbius ladder, and 3-color each copy of Mn with a distinct set of colors. This
coloring is fairly coarse, but it can be significantly improved by “recycling” colors among
distinct Möbius ladders. Recall Proposition 2.4: we may pick any pair of near-antipodal
vertices to be its own color class in a 3-coloring of Mn. If we make this selection carefully,
near-antipodal pairs from many different Möbius ladders can be combined into a single color
class. The following theorem shows we only need two color classes to cover a near-antipodal
pair from each copy of Mn.

Theorem 2.6. Let G be an Abelian group of order n. Then

χ(G) ≤ n+ 2

Proof. Let L be the Cayley table of G, and let Γ = (V,ER ∪ EC ∪ ES) be its associated
latin square graph. As discussed above, Theorem 1.7 allows us to assume G = Zt × H,

where t = 2l for l ≥ 1 and H = Zm1 × Zm2 × · · · × Zmk
is an Abelian group of odd order

m := n/t =
∏k
i=1mi. In this case n is even and the integer constant

q := n/2

is well defined. Furthermore, because Z2 has latin square graph K4, we may assume n ≥ 4.
Ordering H = {h0, h1, . . . , hm−1} lexicographically, we arrange L according to the mod-

counting order of G = Zt ×H given by

gi =
(
i (mod t), hi (mod m)

)
for i ∈ [n]. (2.7)
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By Lemma 2.3 and Lemma 2.5, the sets

Di := T2i ∪ T2i+1

satisfy Γi := Γ[Di] ∼= Mn for every i ∈ [q].
We want to find a pair of independent setsX,Y ⊆ V such thatD′i := Di\(X∪Y ) induces

a bipartite graph Γ′i = Γ[D′i] for every i ∈ [q]. Given such sets X and Y , we can properly
(n+2)-color Γ using a distinct pair of colors for each of the n

2 +1 setsD′0, D′1, . . . , D′q−1, X∪Y .
Towards a definition of X and Y , let

k :=
⌈
n

4

⌉
and (q0, q1) :=

(q, q + 1) if q ≡ 0 (mod 3),

(q − 1, q) otherwise,
(2.8)

and let z := z (mod n) for every z ∈ Z. Then, for each i ∈ [k], we define

xi := L(i, 3i), x′i := L(q0 + i, q1 + 3i), and X := {xi, x′i : i ∈ [k]}. (2.9)

Similarly, for every j ∈ [q − k], we define

yj := L(j, 3j + 2k), y′i := L(q0 + j, q1 + 3j + 2k), and Y := {yj , y′j : j ∈ [q − k]}. (2.10)

Figure 2.4 illustrates L, X, and Y for the group Z2×Z3×Z3. We observe xi ∈ T2i ⊆ Di

and x′i ∈ T2i+1 ⊆ Di for each i ∈ [k]. Similarly, yj , y′j ∈ Dk+j for each j ∈ [q − k].
Recall from the proof of Lemma 2.5 that the rim of the Möbius ladder Γi := Γ[Di]

is formed by the row and column edges ER(Γi) ∪ EC(Γi), and observe that the shortest
path from xi to x′i using these edges has length n− 1. Thus, xi, x′i is a near-antipodal pair
for every i ∈ [k]. Similarly, yj , y′j are near-antipodal for every j ∈ [q − k]. It follows from
Proposition 2.4 that Γ′i is bipartite for every i ∈ [q].

It remains to show that X and Y are independent sets in Γ. We begin by showing that
both R(X) and C(X) are simple. It follows from (2.9) that

R(X) = [k] ∪ {q0 + i : i ∈ [k]}.

But k − 1 < q0 and q0 + k − 1 < n, which implies R(X) is simple. Now, define

X̂ := {xi : i ∈ [k]} and X ′ := {x′i : i ∈ [k]}. (2.11)

Looking again to (2.9), we see that

C(X̂) = {3i : i ∈ [k]} and C(X ′) = {q1 + 3i : i ∈ [k]}.
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0̃00 101 002 110 011 112 020 121 022 100 001 102 010 111 012 120 021 122
101 002 100 0̃11 112 010 121 022 120 001 102 000 111 012 110 021 122 020
002 100 001 112 010 111 0̃22 120 021 102 000 101 012 110 011 122 020 121
110 011 112 020 121 022 100 001 102 0̃10 111 012 120 021 122 000 101 002
011 112 010 121 022 120 001 102 000 111 012 110 0̃21 122 020 101 002 100
112 010 111 022 120 021 102 000 101 012 110 011 122 020 121 002 100 001
020 121 022 100 001 102 010 111 012 120 021 122 000 101 002 110 011 112
121 022 120 001 102 000 111 012 110 021 122 020 101 002 100 011 112 010
022 120 021 102 000 101 012 110 011 122 020 121 002 100 001 112 010 111
100 001 102 010 111 012 120 021 122 000 1̃01 002 110 011 112 020 121 022
001 102 000 111 012 110 021 122 020 101 002 100 011 1̃12 010 121 022 120
102 000 101 012 110 011 122 020 121 002 100 001 112 010 111 022 1̃20 021
010 1̃11 012 120 021 122 000 101 002 110 011 112 020 121 022 100 001 102
111 012 110 021 1̃22 020 101 002 100 011 112 010 121 022 120 001 102 000
012 110 011 122 020 121 002 100 001 112 010 111 022 120 021 102 000 101
120 021 122 000 101 002 110 011 112 020 121 022 100 001 102 010 111 012
021 122 020 101 002 100 011 112 010 121 022 120 001 102 000 111 012 110
122 020 121 002 100 001 112 010 111 022 120 021 102 000 101 012 110 011

Figure 2.4: A Cayley table of Z2 × Z3 × Z3 with elements of X̃, Y, and D0 highlighted.

Because 3(k− 1) < n, both C(X̂) and C(X ′) are simple sets. Thus, C(X) = C(X̂)∪C(X ′)
is simple unless C(X̂) ∩ C(X ′) 6= ∅.

Suppose there were some x ∈ C(X̂) ∩ C(X ′). Because x ∈ C(X̂), there is an i0 ∈ [k]
such that x = 3i0, meaning x ≡ 0 (mod 3). However, x ∈ C(X ′) means x = q1 + 3i1 for
some i1 ∈ [k], which we claim implies x 6≡ 0 (mod 3).

Our proof of this claim has two cases. First, if n is a multiple of 3 then so is q, and (2.8)
tells us that q1 = q+1 ≡ 1 (mod 3). But then x ≡ q1 +3i1 ≡ 1 (mod 3). On the other hand,
if n is not divisible by 3 then (2.8) tells us that q1 = q 6≡ 0 (mod 3). When q + 3i1 < n this
yields x = q + 3i1 6≡ 0 (mod 3), while when q + 3i1 ≥ n we have

x = q + 3i1 − n ≡ q − n = −q 6≡ 0 (mod 3).

Having established that R(X) and C(X) are simple, we observe that X and Y have the
same “shape” in L in the sense that R(Y ) ⊆ R(X) and C(Y ) ⊆ {c+2k : c ∈ C(X)}. Thus,
R(Y ) and C(Y ) must also be simple.

Next, we show S(X) is simple. From here to the end of the proof indices are expressed
modulo m. Observe that (2.8) implies q0 + q1 ∈ {−1, 1}. It therefore follows from (2.7) and
(2.9) that there is some w ∈ {−1, 1} such that

S(xi) = (4i, hi + h3i) and S(x′i) = (4i+ w, hi+q0 + h3i+q1)

for every i ∈ [k]. We immediately see that the first coordinate of S(xi) ≡ 0 (mod 2), while
the first coordinate of S(x′j) ≡ 1 (mod 2) for every i, j ∈ [k]. Thus, S(X̂) ∩ S(X ′) = ∅.
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To see that S(X̂) is simple, consider xi, xj ∈ X̂ such that S(xi) = S(xj). We then
have hi + h3i = hj + h3j , and applying Lemma 2.2 with c = d = 0 and s = 3 tells us
that i ≡ j (mod m). We also have 4i ≡ 4j (mod t). If t ≤ 4, then this identity is trivially
satisfied. However, in this case (2.9) implies

|i− j| < k =
⌈
mt

4

⌉
≤
⌈
m4
4

⌉
= m.

Thus i = j, as distinct numbers are congruent modulo m only if their difference is at least
m, and xi = xj . We still need to consider the case t > 4, which is equivalent to t ≥ 8 because
t = 2l for some integer l ≥ 1. In this case, 4i ≡ 4j (mod t) implies i − j ≡ 0 (mod 2l−2).
Because m is odd, it is relatively prime to 2l−2, and the Chinese Remainder Theorem tells
us that x = 0 is the unique x ∈ [2l−2m] satisfying x ≡ 0 (mod 2l−2) and x ≡ 0 (mod m). It
is easy to see in this case that the unique value is x = 0. Because |i− j| < k = 2l−2m and
i− j satisfies both of these these congruences, it must be the case that i = j.

A similar argument shows that S(X ′) is simple. Indeed, when S(x′i) = S(x′j), applying
Lemma 2.2 with c = q0, d = q1, and s = 3 yields i ≡ j (mod m), while 4i + w ≡ 4j +
w (mod t) implies 4i ≡ 4j (mod t). From here we may proceed exactly as above.

The proof that S(Y ) is simple is nearly identical to the corresponding proof for S(X)
just given. By (2.7) and (2.10), there is some w ∈ {−1, 1} such that

S(yi) = (4i+ 2k, hi + h3i+2k) and S(y′i) = (4i+ 2k + w, hi+q0 + h3i+q1+2k)

for every i ∈ [q − k]. Considering the first coordinates modulo 2, we see S(Ŷ ) ∩ S(Y ′) = ∅.
We then check that S(Ŷ ) and S(Y ′) are both simple by applying Lemma 2.2 and noting
that 4i+ z ≡ 4j + z (mod t) if and only if 4i ≡ 4j (mod t) for every z ∈ Z.

We have thus constructed an optimal coloring of every group G for which Syl2(G) is
nontrivial and cyclic. This chapter’s main result immediately follows.

Proof of Theorem 2.1. If Syl2(G) is trivial or non-cyclic, Theorem 1.7 tells us that χ(G) =
n. Otherwise, Theorem 1.7 tells us that χ(G) ≥ n + 2, which can be combined with the
upper bound given Theorem 2.6 to conclude χ(G) = n+ 2.
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Chapter 3

A general upper bound

In this chapter we step back into a more general setting and consider colorings of groups
which are not necessarily Abelian.1 Our ultimate goal is improve the best known upper
bound for χ(G) (when n = |G| ≥ 3) from 2n to 3

2n. We achieve this in three steps. First, we
bound the chromatic number of non-simple groups using colorings of some normal subgroup
and the corresponding quotient group. Next, we combine this result with a characterization
of groups with nontrivial cyclic Sylow 2-subgroups to find an upper bound for χ(G) which
depends only on the order of Syl2(G). This bound is sufficient for our purposes in all cases
except n ≡ 2 (mod 4). Finally, we end the chapter by taking care of the outstanding case
with an application of Brooks’ Theorem.

3.1 Coloring with subgroups and block representations

Up until this point we have only considered instantiations of Cayley tables in which
the rows and columns have the same ordering. This is the standard way of displaying
Cayley tables, but–because the chromatic number is a main class invariant–we need not
adhere to this convention. Indeed, arranging the rows and columns of a Cayley table in
(possibly) distinct orders allows us to construct a highly structured block representation.
More specifically, given any group G and any subgroup H ⊆ G, we can factor L(G) into
|G/H|2 copies of L(H) (see Figure 3.1 below). To fully describe this block representation,
we need to be precise about what we mean by “copies of L(H).”

We say that two latin squares L1, L2 are essentially identical if there is an isotopy
between them that does not permute rows or columns. In other words, L1 can be obtained
from L2 by changing the names of the symbols. Notice that passing between essentially
identical latin squares preserves the “shape” of transversals in the sense that a set of indices
which describes a transversal in L1 also describes a transversal in L2. This observation,

1As such, we will now use multiplicative notation rather than the additive notation of Chapter 2.

22



which will be crucial to the proof of Theorem 3.8 below, motivates our referring to the
block representation in the following lemma as “highly structured.”

Lemma 3.1. Let G be a finite group and let H be a subgroup of G with index t. Then
L = L(G) has the block representation

L =


A00 A01 · · · A0,t−1

A10 A11 · · · A1,t−1
...

... . . . ...
At−1,0 At−1,1 · · · At−1,t−1

 (3.1)

in which A00 is a Cayley table of H and Aij is a latin subsquare essentially identitcal to
A00 for every i, j ∈ [t].

Proof. LetK = {k0, k1, . . . , kt−1} be a set of left coset representatives andQ = {q0, q1, . . . , qt−1}
a set of right coset representatives for H in G such that k0 = q0 = 1 (the identity element
of G). Fixing an arbitrary enumeration of H = {h0, h1, . . . , hm−1}, order the rows of L by

h0, h1, . . . , hm−1, k1h0, . . . , k1hm−1, k2h0, . . . , k2hm−1, . . . , kt−1h0, . . . , kt−1hm−1,

and order the columns of L by

h0, h1, . . . , hm−1, h0q1, . . . , hm−1q1, h0q2, . . . , hm−1q2, . . . , h0qt−1, . . . , hm−1qt−1.

We may therefore define the blocks in (3.1) by

Aij := {(kiha, hbqj) : a, b ∈ [m]}

for every i, j ∈ [t]. Observe that S(A00(a, b)) = hahb ∈ H for every a, b ∈ [m]. Thus, A00 is
a Cayley table of H. Furthermore, fixing i, j ∈ [t], we have

S(Aij(a, b)) = kihahbqj = kiS(A00(a, b))qj . (3.2)

for every a, b ∈ [m]. Because S′(A00) = H, we then have S′(Aij) = kiHqj . But |kiHqj | = m,
meaning Aij is anm×m subsquare (of a latin square) containing exactlym distinct symbols.
This is equivalent to Aij being a latin subsquare. Finally, we see from (3.2) that Aij is
essentially identical to A00 via the isotopy (σ, τ, φ) in which σ and τ are both the identity
map and φ : H → kiHqj is the map h 7→ kihqj .

It is well-known that every group on non-prime order contains some nontrivial proper
subgroup. But all groups of prime order are cyclic, and as Cayley tables of cyclic groups
are already well-understood, Lemma 3.1 allows us to at least approximately describe the
structure of every Cayley table.
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1 h h2 p ph2 ph p2 p2h p2h2 p3 p3h2 p3h

h h2 1 ph2 ph p p2h p2h2 p2 p3h2 p3h p3

h2 1 h ph p ph2 p2h2 p2 p2h p3h p3 p3h2

p ph ph2 p2 p2h2 p2h p3 p3h p3h2 1 h2 h

ph ph2 p p2h2 p2h p2 p3h p3h2 p3 h2 h 1
ph2 p ph p2h p2 p2h2 p3h2 p3 p3h h 1 h2

p2 p2h p2h2 p3 p3h2 p3h 1 h h2 p ph2 ph

p2h p2h2 p2 p3h2 p3h p3 h h2 1 ph2 ph p

p2h2 p2 p2h p3h p3 p3h2 h2 1 h ph p ph2

p3 p3h p3h2 1 h2 h p ph ph2 p2 p2h2 p2h

p3h p3h2 p3 h2 h 1 ph ph2 p p2h2 p2h p2

p3h2 p3 p3h h 1 h2 ph2 p ph p2h p2 p2h2

Figure 3.1: A Cayley table of Dic3 divided into blocks, as per Lemma 3.1, with a color class
from the proof of Theorem 3.2 in bold.

Our ability to partition L(G) into blocks with similarly shaped transversals seems to
offer a path towards constructing economical colorings of G. Unfortunately, pairs of sets
in the collection {kiHqj : i, j ∈ [t]} can in general intersect in various ways. Thus, when
trying to paste together transversals from different blocks there is a constant risk of picking
cells with the same symbol. When H is a normal subgroup of G, however, we know exactly
how any two blocks intersect. This allows us to color any non-simple group using colorings
of smaller groups, yielding the following upper bound for χ(G).

Theorem 3.2. Let G be a finite group and let H / G be a normal subgroup. Then

χ(G) ≤ χ(H)χ(G/H).

Proof. Let F := G/H = {f0, f1, . . . , ft−1}, and note that F forms a set of left and right
coset representatives of H in G. By Lemma 3.1, L = L(G) has the block representation (3.1)
in which A00 = L(H) and each Aij is essentially identical to L(H). Recall from Section 1.3,
the chromatic number of a latin square is a main class invariant. Thus, setting m := χ(H),
each Aij has an m-coloring fij : Aij → [m].

Just as in the proof of Lemma 3.1, we may observe that S′(Aij) = fiHfj . But H is
normal in G, so we may in fact write S′(Aij) = fifjH. If K is the latin square formed
by identifying blocks with the symbols therein contained, it then follows that K = L(F ).
Letting d = χ(F ), we may select some d-coloring f∞ : K → [d].

Using f∞ and {fij : i, j ∈ [t]}, we construct a (dm)-coloring of L, say f : L→ [d]× [m].
For each i, j ∈ [t] and for every cell c ∈ Aij ⊆ L, set f(c) = (f∞(Aij), fij(c)). See Figure 3.1
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for an example of a color class in f when G = Dic3 and H = Z3 . To see that f is indeed a
proper coloring, consider c, c′ ∈ L such that f(c) = f(c′). Because f∞ is a proper coloring,
c and c′ cannot lie in adjacent blocks of V (Γ(K)). They could lie in the same block, say
Aij , but because fij is also a proper coloring, it is nonetheless impossible for c and c′ to be
adjacent in Γ(L).

It is worth noting that this theorem generalizes a result of Hall and Paige on the existence
of complete mappings. Corollary 2 of [23] states: if H is a normal subgroup of G, and both
H and G/H possess complete mappings then G possesses a complete mapping. To see that
this is a special case of Theorem 3.2, recall that a group G possesses a complete mapping
if and only if it has chromatic number n.

The most obvious application of Theorem 3.2 is to recursive coloring of non-simple
groups. In particular, having determined the chromatic number of every Abelian group in
Chapter 2, we now have a tool for bounding the chromatic number of any solvable group.
Given a solvable group G with subnormal series G = Ga . Ga−1 . · · · . G1 . G0 = {1}, we
now know that

χ(G) ≤ χ(G/Ga−1)χ(Ga−1/Ga−2) · · ·χ(G2/G1)χ(G1). (3.3)

However, whenever a factor Gi/Gi−1 does not possess a complete mapping we pick up
several redundant colors. If there are enough such factors, then the bound in (3.3) could be
significantly worse than Wanless’ bound of χ(G) ≤ 2n. For example, the dicyclic group of
order 28 has a subnormal series of the form

Dic7 . Z14 . {1},

which when combined with (3.3) gives an upper bound of χ(Dic7) ≤ (4)(16) = 64.
To uncover the true power of Theorem 3.2 we must make recourse to Theorem 1.7. If

we want to bound the chromatic number of every Cayley table, we need only consider those
which we do not already know to be n-colorable. Theorem 1.7 tells us that χ(G) = n if and
only if Syl2(G) is either trivial or non-cyclic. Thus, for any k > n, showing χ(G) ≤ k for
all groups amounts to finding a k-coloring of every group G for which Syl2(G) is nontrivial
and cyclic.

In [23], Hall and Paige noticed that all groups with nontrivial cyclic Sylow 2-subgroups
have a concise yet robust structural description. Given a group G, a normal subgroup
H / G and a (not necessarily normal) subgroup K ⊆ G, we say that G is the (internal)
semidirect product of H and K, written G = KnH, if G = KH = {kh : k ∈ K, h ∈ H}
and K ∩H = {1}. Note that G = K nH implies K is a collection of coset representatives
for H in G. The following result, first mentioned in this context by Hall and Paige [23], is
essentially a corollary of a theorem due to Burnside (Theorem 14.3.1 in [24]).
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Lemma 3.3. Let G be a finite group and let P be a Sylow 2-subgroup of G. If P is cyclic
and nontrivial then there is a normal subgroup of odd order H / G such that G = P nH.

Recall that in Chapter 2 we used the fundamental theorem of finite Abelian groups to
write G as the direct product of Syl2(G) and a subgroup of odd order. We now see that the
existence of such a decomposition does not depend on the fundamental theorem of finite
Abelian groups, but instead can be proven directly from Lemma 3.3.

We are now in a position to make full use of Theorem 3.2. By combining this theorem
with Lemma 3.3, we get an upper bound on the chromatic number of every Cayley table.
Because Corollary 1.6 tells us that all groups of odd order have chromatic number n, we
state this result only for groups of even order.

Theorem 3.4. Let G be a group of even order n ≥ 3 and write n as n = mt, where m is
odd and t = 2l for l ≥ 1. Then

χ(G) ≤ t+ 2
t

n = n+ 2n
t
.

Proof. If Syl2(G) is non-cyclic then χ(G) = n ≤ n+ 2n
t , so we may assume Syl2(G) = Zt.

Then, Lemma 3.3 tells us that G = ZtnH for some normal subgroup H of odd order m. In
particular, G/H = Zt. Combining this fact with Theorem 3.2, Corollary 1.6, and Theorem
2.1, we see that

χ(G) ≤ χ(H)χ(Zt) = m(t+ 2) = t+ 2
t

n.

It is worth considering the degree to which this theorem improves on Wanless’ upper
bound of χ(G) ≤ 2n. As t grows with respect tom, Theorem 3.4 approaches the conjectured
best possible bound of χ(G) ≤ n + 2. Indeed, when n = t we get exactly χ(G) ≤ n + 2.
Of course, we already knew the chromatic number of all 2-groups: if the group G of order
2l is cyclic, then Theorem 2.1 tells us χ(G) = 2l + 2, and otherwise Theorem 1.7 tells us
χ(G) = 2l. Nonetheless, Theorem 3.4 can give very strong upper bounds on χ(G). For
example, if G is a group whose order n is divisible by 64 then χ(G) ≤ 33

32n.
We are more concerned with the case when t is small. When t = 4 Theorem 3.4 tells us

that χ(G) ≤ 3
2n. This is exactly the general upper bound for χ(G) which we will establish in

Section 3.3. Indeed, Theorem 3.4 establishes that χ(G) ≤ 3
2n whenever |G| = n is divisible

by 4. We are left to consider the case t = 2, a case in which Theorem 3.4 reproduces
Wanless’ upper bound. Before dealing with this case in Section 3.3, we make a brief detour
to consider possible improvements to Theorem 3.2.
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3.2 The limits of block coloring

In the proof of Theorem 3.2 we colored the group G by pasting together colorings of
some normal subgroup H with colorings of the quotient group G/H. Assuming that L(G)
is written as in (3.1), the latin square K, formed by identifying each block with the set of
symbols it contains, is essentially identical to L(G/H). Setting m := χ(H), we can properly
color L = L(G) by assigning a set of size m to each block Aij in such a way that two
blocks which are adjacent in Γ(K) receive disjoint sets. We achieved this above by finding
a coloring of K, say f , then using a disjoint set of size m for each color class of f .

In general, this idea gives a reasonably good bound on the chromatic number of L.
However, it is not the most efficient means of exploiting the structure in (3.1). We define
an m-fold coloring of a graph Γ as an assignment of a list of size m to each of its vertices
in such a way that adjacent vertices receive disjoint lists. The m-fold chromatic number
of Γ, denoted χm(Γ), is the least number of colors needed to populate the lists in an m-fold
coloring of Γ. As above, we define m-fold colorings and the m-fold chromatic number of a
latin square via the corresponding latin square graph, and further extend these notions to
groups by making recourse to their Cayley tables.

We can now succinctly restate the discussion in the first paragraph of this section. If G
is a finite group with a normal subgroup H / G satisfying χ(H) = m, then

χ(G) ≤ χm(G/H).

Furthermore, the argument at the end of the proof of Theorem 3.2 tells us that

χm(G/H) ≤ mχ(G/H). (3.4)

Combining these two inequalities gives us exactly the conclusion of Theorem 3.2. But equal-
ity does not always hold in (3.4), and in this case we may obtain an improved upper bound
for χ(G). This compels us to ask: how small can χm(G/H) be?

For notational simplicity, let Γ := Γ(L(G/H)). It turns out that we can determine an
exact lower bound for χm(Γ) when we view this quantity as a function of m. The first step
in this process is to notice that χm is subadditive, i.e. that χa+b(Γ) ≤ χa(Γ) + χb(Γ). This
is due to the fact that the union of an a-fold coloring and a b-fold coloring is an (a+ b)-fold
coloring. We then define the fractional chromatic number of a graph Γ, denoted χf (Γ),
as

χf (Γ) := lim
m→∞

χm(Γ)
m

. (3.5)

Observe that the above limit is well-defined precisely because the function χm(Γ) is sub-
additive. The fractional chromatic number is a well-studied graph parameter, and its value
is known exactly for vertex-transitive graphs. And indeed, all Cayley tables have vertex-
transitive latin square graphs.
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Proposition 3.5. Let L be the Cayley table of a finite group G. Then the associated latin
square graph Γ = Γ(L) is vertex-transitive.

Proof. We can think of V = V (Γ) as the set of triples {(g, h, gh) : g, h ∈ G}. We want
to show that, given any pair of vertices v1, v2 ∈ V , there is an automorphism σ ∈ Aut(Γ)
sending v1 to v2. We can write v1 = (g1, h1, g1h1) and v2 = (g2, h2, g2h2). By definition,
there are unique g0, h0 ∈ G such that g0g1 = g2 and h1h0 = h2. Furthermore, g0gi = g0gj

if and only if gi = gj , and a similar result holds for right multiplication by h0. Thus, the
map (g, h, gh) 7→ (g0g, hh0, g0ghh0), which sends v1 to v2, is an automorphism of Γ with
the desired property.

Although this proposition has a straightforward proof, it marks another important dis-
tinction between Cayley tables and general latin squares. As noted by Cameron in the
discussion section of [2], almost all latin square graphs are not vertex-transitive. In fact,
this asymptotic result is even stronger: almost all latin square graphs have a trivial automor-
phism group. Nonetheless, that the latin square graphs corresponding to Cayley tables are
among the few such graphs with this strong algebraic property should not be too surprising.

Given Proposition 3.5, the following well-known result now plays a significant role in
our understanding of block colorings.

Proposition 3.6. Let Γ be a vertex-transitive graph and let α be the size of the largest
independent set in Γ. Then

χf (Γ) = |V (Γ)|
α

.

Proof. We first show that χm(Γ) ≥ m|V (Γ)|
α for every positive integer m. As an m-fold

coloring assigns a list of size m to every vertex in Γ, we have to make m|V (Γ)| color
assignments in total. We can assign a single color to several different vertices, but the
vertices to which any given color is assigned must form an independent set. In other words,
each color can be assigned to at most α vertices. Thus, every m-fold coloring uses at least
m|V (Γ)|

α colors.
It is left to show that, for every vertex-transitive graph Γ, there is a positive integer m

such that Γ has anm-fold coloring using exactly m|V (Γ)|
α colors. To construct such a coloring,

let A be an independent set of size α in Γ. Then, because the automorphism group Aut(Γ)
acts transitively on Γ, the set

C := {σ(A) : σ ∈ Aut(Γ)}

covers each vertex in Γ exactly m times for some m ∈ Z. We can then construct an m-fold
coloring of Γ by assigning to each v ∈ V (Γ) the list of sets in C which contain v. And in fact
this coloring has the desired size, as

∑
σ∈Aug(Γ) |σ(A)| = m|V (Γ)|, so that |C| = m|V (Γ)|

α .
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It is worth reflecting on the utility of this proposition. In general, determining the size
of the largest independent set in a graph is NP-Hard [28]. For latin square graphs, however,
this question is equivalent to asking for the size of the largest partial transversal in the
corresponding latin square. As such, we have a fairly comprehensive understanding of the
possible values α may take in the relevant applications of Proposition 3.6.

Returning to block colorings, let G be a group of order n and let H / G be a normal
subgroup with chromatic numberm such that |G/H| = t. Setting Γ := Γ(L(G/H)), we know
that the largest independent set in Γ has size α ≤ k. If α = k then χf (G/H) = k = χ(G/H),
so that passing to k-fold colorings of G/H offers no improvement on Theorem 3.2. Otherwise
α ≤ k − 1, in which case χm(Γ) ≥ mk2

k−1 = k
k−1 |G|. Thus, passing to m-fold colorings of a

quotient group will never give us an upper bound of the form χ(G) ≤ n+ o(n).
Let us compare this bound to the one given in Theorem 3.4. We may assume G = ZtnH

is a group of order n = tm, where t = 2l ≥ 2 and |H| = m is odd. The arguments in the
preceding paragraph tell us that

χ(G) ≤ t

t− 1n. (3.6)

If χm(G/H) does in fact equal t
t−1n, we get a slight improvement on the upper bound of

t+2
t n given by Theorem 3.4. However, we may not assume that there is an m-fold coloring of

size mχf (Γ) for every graph Γ and every positive integer m. Furthermore, in the case t = 2
Theorem 3.4 and (3.6) give the same upper bound. This case is the barrier to proving any
general upper bound for χ(G), and the best bound we can find for it aligns with Theorem
3.4. As such, the above discussion of m-fold colorings does little more than provide context
for this chapter’s central results.

3.3 Proof of the general upper bound

Before the work in this thesis, the best known general upper bound for χ(G) was 2n. As
noted above, Theorem 3.4 improves upon this bound for most groups. However, we don’t
get any improvement in the case n ≡ 2 (mod 4). We take care of this case using a famous
graph-theoretic result relating a graph’s chromatic number to its maximum degree.

Theorem 3.7 (Brooks’ Theorem). Let Γ be a finite connected graph that is not isomorphic
to a complete graph or an odd cycle. Then

χ(Γ) ≤ ∆(Γ).

Looking at Brooks’ Theorem, it is not immediately clear how we will use it to show that
a (3n − 3)-regular graph has a

(
3
2n
)
-coloring. There is certainly some work needed to set

ourselves up to apply Brooks’ Theorem. However, this work is essentially a recreation of
the argument Wanless used in [49] to find a 2n-coloring for every Cayley table. The main
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focus of [49] was a family of generalized transversals known as “plexes.” A k-plex in a latin
square L is a set of cells P ⊆ L which intersects each row, column, and symbol class exactly
k times. Associated with k-plexes is a generalized notion of coloring; a k-partition of a
latin square is a partition of its cells into n

k disjoint k-plexes.
When attributing the general upper bound χ(G) ≤ 2n to Wanless, we are in fact citing

his proof that every Cayley table of even order has a 2-partition. Recalling that Corollary
1.6 takes care of the chromatic number question for all groups of odd order, the connection
between 2-partitions and 2n-colorings comes from the following observation. For a latin
square L with latin square graph Γ = Γ(L) and a 2-plex X ⊆ L, in the induced subgraph
Γ[X] every vertex is incident to exactly one edge of each type (row, column, symbol). Thus,
a 2-partition of L corresponds to a partition of Γ into n

2 cubic induced subgraphs. Greedily
4-coloring each of these induced subgraphs with a distinct set of colors, we obtain the desired
2n-coloring of L. This is where Brooks’ Theorem comes in. If we are careful in defining our
2-partition, we can show that each of the cubic induced subgraphs is in fact 3-colorable.

Theorem 3.8. Let G be a group of order n. Then

χ(G) ≤ 3
2n.

Proof. Let P be a Sylow 2-subgroup of G. We may assume P is cyclic and nontrivial, as
otherwise χ(G) = n ≤ 3

2n by Theorem 1.7. We know |P | = 2l for some l ≥ 1, and there is
an odd integer m such that n = 2lm. If l ≥ 2, then Theorem 3.4 tells us that

χ(G) ≤ n+ 2n
2l ≤ n+ 2n

4 = 3
2n,

as desired. Thus, we may assume that n = 2m and P = {0, p}. By Lemma 3.3, G = PnH for
some normal subgroup H /G of order m. Arbitrarily enumerating H = {h0, h1, . . . , hm−1},
we arrange L as in Lemma 3.1, yielding the block representation

L =
(
A00 A01

A10 A11

)

in which Aij is essentially identical to Ars for every i, j, r, s = {1, 2} and A00 = L(H).
Furthermore, S′(A01) = S′(A10) = pH and S′(A00) = S′(A11) = H.

By Corollary 1.6, there exists an m-coloring of A00, say (T0, T1, . . . , Tm−1). We can
think of each Ti as a complete mapping of H sending hj to hk if and only if (hj , hk)
is in the set of cells comprising Ti. We then extend Ti to a two-to-one map from G to
H by setting Ti(ph) = Ti(h) for all h ∈ H. As A00 and A10 are essentially identical,
(T0|pH , T1|pH , . . . , Tm−1|pH) (the restrictions of the Tis to pH) gives an m-coloring of A10.

Because A01 is also essentially identical to A00, there is an m-coloring of A01 defined by
the collection of mappings (Q0, Q1, . . . , Qm−1) with domain H and range pH. As above, we
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1 r r2 r3 r4 s sr4 sr3 sr2 sr

r r2 r3 r4 1 sr4 sr3 sr2 sr s

r2 r3 r4 1 r sr3 sr2 sr s sr4

r3 r4 1 r r2 sr2 sr s sr4 sr3

r4 1 r r2 r3 sr s sr4 sr3 sr2

s sr sr2 sr3 sr4 1 r4 r3 r2 r

sr sr2 sr3 sr4 s r4 r3 r2 r 1
sr2 sr3 sr4 s sr r3 r2 r 1 r4

sr3 sr4 s sr sr2 r2 r 1 r4 r3

sr4 s sr sr2 sr3 r 1 r4 r3 r2

Figure 3.2: A Cayley table of D5 with the 2-plex W1 in bold.

can extend the Qis to two-to-one maps from G to H by setting Qi(ph) = Qi(h) for every
h ∈ H, and the restrictions (Q0|pH , Q1|pH , . . . , Qm−1|pH) will give an m-coloring of A11.

Expressing indices modulo m, we define a set

Wi := {(g, Ti(g)) : g ∈ G} ∪ {(ph,Qi(ph)), (h,Qi+1(h)) : h ∈ H}

for every i ∈ [m]. Because Wi is the union of transversals from each of the blocks in (3.1),
it forms a 2-plex, and it is easy to check that W = (W0,W1, . . . ,Wm−1) is a 2-partition of
L. We can therefore partition Γ = Γ(L) into n

2 cubic, induced subgraphs Γi = Γ[Wi] for
i ∈ [m]. If we can 3-color each Γi, then we will have a

(
3
2n
)
-coloring of Γ.

By Brooks’ Theorem, each Γi is 3-colorable unless it contains a connected component
isomorphic to the complete graph K4. If there is such a connected component Λ, then
the subgraph of Λ formed by row and column edges must be isomorphic to a 4-cycle. We
demonstrate that this cannot be the case by showing an arbitrary row/column walk of
length 4 in Γi is not closed. See Figure 3.2 for a visual aid in reading what follows.

Start at an arbitrary vertex v0 = (hj , Ti(hj)) ∈Wi∩A00. The only other vertex of Wi in
the row bordered by hj is v1 = (hj , Qi+1(hj)), so we take the edge v0v1. Following the single
column edge incident to v1, we get to v2 = (Q−1

i (Qi+1(hj)), Qi+1(hj)). The third edge in
our walk is a row-edge taking us to v3 = (Q−1

i (Qi+1(hj)), Ti(Q−1
i (Qi+1(hj))). We are now

set to follow a column edge back to A00. If our walk is closed, then C(v0) = C(v3). But this
would mean that Ti(Q−1

i (Qi+1(hj)) = Ti(hj), or, equivalently, Qi(hj) = Qi+1(hj). But this
cannot be the case, as the Qis were defined to be disjoint transversals. Our walk of length
4 therefore ends at some v4 6= v0, and as such is not closed.
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Chapter 4

Future directions

The previous two chapters detailed work towards Conjecture 1.3 in the special case that
L is the Cayley table of a finite group. Despite our progress, the chromatic number question
for Cayley tables remains open, giving us a clear beacon towards which to focus future work.

Conjecture 4.1. Let G be a group of order n. Then

χ(G) =

n if Syl2(G) is either trivial or non-cyclic,

n+ 2 otherwise.

This conjecture, which we believe is both true and within reach, implies the corre-
sponding special case of Brualdi’s Conjecture (see Section 1.2). Resolving even this weaker
conjecture would be of significant interest.

Conjecture 4.2. Let G be a group of order n. Then L(G) possesses a near transversal.

We believe that Conjecture 4.1 needs additional algebraic insight to be solved. Contrast-
ingly, it seems to us that Conjecture 4.2 could be solved with a novel application of known
tools.

These two conjectures are interesting yet obvious extensions of the work in this thesis,
and we would like to see both of them resolved in the next few years. We end by outlining
a couple of more subtle means of extending our work. We hope that these discussions give
the reader a better idea of the difficulties inherent in Conjecture 4.1 and the limitations of
our methods.

4.1 The curious case of dihedral groups

With a cyclic subgroup of index 2 and a nice geometric description, dihedral groups are
often the first family of non-Abelian groups introduced in an undergraduate group theory
course. As such, they seem to be a good candidate for initial work towards extending
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1L rE r2
C r3

B r4
F sA sr4

I sr3
H sr2

D srK

rA r2
J r3

H r4
K 1E sr4

L sr3
B sr2

F srC sI

r2
I r3

G r4
A 1C rD sr3

E sr2
L srJ sK sr4

B

r3
F r4

H 1D rL r2
A sr2

B srE sC sr4
J sr3

G

r4
B 1K rJ r2

G r3
C srF sH sr4

D sr3
A sr2

E

sE srA sr2
K sr3

J sr4
G 1I r4

D r3
L r2

F rH

srH sr2
I sr3

L sr4
A sB r4

C r3
J r2

E rG 1F
sr2
G sr3

C sr4
E sF srL r3

D r2
K rI 1H r4

J

sr3
K sr4

F sG srI sr2
J r2

H rC 1B r4
L r3

A

sr4
C sL srB sr2

H sr3
I rK 1A r4

G r3
E r2

D

Figure 4.1: An experimentally generated 12-coloring of D5 with colors given by capital letter
subscripts.

Theorem 2.1. However, they were not amenable to the techniques used in Chapter 2. We
were able to find several partitions of Dn into 3-chromatic subgraphs, but in none of these
cases could we rearrange the coloring as in the proof of Theorem 2.6.

Nonetheless, we were able to make some progress with colorings of dihedral groups. Using
Dn to denote the dihedral group of order 2n, notice that Theorem 1.7 implies χ(Dn) = 2n
for ever even n. Thus, we only need to consider dihedral groups whose order is congruent to
2 modulo 4. In [5], the authors mention computational work establishing χ(D3) = 8, a result
which aligns with the prediction of Conjecture 4.1. Taking the computational verification one
step further, we experimentally constructed a 12-coloring for D5. This coloring is displayed
in Figure 4.1. Unfortunately, experimental coloring of latin square graphs becomes infeasible
very quickly. While the graph associated with D5 has 100 vertices, the graph associated with
D7 has 144, which is already too large for brute-force methods on a computer with 128 GB
of RAM.

With respect to purely theoretical approaches, it is worth mentioning that Theorem 3.8
was originally devised as a result concerning dihedral groups. And in fact, translating the
proof from this context to general non-Abelian groups of order congruent to 2 modulo 4
was simply a matter of bookkeeping. We were also able to prove Brualdi’s conjecture holds
for dihedral groups thanks to a peculiar 2-partition. We quickly realized that this result
had already been known for over a decade [31]. However, in the hopes that our ideas may
inspire future breakthroughs, we present the proof here.

Let Q3 denote the graph formed by the skeleton of a 3-dimensional cube. We define the
graph Λk for every odd k ≥ 3 as the disjoint union of k−1

2 copies of Q3 and one copy of K4.
See Figure 4.2 for a drawing of Λ3. As α(Q3) = 4 and α(K4) = 1, we have α(Λk) = 2k − 1.
Thus, if Λk occurs as an induced subgraph in a latin square graph Γ(L) of order 2k, the
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latin square L must possess a near transversal. We show that, in dihedral groups, we can
find many such induced subgraphs.

Theorem 4.3. Let n be an odd positive integer, let L = L(Dn), and let Γ = Γ(L). Then L
contains a 2-partition P in which Γ[P ] ∼= Λn for every P ∈ P.

Proof. Defining Dn by the presentation 〈r, s | rn = s2 = 1, srs = r−1〉, order the rows and
columns of L as in Lemma 3.1. Then L has a block representation

L =
(
A00 A01

A10 A11

)
,

in which A00 is a Cayley table of 〈r〉. Because n is odd, Lemma 2.3 tells us that A00 is
n-colorable by right diagonals. As Lemma 3.1 also tells us that each of the latin subsquares
Aij is essentially identical to A00, we may n-color Aij with right diagonals for each i, j ∈ [2].

Thus, for d ∈ [n], the sets
Pd :=

⋃
i,j∈[2]

T
Aij

d

form a 2-partition of L. Fixing d, let Γd = Γ[Pd]. Note that the subgraph of Γd which uses
only row and column edges is made up of n disjoint 4-cyles. We index these cycles by

Bj := (rj , rj+d), (rj , sr−j−d), (srj , sr−j−d), (srj , rj+d)

for j ∈ [n]. To complete the proof we must show that the symbol edges of Γd always behave
as in Figure 4.2.

Observe that S(rj , rj+d) = r2j+d and S(srj , rj+d) = sr2j+d, while

S(srj , sr−j−d) = r−d−2j = sS(rj , sr−d−j).

1 r r2 s sr2 sr

r r2 1 sr2 sr s

r2 1 r sr s sr2

s sr sr2 1 r2 r

sr sr2 s r2 r 1
sr2 s sr r 1 r2

(1, 1) (1, s)

(s, s)(s, 1)

(sr2, sr) (sr2, r2)

(r2, r2)(r2, sr)

(r, r) (r, sr2)

(sr, sr2)(sr, r)

Figure 4.2: The cells of the 2-plex P0 ⊆ L(D3) in bold, with the corresponding induced
subgraph Γ[P0] ∼= Λ3 on the right.
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But whenever n is odd, there is a unique j0 ∈ [n] satisfying 2j0 + d ≡ −d − 2j0 (mod n).
Therefore there is exactly one Bj0 corresponding to a K4, and it is disconnected from the
rest of Γd. Furthermore, 2j + d = −d− 2i if and only if 2i+ d = −d− 2j. Thus, whenever
there is a symbol edge connecting Bj to Bi, there must be four such symbol edges. This
means that the rest of Γd must break into disjoint copies of Q3.

4.2 Extending to equitable colorings

Given a graph Γ, an equitable k-coloring of Γ is a k-coloring in which the size of any
two color classes differs by at most 1. The equitable chromatic number of Γ, denoted
χeq(Γ), is the minimum k for which Γ can be equitably k-colored. These definitions extend
to latin squares via the duality between L and Γ(L).

Observe that every n-coloring of a latin square is an equitable coloring. And indeed, it
seems natural that design-theoretic objects like latin squares should possess highly struc-
tured colorings. Such concerns likely drove Cavenagh and Kuhl to conjecture the following.

Conjecture 4.4 (Cavenagh, Kuhl [15]). Let L be a latin square. Then

χeq(L) = χ(L). (4.1)

Cavenagh and Kuhl proved their conjecture holds for L(Zn) whenever n is congruent to
2 or 10 modulo 12. They did so by constructing a coloring similar to the one we constructed
in Chapter 2, then extending the two smaller color classes by carefully removing cells from
several of the larger ones. Can a similar process be done with our colorings? We spent some
time trying to modify our colorings to equitably color L(Zn) for values of n with respect to
which Conjecture 4.4 is still open, but were unable to find an extension. At the same time,
we were also unable to show that it is not possible to extend our colorings in this way.

Perhaps our methods cannot be utilized to attack this problem. Regardless, the restric-
tion of Conjecture 4.4 to Cayley tables deserves attention. It is not even clear to us that
the conjecture should be true. However, with the chromatic number of all Cayley tables of
Abelian groups now determined, there are many new cases in which a definitive counterex-
ample could be found.
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