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Mutations and short geodesics in

hyperbolic 3-manifolds

Christian Millichap

In this paper, we explicitly construct large classes of incommen-
surable hyperbolic knot complements with the same volume and
the same initial (complex) length spectrum. Furthermore, we show
that these knot complements are the only knot complements in
their respective commensurability classes by analyzing their cusp
shapes.

The knot complements in each class differ by a topological cut-
and-paste operation known as mutation. Ruberman has shown that
mutations of hyperelliptic surfaces inside hyperbolic 3-manifolds
preserve volume. Here, we provide geometric and topological con-
ditions under which such mutations also preserve the initial (com-
plex) length spectrum. This work requires us to analyze when least
area surfaces could intersect short geodesics in a hyperbolic 3-
manifold.
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1. Introduction

The work of Mostow and Prasad implies that every finite volume hyperbolic
3-manifold admits a unique hyperbolic structure, up to isometry [32],[29].
Thus, geometric invariants of a hyperbolic manifold, such as volume and
geodesic lengths, are also topological invariants. It is natural to ask: how
effective can such invariants be at distinguishing hyperbolic 3-manifolds?
Furthermore, how do these invariants interact with one another?

In this paper, we will study how mutations along hyperelliptic surfaces
inside of a hyperbolic 3-manifold affect such invariants. A hyperelliptic sur-
face F is a surface admitting a hyperelliptic involution: an order two auto-
morphism of F which fixes every isotopy class of curves in F . A mutation
along a hyperelliptic surface F in a hyperbolic 3-manifold M is an opera-
tion where we cut M along F , and then reglue by a hyperelliptic involution
μ of F , often producing a new 3-manifold, Mμ. While a mutation can of-
ten change the global topology of a manifold, the action is subtle enough
that many geometric, quantum, and classical invariants are preserved under
mutation; see [8] for details. In particular, Ruberman showed that mutat-
ing hyperbolic 3-manifolds along incompressible, ∂-incompressible surfaces
preserves hyperbolicity and volume in [38].

Here, we investigate under which conditions such mutations preserve the
smallest n values of the length spectrum, the initial length spectrum. The
length spectrum of a manifold, M , is the set of all lengths of closed geodesics
in M counted with multiplicites. We will also consider the complex length
spectrum of M : the set of all complex lengths of closed geodesics in M
counted with multiplicities. Given a closed geodesic γ ⊂ M , the complex
length of γ is the complex number �C(γ) = �(γ) + iθ where �(γ) denotes the
length of γ and θ is the angle of rotation incurred by traveling once around γ.

Throughout this paper, any surface will be connected, orientable, and
of finite complexity, unless stated otherwise. Any hyperbolic 3-manifold M
will have finite volume and be connected, complete, and orientable. Our
investigation requires a surface that we mutate along to be a least area
surface in M , or a close variant, to be defined later.
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Definition 1.1 (Least Area Surface in M). Let F ⊂ M be a properly
and smoothly embedded surface in a Riemannian 3-manifold M . Then F is
called a least area surface if F minimizes area in its homotopy class.

Least area surfaces inside of 3-manifolds are well studied objects. Schoen–
Yau [39] showed that incompressible surfaces inside closed 3-manifolds can
always be homotoped to smoothly immersed least area surfaces. Freedman–
Hass–Scott [10] showed that this resulting immersion is an embedding. Ru-
berman expanded this analysis to noncompact surfaces in noncompact hy-
perbolic 3-manifolds in [38], where he provided conditions for the existence,
uniqueness, and embeddedness of least area surfaces in a hyperbolic 3-
manifold.

The following theorem gives three possible properties of a hyperbolic 3-
manifold M that can help determine the topology amd geometry of γ ∩ F ⊂
M , where γ is a closed geodesic and F is an incompressible surface. These
properties are the maximal embedded tube radius r of a neighborhood of γ,
denoted Tr(γ), the length of γ, denoted �(γ), and the normalized length of
a Dehn filling, which we describe in Definition 3.7.

By a closed curve n · γ, we mean a simple closed curve that is in the
homotopy class of [n · γ] ∈ π1(∂Tr(γ)). We can now state this result.

Theorem 1.2. Let M be a hyperbolic manifold with F ⊂ M an embedded
surface that is incompressible and ∂-incompressible with |χ(F )| ≤ 2. Let γ ⊂
M be a closed geodesic with embedded tubular radius r. Assume

1) r > 2 ln(1 +
√
2), or

2) �(γ) < 0.015, or

3) γ is the core of a solid torus added by Dehn filling N ∼= M \ γ along a
slope of normalized length L̂ ≥ 14.90.

Then γ can be isotoped disjoint from F . Furthermore, if F is embedded
in least area form, then either γ ∩ F = ∅ without any isotopy or n · γ is
isotopic into F for some n ∈ N.

A few remarks about this theorem:

• This theorem is both a topological and a geometrical statement about
γ ∩ F . Only the topological statement is necessary for showing that
mutation preserves the initial length spectrum; see Theorem 1.3.
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• This theorem is stated in full generality in Theorem 3.11 where no
constraints are made on the Euler characteristic. We mainly care about
|χ(F )| ≤ 2 because the surfaces we will consider in our main result
(Theorem 1.5) are all Conway spheres, i.e, 4-punctured spheres inside
of knot complements.

• Theorem 3.11 is stated in terms of almost least area surfaces, which
generalize least area surfaces; see Definition 3.1.

• (2) implies (1) by the work of Meyerhoff stated in Theorem 3.5. (3)
implies (1) by the work of Hodgson and Kerckhoff [17], [16] on cone
deformations. Furthermore, a version of (3) implies (2) exists, but we
must adjust the lower bound on normalized length to be L̂ ≥ 20.76.

• (3) can be stated in terms of Dehn filling multiple curves; see Corol-
lary 3.13.

The proof of Theorem 1.2 relies on both the topology and geometry of
F ∩ Tr(γ), where Tr(γ) is the embedded tubular neighborhood of radius r
around γ. Since F is incompressible and ∂-incompressible, F can be isotoped
into almost least area form by Theorem 3.2. As a result, components of F ∩
Tr(γ) must be disks or annuli. If a component of F ∩ Tr(γ) that intersects
γ is a disk, Dr, then we work to get an area contradiction. Specifically, if
r is sufficiently large, then the area of Dr inside of this neighborhood will
be too big, and so, γ must be disjoint from F in this case. As mentioned in
the remarks, conditions (2) and (3) each imply (1), so all of our cases rely
on a sufficiently large tube radius in the end. If a component of F ∩ Tr(γ)
that intersects γ is an annulus, Ar, then this annulus must be parallel to the
boundary torus ∂Tr(γ). Here, γ can be isotoped disjoint from Ar, and more
generally, isotoped disjoint from F .

The following theorem tells us when the initial length spectrum is pre-
served under mutation.

Theorem 1.3. Let F ⊂ M be a properly embedded surface that is incom-
pressible, ∂-incompressible, and admits a hyperelliptic involution μ. Suppose
that M has n geodesics shorter than some constant L < 0.015. Then M and
Mμ have (at least) the same n initial values of their respective (complex)
length spectra.

Under these hypotheses, any sufficiently short geodesic γ in M can be
isotoped disjoint from F . After this isotopy, if we mutate M along (F, μ)
to obtain Mμ, then there will also be a closed curve in Mμ corresponding
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with γ. We just need to analyze the representations ρ : π1(M) → PSL(2,C)
and ρμ : π1(M

μ) → PSL(2,C) to see that [γ], as an element of either π1(M)
or π1(M

μ), has the same representation (up to conjugacy) in PSL(2,C),
and so, the same (complex) length associated to it in either case. Note that
Theorem 1.3 only relies on the topological statement from Theorem 1.2. In
fact, any γ that can be homotoped disjoint from F will be preserved under
mutation since we only need to consider γ as a representative of an element
of π1(M) or π1(M

μ); this follows from Theorem 4.2 and Lemma 4.3.
This theorem gives us a tool to produce non-isometric hyperbolic 3-

manifolds that have at least the same initial length spectrum. Over the
past 35 years, there have been a number of constructions for producing
non-isometric hyperbolic 3-manifolds that are iso-length spectral, i.e., have
the same length spectrum. Vignéras in [43] used arithmetic techniques to
produce the first known constructions of such manifolds. Sunada devel-
oped a general method for constructing iso-length spectral manifolds [41],
which helped him produce many iso-length spectral, non-isometric Riemann
surfaces. This technique produces covers of a manifold M that are iso-
length spectral by finding certain group theoretic conditions on subgroups of
π1(M). We will refer to any such group theoretic construction for producing
covers that have either the same length spectrum or some variation of this
as a Sunada-type construction.

Since Sunada’s original work, many Sunada-type constructions have
been developed. These constructions often have very interesting relations
to volume. McReynolds uses a Sunada-type construction in [25] to build
arbitrarily large sets of closed, iso-length spectral, non-isometric hyperbolic
manifolds. Furthermore, the growth of size of these sets of manifolds as a
function of volume is super-polynomial. In contrast, Leininger–McReynolds–
Neumann–Reid in [21] also use a Sunada-type construction to show that
for any closed hyperbolic 3-manifold M , there exists infinitely many cov-
ers {Mj , Nj} of M , such that the length sets of these pairs are equal but
vol(Mj)
vol(NJ)

→ ∞. Here, the length set of a manifold is the set of all lengths of
closed geodesics counted without multiplicities. Thus, volume can behave
drastically differently for hyperbolic 3-manifolds that are iso-length spectral
as compared with hyperbolic 3-manifolds with the same length set.

All of the constructions mentioned above produce commensurable man-
ifolds, that is, manifolds that share a common finite-sheeted cover. Sunada
type constructions will always produce commensurable manifolds since they
involve taking covers of a common manifold and commensurability is an
equivalence relation. On the other hand, the work of Reid [36] and Chinburg–
Hamilton–Long–Reid [7] shows that iso-length spectral, non-isometric
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arithmetic hyperbolic 3-manifolds are always commensurable. To date, all
known examples of iso-length spectral, non-isometric hyperbolic 3-manifolds
are commensurable. This raises the following question:

Question 1.4. Do there exist incommensurable iso-length spectral hyper-
bolic 3-manifolds?

Here, we construct large families of mutant pretzel knot complements
which have the same initial (complex) length spectrum, the same volume,
and are pairwise incommensurable. Our construction does not use arithmetic
methods or a Sunada-type construction, but rather, the simple cut and paste
operation of mutating along Conway spheres. This work is highlighted in our
main theorem below. See Section 5 for the definition of a pretzel knot.

Theorem 1.5. For each n ∈ N, n ≥ 2, there exist (2n)!
2 non-isometric hy-

perbolic pretzel knot complements that differ by mutation,
{
Mσ

2n+1

}
, such

that these manifolds:

• have the same 2n+ 1 shortest geodesic (complex) lengths,

• are pairwise incommensurable,

• have the same volume, and

• (
2n−1

2

)
voct ≤ vol(Mσ

2n+1) ≤ (4n+ 2) voct, where voct (≈ 3.6638) is the
volume of a regular ideal octahedron.

Theorem 1.5 provides an answer to a weak form of Question 1.4. While
these mutant pretzel knot complements have the same initial length spec-
trum, we doubt that any of them are actually iso-length spectral. Almost
all sufficiently long geodesics in one of these pretzel knot complements have
homotopically essential intersections with all of the Conway spheres. Thus,
their corresponding geodesic lengths should be changed by mutation.

The fact that these hyperbolic pretzel knot complements are pairwise
incommensurable comes from the following theorem. See Section 7 for full
details.

Theorem 1.6. Let n ≥ 2 and let q1, . . . , q2n+1 be integers such that only
q1 is even, qi = qj for i = j, and all qi are sufficiently large. Then the com-

plement of the hyperbolic pretzel knot K
(

1
q1
, 1
q2
, . . . , 1

q2n+1

)
is the only knot

complement in its commensurability class. In particular, any two of these
hyperbolic pretzel knot complements are incommensurable.
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Proving that a particular knot complement is the only knot complement
in its commensurability class is generally not an easy task. Only two large
classes of knot complements are known to have this property. Reid andWalsh
in [37] have shown that hyperbolic 2-bridge knot complements are the only
knot complements in their respective commensurability classes, and simi-
larly, Macasieb and Mattman in [23] have shown this for the complements

of hyperbolic pretzel knots of the form K
(

1
−2 ,

1
3 ,

1
n

)
, n ∈ Z \ {7}. Usually

the hardest part of this work is showing that these knot complements have
no hidden symmetries, that is, these knot complements are not irregular
covers of orbifolds. We are able to rule out hidden symmetries by analyzing
the cusp shapes of certain untwisted augmented links (see Section 6) that
we Dehn fill along to obtain our pretzel knot complements.

Now, let us outline the rest of this paper. In Section 2, we prove the
monotonicity of the mass ratio for least area disks in H3. This result helps
give a lower bound on the area of a least area disk inside a ball in H3.
Section 3 gives the proof of Theorem 1.2 and states this result in its full
generality. This section is broken down into subsections, each dealing with
one of the conditions to be satisfied for Theorem 1.2. Section 4 gives the
proof of Theorem 1.3 and a number of corollaries to this theorem. In Sec-
tion 5, we construct and describe our class of hyperbolic pretzel knots which
are mutants of one another. We also highlight a theorem from our past work
[27] that describes how many of these mutant pretzel knot complements are
non-isometric and have the same volume. In Section 6, we analyze the ge-
ometry of our pretzel knots by realizing them as Dehn fillings of untwisted
augmented links, whose complements have a very simple polyhedral decom-
position. In particular, this analysis allows us to put a lower bound on the
normalized lengths of the Dehn fillings performed to obtain our pretzel knot
complements, and also, helps determine the cusp shapes of the pretzel knots
themselves. In Section 7 we prove that these knots are pairwise incommen-
surable. In Section 8, we apply Theorem 1.3 to show that our class of pretzel
knot complements have the same initial length spectrum. We also give an
application to closed hyperbolic 3-manifolds with the same initial length
spectrum. Putting all these results together gives Theorem 1.5 in Section 8.

We are grateful to David Futer for his help and guidance with this
project. We thank Frank Morgan for directing us to the monotonicity of
the mass ratio result found in his book [28]. We thank Jessica Purcell for
providing useful comments and help with understanding cone deformations.
Finally, we thank the referees for making numerous helpful comments.
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2. Monotonicity of the Mass ratio for least area disks in H3

Throughout this section, �(−) will denote hyperbolic length, and B(a, r) ⊂
H3 will denote a ball of radius r centered at a. Also, A(−) will denote the
area that a smoothly immersed surface inherits from a hyperbolic 3-manifold
by pulling back the hyperbolic metric. Here, we establish a useful result for
least area disks in H3.

Definition 2.1 (Least Area Disk). Let D ⊂ M be a properly and
smoothly embedded disk in a Riemannian 3-manifold M . Let c be a simple
closed curve in M such that ∂D = c. Then D is called a least area disk in
M , if D minimizes area amongst all properly and smoothly immersed disks
with boundary c.

The compactness theorem in [28, Theorem 5.5] guarantees that this infi-
mum is always realized for disks in Rn. Furthermore, the regularity theorem
in [28, Theorem 8.1] says such an area minimizing disk is smooth and em-
bedded in its interior. Similar results hold for disks in Hn. The following
definition will be useful for analyzing least area disks in H3.

Definition 2.2 (Mass Ratio and Density). Let a ∈ H3 and consider
A(D ∩B(a, r)), the area of a disk inside a ball. Define the mass ratio to be

Θ(D, a, r) =
A(D ∩B(a, r))

4π sinh2( r2)
.

Define the density of D at a to be

Θ(D, a) = lim
r→0

Θ(D, a, r).

A few comments about the above definition. First, 4π sinh2( r2) is the
area of a totally geodesic disk of radius r in Hn. Also, for smoothly im-
mersed surfaces, Θ(D, a) ≥ 1 at any point a ∈ D. For an embedded surface
we actually have Θ(D, a) = 1. If D is not embedded at a point a ∈ D, then
restricting to a subset of D′ of D so that D′ ∩B(a, r) is an embedding only
decreases the numerator of the mass ratio. See [28, Chapter 2] for more on
densities.

The monotonicity of the mass ratio was proved in the case for Euclidean
geometry by Federer [9] and a proof can also be found in Morgan [28, Theo-
rem 9.3]. Here, we obtain a similar result in H3 by using the same techniques
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as the proof given in Morgan. Also, this result is proved in greater generality
in [2, Section 2].

Theorem 2.3. Let D be a least area disk in H3. Let a ∈ D̊ ⊂ H3. Then for
0 < r < d(a, ∂D), the mass ratio Θ(D, a, r) is a monotonically increasing
function of r.

To prove this theorem, we need the following basic fact in hyperbolic
trigonometry:

Lemma 2.4.
sinh( r

2
)

cosh( r

2
) =

cosh(r)−1
sinh(r) , for r > 0.

Proof. This is a simple algebraic exercise that requires a few identities:

sinh( r2)

cosh( r2)
=

√
cosh(r)− 1

cosh(r) + 1
=

cosh(r)− 1√
cosh2(r)− 1

=
cosh(r)− 1

sinh(r)
.

The first equality comes from well-known half-angle formulas. The rest
of the equalities come from algebraic manipulations and the fact that 1 =
cosh2(r)− sinh2(r). �

Proof of Theorem 2.3. For 0 < r < d(a, ∂D), let f(r) denoteA(D ∩B(a, r)).
Obviously, f is monotonically increasing, which implies that f ′(r) exists al-
most everywhere. Set γr = ∂(D ∩B(a, r)). Now, we have that

(1) �(γr) ≤ f ′(r),

which is the “co-area formula” from [15, Lemma 2.2]. This inequality holds
whenever γr is a 1-manifold, i.e., whenever D intersects ∂B(a, r) trans-
versely. Since D is area-minimizing, A(D ∩B(a, r)) ≤ A(C), where C is the
cone over γr to a.

Claim: A(C) = �(γr)
cosh(r)−1
sinh(r) . Let γ be the projection of γr to the unit

tangent sphere centered at a. Our area form is dA = dsdR, where dR is the
change in radius of a hyperbolic sphere and ds = sinh(R)dθ is arc length
on a sphere of radius R. The area form on A(C) is inherited from geodesic
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Figure 1: The hyperbolic cone C over γr to a in the upper half-space model
of H3.

polar coordinates in H3. We have that

A(C) =

∫ r

0

∫ �(γR)

0
dsdR =

∫ r

0

∫ �(γR)

0
sinh(R)dθdR

=

∫
γ
dθ

∫ r

0
sinh(R)dR = �(γ)(cosh(r)− 1).

In order to rescale to make A(C) a function of �(γr), we use the fact that

�(γr) =
∫
γ sinh(r)dθ = �(γ) sinh(r) to get that A(C) = �(γr)

cosh(r)−1
sinh(r) .

Putting (1) together with the previous claim and Lemma 2.4 gives:

f(r) ≤ A(C) = �(γr)
cosh(r)− 1

sinh(r)
≤ f ′(r)

cosh(r)− 1

sinh(r)
= f ′(r)

sinh( r2)

cosh( r2)
.

Consequently,

d

dr
[4πΘ(D, a, r)] =

d

dr

[
f(r) sinh−2(

r

2
)
]
=

f ′(r)
sinh2( r2)

− f(r) cosh( r2)

sinh3( r2)

=
cosh( r2)

sinh3( r2)

[
f ′(r)

sinh( r2)

cosh( r2)
− f(r)

]
≥ 0

since
cosh( r

2
)

sinh3( r

2
)
≥ 0 for any r > 0. �

The following corollary will play a pivotal role in Section 3.
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Corollary 2.5. Suppose D ⊂ H3 is a least area disk and a ∈ D̊. Then
A(D ∩B(a, r)) ≥ 4π sinh2( r2), for any r, 0 < r ≤ d(a, ∂D).

Proof. Let D ⊂ H3 be a least area surface and a ∈ D̊ ⊂ H3. Since Θ(D, a, r)
is increasing with r, we have that:

Θ(D, a) = lim
t→0

Θ(D, a, t) ≤ Θ(D, a, r) =
A(D ∩B(a, r))

4π sinh2( r2)
,

for any 0 < r < d(a, ∂D). By continuity of the area function, we can extend
this up to r = d(a, ∂D).

Now, being smoothly immersed implies that Θ(D, a) ≥ 1 for all a ∈ S̊.
By the above, we have that A(D ∩B(a, r)) ≥ 4π sinh2( r2), for any 0 < r ≤
d(a, ∂D), as desired. �

3. Least area surfaces and short geodesics in hyperbolic
3-manifolds

First, let us set some notation. Let M be a hyperbolic 3-manifold. The
universal cover of M is H3, and there exists a covering map ρ : H3 → M .
Let Tr(γ) denote an embedded tubular neighborhood of radius r about a
closed geodesic γ ⊂ M . γ lifts to a geodesic, γ̃, in H3, and we will assume
that the endpoints of γ̃ are 0 and ∞. Let Tr(γ̃) be the tubular neighborhood
of radius r about γ̃ in H3.

Let F be a surface in M realized by the map ϕ : S → F . Suppose γ ∩
F = ∅, and say p0 = ϕ(s0) ∈ γ ∩ F ⊂ M . Let S̃ be the universal cover of S,
and denote by ρ1 the covering map ρ1 : S̃ → S. Let s̃0 ∈ S̃ be a point with
ρ1(s̃0) = s0 and let ϕ̃ : S̃ → H3 be a lift of ϕ such that p̃0 = ϕ̃(s̃0) is a point
in γ̃. We have the following commutative diagram.

(S̃, s̃0)
ϕ̃−−−−→ (H3, p̃0)⏐⏐�ρ1

⏐⏐�ρ

(S, s0)
ϕ−−−−→ (M,p0)

The focus of the following subsections is to prove a number of proposi-
tions that can tell us when γ can be isotoped disjoint from F based on a
variety of geometric and topological properties. Specifically, we will be in-
terested in the tube radius of γ, the length of γ, and particular Dehn filling
slopes. We will then use these conditions to show when the initial length
spectrum can be preserved under mutation. We will always be working with
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an almost least area surface F that is incompressible and ∂-incompressible
in a hyperbolic 3-manifold M . The existence and embeddedness of such sur-
faces is provided by the following result of Ruberman. First, we define an
almost least area surface.

Definition 3.1 (Almost Least Area Surface in M). A properly and
smoothly embedded surface F in a Riemannian 3-manifold M is called al-
most least area if F is either a least area surface (as given in Definition 1.1),
or is the boundary of an ε-neighborhood of a one-sided embedded least area
surface F ′.

Remark. Theorems about almost least area surfaces hold for all ε suffi-
ciently small.

For the rest of Section 3, we will assume that any surface F ⊂ M is a
properly and smoothly embedded surface inside of a hyperbolic 3-manifoldM .

Theorem 3.2. [38, Theorem 1.6] Let F ⊂ M be a surface that is incom-
pressible and ∂-incompressible. Then F can be properly isotoped to an almost
least area surface.

3.1. Least area surfaces and the tube radius of γ

The following proposition tells us that a closed geodesic γ can be isotoped
disjoint from an incompressible surface, if γ has a sufficiently large embedded
tubular radius. This fact can also be shown using [12, Lemma 4.3]. However,
here we provide additional geometric information about γ ∩ F , when F is
in almost least area form. Recall that by a closed curve n · γ, we mean a
simple closed curve that is in the homotopy class of [n · γ] ∈ π1(∂Tr(γ)).

Proposition 3.3. Let γ ⊂ M be a closed geodesic with embedded tubu-
lar radius r, and let F be a surface in M that is incompressible and ∂-
incompressible. Set h(x) = 2 sinh−1(

√
x
2 ). Assume r > h(|χ(F )|). Then γ

can be isotoped disjoint from F . Furthermore, if F is in almost least area
form, then either γ ∩ F = ∅ without any isotopy or n · γ is isotopic into F
for some n ∈ N. In particular, if |χ(F )| ≤ 2, then our result holds whenever
r > 2 ln(1 +

√
2).

In order to prove this proposition, we will need the following lemma,
which gives a lower bound on the area of a least area disk inside a tubular
neighborhood of a geodesic.
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Lemma 3.4. Let γ ⊂ M be a closed geodesic with embedded tubular neigh-
borhood Tr(γ). Suppose Dr is a least area disk in M such that γ ∩Dr = ∅
and ∂Dr ⊂ ∂Tr(γ). Then A(Dr ∩ Tr(γ)) ≥ 4π sinh2( r2).

Proof. Since π1(Dr) is trivial, Dr lifts isometrically to a disk D̃r ⊂ Tr(γ̃) ⊂
H3, with ∂D̃r ⊂ ∂Tr(γ̃) and p̃0 ∈ D̃r ∩ γ̃. Since Dr is least area and Dr lifts
isometrically to D̃r, D̃r is a least area disk in H3 for the boundary curve
c = ∂D̃r. See Figure 2. By Corollary 2.5, A(D̃r ∩B(p̃0, r)) ≥ 4π sinh2( r2).
Therefore,

A(Dr) = A(D̃r) ≥ 4π sinh2
(r
2

)
,

as desired. �

Figure 2: The lift of a disk Dr to H3 in the upper half-space model.

Proof of Proposition 3.3. Assume that F has been isotoped to an (embed-
ded) almost least area surface, as provided by Theorem 3.2. Set Fr = F ∩
Tr(γ). We will always choose r so that F intersects ∂(Tr(γ)) transversely. By
Sard’s Theorem, this will hold for almost every r. Assume that γ ∩ F = ∅.
Claim: Fr is incompressible in Tr(γ), and consequently, each component of
Fr is a disk or annulus.

Suppose that Fr is compressible in Tr(γ). Then there exists a disk D′ ⊂
Tr(γ) with ∂D′ ⊂ Fr, but ∂D′ does not bound a disk in Fr. Since F is
incompressible inM , ∂D′ bounds a disk in F which must lie at least partially
outside of Tr(γ). Call this disk D. Lift D isometrically to a disk D̃ ⊂ H3 with
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˜∂D ⊂ Tr(γ̃). Now, D̃ can be homotoped to a disk (keeping ˜∂D fixed) that
lies on Tr(γ̃) via a nearest point projection map.

We claim that this homotopy is area-decreasing. For this, we give H3

coordinates (ρ, θ, z), where ρ ∈ (0,∞), θ ∈ [0, 2π], and z ∈ R. A point in H3

with coordinates (ρ, θ, z) has distance ρ to the point on γ̃ at signed distance
z from (0, 0, 1), and θ is the polar angle coordinate of its projections to the
(x, y)-plane. A direct computation shows that

(ρ, θ, z) = ez(tanh ρ cos θ, tanh ρ sin θ, sech ρ)

pulls back the hyperbolic metric on the upper half-space model to the di-
agonal metric with respective diagonal entries 1, sinh2 ρ, and cosh2 ρ. The
nearest point projection to Tr(γ̃) in these coordinates is given by (ρ, θ, z) →
(r, θ, z), for ρ ≥ r. A direct computation shows that this projection reduces
the area form of D̃ pointwise. Thus, projecting D̃ onto ∂Tr(γ̃) will give an
area-decreasing homotopy.

Projecting this homotopy down to M yields an area-decreasing homo-
topy of F , which is a contradiction if F is a least area surface. If F is
an ε-neighborhood of a one-sided embedded least area surface F ′, then we
choose ε sufficiently small so that the strict area inequality we get from this
homotopy still holds as an inequality.

Thus, Fr is incompressible in Tr(γ̃). The only incompressible surfaces
with boundary that can be inside of Tr(γ̃) are essential disks and annuli.

We will now consider the two possibilities for the geometry of γ ∩ F ,
when F is in almost least area form.

Case 1: A component of Fr is a disk that intersects γ.
Say Dr is a disk component of Fr that intersects γ. If F is in least area

form, then we have the following area inequality:

2π |χ(F )| ≥ A(F ) > A(Fr) ≥ A(Dr ∩ Tr(γ)) ≥ 4π sinh2
(r
2

)
.

The first inequality comes from the Gauss-Bonnet Theorem, combined with
properties of minimal surfaces (see Futer–Purcell [12, Lemma 3.7]). The last
inequality comes from Lemma 3.4. Note that, we have a strict inequality
for a least area surface, and by taking ε sufficiently small, the inequality
2π |χ(F )| ≥ 4π sinh2( r2) still holds if F has been homotoped from a least
area surface to an ε-neighborhood of a one-sided least area surface. This

gives us that

√
|χ(F )|

2 ≥ sinh( r2). Recall that sinh−1(y) = ln(y +
√

y2 + 1)
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and that sinh(x) is an increasing function. Thus,

h(|χ(F )|) = 2 sinh−1
(√

|χ(F )|
2

)
= 2 ln

(√
|χ(F )|

2
+

√
|χ(F )|

2
+ 1

)
≥ r.

So, if γ has a large enough embedded tubular radius, we will have a
contradiction, specifically, if r > h(|χ(F )|). In particular, if |χ(F )| ≤ 2, then
r > 2 ln(1 +

√
2) = h(|χ(F )|) will provide the necessary area contradiction,

and so, γ ∩ F = ∅.
Case 2: Every component of Fr that intersects γ is an annulus.

Suppose Ar is an annulus component of Fr that intersects γ. In this
case, the inclusion map i : Ar → Tr(γ), induces an injective homomorphism
i∗ : π1(Ar) ↪→ π1(Tr(γ)) with [α] �→ [n · γ] for some n ∈ N, where [α] is the
homotopy class of the core of the annulus Ar. Now, [α] can be represented
by a curve α on a component of ∂Ar, with Ar providing the isotopy between
the core and the boundary component. Since ∂Ar ⊂ ∂Tr(γ), α is isotopic
into the boundary torus ∂Tr(γ), providing a satellite knot of the form n · γ
on ∂Tr(γ).

Finally, we show that our topological statement holds, that is, γ can
be isotoped disjoint from F in both cases. Obviously, if γ ∩ F = ∅, then no
isotopy needs to even take place. So, suppose n · γ is isotopic into F . The
proof of case 2 explains the topology of such a situation. Specifically, the
annuli

{
Ai

r

}n

i=1
are boundary parallel to ∂Tr(γ), and so, could be isotoped

disjoint from γ. If Fr consists of multiple annuli that intersect γ, then we
start by isotoping the outermost annuli to the boundary and proceed inward.
Equivalently, we could keep

{
Ai

r

}n

i=1
fixed (since it is part of our least area

surface F ) and isotope γ so that this closed curve is disjoint from
{
Ai

r

}n

i=1
,

and more generally, disjoint from F . �

It is important to note that case 2 of Proposition 3.3 is certainly a
possiblity and can be an obstruction to a useful lower bound estimate on
A(F ). Techniques similar to the proof of Theorem 2.3 can be used to find a
lower bound for A(F ∩ Tr(γ)) when every component is an annulus, but the
lower bound is of the form C0 · �(γ) · sinh(r), where C0 > 0 is a constant.
It is possible to put a hyperbolic metric on a given surface F so that a
specific geodesic is arbitrarily short and contains an embedded collar of
area 2�(γ) · sinh(r). So, if �(γ) is sufficiently short and γ actually lies on F ,
then the quantity C0 · �(γ) · sinh(r) could be too small to be useful for our
purposes.
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3.2. Least area surfaces and the length of γ

Next, we will examine when γ can be isotoped disjoint from F based on the
length of γ. To do this, we will need to use the Collar Lemma, which essen-
tially says that the shorter the length of a closed geodesic in a hyperbolic
3-manifold, the larger the embedded tubular neighborhood of that geodesic.
The following qualitative version of the Collar Lemma comes from Meyerhoff
[26]:

Theorem 3.5 (Collar Lemma). Let γ ⊂ M be a closed geodesic in a
hyperbolic 3-manifold with (real) length �(γ). Suppose

�(γ) <

√
3

4π

[
ln(

√
2 + 1)

]2 ≈ 0.107.

Then there exists an embedded tubular neighborhood around γ whose radius
r satisfies

sinh2(r) =
1

2

(√
1− 2k(�(γ))

k(�(γ))
− 1

)

where k(x) = cosh
(√

4πx√
3

)
− 1.

Proposition 3.6. Let γ ⊂ M be a closed geodesic, and let F be a surface
in M that is incompressible and ∂-incompressible. Set g(x) = 2x2 + 4x+ 1.

Assume

√
1−2k(�(γ))
k(�(γ)) > g(|χ(F )|). Then γ can be isotoped disjoint from F .

Furthermore, if F is in almost least area form, then either γ ∩ F = ∅ without
any isotopy or n · γ is isotopic into F for some n ∈ N. In particular, if
|χ(F )| ≤ 2 our result holds whenever �(γ) < 0.015.

Proof. We will use the Collar Lemma to show that if �(γ) is sufficiently
small, then the tube radius r is sufficiently large. Then Proposition 3.3
will give us the desired result. So, we need to see when r > h(|χ(F )|) =
2 sinh−1(

√
|χ(F )|

2 ). Assume that �(γ) < 0.107, so the Collar Lemma applies.

Then we have sinh2(r) = 1
2

(√
1−2k
k − 1

)
where k(�(γ)) = cosh

(√
4π�(γ)√

3

)
−

1. Now, k(�(γ)) is an increasing function on 0 < �(γ) < ∞ with k(�(γ)) → 0

as �(γ) → 0, while 1
2

(√
1−2k
k − 1

)
is a decreasing function (0 < k ≤ 1

2), which

heads to ∞ as k → 0. So, as �(γ) → 0, sinh2(r) = 1
2

(√
1−2k
k − 1

)
→ ∞.
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Specifically, we need the following inequality to hold:

r = sinh−1

⎛⎝√
1

2
(

√
1− 2k

k
− 1)

⎞⎠ > 2 sinh−1
(√

|χ(F )|
2

)
,

1

2

(√
1− 2k

k
− 1

)
> sinh2

(
2 sinh−1(

√
|χ(F )|

2
)

)
,

√
1− 2k

k
> 2 sinh2

(
2 sinh−1

(√
|χ(F )|

2

))
+ 1.

Note that,

2 sinh2

(
2 sinh−1

(√
|χ(F )|

2

))
+ 1

= 2 sinh2

(
sinh−1

(
2

√
|χ(F )|

2

√
|χ(F )|

2
+ 1

))
+ 1

= 2

(
2

√
|χ(F )|

2

√
|χ(F )|

2
+ 1

)2

+ 1

= 2 |χ(F )|2 + 4 |χ(F )|+ 1

= g(|χ(F )|).

For the case when |χ(F )| ≤ 2, we just need to check when the inequality(√
1− 2k(�(γ))

k(�(γ))

)
> g(2) = 17

is satisfied. This occurs when �(γ) < 0.015, giving the desired result. �

3.3. Least area surfaces and Dehn filling slopes

Now, we would like to examine the geometry and topology of γ ∩ F based
on certain Dehn filling slopes. In order to do this, we need to go over some
background on Dehn fillings.

Given a hyperbolic 3-manifold M with a cusp corresponding to a torus
boundary on ∂M , we choose a basis 〈m, l〉 for the fundamental group of the
torus. After this choice of basis, we can form the manifold M (p, q) obtained
by doing a (p, q)-Dehn surgery on the cusp, where (p, q) is a coprime pair of
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integers. A (p, q)-Dehn surgery maps the boundary of the meridian disk to
s = pm+ ql. Similary, we can form the manifold M ((p1, q1), . . . , (pk, qk)) by
performing a (pi, qi)-Dehn surgery on the ith cusp ofM , for each i, 1 ≤ i ≤ k.

Thurston showed that M ((p1, q1), . . . , (pk, qk)) is in fact a hyperbolic
3-manifold for all ((p1, q1) . . . (pk, qk)) near (∞, . . . ,∞); see [42]. Following
Thurston’s work, many people developed techniques to more explicitly un-
derstand the change in geometry under Dehn surgery. The work of Hodgson
and Kerckhoff [16], [17] shows that if the normalized lengths of the slopes
on which Dehn fillings are performed are sufficiently large, then it is pos-
sible to give explicit bounds on the geometry of the filled manifold. Their
work will be helpful for us to determine when core geodesics (coming from
Dehn filling) can be isotoped disjoint from incompressible surfaces inside of
M ((p1, q1), . . . , (pk, qk)). We now define normalized length.

Definition 3.7 (Normalized Length). Given a Euclidean torus T , the
normalized length of a slope s = pm+ ql is defined to be:

L̂(s) = L̂((p, q)) =
Length((p, q))√

Area(T )
,

where Length((p, q)) is defined to be the length of a geodesic representative
of s on T . If we are considering multiple slopes, {si}ki=1, then define L̂ by

the equation 1
̂L2

=
∑k

i=1
1

̂L(si)2
.

Note that, normalized length is scale invariant and well-defined for cusps
of M .

We now introduce some functions and terminology needed to understand
certain results we will use from [17]. For the rest of this section, M and N
will denote hyperbolic 3-manifolds such that M = N ((p1, q1), . . . , (pk, qk)).
Each of these Dehn fillings produces a solid torus in M whose core geodesic
will be denoted by γi. We will use ri to denote the maximal embedded tube
radus of γi. Section 5.1 of [17] defines the visual area of the boundary of
such an embedded tube and observes that it is equal to �(γi)αi, where αi is
the cone angle around γi (see above (25) on page 1068 there). Since M is
a manifold, its total visual area, i.e., the sum of the visual areas of all tube
boundaries, is A = 2π

∑k
i=1 �(γi).

The following two theorems come from [17]. The first relates the nor-
malized lengths to the tube radii of the core geodesics resulting from Dehn
filling, and the second relates these normalized lengths to the total visual
area. The functions f(z), A(z), and I(z) used in these theorems are given
below. Also, f(z) is formula 43 on page 1080 of [17], and A(z) is given on



Mutations and short geodesics 643

page 1080 of [17] (though it is defined in terms of a function H(z) given on
page 1079).

• f(z)=3.3957(1−z) exp(− ∫ z
1 F (w)dw), where F (w)= −(1+4w+6w2+w4)

(w+1)(1+w2)2 ,

• A(z) = 3.3957z(1−z2)
1+z2 ,

• I(z) = (2π)2

f(z) .

Theorem 3.8. [17] Suppose that M is obtained from N by Dehn filling
along slopes whose normalized lengths satisfy L̂ > 7.5832. If L̂2 ≥ I(z), then
the tube radius ri of each γi stays larger than ρ = tanh−1(z).

Theorem 3.8 is a slightly different version of Theorem 5.7 from [17]. In
[17, Theorem 5.7], the conclusion states that the tube radius of each γi stays
larger than a fixed radius R0 = tanh( 1√

3
). In our version, the tube radius

parameter is not fixed, but rather, a lower bound for it is given in terms
of ρ. The two paragraphs preceding Theorem 5.7 in [17] justify this change.
Specifically, the bottom of page 1080 and the top of page 1081 state that
the tube radius will be greater than or equal to ρ, provided that tanh(ρ) is
greater than a particular minimum value: tanh(R0). Thus, to guarantee a
larger tube radius, we must be able to choose larger values of z (and hence
larger values of ρ too). This is accomplished by choosing L̂2 ≥ I(z).

Theorem 3.9. [17, Theorem 5.12] Suppose that M is obtained from N by
Dehn filling along slopes whose normalized lengths satisfy L̂ > 7.5832. Then
the total visual area A satisfies A ≤ A(z) where the variable z is determined

by f(z) = (2π)2

̂L2
.

The following proposition explicitly relates the normalized length of
Dehn fillings to the geometry of the resulting core geodesics.

Proposition 3.10. Suppose M = N ((p1, q1), . . . , (pk, qk)). Let {γi}ki=1 ⊂
M denote the set of closed geodesics which come from the cores of the solid
tori obtained from Dehn filling cusps of N , and let ri denote the maximal
embedded tube radius of γi.

• If for each i=1, . . . , k we have L̂((pi, qi))≥14.90
√
k, then ri>2 ln(1+√

2).

• If for each i = 1, . . . , k we have L̂((pi, qi)) ≥ 20.76
√
k, then �(γi) <

0.015.
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Proof. For the first bullet, we use Theorem 3.8 to guarantee each tube ra-
dius ri is sufficiently large by making each normalized length L̂((pi, qi)) suf-
ficiently large. Specifically, we require L̂2 ≥ I(z), for z = tanh(2 ln(1 +

√
2))

to guarantee that the tube radius of each γi is at least 2(ln(1 +
√
2)). Since

for each i = 1, . . . , k we have L̂((pi, qi)) ≥ 14.90
√
k, it follows that

1

L̂2
=

k∑
i=1

1

L̂(pi, qi)2
≤ (k)

(
1

14.90
√
k

)2

=
1

222.01
.

Thus, L̂2 ≥ 222.01. Doing the necessary algebra reveals that 222.01 ≥ I(z)
when z = tanh(2 ln(1 +

√
2)), giving the desired result.

Now we consider the second bullet. For the filled manifold M , we have
that the total visual area A = 2π

∑k
i=1 �(γi). In our case, we want each

�(γi) < 0.015, which will certainly be true if
∑k

i=1 �(γi) < 0.015. Thus, if A ≤
2π(0.015) then each geodesic γi will be sufficiently short. By Theorem 3.9, we

know that A ≤ A(z) = 3.3957z(1−z2)
1+z2 , where the variable z is determined by

the equation f(z) = (2π)2

̂L
. Thus, we need to choose our L̂((pi, qi)) sufficiently

large so that z satisfies A(z) ≤ 2π(0.015). Doing some algebra yields the
following.

L̂ =

√
(2π)2

f(z)
=

√
(2π)2 exp(

∫ z
1 F (w)dw)

3.3957(1− z)
.

Choosing each L̂((pi, qi)) ≥ 20.76
√
k results in A(z) ≤ 2π(0.015), as needed.

�

Either of these conditions will guarantee that any such core geodesics γi
can be isotoped disjoint from an incompressible surface F with |χ(F )| ≤ 2.
This comes from combining Proposition 3.10 with Proposition 3.3 in the
first case and Proposition 3.6 in the second case, respectively. However,
while the lower bound on normalized length is smaller for the first bullet,
in certain applications we will actually want to guarantee that not only
our geodesics can be isotoped disjoint from F , but also, these geodesics are
sufficiently short. This is why we include the second condition. These results
are summarized in Corollary 3.13 in the next section.

3.4. Summary of conditions

We now summarize the conditions under which γ can be isotoped disjoint
from F . This will be used in the proof of Theorem 4.2 and its corollaries.
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Theorem 3.11. Let M be a hyperbolic manifold with F ⊂ M a surface that
is incompressible and ∂-incompressible. Let γ ⊂ M be a closed geodesic with
embedded tubular radius r. Assume

1) r > h(|χ(F )|), or
2)

√
1−2k(�(γ))
k(�(γ)) > g(|χ(F )|).

Then γ can be isotoped disjoint from F . Furthermore, if F is in almost
least area form, then either γ ∩ F = ∅ without any isotopy or n · γ is isotopic
into F for some n ∈ N.

Proof. Combine Proposition 3.3 and Proposition 3.6. �

Plugging in |χ(F )| ≤ 2 gives the following immediate corollary.

Corollary 3.12. Let M be a hyperbolic manifold with F ⊂ M a surface
that is incompressible and ∂-incompressible with |χ(F )| ≤ 2. Let γ ⊂ M be
a closed geodesic with embedded tubular radius r. Assume

1) r > 2 ln(1 +
√
2), or

2) �(γ) < 0.015.

Then γ can be isotoped disjoint from F . Furthermore, if F is in almost
least area form, then either γ ∩ F = ∅ without any isotopy or n · γ is isotopic
into F for some n ∈ N.

For our applications, we will mainly be concerned with closed geodesics
that are the core geodesics coming from Dehn fillings and surfaces Fi with
|χ(Fi)| ≤ 2. Thus, the following corollary will be useful, which comes from
combining Corollary 3.12 with Proposition 3.10.

Corollary 3.13. Suppose M = N ((p1, q1), . . . , (pk, qk)) and F ⊂ M a sur-
face that is incompressible and ∂-incompressible with |χ(F )| ≤ 2. Let
{γi}ki=1 ⊂ M denote the core geodesics coming from Dehn filling cusps of
N, each with embedded tube radius ri.

1) If for each i = 1, . . . , k we have that L̂((pi, qi)) ≥ 14.90
√
k, then each

γi can be isotoped disjoint from F and each ri > 2 ln(1 +
√
2).

2) If for each i = 1, . . . , k we have that L̂((pi, qi)) ≥ 20.76
√
k, then in

addition each �(γi) < 0.015.
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Furthermore, if F is in almost least area form, then either γi ∩ F = ∅
without any isotopy or n · γi is isotopic into F for some n ∈ N.

Combining the results from this section gives a proof of Theorem 1.2
from the introduction.

Proof of Theorem 1.2. Corollary 3.12 takes care of the first two cases of
Theorem 1.2, while Corollary 3.13 takes care of the third case by considering
Dehn filling a single cusp. �

4. Hyperelliptic surfaces and mutations that preserve
geodesics

In this section, we will prove that mutating along hyperelliptic surfaces in-
side hyperbolic 3-manifolds preserves the initial (complex) length spectrum.
In what follows, let Sg,n denote a surface of genus g and n boundary com-
ponents.

Recall that a hyperelliptic surface S is a surface that admits at least one
non-trivial involution μ of S so that μ fixes every isotopy class of curves in S.
Note that, the surfaces S2,0, S1,2, S1,1, S0,3, and S0,4 are always hyperelliptic,
regardless of their hyperbolic structures. Also, these are all surfaces with
Euler characteristic −1 or −2. For our constructions in Section 5, we will
examine 4-punctured spheres that arise in hyperbolic knot complements. An
S0,4 in a knot complement is called a Conway sphere.

Figure 3: A standard Conway sphere.

For a Conway sphere there are three hyperelliptic (orientation preserv-
ing) involutions, given by 180◦ rotations about the x-axis, y-axis, and z-axis,
respectively, as shown in Figure 3.
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Definition 4.1 (Mutation). A mutation along a hyperelliptic surface S
in a 3-manifold M is the process of cutting M along S and then regluing by
one of the nontrivial involutions of S to obtain the 3-manifold Mμ. If K is a
knot in S3 with a Conway sphere S, then cutting (S3,K) along (S, S ∩K)
and regluing by a mutation, μ, yields a knot Kμ ⊂ S3.

Corollary 3.12 will help us determine a lower bound on the number of
geodesic lengths preserved under mutation. To do this, we first need to see
how representations of π1(M) and π1(M

μ) are related as amalgamated prod-
ucts and HNN-extensions along representations of π1(F ). In fact, Kuessner
in [19] gives a different proof of Ruberman’s result about mutations and vol-
ume that uses these decompositions of representations of π1(M) and π1(M

μ)
along with the Maskit combination theorem and homological arguments.

The following theorem due to Ruberman characterizes an essential fea-
ture of a hyperelliptic surface (F, μ).

Theorem 4.2. [38, Theorem 2.2] Let (F, μ) be a hyperelliptic surface, and
let ρF : π1(F ) → PSL(2,C) be a discrete and faithful representation taking
cusps of F to parabolics. Then there exists β ∈ PSL(2,C) such that ρFμ∗ =
βρFβ

−1.

Geometrically, this means that a hyperelliptic involution acts as a rigid
motion of a fundamental domain for ρF (π1(F )) in H3.

In what follows, suppose that M = H3/Γ where Γ is the Kleinian group
corresponding to the representation ρ : π1(M) → PSL(2,C). In addition, as-
sume that (F, μ) is a hyperelliptic surface inside of M , and mutation along F
produces Mμ. If F is separating in M , then assume cutting along F decom-
poses M into two pieces, Ma and Mb. If F is non-separating, then assume
cutting along F decomposes M into N where ∂N = F1 ∪ F2. Here, F1 and
F2 are copies of F and M is the quotient of N under some homeomorphism
ψ : F1 → F2. Also, assume that Γa, Γb, ΓF , and ΓN are Kleinian subgroups
of Γ that are isomorphic to π1(Ma), π1(Mb), π1(F ), and π1(N), respectively,
with these isomorphisms coming from restricting ρ : π1(M) → PSL(2,C).

The previous paragraph tells us that Γ = 〈Γa,Γb〉 ∼= Γa ∗ΓF
Γb when F

is separating and Γ = 〈ΓN , γ〉 ∼= ΓN∗γ where γgγ−1 = ψ∗(g) for g in the
subgroup Γ1 of ΓN , when F is non-separating. The following lemma shows
that we also get a decomposition of Γμ in terms of Γa and Γb. A similar
lemma is given by Kuessner in [19, Proposition 3.1].

In the following lemma and theorem, we use = to denote equality of
Kleinian groups and ∼= to denote an abstract group isomorphism.
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Lemma 4.3. Let F ⊂ M be a properly embedded surface that is incom-
pressible,
∂-incompressible, and admits a hyperelliptic involution μ. If F is separating,
then there exists β ∈ PSL(2,C) such that

Γ = 〈Γa,Γb〉 ∼= Γa ∗ΓF
Γb

and

Γμ =
〈
Γa, βΓbβ

−1〉 ∼= Γa ∗ΓF
βΓbβ

−1.

If F is non-separating, then there exists β ∈ PSL(2,C) such that

Γ = 〈ΓN , α〉 ∼= ΓN∗α
and

Γμ = 〈ΓN , αβ〉 ∼= ΓN∗αβ ,
where αgα−1 = ψ∗(g) for g in the subgroup Γ1 of ΓN uniformizing π1(F )
and β normalizes Γ1 with βgβ−1 = μ∗(g).

In both cases, Γμ is discrete and Mμ is homeomorphic to H3/Γμ.

Remark. In Kuessner’s version of this statement, he assumes that the sur-
face F is not a virtual fiber. However, after the proof of [19, Proposition 3.1],
Kuessner suggests a slight variation of his proof that removes this require-
ment. Here, we make no such requirement of F and prove the more general
case by following Kuessner’s suggestion to utilize the least area surface ma-
chinery that Ruberman develops in [38].

Proof. Here, we give a proof of the case when F is separating. The non-
separating case is proved similarly, and we give a brief outline of this case at
the end of this proof. Since F is incompressible in M, F is also incompress-
ible in Ma and Mb. Thus, the inclusion maps i : F → Ma and j : F → Mb

induce monomorphisms i∗ : π1(F ) → π1(Ma) and j∗ : π1(F ) → π1(Mb), re-
spectively. Let ρa denote the restriction of ρ to π1(Ma), and similarly, let
ρF denote the restriction of ρ to π1(F ). Then the map f1 : ΓF → Γa de-
fined by f1 = ρai∗ρ−1F is a well-defined monomorphism. Similarly, we have a
monomorphism f2 : ΓF → Γb, defined by f2 = ρbj∗ρ−1F , where ρb denotes the
restriction of ρ to π1(Mb). This tells us that Γ ∼= Γa ∗ΓF

Γb
∼= (Γa ∗ Γb)/N ,

where N is the normal subgroup of Γa ∗ Γb generated by elements of the
form f1(h)f2(h)

−1, for all h ∈ ΓF .
Now, Mμ is also constructed by cutting M along F , and then gluing the

pieces Ma and Mb back together along F . However, we now rotate one of
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these pieces, sayMb, by the hyperelliptic involution μ before gluing it back to
Ma along F . Theorem 4.2 provides the existence of some β ∈ PSL(2,C) such
that ρFμ∗ = βρFβ

−1. Let fβ : Γb
∼−→ βΓbβ

−1 be the map that conjugates by
β. This gives us a well-defined monomorphism f3 : ΓF → βΓbβ

−1 defined by
f3 = fβf2.

First, we will show that Γμ ∼= Γa ∗ΓF
βΓbβ

−1 ∼= (Γa ∗ βΓbβ
−1)/K, where

K is the subgroup generated by elements of the form f1(h)f3(h)
−1 for all

h ∈ ΓF . This group isomorphism will follow from the Maskit combination
theorem [24, VII.A.10]. Assume that F is isotopic to its least-area represen-
tative; the case where F double covers a least-area representative is left to
the reader. Ruberman’s Theorem 4.2 implies that the element β such that
ρFμ∗ = βρFβ

−1 induces an isometric involution τ̃ of the cover MF → M
corresponding to π1(F ). In the proof of [38, Theorem 1.3], Ruberman shows
that a least-area representative of F lifts to an embedding F̂ in MF . Fur-
thermore, F̂ is invariant under τ̂ , and so, the preimage F̃ of F̂ in H3 is
β-invariant. Since F̃ is a properly embedded plane in H3, we have that
H3 \ F̃ decomposes into two (non-empty) 3-balls, Ba and Bb.

We claim that Ba and Bb comprise a proper interactive pair of sets
(in the sense of [24, VII.A]) for Γa and βΓbβ

−1. Here, we can follow the
same argument as Kuessner in [19, Proposition 3.1], but replace the subsets
B1 and B2 of ∂∞H3 with Ba and Bb. The Maskit combination theorem
then implies that Γμ =

〈
Γa, βΓbβ

−1〉 ∼= Γa ∗ΓF
βΓbβ

−1. The fact that Γμ is
discrete follows from the argument in [24, VII.C.4].

Finally, we claim that Mμ is homeomorphic to H3/Γμ. By applying van
Kampen’s Theorem, we have that π1M

μ ∼= π1Ma ∗π1F π1Mb, where the re-
spective inclusions of π1F are given by i∗ and j∗μ∗. This gives an isomor-
phism ρμ : π1M

μ → Γμ defined on π1Ma by ρ and on π1Mb by βρβ−1, as
desired.

To prove the non-separating case, we would use the Maskit combination
theorem for HNN-extensions along with the same least-area surface argu-
ment used in the separating case to obtain the desired group isomorphism
Γμ = 〈ΓN , αβ〉 ∼= ΓN∗αβ and discreteness of Γμ. Again, Mμ will be homeo-
morphic to H3/Γμ by an application of van Kampen’s Theorem. �

By combining the previous lemma with Corollary 3.12 and Corollary 3.13,
we can now give a number of scenarios for which mutation preserves a por-
tion of the (complex) length spectrum.

In what follows, let GL(M) denote the geodesics in M that make up the
initial length spectrum up to a cut off length of L, that is,
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GL(M) = {γ ⊂ M : γ is a closed geodesic and �(γ) < L} .

Proposition 4.4. Let F ⊂ M be a surface that is incompressible, ∂-
incompressible, and admits a hyperelliptic involution μ. Let γ ⊂ M be a
closed geodesic. If γ can be homotoped disjoint from F , then there exists
a geodesic γμ ⊂ Mμ such that �C(γ) = �C(γ

μ). Furthermore, suppose that
every geodesic shorter than length L can be homotoped disjoint from F (in
both M and Mμ). Then there is a bijection between the complex length spec-
tra of M and Mμ up to length L.

Proof. Suppose M and Mμ are hyperbolic 3-manifolds that differ by muta-
tion along (F, μ). Let γ ⊂ M be any closed geodesic that can be homotoped
disjoint from F . Assume we have performed this homotopy. In what follows,
we abuse notation and let γ refer to multiple representatives from the homo-
topy class [γ] ∈ π1(M), and not just the geodesic representative. Similarly
for [γμ] ∈ π1(M

μ).
First, suppose that F separates M . By Lemma 4.3, we have that Γ =

〈Γa,Γb〉 and Γμ =
〈
Γa, βΓbβ

−1〉, for some β ∈ PSL(2,C). Since γ ⊂ M has
been homotoped disjoint from F , γ ∈ Ma, or γ ∈ Mb. Without loss of gener-
ality, assume [γ] ∈ π1(Ma), i.e., γ now lies in Ma. [γ] ∈ π1(M) has a unique
(complex) length associated to it, �C(γ), coming from the representation
ρ : π1(M)

∼−→ Γ = 〈Γa,Γb〉 ⊂ PSL(2,C). This (complex) length is determined

by the trace of its representation. Specifically, cosh( �C(γ)2 ) = ± tr(γ)
2 , where

tr(γ) denotes the trace of the representation of γ. Since we have homotoped
γ disjoint from F , mutating along F to obtain Mμ will produce a corre-
sponding homotopy class [γμ] ∈ π1(M

μ). Similarly, [γμ] ∈ π1(M
μ) also has

a unique (complex) length associated to it, coming from ρμ : π1(M
μ)

∼−→
Γμ =

〈
Γa, βΓbβ

−1〉 ⊂ PSL(2,C). Thus, [γ] and [γμ] have the same represen-
tation in PSL(2,C) since ρ and ρμ agree on π1(Ma). So, the same complex
length is associated to γ and γμ, as desired. Note that, if γ was homotoped
into Mb instead, then the representations of γ and γμ into PSL(2,C) would
be conjugate to one another. Since trace is preserved by conjugation, the
corresponding complex length will still be preserved too.

If F is non-separating in M , then Lemma 4.3 gives us that Γ = 〈ΓN , α〉
and Γμ = 〈ΓN , αβ〉. Since γ has been homotoped disjoint from F , we once
again have that [γ] ∈ π1(N) ⊂ π1(M) and [γμ] ∈ π1(N) ⊂ π1(M

μ) have the
same representation in PSL(2,C) (up to conjugation), and so, the same
complex length associated to them.
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Now, suppose that every geodesic shorter than length L can be homo-
toped disjoint from F , and say this set of geodesics is GL(M) = {γi}ni=1. By
the first part of this proof, each γi will have a mutant partner γμi in Mμ

with the same complex length. We need to show that there exists a bijective
correspondence between GL(M) and GL(M

μ). Let f : GL(M) → GL(M
μ)

be the function defined by f(γi) = γμi , for each γi ∈ GL(M). This map is
obviously one-to-one: if γμi = f(γi) = f(γj) = γμj , then mutating Mμ along
(F, μ) to obtain M implies γi = γj . Now, suppose f is not onto, and so, there
exists some γμ ∈ GL(M

μ) such that γμ /∈ {γμi }ni=1. Mutate Mμ by (F, μ) to
obtain M . Since γμ ∈ GL(M

μ), �(γμ) < L, which implies that γμ can be
homotoped disjoint from F . The first part of this proof implies that there is
a corresponding γ ∈ M with the same complex length as γμ. However, then
�(γ) < L, i.e. γ ∈ GL(M), which is a contradiction. Thus, f gives a bijective
correspondence between GL(M) and GL(M

μ), as desired. �

The following corollary quickly follows from Proposition 4.4 and Corol-
lary 3.12.

Corollary 4.5. Let F ⊂ M be a surface that is incompressible, ∂-
incompressible, and admits a hyperelliptic involution μ. Then for any L <
0.015, GL(M) is in bijective correspondence with GL(M

μ). In particular, if
M has n geodesics shorter than L, then M and Mμ have at least the same
n initial values of their respective complex length spectra.

Proof. Suppose there are n geodesics shorter than L, and set {γi}ni=1 =
GL(M). By Corollary 3.12, we can isotope (and so homotope) any such
γi disjoint from F . Proposition 4.4 then implies that for each γi, there ex-
ists a corresponding closed geodesic γμi in Mμ, such that �C(γi) = �C(γ

μ
i ).

In addition, Proposition 4.4 guarantees that we have the desired bijective
correspondence between GL(M) and GL(M

μ). �

Remark. The above corollary uses the length condition from Corollary 3.12
to determine when M and its mutant Mμ have the same initial length spec-
tra. We also get corollaries (highlighted below), based upon the tube radius
condition and the normalized length condition. However, with the tube ra-
dius condition, we can not guarantee that these common geodesic lengths
are the shortest ones in the length spectra of M and Mμ, since there can
exist geodesics with a very large embedded tube radius that are not very
short. Thus, we can only say that that a portion of these length spectra
are the same, not necessarily the initial length spectra. Fortunately, for the
normalized length condition, we can still get a corollary that determines
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when M and Mμ have the same initial length spectra, by using the second
condition in Corollary 3.13.

Corollary 4.6. Let F ⊂ M be a surface that is incompressible, ∂-
incompressible, and admits a hyperelliptic involution μ. Suppose that M has
exactly n geodesics with embedded tubular radius larger than some constant
R > 2 ln(1 +

√
2). Then M and Mμ have at least n common values in their

respective (complex) length spectra.

Corollary 4.7. Let F ⊂ M be a surface that is incompressible, ∂-
incompressible, and admits a hyperelliptic involution μ. Suppose that M has
exactly n geodesics that are the core geodesics coming from Dehn filling a
hyperbolic 3-manifold N . Let L̂(si) denote the normalized slope length of the
ith Dehn filling.

• If L̂(si) ≥ 14.90
√
n for each i, 1 ≤ i ≤ n, then the n core geodesics of

the filling tori lie in the set of preserved (complex) geodesic lengths.

• If L̂(si) ≥ 20.76
√
n for each i, 1 ≤ i ≤ n, then M and Mμ have at least

the same n initial values of their respective (complex) length spectra.

Remark. Corollary 4.5, and so, the second part of Corollary 4.7, both re-
quire geodesics of length less than 0.015 in order to get a lower bound on
how much of the initial length spectrum is preserved under mutation. The
work of Meyerhoff [26] shows that the Margulis constant for the thick-thin
decomposition in dimension 3 is at least 0.104. Thus, the geodesics corre-
sponding to the initial length spectrum guaranteed to be preserved under
mutation are all contained in the thin parts of these manifolds. Specifically,
they must all be cores of solid tori and possibly multiples of these cores.
In general, many more geodesics are preserved under mutation. Lemma 4.3
implies that every element of the non-elementary groups Γa and Γb, or ΓN in
the non-separating case, maintains its complex length under mutation. This
includes any geodesics that can be homotoped disjoint from the mutation
surface.

5. Hyperbolic pretzel knots: {K2n+1}∞
n=2

Here, we construct a specific class of pretzel knots, {K2n+1}∞n=2. We will be
able to show that for each n ≥ 2, K2n+1 generates a large number of mutant
pretzel knots whose complements all have the same volume and initial length
spectrum. This section describes pretzel links, their classification, and the
basic properties of {K2n+1}∞n=2.
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5.1. Pretzel links

We shall describe vertical tangles and see how they can be used to construct
pretzel links. Afterwards, we will give a simple classification of pretzel links.

Definition 5.1 (Pretzel link). The vertical tangles, denoted by 1
n , are

made of n vertical half-twists, n ∈ Z, as depicted in Figure 4. A pretzel

link, denoted K
(

1
q1
, 1
q2
, . . . , 1

qn

)
, is defined to be the link constructed by

connecting n vertical tangles in a cyclic fashion, reading clockwise, with the
ith-tangle associated with the fraction 1

qi
.

Figure 4: Some of the vertical tangles with their associated fractions.

K in Figure 7 is the pretzel link K = K(14 ,
1
7 ,

1
9). Note that, each vertical

tangle corresponds with a twist region for a knot diagram of a pretzel link.
Twist regions are defined at the beginning of Section 6.1.

Now, we state the classification of pretzel links, which is a special case of
the classification of Montesinos links. The classification of Montesinos links
was originally proved by Bonahon in 1979 [5], and another proof was given
by Boileau and Siebenmann in 1980 [3]. A proof similar to the one done by
Boileau and Siebenmann can be found in [6, Theorem 12.29]. Here, we state
the theorem solely in terms of pretzel links.

Theorem 5.2. [5] The pretzel links K
(

1
q1
, 1
q2
, . . . , 1

qn

)
with n ≥ 3 and∑n

j=1
1
qj

≤ n− 2, are classified by the ordered set of fractions
(

1
q1
, . . . , 1

qn

)
up to the action of the dihedral group generated by cyclic permutations and
reversal of order.

5.2. Our construction

Consider the pretzel link K2n+1 = K
(

1
q1
, 1
q2
, . . . , 1

q2n+1

)
, where each qi > 6,

q1 is even, each qi is odd for i > 1, and qi = qj for i = j. We will always work
with the diagram of K2n+1 that is depicted below in Figure 5. Each Ri in
this diagram of K2n+1 represents a twist region in which the vertical tangle
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1
qi

takes place. For n ≥ 2, K2n+1 has the properties listed below; details can
be found in [27]. Though our construction here is slightly different, it still
retains all the same key properties listed below.

1) Each K2n+1 is a hyperbolic knot (link with a single component).

2) This diagram of K2n+1 is alternating.

3) This diagram of K2n+1 is prime and twist-reduced (definitions can be
found in [11]).

4) Two such pretzel knots are distinct (as knots) if and only if their
corresponding complements are non-isometric. This follows from the
Gordon–Luecke Theorem [14] and Mostow–Prasad rigidity.

Figure 5: The pretzel knot K2n+1. Each twist region Ri contains a vertical
tangle with qi positive crossings.

5.3. Mutations of K2n+1 that preserve volume

In this subsection, we will see how mutations can be useful for preserving the
volume of a large class of hyperbolic 3-manifolds

{
Mσ

2n+1

}
, with Mσ

2n+1 =
S3 \Kσ

2n+1. Kσ
2n+1 is one of our hyperbolic preztel knots constructed in

Section 5.2, and the upper index σ signifies a combination of mutations
along Conway spheres, which we will now describe.

Given a K2n+1, consider the set {(Sa, σa)}2na=1 where Sa is a Conway
sphere that encloses only Ra and Ra+1 on one side, and σa is the mutation
along Sa which rotates about the y-axis. On one of our pretzel knots, such
a mutation σa interchanges the vertical tangles Ra and Ra+1, as depicted in
Figure 6. In terms of our pretzel knot vector, such a mutation just switches
1
qa

and 1
qa+1

.
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Figure 6: Mutation along the Conway sphere Sa.

In [27], we used the following theorem proved by Ruberman to construct
many hyperbolic knot complements with the same volume.

Theorem 5.3. [38, Theorem 1.3] Let μ be any mutation of an incompress-
ible and ∂-incompressible hyperelliptic surface in a hyperbolic 3-manifold M .
Then Mμ is also hyperbolic, and vol(Mμ) = vol(M).

Ruberman’s proof of this theorem requires the hyperelliptic surface S
to be isotoped into least area form in order to perform a volume-preserving
mutation of a hyperbolic 3-manifold M along S. This fact will be crucial,
considering the conditions for Theorem 3.11.

By the proof of [27, Theorem 2], for a given M2n+1 = S3 \K2n+1, per-
forming combinations of mutations along the collection {(Sa, σa)}2na=1 pro-
duces a large number of non-isometric hyperbolic knot complements with
the same volume, and this number grows as n increases. Specifically, we
have:

Theorem 5.4. [27] For each n ∈ N, n > 2, there exist (2n)!
2 distinct hyper-

bolic pretzel knots,
{
Kσ

2n+1

}
, obtained from each other via mutations along

the Conway spheres {(Sa, σa)}. Furthermore, for each such n,

• their knot complements have the same volumes, and

• (
2n−1

2

)
voct ≤ vol(Mσ

2n+1) ≤ (4n+ 2) voct, where voct (≈ 3.6638) is the
volume of a regular ideal octahedron.

6. The geometry of untwisted augmented links

The goal of this section is to better understand the geometry and topology of
our pretzel knots by realizing them as Dehn fillings of untwisted augmented

links. Recall that K2n+1 = K
(

1
q1
, 1
q2
, . . . , 1

q2n+1

)
with q1 even, while the rest
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are odd and distinct. We can realize each K2n+1 as a Dehn surgery along
specific components of a hyperbolic link L2n+1. We want to find a lower
bound on the normalized length of the Dehn filling slopes along each of
these components in order to apply Corollary 4.7. We also can understand
the cusp shape of K2n+1 by first studying the cusp shape of this knot as a
component of L2n+1. This will be used to determine that these knots are
pairwise incommensurable in Section 7. The following analysis will help us
determine the properties we are interested in.

6.1. Augmented links

First, we will go over some basic properties of knots. We usually visualize a
knot by its diagram. A diagram of a knot can be viewed as a 4-valent planar
graph G, with over-under crossing information at each vertex. Here, we will
need to consider the number of twist regions in a given diagram. A twist
region of a knot diagram is a maximal string of bigons arranged from end to
end. A single crossing adjacent to no bigons is also a twist region. We also
care about the amount of twisting done in each twist region. We describe
the amount of twisting in terms of half twists and full twists. A half twist
of a twist region of a diagram consists of a single crossing of two strands. A
full twist consists of two half twists. Now, we can define augmented links,
which were introduced by Adams [1] and have been studied extensively by
Futer and Purcell in [11] and Purcell in [33], [34]. For an introduction to
augmented links, we suggest first reading [35].

Definition 6.1 (Augmented Links). Given a diagram of a knot or link
K, insert a simple closed curve encircling each twist region. This gives a
diagram for a new link L′, which is the augmented link obtained from K.
Obtain a new link L by removing all full twists from each twist region in
the diagram of L′. We shall refer to the link L as the untwisted augmented
link. Each twist region now has either no crossings or a single crossing. If we
remove all of the remaining single crossings from the twist regions, then we
form the flat augmented link, J .

The top two diagrams in Figure 7 show a link K with three twist regions
and then the corresponding augmented link L′. The bottom two diagrams
of Figure 7 show the corresponding untwisted augmented link L and flat
augmented link J . The simple closed curves inserted to augmentK are called
crossing circles. The untwisted augmented link L has a diagram consisting
of crossing circle components bounding components from the link. Near each
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Figure 7: Diagrams of a knot K with three twist regions, the augmented
link L′ with three crossing circles, the untwisted augmented link L, and the
flat augmented link J .

crossing circle, the link component is embedded in the projection plane if
the corresponding twist region contained only full twists. Otherwise, there
is a single half twist. L is made up of two types of components: the crossing
circles and the other components coming from the original link K. We shall
refer to these other components as the knot components of L. When K is a
knot, there is a single knot component in L, which will be the case for our
work.

The 3-manifolds S3 \ L and S3 \ L′ actually are homeomorphic. Per-
forming ti full twists along the punctured disk bound by a crossing circle
and then regluing this disk gives a homeomorphism between link exteriors.
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Thus, if either S3 \ L or S3 \ L′ is hyperbolic, then Mostow–Prasad rigidity
implies that the two manifolds are isometric.

Next, we shall examine the polyhedral decompositions of certain un-
twisted augmented links. We will do this by first examining such structures
on the corresponding flat augmented links, which are almost the same, but
easier to initially analyze.

6.2. Ideal polyhedral decompositions of untwisted
augmented links

The polyhedral decompositions of untwisted augmented link complements
have been thoroughly described in [11]. This polyhedral decomposition was
first described by Agol and Thurston in the appendix of [20], and many of
its essential properties are highlighted in the following theorem.

Theorem 6.2. Let L be the untwisted augmented link corresponding to a
link K. Assume the given diagram of K is prime, twist-reduced, and K has
at least two twist regions. Then S3 \ L has the following properties:

1) S3 \ L has a complete hyperbolic structure.

2) This hyperbolic 3-manifold decomposes into two identical ideal, totally
geodesic polyhedra, I and I ′, all of whose dihedral angles are π

2 .

3) The faces of I and I ′ can be checkerboard colored, shaded and white.

4) Shaded faces come in pairs on each polyhedron, and they are con-
structed by peeling apart half of a single 2-punctured disc bounded by
a crossing circle.

5) White faces come from portions of the projection plane bounded by knot
strands.

Here, we will briefly describe this decomposition and the resulting circle
packings, with emphasis on our untwisted augmented link complements,
N2n+1 = S3 \ L2n+1. We direct the reader to [34, Sections 6 and 7] for more
details on cusp shape analysis of untwisted augmented link complements.

First, consider S3 \ J2n+1, where J2n+1 is the flat augmented link, whose
diagram is shown in Figure 8. In the diagram of J2n+1, the knot strands
all lie on the projection plane. To subdivide S3 \ J2n+1 into polyhedra, first
slice it along the projection plane, cutting S3 into two identical 3-balls.
These identical polyhedra are transformed into ideal polyhedra by collapsing
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Figure 8: The untwisted augmented link L2n+1 and the flat augmented link
J2n+1.

strands of J2n+1 to ideal vertices. These ideal polyhedra have two types of
faces: shaded faces and white faces, described in the above theorem.

To go from an ideal polyhedral decomposition of S3 \ J2n+1 to one for
S3 \ L2n+1, we just have to introduce a half-twist into our gluing at each
shaded face where a crossing circle bounds a single twist. Depicted in Fig-
ure 9 below is an ideal polyhedral decomposition of the flat augmented link,
J2n+1.

In [34, Section 6], Purcell describes a circle packing associated to the
white faces of the polyhedra (and a dual circle packing associated to the
shaded faces). Figure 10 depicts the circle packing coming from the white
faces of the polyhedral decomposition of J2n+1.

The decomposition of S3 \ L2n+1 is determined by this circle packing.
First, slice off half-spaces bounded by geodesic hemispheres in H3 corre-
sponding to each circle in the circle packing. These give the geodesic white
faces of the polyhedron. The shaded faces are obtained by slicing off hemi-
spheres in H3 corresponding to each circle of the dual circle packing. Finally,
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Figure 9: The polyhedral decomposition of J2n+1.

Figure 10: The resulting circle packing for J2n+1.

we just need to make sure we glue up most of the shaded faces with a half-
twist. Only the two shaded faces corresponding to the first twist region are
glued up without a half-twist.

A careful analysis of this polyhedral decomposition also leads to a canon-
ical method for cusp expansion. Given any S3 \ L2n+1, we have 2n+ 2 cusps
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corresponding to the 2n+ 2 components of the link L2n+1 (the 2n+ 1 cross-
ing circles and the single knot component). We initially start with disjoint
horoball neigborhoods of these cusps and then follow the expansion instruc-
tions described in [11, Section 3]: given any ordering of the cusps, expand
them one at a time until a horoball neighborhood C meets another horoball
neighborhood or C meets the midpoint of some edge of our polyhedral de-
composition. See [11, Definition 3.6] for the definition of midpoint in this
context. This choice of cusp expansion results in the following theorem,
which is now stated in terms of our untwisted augmented link complements.

Theorem 6.3. [11] Given any S3 \ L2n+1, expand the cusps as described
above. This results in a unique horoball packing where each boundary horo-
sphere of a horoball neighborhood meets the midpoint of every edge asymp-
totic to its ideal point.

The fact that this cusp expansion is unique will be essential for an-
alyzing cusp neighborhoods and horoball packings in Section 6.3 and in
Proposition 7.5.

6.3. Normalized lengths on cusps

For this section, we will specialize our analysis to just our pretzel knot
complements M2n+1 = S3 \K2n+1 which result from Dehn filling the 2n+ 1
crossing circles, {Ci}2n+1

i=1 , of N2n+1 = S3 \ L2n+1. Recall that K2n+1 has
2n+ 1 twist regions with qi crossings in the ith twist region, and in L2n+1,
exactly 2n of these crossing circle enclose a single crossing since 2n of our
qi are odd. To apply Corollary 4.7, we will need to examine normalized
lengths of particular slopes on the cusps in N2n+1 corresponding to crossing
circles. In [34, Proposition 6.5], Purcell gives the general case for providing
bounds on the normalized lengths L̂(si) of Dehn filling crossing circles of an
untwisted augmented link. In the general case, re-inserting qi crossings gives
L̂(si) ≥ √

qi. By restricting to untwisted augmented links corresponding to
hyperbolic pretzel knots, we are able to provide a substantial improvement
on this bound, highlighted in the proposition given below.

Proposition 6.4. On the cusps of N2n+1 corresponding to crossing circles,
we have the following normalized lengths: Let si be the slope such that Dehn
filling N2n+1 along si re-inserts the qi − 1 or qi crossings at that twist region.

Then L̂ (si) ≥
√

(2n−1)(1+q2i )
4n . In particular, if n ≥ 2, we have that L̂(si) ≥√

3(1+q2i )
8 .
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Proof. Pictured in Figure 10 is a circle packing for J2n+1 coming from the
white faces. There also exists a circle packing for the shaded faces, which
is dual to the circle packing coming from the white faces. These two circle
packings also determine the same circle packings for L2n+1 since the only
difference between L2n+1 and J2n+1 is how the two ideal polyhedra are glued
together. Much of what follows in the next two paragraphs is done in [11,
Sections 2 and 3]. In their work, the cusp shapes are analyzed with respect
to any augmented link, while we will specialize to our L2n+1.

First, let us recall our polyhedra obtained in Section 6.2. Each cusp
will be tiled by rectangles given by the intersection of the cusp with the
totally geodesic white and shaded faces of the polyhedra. Two opposite
sides of each of these rectangles come from the intersection of the cusp with
shaded faces of the polyhedra (corresponding with the 2-punctured disc in
the diagram of L2n+1), and the other two sides from white faces. Call these
sides shaded sides and white sides, respectively. We can make an appropriate
choice of cusp neighborhoods as in Theorem 6.3. This allows us to consider
the geometry of our rectangles tiling a cusp.

Our crossing circle cusp is tiled by two rectangles, each rectangle corre-
sponding with a vertex in one of the polyhedra. In terms of our circle packing
of S2, this vertex corresponds with a point of tangency of two circles. Con-
sider the point of tangency given by Pi ∩ Pi+1, which corresponds to one of
the two identical rectangles making up the crossing circle cusp Ci+1. By the
rotational symmetry of the circle packing in Figure 10, all of these rectangles
(along with their circle packings) are in fact isometric. Thus, taking a step
along a shaded side will be the same for any such rectangle, and similarly for
stepping along a white side. Let s represent taking one step along a shaded
face and w represent taking one step along a white face. Each torus cusp,
T , has universal cover T̃ = R2. T̃ contains a rectangular lattice coming from
the white and shaded faces of our polyhedron. We let (s, w) be our choice
of basis for this Z2 lattice.

Now, we shall examine the normalized length in terms of our longitudes
and meridians of the cusps corresponding to crossing circles. Lemma 2.6 from
[11] tells us that the meridian is given by w ± s when there is a half-twist,
and the meridian is w without the half-twist. In either case, the longitude is
given by 2s. When qi is odd, qi−1

2 full twists were removed in constructing

L2n+1, so the surgery slope for the ith crossing circle will be (1, qi−12 ). Thus,

the slope si is given by (w ± s)± qi−1
2 (2s) = w ± qis, when qi is odd. For

the single even qi, the surgery slope is (1, qi2 ) and the slope is given by
w ± qi

2 (2s) = w ± qis; see [11, Theorem 2.7]. In either case, the normalized
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length of si is:

L̂(si) =

√
�(w)2 + q2i �(s)

2√
2�(w)�(s)

.

Here, �(w) and �(s) denote the lengths of w and s respectively, on our
choice of cusp neighborhoods. To bound the normalized length, we need
to bound �(w) and �(s). We shall use our circle packing to obtain such
bounds. Consider the tangency given by Pi ∩ Pi+1, which corresponds to
one of the two rectangles making up our cusp. Note that, Pi is also tangent
to circles Pi−1, A, and B, while Pi+1 is also tangent to Pi+2, A, and B (i
values taken mod 2n+ 1). Apply a Möbius transformation taking Pi ∩ Pi+1

to infinity. This takes the two tangent circles Pi and Pi+1 to parallel lines, as
in Figure 11. This also gives the similarity structure of the rectangle under
consideration. Our choice of cusp neighborhoods results in �(s) = 1. This
makes the circles A and B lying under the dashed lines in Figure 11 have
diameter 1. Since circles in our circle packing can not overlap, this forces
�(w) ≥ 1. Note that, the dashed lines come from our dual circle packing
corresponding to shaded faces.

Figure 11: The cusp shape of one of the rectangles tiling our crossing circle
cusp. This rectangle is determined by sending the tangency point Pi ∩ Pi+1

to ∞.

Now, we just need to find an upper bound for �(w). Again, consider
Figure 11. Since Pj is tangent to A, B, Pj−1, and Pj+1 for 1 ≤ j ≤ 2n+ 1,
all the circles P1, . . . , Pi−1, Pi+2, . . . , P2n+1 lie in between our parallel lines
and in between A and B, stacked together as depicted in Figure 11 to meet
our tangency conditions. Notice, that this circle packing of one of these
rectangles has two lines of symmetry: the line lw going through the two w
sides in their respective midpoints, and the line ls going through the two s
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sides in their respective midpoints. lw is a translate of s and ls is a translate
of w. Reflecting across either of these lines preserves our circle packing. In
particular, lw must intersect each Pj , j = i, i+ 1 in a diameter. Let D(Pj)

denote the diameter of circle Pj . Then
∑

j 	=i,i+1

D(Pj) = l(s) = 1.

Next, the fact that we have symmetries about both ls and lw and an
odd number of Pj packed in between A and B implies that one of our Pj ’s
is centered at ls ∩ lw. Call this circle P ∗j . Note that, ls intersects A, B, and

P ∗j in their respective centers. Thus, �(w) = �(ls) =
D(A)
2 + D(B)

2 +D(P ∗J ) =
1 +D(P ∗J ).

Now, we claim that P ∗j has the minimal diameter amongst Pj , j = i, i+
1. This follows from our tangency conditions: each such Pj must be tangent
to both A and B. The diameter of P ∗j obviously minimizes the distance
between A and B. For any other Pj , consider the line lj in Pj from Pj ∩A
to Pj ∩B. Then we have that D(P ∗j ) ≤ �(lj) ≤ D(Pj). The first inequality
holds because D(P ∗j ) minimizes distance from A to B, while the second
inequality is obviously true for any circle. So, D(P ∗j ) must be the smallest
such diameter.

Finally, we have

1 = �(s) =
∑

j 	=i,i+1

D(Pj) ≥
∑

j 	=i,i+1

D(P ∗j ) = (2n− 1)D(P ∗j ),

which implies that D(P ∗j ) <
1

2n−1 . This helps give us the desired upper
bound on �(w):

�(w) = �(ls) = 1 +D(P ∗J ) ≤ 1 +
1

2n− 1
=

2n

2n− 1
.

With these bounds, we have that

L̂(si) =

√
�(w)2 + q2i �(s)

2√
2�(w)�(s)

=

√
�(w)2 + q2i√

2�(w)

≥
√

1 + q2i√
2�(w)

≥
√

1 + q2i√
4n

2n−1
=

√
(2n− 1)(1 + q2i )

4n
.

In particular, if n ≥ 2, we have that L̂(si) ≥
√

3(1+q2i )
8 . �

We will also need to analyze the cusp shape of the one cusp C correspond-
ing to the knot component of L2n+1. Such an analysis will play an important
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role in determining that our knot complements are not commensurable with
one another. We will see that the tiling of the cusp C by rectangles which
come from truncating certain vertices of our ideal polyhedral decomposition
has a number of nice properties, highlighted in the following proposition.

Proposition 6.5. Let C be the cusp corresponding to the knot component
of L2n+1. This cusp has the following properties:

1) There are 4(2n+ 1) rectangles tiling this cusp, half of which come from
each ideal polyhedron.

2) This cusp shape is rectangular (and not a square).

3) All of these rectangles, along with their circle packings, are isometric
to one another.

Proof. Theorem 6.3 gives us an appropriate choice of cusp neighborhoods,
which allows us to fix the geometry of our cusp C.

(1): Consider the ideal polyhedral decomposition in Figure 9 for J2n+1.
There are 2n+ 1 disks corresponding to crossing circles, and we peel each of
these disks apart to obtain 2(2n+ 1) shaded faces on each polyhedron. For
each shaded face, there are two vertices corresponding to rectangles that tile
the knot component cusp C; specifically, the two vertices meeting A or the
two vertices meeting B, depending on the face. Since each of these vertices
is shared by exactly two shaded faces, we obtain 2(2n+ 1) rectangles from
each polyhedron, or 4(2n+ 1) total such rectangles. L2n+1 admits the same
polyhedral decomposition as J2n+1; the only difference is that the gluing
along shaded faces might change the gluing of the polyhedron.

(2): This holds if there are no half-twists under any of the crossing
circles, as in J2n+1; see [11, Section 2]. However, L2n+1 has 2n half-twists in
its diagram. A half-twist shifts the gluing of the rectangles making up the
cusp. Since K is a knot, it must go through each crossing circle twice, and
so, it will pass through an even number of half-twists. Thus, from Lemma
2.6 in [11], the fundamental domain for this torus is given by the meridian
2s and the longitude 2(2n+ 1)w + 2ks, for some integer k. By a change of
basis, we can see that this cusp shape is once again rectangular. Note that,
this fundamental domain is not a square since �(s) = 1 and 1 < �(w) < 2.

(3): Consider the circle packing depicted in Figure 10. The rectangles
tiling our cusp C come from mapping Pi ∩A to ∞ or mapping Pi ∩B to
∞ for i = 1, . . . , 2n+ 1. By the rotational symmetry of this circle packing,
any Pi ∩A and Pj ∩A will determine isometric rectangles, and similarly for
Pi ∩B and Pj ∩B. In fact, Pi ∩A and Pj ∩B will also determine isometric
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rectangles. The circle packings of these rectangles are exactly the same ex-
cept the roles of A and B have been switched; see Figure 12. We can also
see that Pi ∩A and Pj ∩B determine isometric rectangles by considering
the reflection through the circle running through the Pi ∩ Pj . This reflection
gives a symmetry exchanging A and B. �

Figure 12: The cusp shape of any one of the rectangles tiling our knot cusp
C.

Without loss of generality, we will assume any such rectangle coming
from the tiling of our knot cusp looks like the one depicted in Figure 12, i.e.,
we assume Pi ∩A is mapped to ∞.

Lemma 6.6. Let R be any rectangle from the tiling of C. Let P ∗j be the
smallest such Pj in the circle packing of this rectangle. Then for all n ≥ 2,
the circle packing of R has the following size bounds:

1) �(s) = 1 and 1 < �(w) < 2,

2) n−2
n−1 < D(B) < 1,

3) D(B) > 1
2 ,

4) D(P ∗j ) <
1

n−1 .

Proof. As before, our choice of cusp neighborhood results in �(s) = 1. Then
D(P1) = D(P3) = 1. We will assume our rectangle is the one depicted in
Figure 12. By part 3 of Proposition 6.5, all such rectangles tiling our cusp,
along with their circle packings, are isometric to this one, up to relabelling.

First, we claim that for any L2n+1, 1 < �(w) < 2. The lower bound fol-
lows from the fact that D(P1) = D(P3) = 1, and P1 and P3 can not be
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tangent to one another. If �(w) > 2, then D(B) > 1 in order to be tangent
to both P1 and P3. However, since �(s) = 1, B would not be tangent to A
and P2. If �(w) = 2, then D(B) = 1 in order to meet its tangency conditions.
Since �(s) = 1, B must separate our rectangle into two parts, one to the right
of B and one to the left of B. This violates the tangency conditions of the
Pj , for j = 4, . . . , 2n+ 1. So, 1 < �(w) < 2 and D(B) < 1.

Take the vector w and translate it vertically so it intersects P ∗j in its
center. This line will intersect all the Pj in some segment l(Pj), which must
be at least as large as D(P ∗j ). This can easily be seen by translating P ∗j
horizontally along this line so that its point of tangency with A is Pj ∩A.
Note that, there are exactly 2n− 2 circles {Pj}2n+1

j=4 packed under B. This
gives the following inequality:

2 > �(w) >

2n+1∑
j=4

l(Pj) ≥
2n+1∑
j=4

D(P ∗j ) = (2n− 2)D(P ∗j ).

This gives us that D(P ∗j ) <
2

2n−2 = 1
n−1 .

Now, for any such j, D(B) +D(Pj) ≥ 1. Combining with the previous
result, we have that

D(B) ≥ 1−D(P ∗j ) > 1− 1

n− 1
=

n− 2

n− 1
,

as desired.
Finally, we need to show that D(B) > 1

2 . This is already true if n > 2
since n−2

n−1 < D(B). So, assume n = 2, which means there are exactly two

circles, P4 and P5, packed under B. Suppose D(B) ≤ 1
2 . Then D(P4) >

1
2

since D(B) +D(P4) > 1. Also, �(w) ≤ D(B) + D(P1)
2 + D(P3)

2 = 3
2 . Take the

vector w and translate it vertically so that it intersects P4 in its center, and
take the vector s and translate it horizontally so that it intersects P3 in
its center. We shall still refer to the translates of these vectors as w and s,
respectively. Now consider the right triangle with vertices at the center of P3,
w ∩ s, and the left end point of P4 ∩ w. The hypotenuse, c, of this triangle has
length at least 1

2 since D(P3)
2 = 1

2 . The height, a, has length less than 1
4 since

D(P3)
2 = 1

2 and D(P4)
2 ≥ 1

4 . The base, b, has length less than 1
4 since �(w)

2 ≤ 3
4

and D(P4) >
1
2 . This gives us that

1
4 ≤ �(c)2 = �(a)2 + �(b)2 ≤ 1

16 + 1
16 = 1

8 ,
which is a contradiction. Thus, D(B) > 1

2 . �
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7. Commensurability classes of hyperbolic pretzel knot
complements

Recall that two hyperbolic 3-manifolds M1 = H3/Γ1 and M2 = H3/Γ2 are
called commensurable if they share a common finite-sheeted cover. In terms
of fundamental groups, this definition is equivalent to Γ1 and a conjugate of
Γ2 in PSL(2,C) sharing some finite index subgroup. The commensurability
class of a hyperbolic 3-manifold M is the set of all 3-manifolds commensu-
rable with M .

We are interested in the case when M = S3 \K, where K is a hyperbolic
knot. It is conjectured in [37] that there are at most three knot complements
in the commensurability class of a hyperbolic knot complement. In particu-
lar, Reid and Walsh show that when K is a hyperbolic 2-bridge knot, then
M is the only knot complement in its commensurability class. Their work
provides criteria for checking whether or not a hyperbolic knot complement
is the only knot complement in its commensurability class. Specifically, we
have the following theorem coming from Reid and Walsh’s work in [37, Sec-
tion 5]; this version of the theorem can be found at the beginning of [23].

Theorem 7.1. Let K be a hyperbolic knot in S3. If K admits no hidden
symmetries, has no lens space surgery, and admits either no symmetries or
else only a strong inversion and no other symmetries, then S3 \K is the
only knot complement in its commensurability class.

Macasieb and Mattman use this criterion in [23] to show that for any

hyperbolic pretzel knot of the form K
(

1
−2 ,

1
3 ,

1
n

)
, n ∈ Z \ {7}, its knot com-

plement S3 \K
(

1
−2 ,

1
3 ,

1
n

)
is the only knot complement in its commensura-

bility class. The main challenge in their work was showing that these knots
admit no hidden symmetries.

Definition 7.2. Let Γ be a finite co-volume Kleinian group. The normalizer
of Γ is

N(Γ) =
{
g ∈ PSL(2,C) : gΓg−1 = Γ

}
.

The commensurator of Γ is

C(Γ)=
{
g ∈ PSL(2,C) :

∣∣Γ : Γ ∩ gΓg−1
∣∣<∞ and

∣∣gΓg−1 : Γ ∩ g−1Γg
∣∣<∞}

.

If N(Γ) is strictly smaller than C(Γ), then Γ and H3/Γ are said to have
hidden symmetries. IfH3/Γ ∼= S3 \K, then we also say thatK admits hidden
symmetries.
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Here, we would also like to apply Reid and Walsh’s criterion to show
that our hyperbolic pretzel knot complements are the only knot comple-
ments in their respective commensurability classes. The following proposi-
tion immediately takes care of symmetries and lens space surgeries. Given a
knot K ⊂ S3, K admits a strong inversion if there exists an involution t of
(S3,K) such that the fixed point set of t intersects the knot in exactly two
points.

Proposition 7.3. Let M = S3 \K, where K = K
(

1
q1
, 1
q2
, . . . , 1

qn

)
is a hy-

perbolic pretzel knot with all qi distinct, exactly one qi even, and K =
K

(
1
−2 ,

1
3 ,

1
7

)
. Then M admits no lens space surgeries, and a strong inver-

sion is its only symmetry. In particular, any Mσ
2n+1 admits no lens space

surgeries, and a strong inversions is its only symmetry.

Proof. All pretzel knots admitting lens space surgeries have been classified
by Ichihara and Jong in [18], and this classification is also implied by the
work of Lidman and Moore in [22]. Both works show that the only hyperbolic

pretzel knot that admits any lens spaces surgeries is K
(

1
−2 ,

1
3 ,

1
7

)
.

To deal with symmetries, we first note that the work of Boileau and
Zimmermann [4] implies that Sym(S3,K) = Z2. It is easy to see that the
one non-trivial symmetry of any K is a strong inversion. Consider the knot
diagram of Kσ

2n+1 as shown in Figure 5. Recall that exactly one twist region
Ri has an even number of crossings. Consider the involution of our knot in
S3 whose axis cuts directly through the middle of all of our twist regions.
This involution will intersect Kσ

2n+1 in exactly two points, always inside the
one twist region with an even number of crossings. In the other twist regions,
this axis will miss the knot, passing in between two strands at a crossing.
This process for finding the strong involution generalizes to any pretzel knot
K with exactly one qi even. �

It remains to rule out hidden symmetries. In [23], Macasieb and Mattman

do this by arguing that the invariant trace field of any K
(

1
−2 ,

1
3 ,

1
n

)
has

neither Q(i) nor Q(
√−3) as a subfield. This criterion for the existence of

hidden symmetries is supplied by Neumann and Reid [30]. Here, we use a
geometric approach to show that our knots do not admit hidden symmetries.
We will also use a criterion for the existence of hidden symmetries provided
by Neumann and Reid in [30], stated below.
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Proposition 7.4. [30, Proposition 9.1] Let H3/Γ be a hyperbolic knot com-
plement which is not the figure-8 knot complement. Then H3/Γ admits hid-
den symmetries if and only if H3/C(Γ) has a rigid Euclidean cusp cross-
section.

The orientable rigid Euclidean orbifolds are S2(2, 4, 4), S2(3, 3, 3), and
S2(2, 3, 6), and are named so because their moduli spaces are trivial. The
following proposition will imply that our hyperbolic pretzel knot comple-
ments do not admit hidden symmetries, and so, they are the only knot
complements in their respective commensurability classes. In what follows,
H3 = {(x, y, z)|z > 0}.

Proposition 7.5. For all n ≥ 2 and qi sufficiently large, the hyperbolic knot
complement M = S3 \K = N2n+1 ((1, q1), . . . , (1, q2n+1)) admits no hidden
symmetries.

Proof. We will show that any such hyperbolic knot complement does not
cover a 3-orbifold that admits a rigid cusp 2-orbifold, and so, by Proposi-
tion 7.4, these knot complements admit no hidden symmetries. First, we
shall analyze the cusp of N2n+1 corresponding to the knot component of
L2n+1, and then expand this analysis to the cusp shape of any such M . In
particular, we will prove that this cusp of N2n+1 does not cover any rigid
2-orbifold. This is accomplished by showing that the horoball packing corre-
sponding to this cusp does not admit an order three or order four rotational
symmetry. Then, by taking sufficiently long Dehn surgeries along all of the
crossing circles of L2n+1, we can make sure that the cusp of M also does not
cover any rigid 2-orbifold.

Throughout this proof, let C denote the cusp of N2n+1 that corresponds
to the knot component of L2n+1. Lift to H

3 so that one of the lifts of the cusp
C is a horoball centered at ∞, denoted H∞. There will be a collection of
disjoint horoballs in H3 associated with each cusp in N2n+1. We expand our
horoballs according to the procedure given by Theorem 6.3. Specifically, we
pick an order for our cusps, and expand the horoball neighborhood of a cusp
until it either meets another horoball or meets the midpoint of some edge of
one of the polyhedra; see [11, Definition 3.6] . This procedure allows us to
expand H∞ to height z = 1, since any other horoballs will have diameter at
most 1 under these expansion instructions; see [11, Theorem 3.8]. We shall
refer to a horoball of diameter 1 as a maximal horoball. This procedure from
[11, Theorem 3.8] results in maximal horoballs sitting at each vertex of a
rectangle tiling our cusp cross-section C.
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Figure 13: The cusp tiling of a cross-section of C. The red circles denote
the shadows of maximal horoballs from C, and the green circles denote the
shadows of maximal horoballs from crossing circles.

By Proposition 6.5 and Lemma 6.6, the cusp cross-section of C is tiled by
a collection of rectangles in a very particular fashion. All of these rectangles
have the same dimensions: �(s) by �(w), with �(s) = 1 and 1 < �(w) < 2.
Furthermore, the circle packing for each of these rectangles is exactly the
same. These 4(2n+ 1) rectangles are glued together to form a 2× 2(2n+ 1)
block of rectangles. Expand this tiling of the cusp cross-section to cover the
entire plane. From our view at ∞, we will see the shadow of a maximal
horoball centered at each vertex. Specifically, each of the 2n+ 1 crossing
disks gives three vertices, two of which correspond to horoballs coming from
our cusp C. In terms of our 2× 2(2n+ 1) block of rectangles, the vertices
along the middle row correspond with maximal horoballs of our crossing
circles. Vertices along the top and bottom rows of the block correspond
with maximal horoballs from C. We claim that they are in fact the only
maximal horoballs of C. See Figure 13 for a diagram showing the maximal
horoballs of C.

Our circle packing analysis of the rectangles tiling C from Lemma 6.6
will help us prove this claim. Figure 14 shows two adjacent rectangles com-
ing from the tiling of C, along with their circle packings. This figure also
includes the shadows of the maximal horoballs located at vertices. See Fig-
ure 12 for a picture of one of these rectangles without the horoball shadows.
Suppose there exists another maximal horoball of C, call it H. We know H
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Figure 14: The local picture of our cusp tiling of a cross section of C. The
red circles denote the shadows of maximal horoballs from C, and the green
circles denote the shadows of maximal horoballs from crossing circles.

can not intersect the other maximal horoballs, except possibly in points of
tangencies. Also, H must be centered at a point either outside of the circles
or on the boundary of one of the circles from our circle packing since in
constructing our link complement, we cut away hemispheres bound by these
circles. On our cusp cross-section of C, there are two lines of symmetry that
will be useful here: the line A and the line lw, which cuts through the vector
w in its midpoints. Our horoball packing admits reflective symmetries about
both of these lines. We shall now consider two cases.

Case 1: H is centered along lw. Since the center of H can not be con-
tained in B, H is either centered at x0 = P2 ∩B or some y that lies below
B and above A on lw. First, suppose H is centered at x0. Since �(w) < 2
and there are maximal horoballs at the corners of any such rectangle, H can
not be maximal. Now, suppose H is centered at some y as described above.
By applying the reflection along A, H will get mapped to another maximal
horoball. For n ≥ 2, we know that D(B) > 1

2 by Lemma 6.6. Thus, for n ≥ 2,
the distance from the center of H to lw ∩A is less than 1

2 . In this case, H
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will overlap with its image. In order to meet our tangency conditions, H
must map to itself. This implies that H is centered at y0 = lw ∩A. Once
again, since �(w) < 2 and there are maximal horoballs at the corners of any
such rectangle, H can not be maximal.

Case 2: Assume H is not centered along lw. Then the reflection along
lw maps H to some other maximal horoball, H ′. Now, if H ′and H intersect,
it must be at a point of tangency. So, both H and H ′ each must be centered
a distance at least 1

2 from lw. This implies that the center of H is at most a
distance 1

2 from the s side of the rectangle closest to H. Also, since �(s) = 1,
the center of H will be at most a distance 1

2 from a w side of a rectangle.

Therefore, the center of H will be at most a distance of
√

(12)
2 + (12)

2 =
1√
2
< 1 away from a corner of a rectangle, which is also a center of a maximal

horoball. This implies that H will overlap with a maximal horoball at one
of the corners, which can not happen. Thus, the only maximal horoballs of
C occur at the corners of our rectangles as specified above.

We now claim that the horoball packing corresponding to the cusp C of
N2n+1 does not admit an order three or order four rotational symmetry. We
fail to have such symmetries because of the shape of our rectangles. Pick any
maximal horoball H of C such that H = H∞. The distance from the center
of H to the center of any other maximal horoball of C in the s direction is an
integer multiple of 2�(s) = 2, and the distance from the center of H to the
center of any other maximal horoball of C in the w direction is an integer
multiple of �(w), where �(w) < 2. Next, note that the distance across the
diagonal of the 2s× w rectangle from the center ofH to the center of another
maximal horoball of C is

√
(2�(s))2 + �(w)2 =

√
4 + �(w)2 >

√
5 > 2 since

�(w) > 1. This implies that the two closest maximal horoballs of C are a
distance �(w) in the w direction (one to the left of H and one to the right
of H). This gives an infinite string of pairwise closest maximal horoballs all
centered on the same line: take any H = H∞ and each translate of H by
n · �(w), n ∈ Z determines another horoball in this string; see Figure 13. Any
rotational symmetry would have to map a string of pairwise closest maximal
horoballs to another string of pairwise closest maximal horoballs. Thus, the
only possible rotational symmetry would be an order two symmetry, where
each such string maps back to itself. So, the horoball packing of C does not
admit an order three or order four rotational symmetry. Thus, this cusp
does not cover a 2-orbifold that has an order three or order four cone point.
But any rigid cusp 2-orbifold has an order three or order four cone point.
Therefore, C does not cover any rigid cusp 2-orbifold.



674 Christian Millichap

Since the cusp cross-section of N2n+1 corresponding to the knot compo-
nent of L2n+1 does not admit order three or order four rotational symmetries,
we can now show that the cusp cross-section of M also doesn’t have these
symmetries. This is made possible by taking sufficiently long Dehn fillings
along the crossing circles. As qi → ∞, any such M converges to N2n+1 in
both the geometric topology and the algebraic topology. This convergence
implies that we can fix a compact subset of H3, and the geometry of our
horoball packing of C ′ (the cusp of M corresponding to the knot K) can
be made sufficiently close to the geometry of C on this compact subset,
by choosing qi sufficiently large. So, consider the set of maximal horoballs
H1, . . . , Hk of C that intersect some fixed fundamental domain for the sta-
bilizer of ∞. We claim that for sufficiently small δ, we can choose qi large
enough so that each suchHj has radius and center δ-close to a corresponding
horoball H ′

j in C ′.
Let gj be a deck transformation of N2n+1 withHj = gj(H∞) (for 1 ≤ j ≤

k). Then for each M = S3 \K = N2n+1 ((1, q1), . . . , (1, q2n+1)), we obtain a
covering transformation gji with gji → gj as i → ∞ in the algebraic topology
(here, i → ∞ means that all 2n+ 1 Dehn surgery coefficients are heading
to infinity). This convergence implies that the centers and radii of H ′

j =
gji(H∞) approach the center and radii of Hj , respectively. This gives us
the desired set of horoballs H ′

1, . . . , H
′
k in C ′, which we refer to as almost

maximal horoballs.
Now we can show that C ′ lacks any order three or order four rotational

symmetries by using the same type of argument we used for C. For C, we had
infinite strings of pairwise closest maximal horoballs, with each string cen-
tered on a horizontal line. For C ′, we get finite strings (since we are working
over a compact domain) of pairwise closest almost maximal horoballs. These
horoballs might not be centered on horizontal lines, but instead, are within
a sufficiently small ε of being centered on horizontal lines. If anything, this
will only further break any possible symmetries. Any rotational symmetry
would have to map a string of pairwise closest almost maximal horoballs to
another string of pairwise closest almost maximal horoballs. Again, the only
possible rotational symmetry would be an order two symmetry. Thus, the
one cusp of M cannot cover a rigid 2-orbifold, and so, M does not admit
hidden symmetries. �

Combining Proposition 7.5 with Proposition 7.3 shows that we have cov-
ered the three criteria in Reid and Walsh’s theorem. This gives the following

theorem, which applies to our pretzel knots K2n+1 = K
(

1
q1
, 1
q2
, . . . , 1

q2n+1

)
,

if we assume that all qi are sufficiently large.
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Theorem 7.6. Let n ≥ 2 and let q1, . . . , q2n+1 be integers such that only
q1 is even, qi = qj for i = j, and all qi are sufficiently large. Then the com-

plement of the hyperbolic pretzel knot K
(

1
q1
, 1
q2
, . . . , 1

q2n+1

)
is the only knot

complement in its commensurability class. In particular, any two of these
hyperbolic pretzel knot complements are incommensurable.

The work of Schwartz [40, Theorem 1.1] tells us that two cusped hyper-
bolic 3-manifolds are commensurable if and only if their fundamental groups
are quasi-isometric. This immediately gives the following corollary.

Corollary 7.7. If two pretzel knot complements as described in Theo-
rem 7.6 are non-isometric, then they do not have quasi-isometric funda-
mental groups.

Remark. The work of Goodman–Heard–Hodgson [13] implies that two hy-
perbolic knot complements are commensurable if and only if there exist
horoball neighborhoods (of each knot complement) that lift to isometric
packings of H3. This could provide another method to prove that any pair
of our pretzel knot complements that differ by a composition of mutations
are incommensurable (assuming they are non-isometric): show that their
corresponding horoball packings are non-isometric for any possible horoball
neighborhoods. We could again try to use our horoball packing coming from
the cusp C of N2n+1 to analyze the horoball packings of each S3 \Kσ

2n+1.
However, to conclude that two of our knot complements are incommensu-
rable, we would need to vary our cusp neighborhoods rather than just work
with the canonical choice. Also, this proof technique would not imply that
S3 \Kσ

2n+1 and S3 \Kσ
2m+1 are incommensurable when n = m, and so, we do

need Proposition 7.5 for the stronger statement that any two of our pretzel
knot complements are incommensurable.

8. Mutations and short geodesics coming from Dehn fillings

In this section, we shall analyze the behavior of short geodesics in the set
of knot complements

{
Mσ

2n+1

}
. If there is enough vertical twisting in each

twist region, i.e., if each qi is sufficiently large, then we can easily figure
out which geodesic are the shortest. This analysis is possible by realizing
our pretzel knot complements as Dehn surgeries along untwisted augmented
link complements. We shall also see that if each qi is sufficiently large, then
the initial length spectrum is actually preserved under mutation, and so,
we will be able to generate a large class of hyperbolic knot complements
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with both the same volume and the same initial length spectrum. Here, we
also give an application to closed hyperbolic 3-manifolds that come from
Dehn filling Mσ

2n+1 along Kσ
2n+1. For each n ∈ N, n ≥ 2 these sets of closed

manifolds will have the same volume and the same initial length spectrum.
We end this section by raising some questions about the effectiveness of
geometric invariants of hyperbolic 3-manifolds.

8.1. Mutations of K2n+1 with the same initial length spectrum

Given the untwisted augmented link complement N2n+1 = S3 \ L2n+1, we
form M2n+1 = S3 \K2n+1 by performing Dehn surgeries (1, qi−12 ) along 2n
of the crossing circle cusps, and one Dehn surgery (1, q12 ) along the crossing
circle cusp not enclosing a half-twist, i.e.,

M2n+1 = N2n+1

((
1,

q1
2

)
,

(
1,

q2 − 1

2

)
, . . . ,

(
1,

q2n+1 − 1

2

))
.

Similarly, any mutation Mσ
2n+1 is obtained by performing the same Dehn

surgeries on N2n+1, just with some of the surgery coefficients permuted.
We now show that if each qi is sufficiently large, then the core geodesics in
M2n+1 are sufficiently short, and so, they are preserved under mutation.

Theorem 8.1. Let {γσi }2n+1
i=1 be the 2n+ 1 geodesics in Mσ

2n+1 that came
from Dehn filling the crossing circles of N2n+1. For each n ∈ N, there exists a

constant Q = Q(n) =
√

(20.76)2 (2n+1)(4n)
2n−1 − 1, such that if each qi ≥ Q, then

{γσi }2n+1
i=1 make up at least 2n+ 1 of the shortest geodesics in their respective

hyperbolic 3-manifold and every Mσ
2n+1 has at least the same shortest 2n+ 1

(complex) geodesic lengths.

Proof. Given M2n+1, we must show that the result holds for a mutation σa
along Sa, and the general result will follow by induction. By Proposition 6.4,
we know that the normalized length of the ith filling slope satisfies L̂ (si) ≥√

(2n−1)(1+q2i )
4n . If each L̂(si) ≥ 20.76

√
2n+ 1, then Corollary 4.7 tells us that

M and Mσa have (at least) the same 2n+ 1 shortest (complex) geodesic
lengths, and (at least) a portion of the initial length spectrum is given by

{�C(γi)}2n+1
i=1 = {�C(γσa

i )}2n+1
i=1 . Thus, we need to just solve

√
(2n−1)(1+q2i )

4n ≥
20.76

√
2n+ 1 for qi to determine Q. �

The following theorem comes from combining Theorem 8.1, Theorem 7.6,
and Theorem 5.4, and requires all qi to be chosen sufficienty large. This
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theorem shows that there are large classes of geometrically similar pretzel
knots – they have non-isometric knot complements, but a large number of
their geometric invariants are the same.

Theorem 8.2. For each n ∈ N, n ≥ 2, there exist (2n)!
2 non-isometric hy-

perbolic pretzel knot complements,
{
Mσ

2n+1

}
, such that these manifolds:

• have the same 2n+ 1 shortest geodesic (complex) lengths,

• are pairwise incommensurable,

• have the same volume, and

• (
2n−1

2

)
voct ≤ vol(Mσ

2n+1) ≤ (4n+ 2) voct, where voct (≈ 3.6638) is the
volume of a regular ideal octahedron.

8.2. Closed hyperbolic 3-manifolds with the same volume and
initial length spectrum

Let M = S3 \K and let M(p, q) denote the closed manifold obtained by
performing a (p, q)-Dehn surgery along the knot K. In [27, Theorem 3], we
show that for each n ∈ N, n ≥ 2, and for (p, q) sufficiently large, Mσ

2n+1(p, q)
and Mσ′

2n+1(p, q) have the same volume and are non-isometric closed hyper-
bolic 3-manifolds, whenever Mσ

2n+1 and Mσ′
2n+1 are non-isometric. This proof

relies on another result of Ruberman’s [38, Theorem 5.5] which shows that
corresponding Dehn surgeries on a hyperbolic knot K and its fellow mutant
Kμ will often result in manifolds with the same volume. Specifically, this
happens when a Conway sphere and its mutation are unlinked.

Definition 8.3 (Unlinked). Let K be a knot in S3 admitting a Conway
sphere S. Observe that a specific choice of a mutation μ gives a pair of S0’s
on the knot such that each S0 is preserved by μ. We say that μ and S are
unlinked if these S0’s are unlinked on K.

Being unlinked allows one to tube together the boundary components
of a Conway sphere that are interchanged by μ to create a closed surface
of genus two, which we call S′. S′ is also a hyperelliptic surface, and its
involution is the same as the involution μ of our Conway sphere. Dehn
surgeries on S3 \K and its mutant S3 \Kμ differ by mutating along this
closed surface. Thus, Ruberman’s result for preserving volume will apply to
these closed manifolds.

Combining our work in [27] with Corollary 4.5 gives the following.
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Theorem 8.4. For each n ∈ N, n ≥ 2, and any (p, q) sufficiently large,

there exist (2n−1)!
2 non-isometric closed hyperbolic 3-manifolds

{
Mσ

2n+1(p, q)
}

such that these manifolds:

• have the same 2n+ 2 shortest (complex) geodesic lengths,

• have the same volumes, and

• vol(Mσ
2n+1(p, q)) < (4n+ 2)voct.

Proof. In [27], we constructed our K2n+1 so that all Conway spheres in
{(Sa, σa)}2na=1 are unlinked. However, here we have slightly modified this
construction of each K2n+1. Specifically, we now have one twist region with
an even number of twists inK2n+1. As a result, (S1, σ1) is not unlinked. Thus,
we will only mutate along the other Conway spheres: {(Sa, σa)}2na=2. These

combinations of mutations create (2n)!
2(2n) =

(2n−1)!
2 non-isometric, hyperbolic

pretzel knots; see [27, Theorem 2] for more details.
Let σ and σ′ be any combination of mutations along our unlinked Con-

way spheres resulting in non-isometric knot complements. Now, Mσ
2n+1(p, q)

and Mσ′
2n+1(p, q) have the same volume by Ruberman’s work. In [27, The-

orem 3], we show that Mσ
2n+1(p, q) and Mσ′

2n+1(p, q) are non-isometric by
choosing (p, q) sufficiently large so that the core geodesics resulting from
this Dehn filling are the systoles of their respective manifolds. This comes
from the work of Neumann–Zagier [31]. So, for (p, q) sufficiently large, any
Mσ

2n+1(p, q) will have at least 2n+ 2 closed geodesics shorter than a con-
stant L < 0.015. 2n+ 1 of these geodesics come from Dehn filling our cross-
ing circles of L2n+1, and the systole comes from then Dehn filling the knot
component. We can apply Corollary 4.7 to these closed manifolds to show
that they have the same 2n+ 2 shortest geodesic lengths. The upper bound
on volume follows from the proof of [27, Theorem 3]. �

8.3. Closing remarks

The fact that the manifolds
{
Mσ

2n+1

}
are constructed by mutating knot

complements that are pairwise incommensurable sharply contrasts any of
the known constructions for building large classes of hyperbolic 3-manifolds
that are iso-length spectral. However, we only know that our mutant knot
complements have the same initial length spectra. Based on experimental
evidence from SnapPy, the author doubts that any of these manifolds actu-
ally are iso-length spectral. It would be interesting to know if this mutation
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process could be used to produce iso-length spectral hyperbolic 3-manifolds
that are incommensurable.

In addition, there is a general recipe for our type of construction and we
did not necessarily need to use pretzel knots. In order to construct a large
number of non-isometric hyperbolic manifolds with the same volume and
the same initial length spectrum, you need the following key ingredients.

• An initial hyperbolic 3-manifold M with:
– a large number of hyperelliptic surfaces in M to mutate along to

create the set of manifolds {Mσ}, and
– a way to determine your shortest geodesics in M and make sure

they are sufficiently short, i.e., realize them as the cores of suffi-
ciently long Dehn fillings.

• A simple method to determine how much double counting you are
doing, i.e., a method to determine if any Mσ and Mσ′

are isometric
or not.

Given this recipe, you want to maximize the number of hyperelliptic
surfaces in M to mutate along and maximize the number of sufficiently
short geodesics, while minimizing the double counting. It would be inter-
esting to examine how well we did with maximizing and minimizing these
parameters. Such an examination leads us to consider the function N(v, s),
which counts the number of hyperbolic 3-manifolds with same volume v
and the same s shortest geodesic lengths. We can also consider the restric-
tion of this counting function to specific classes of hyperbolic 3-manifolds.
Let NK(v, s) denote the restriction of N(v, s) to hyperbolic knot comple-
ments and NCl(v, s) denote the restriction of N(v, s) to closed hyperbolic
3-manifolds. An immediate corollary of Theorem 8.2 and Theorem 8.4 gives
the following lower bounds on the growth rates of NK(v, s) and NCl(v, s) as
functions of v. The proof of this corollary is the same as the proof of [27,
Theorem 1], except we can now take the short geodesic lengths into account.

Corollary 8.5. There are sequences {(vn, sn)} and {(xn, tn)} with (vn, sn),
(xn, tn) → (∞,∞) such that

NK((vn, sn)) ≥ (vn)
( vn

8
) and NCl((xn, tn)) ≥ (xn)

( xn
8 )

for all n � 0.

This corollary tells us that the counting function N((v, s)) grows at least
factorially fast with v, and immediately raises some questions.
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Question 8.6. Can a Sunada-type construction or an arithmetic method be
applied to also show N((v, s)) grows at least factorially fast with v? Also, are
there sequences {(vn, sn)} with vn → ∞ such that N((vn, sn)) grows faster
than factorially with vn?

It would be interesting to find a construction realizing a growth rate
faster than the one given in Corollary 8.5 or show that a factorial growth
rate is actually the best we can do.
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