Which GABA Receptors are Expressed in the Zebrafish Lateral Line? Kyler Hayes, Tenzin Yangchen, Megan Schwehr, Cecilia Toro Biology Department, Linfield College, McMinnville, OR

- postsynaptic **GABA Receptor** (GABAR) proteins.
- isoforms.
- GABA_BRs.

- dissected skin, and we therefore hypothesized that the skin sample would serve as a proxy for isolated lateral line.
- We extracted RNAs, synthesized cDNAs, and amplified regions of all 20 GABA_AR, 3 GABA_BR, and 6 KCTD accessory protein isoforms, as well as 3 isoforms of the enzyme necessary for GABA synthesis, GAD.

Figure 1. Tissue-specific expression of GABA-related genes in zebrafish. 1% agarose gels showing products from GABA-related gene amplifications. RNAs were extracted from zebrafish tissues as indicated at left of gels using RNeasy Mini Kit (Qiagen). RT-PCR was performed on genes identified with ZFIN and NCBI, using gene-specific primers designed with NCBI Primer BLAST, Superscript IV First-Strand Synthesis System (Invitrogen), and GoTaq Hot Start PCR Master Mix (Promega). Target genes are indicated above gels, and those that are candidate lateral line genes are highlighted in purple. S: products confirmed by sequencing; OT: offtarget product discovered by sequencing. Select size markers labeled at left in basepairs. gapdh is an RT-PCR control gene, and *cdh23* is a hair-cell specific gene and is thus a control for hair-cell RNAs in tissue samples.

Figure 2. Novel alternative exon discovered in GABAAR p2b gene. Two PCR products from amplified cDNAs were gel extracted and sequenced. Sequencing revealed a cassette exon, exon 3 (e3), which is included or not in final mRNAs. Amino acid sequence of closely related exons in all zebrafish p isoforms reveals a high degree of sequence conservation.

Conclusions + Future Directions

			VVe Joh	
Genes detected	In Whole fish	In Skin	Zeb	
GABA _A R isoforms	19	10	GA	
GABA _B R isoforms	3	2	inne	
KCTD isoforms	6	6	loca	
GAD isoforms	3	1	GA	
			son	

ABA_AR isoforms detected in zebrafish skin include me isoforms detected in mammalian inner ear (1, 2), but not all.

Figure 3: Candidate genes: GA and GAD isoforms identified zebrafish skin. GABAR and subunit isoforms were, or were detected in zebrafish skin by RT-F gel electrophoresis and sequence Isoforms labeled in red were detected, and thus have b eliminated as candidate isofo Isoforms labeled in purple were for in adult skin, and thus ren candidate lateral line GABAR gene

Our next steps are to determine the expression of candidate isoform mRNAs in intact larval tissue using in situ hybridization, and then to determine the subcellular localization of candidate receptor proteins using immunohistochemistry.

Acknowledgements

This work was funded from a Faculty Start-up Grant from the M.J. Murdock Charitable Trust and Linfield College, and a Linfield College Student-Faculty Collaborative Research Grant.

Thank you to the Fall 2015 and Spring 2016 Molecular Cell Biology classes, Jaren Ikenaga, Connell Crabtree, and Sierra Carey for gathering preliminary data to support these studies.

Alignment of Gel-extracted PCR Products GACTCATGCAGTGAAATCAGAGCATCTGCTGAGTGTGGAGGATCACG

Exon 3 is Conserved in All Rho Isoforms

ρ1	e4:	PAIPVGVDVQ l esld t isevdm
p2a	e3:	PAIPVGVDVQVESLDSISEVDM
p2b	e3:	PA V PVGVDVQVESLDSISEVDM
ρЗа	e3:	S AIPVG I DVQVES I D G ISEV N M
p3b	e3:	S AIPVG I DVQVES I DSISEV N M

detected 31/32 GABA-related genes in whole rafish larvae.

ABA_BR dimers expressed in zebrafish skin (GB1a + 32) are the same as those found in mammalian er ear (3), suggesting a presynaptic GABA_BR ation.

BAR I in	GABA _A R a Subunits				GABA _A R β Subunits			
GAD not, PCR, cing. not	α1	α2	α3	α4	β1	β2	β3	
	α5	α6a	a6b		G	ABA _A R ρ S	Subunits	
	GABA₄R y Subunits				ρ1	<mark>ρ2a</mark> ρ2b	ρ 3a	
	v1 v2		• v3 5	Ā	GABA _B R Subunits			
een	8.	12	10	0	1a	1b	2	
rms. ound nain s.	z		le eferre			GAD Isof	orms	
	KCTD Isotorms			4.0	41.	0	•	
	8	12.1	12.2	12b	1a	d	2	2
	16a	16b						

References

1. Drescher DG et al. (1993) *J. Neurochem.* 61(3): 1167-1170. 2. Scheffer, DI, et al. (2015) *J. Neurosci.* 35(16), 6366–6380. 3. Wedemeyer C et al. (2013) *J. Neurosci.* 33(39):15477-15487.