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Abstract

Introduction 

While admittance measurements of solar cells are typically conducted in 
reverse or at zero bias, and analyzed using the depletion approximation, the 
operating point of the solar cell is in forward bias, and the series resistance is 
often estimated using IV curves with a high forward current. In this mode, the 
device is no longer in the depletion regime, and the large number of injected 
minority carriers alters the transport properties significantly. In our Cu(In,Ga)Se2

devices, we measure negative values of capacitance at high forward bias, which 
may be linked to injected minority carriers and carrier transport limitations, 
although our calculations of capacitance may also be influenced by series 
resistance.

In this study, we compare AC and DC measurements of voltage dependent 
series resistance to try to better understand the negative capacitance signal.
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Capacitance Voltage/Frequency Data
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Figure 1: (a) Structure of CIGS solar cell and (b) 
the circuit diagram for a (i) traditional single-
diode model of a solar cell and (ii) the model 
accounting for negative capacitance.[1] 
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Figure 5: (a) Impedance curve at negative bias and (b) impedance curve at high forward bias. (c) Theoretical impedance curve showing how series and 
parallel resistances are extracted. Both impedance curves are fitted for the left (fit 1, high frequency) and right (fit 2, low frequency) sides of the circle. 

AC Resistances:
• Plot real and imaginary parts of impedance 

(from admittance spectroscopy data)
• Fit to an equation for a circle
• Extract AC series and parallel resistances [3]

Figure 2: Capacitance-frequency data for (a) reverse and zero bias (b) forward bias before the negative 
capacitance phenomenon and (c) high forward bias, where the capacitance goes significantly negative.

High forward bias: 
• Injection of minority carriers
• Appearance of negative capacitance
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Figure 6: (a) DC differential resistance and impedance AC series resistance from fit 2. (b) Series 
resistances for varying temperatures from impedance measurements. 
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Solar cells: 
• Imperfect → need to understand carrier 

trapping, recombination and transport 
better

Admittance Spectroscopy: 
• Useful tool to characterize electronic 

properties
• Weird → shows negative capacitance

Negative Capacitance: 
• Shows up at 𝑉 > 𝑉𝑏𝑖
• Not inductive
• Predicted by model including 𝑅𝑠(𝑉), 

where 𝑅𝑠 𝑉 decreases rapidly with bias
• Need to measure 𝑅𝑠(𝑉)
• Extract device parameters
• Then we can better understand device 

performance

Figure 3: IV curves for the CIGS sample collected at 𝑇 = 140𝐾 in the dark 
and with illumination from a halogen light source at ~0.5  𝑊

𝑐𝑚2.
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• Differential 𝑅𝑠 and impedance derived 𝑅𝑝 agree; as expected, 𝑅𝑝
dominates the total resistance that a DC current would pass through

• 𝑅𝑠 from DLM surprisingly large; needs further investigation

• Photoconductivity or phototransistor effects may significantly influence 
results [4]

• 𝑅𝑠 from impedance is significant and falls off exponentially in far forward 
bias

• Significant 𝑅𝑠 seems to be present in devices which also exhibit negative 
capacitance phenomenon

• 𝑅𝑠(𝑉) behavior is consistent with a model predicting negative capacitance

• Impedance measurements seem to give the best estimate of differential 𝑅𝑠. 
DLM may be affected by photoconductivity or phototransistor effects. 
Differential resistance always shows the total resistance, 𝑅𝑠 + 𝑅𝑝.

Moving Forward: 
• Use series resistance data to correct IV and CV curves
• Obtain fundamental values for main diode of solar cell
• Better understand limitations to device performance

Differential resistance is determined by finding the inverse of the slope between consecutive points on the 
IV curve. In the regime where our 𝑅𝑝 is negligible, we can say: 

𝑅𝑠,𝑖 =
𝑉(𝑖+1) − 𝑉(𝑖)

𝐽(𝑖+1) − 𝐽(𝑖)

Double-Light Method (DLM)[2]:

𝑅𝑠 =
𝑉(1) − 𝑉(2)

𝐽(1) − 𝐽(2)

where 𝑉(1) and 𝐽(1) represent the point 
on the less illuminated curve 
corresponding to ∆J greater than the 

illumination current, 𝐽𝐿1. 𝑉
(2) and 𝐽(2)

represent the point on the more 
illuminated curve corresponding to ∆J
greater than the illumination current, 𝐽𝐿2.


