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Introduction

We will discuss travelling wave solutions to reaction-diffusion equations of
the form:

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑢
𝑝
(1 − 𝑢

𝑞
)

which can be used as a mathematical model for various biological phenomena,
as well as to model problems in combustion theory. We identify conditions on
the wave speed so that travelling wave solutions exist for the case p ≥1 and q
≥1. Moreover, we estimate the rate of decay of the travelling wave solutions.
When p > 1 and q ≥1, this estimate requires center manifold theory because
the typical linear methods fail to work. Through the mathematical analysis of
reaction diffusion equations, the results of this research create further studies
and application in physical and industrial chemistry.

The Fisher-Kolmogoroff equation

𝑢𝑡𝑡 = 𝑢𝑥𝑥 + 𝑢 1 − 𝑢 (2)

was proposed in 1937 as a model for the spread of a favored gene in a
population. This equation is an extension of the logistic growth equation where
the population disperses through diffusion. We are motivated to seek travelling
wave solutions to equation (1) as it is a generalization of the Fisher-
Kolmogoroff equation. This information can be used as a model for the ignition
phase in solid fuel combustion, chemical kinetics, spread of a favored gene,
and many other physical phenomena.

For our purposes, a travelling solution is a solution that travels with a
constant shape.

Figure 1: Generic 
travelling wave 
solution 
propagating with 
a constant shape.

(1)

We consider the reaction-diffusion equation after a suitable rescaling of t, x, and u: 

 
𝑢𝑡 = 𝑢𝑥𝑥 + 𝑢𝑝(1 − 𝑢𝑞), 𝑥 ∈ ℝ, 𝑡 > 0

𝑢 𝑥, 0 = 𝑢0 𝑥 , 𝑥 ∈ ℝ,

Does there exist travelling wave solutions

𝑢 𝑥, 𝑡 = 𝑣 𝑠 , 𝑠 = 𝑥 − 𝑐𝑡,

Where 𝑐 > 0 is the wave speed and

𝑣 𝑠 ⟶ 1 𝑎𝑠 𝑠 ⟶ −∞
𝑣 𝑠 ⟶ 0 𝑎𝑠 𝑠 ⟶ ∞

The desired travelling wave solution corresponds to a heteroclinic orbit in the phase portrait with 𝛼-
limit set (1,0) and 𝜔-limit set (0,0).

Figure 4: Trapping region that
contains desired heteroclinic orbit.
Note: along the line 𝑥2 = −𝑢𝑥1, the
slope of the flow is steeper than the
slope of the line.
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We considered the relevant fixed points at (0,0) and (1,0). Linearization fails to predict the
behavior near (0,0) but accurately predicts the behavior near (1,0). By Hartman-Grobman Theorem,
the behavior near the fixed point (1,0) for the nonlinear system looks like:
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Figure 3: The behavior near the 
fix point (1,0) using the 
Hartman-Grobman Theorem. 

Figure 2: Heteroclinic orbit with 
𝛼-limit set (1,0) and 𝜔-limit set 
(0,0). 

From our constructed trapping region, it is observed that a heteroclininc
orbit with the desired properties exists from (1,0) to (0,0). This heteroclinic
orbit cannot touch the boundaries of our trapping region due to uniqueness and
continuous dependence. This implies the original PDE has a travelling wave with
speed

𝑐2 ≥
4𝑞(𝑝−1)

𝑝−1
𝑞

(𝑝+𝑞−1)
𝑝+𝑞−1

𝑞

We estimated the rate of decay of the heteroclinic orbit using center
manifold stability theorem. Therefore the travelling wave solution v(s) will have
the asymptotic behavior

𝑣 𝑠 = 𝑥1 𝑠 = 𝑦1 𝑠 −
1

𝑐
𝑦2(𝑠)

as 𝑠 ⟶ ∞.

Because linearization failed to predict the behavior of the fixed point (0,0), we investigated the
local structure using center manifold theory. From center manifold theory, we observed that local
structure near the origin in the fourth quadrant had the desired behavior corresponding to desired
heteroclinic orbit.

We were then motivated to
seek a trapping region with the
structure seen in figure 4. By
creating a trapping region with
the slope of the diagonal line less
than the slope of the flow, we
were able to verify the existence
of the desired heteroclinic orbit,
thus verifying the existence of a
travelling wave solution to the
original reaction-diffusion
equation.
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