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1 Introduction

In this paper we answer two tiling questions involving the tiles appearing in
Figure 2. In particular, we prove the following result: An a× b rectangle can be
tiled by the set T (Figure 2) if and only if a, b ≥ 4 and either one side is divisible
by 4, or a, b ≡ 2 (mod 4) and a+ b > 16. We prove this result in section 2 after
providing background and context for this work. In section 3 we tackle related
tiling questions involving modified rectangles.

In the last several decades, tiling problems have been attracting the attention
of mathematicians. Their allure is easy to understand: the questions are often
simple and tangible, but the answers may require abstract mathematics. Most
tiling questions take place in the integer lattice, i.e. the tiles and regions are
both made of squares, like those on graph paper. One pop culture example of a
tiling problem is the game Tetris, where instead one tries to completely fill the
region. We say a region R is tileable by a tile set T and that T tiles R if R can
be covered without gaps or overlaps by at least some of the tiles in T and all
tiles used to cover R are contained in the region.

Tiling questions usually appear in the form: Can a region of some finite
dimension be tiled with a given tile set? If a region can be tiled, the proof of
this could be as simple as providing a tiling of the region; however, this does
not imply that finding a tiling of the region is easy. If the region cannot be
tiled, then the question becomes: How does one prove a region is untileable?
Obviously, going through every possible tiling of the region would be tedious to
both read and write. A few useful ways to prove the nonexistence of a tiling for
a given region are local considerations, coloring arguments, and tile invariants.

Local considerations are physical constraints specific to a region that make
it untileable by a given set. For example, an a× b rectangle missing one corner
can obviously not be tiled with copies of a 2× 2 square because of the missing
corner (consider trying to tile the squares near the missing corner). Although
local considerations can be obvious, they can also be complicated or tedious to
prove.

Coloring arguments have a rich history and typically involve modular arith-
metic. For example, in 1958 George Gamow and Marvin Stern posed in [2] the
following well-known question: Can dominoes tile a chessboard whose upper-
left and lower-right corners have been removed? If one colors a chessboard in
the normal way, see Figure 1(a), then no matter where a domino is placed it
covers one black square and one white square; however, this chessboard has two
more black squares than white squares and therefore dominoes can never tile
this region.

In the previous example, Figure 1(a), consider replacing the white squares
with 0 and the black squares with 1, as in Figure 1(b). Now each domino will
sum to 1 (mod 2) regardless of where it is placed on the modified chessboard;
however, the region sums to 0 (mod 2). Suppose the region is tileable. Since the
region has 62 squares, it must be covered by 31 dominoes. Since each domino
sums to 1 (mod 2) and the region must use 31 dominoes, then the sum of the
region is 31 ≡ 1 (mod 2); this contradicts that the region sums to 0 (mod 2)
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(a) A coloring argument. (b) A coloring argu-
ment using modular
arithmetic.

Figure 1: Can dominoes tile this region?

and therefore the region cannot be tiled by dominoes.
There is only one requirement for a coloring argument: a tile in the tile set

must sum to the same number modulo n, for some fixed natural number n, no
matter where it is placed on the coloring. In the domino example, every domino
uses exactly one black and one white square, or sums to 1 modulo 2, no matter
where it is placed on the modified chessboard. Obviously, coloring arguments
depend on the tile set, but they can also depend on the region.

Tile invariants also depend on both the tile set and the region. If all the tiles
are made of n squares, then any region tileable by that set must have an area
(the number of squares in the region) divisible by n. Since every region has a
constant area, the number of tiles used in a tiling of the region is an invariant;
specifically called the area invariant. The following is an example of how the
area invariant can easily prove a region is untileable by a set: Let the 1 × 7
rectangle be the region and the 1 × 2 rectangle be the tile. There are seven
squares in the region and two in the tile. Since two does not divide seven then
this tile cannot tile the region.

All our regions and tiles live in the integer lattice and therefore are called
polyominoes. A polyomino is a finite set of squares in the integer lattice such
that each square shares at least one edge with at least one other square in
that set; for example, all of the tiles in Tetris are polyominoes. Additionally,
a polyomino with n squares is called a n-omino. In this paper we deal with
4-minos, which are commonly referred to as tetrominoes.

Ribbon tiles of area n are tiles that are built sequentially from one square
and naturally correspond to a binary signature of length n − 1. Ribbon tiles
have been studied by such mathematicians as Conway and Lagarias [1], Pak
[4], and Sheffield [6]. Additionally, these mathematicians have showcased many
of the nice properties of ribbon tiles. Since ribbon tiles have been significantly
explored, we specifically chose a tile set of mostly non-ribbon tiles.
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2 Rectangles

In our tile set T, shown in Figure 2, the tiles τ1 through τ4 are called skew
tetrominoes and the tiles τ5 through τ8 are called T-tetrominoes. Although
subsets of T have been looked at in reference to rectangular regions, the full set
T has not. Walkup proved in [7] that if an a × b rectangle can be tiled by the
four T-tetrominoes then both a and b must be divisible by four. Additionally,
in [3] Korn looked into tiling rectangles with various tile sets that contain the
four T-tetrominoes.

Here we look at tiling rectangles with more than just the four T-tetrominoes.
The set T could be thought of as just three tiles, τ1, τ3, and τ5, and all possible
rotations (e.g. 90◦, 180◦, or 270◦) of these three tiles. When viewed this way
it is easy to see the symmetry of this set. Moreover, there are some specific
symmetries to notice: T rotated 90◦, reflected over a 45◦ line, or flipped verti-
cally/horizontally is still the set T. This means that T tiles an a × b rectangle
if and only if T tiles a b× a rectangle.

Figure 2: Tile Set T.

We define a natural partition of T: the horizontal tiles and the vertical tiles.
The horizontal tiles, τ2n+1, are tiles that are wider than they are tall. Similarly,
the vertical tiles, τ2n, are the tiles that are taller then they are wide. Notice
that the horizontal tile set rotated 90◦ is the vertical tile set and vice versa.

Theorem 1 An a× b rectangle can be tiled by the set T if and only if a, b ≥ 4
and either

1. one side is divisible by 4, or
2. a, b ≡ 2 (mod 4) and a+ b > 16.

Since each tile in T has four squares, any rectangle with an area not divisible
by four clearly cannot be tiled by T. So we restrict our attention to rectangles
with areas divisible by four, which occurs when either one side is divisible by
four or both sides are even. Notice that the second condition of Theorem 1
specifically excludes the 6× 6, 6× 10, and 10× 6 rectangles.

Lemma 1 Let a, b ≥ 4. If either a or b is divisible by 4, then an a× b rectangle
is tileable by T.

Proof. Let a be divisible by 4. Suppose a = 4. If 4 ≤ b ≤ 7, then 4×b is tileable
by T, as shown in Figure 3(a). Let b > 7 and c ∈ {4, 5, 6, 7}, then b = 4n + c
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for some n ≥ 1 and some c. Now a 4 × b rectangle can be decomposed into n
4× 4 rectangles and one 4× c rectangle, as shown in Figure 3(b). Therefore if
b ≥ 4, then a 4 × b rectangle can be tiled by T. Suppose a > 4, or a = 4m for
some m > 1. Then an a × b rectangle can be broken into m 4 × b rectangles,
see Figure 3(b), and thus a × b is tileable by T. If b is divisible by 4, then the
previous arguments (after a 90◦ rotation) imply that T tiles a× b. �

(a) If a = 4 and 4 ≤ b ≤ 7. (b) The division of a × b rectangles into smaller
rectangles.

Figure 3: Picture arguments for Lemma 1.

Lemma 2 Let a, b ≥ 4. If a, b ≡ 2 (mod 4) and a + b > 16, then an a × b
rectangle is tileable by T.

Proof. Let a ≤ b. Then the smallest rectangles that satisfy the assumptions are
the 10 × 10 and 6 × 14, which Figure 4(a) shows are tileable by T. If b > 14
then any 6 × b rectangle can be broken down into a 6 × 14 and a 6 × (b − 14)
rectangle, as in Figure 4(b). By Lemma 1, since four divides b − 14 (as both
b and 14 are congruent to 2 modulo 4), then the 6 × (b − 14) and hence 6 × b
rectangle is tileable by T. Similarly, If b > 10, then a 10× b can be divided into
two smaller rectangles, see Figure 4(b), both of which are tileable by T. Now
if a, b > 10, then an a× b rectangle can be divided into two smaller rectangles,
see Figure 4(b), which are tileable by Lemma 1 and previous parts of this proof.
Therefore when a ≤ b, an a × b rectangle is tileable by T. When a ≥ b, simply
rotating the previous arguments 90◦ proves the hypothesis. �

Notice that Lemma 1 and Lemma 2 prove one direction of Theorem 1. Now
we need to show that these are the only cases for when T can tile an a × b
rectangle. We break the second direction of Theorem 1 into the next three
Lemmas. We say that a tile covers a square, or is placed on a square, if that
square is part of the tile. In order to generalize arguments, trominos, or 3-
ominoes, may be used to represent three of the four squares that a tile must
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(a) The 10 × 10 and 6 × 14 rectangles. (b) Divisions of an a× b rectangle.

Figure 4: Picture arguments for Lemma 2.

cover. Additionally, two tiles are adjacent if they share an edge in the integer
lattice.

Lemma 3 If either a < 4 or b < 4, then an a× b rectangle is not tileable by T.

Proof. Suppose that a < 4. Obviously if a = 1, then no tile from T can be fully
contained in this rectangle. Suppose a = 2. Consider the left most edge of the
rectangle. If the rectangle is tileable then a tile must be place long this edge;
however, only horizontal tiles can be placed along this edge and each leaves one
of the left corner squares untileable. Now suppose a = 3. Consider the lower
left corner square. There are only four tiles that can be placed in this square:
τ1, τ4, τ5, and τ6. Clearly, if τ4 is placed in this corner, then it forces the upper
left corner square to be untileable. If either τ1 or τ5 is placed in this corner,
then the two other squares along the left edge are untileable. If τ6 is placed in
the lower left corner square, then any tile placed adjacent to τ6 will force an
untileable region, which will be obvious by inspection. Therefore a × b is not
tileable by T. Similarly if b < 4, then rotating all arguments 90◦ shows that
a× b is not tileable by T. �

After the previous Lemma, only three rectangles remain to be proven un-
tileable: the 6× 6, the 6× 10, and the 10× 6 (this last case will follow directly
from the untileability of the 6× 10 rectangle). Consider the two left corners of
a 6× b, b ≥ 4 rectangle. These two corners must be covered by two tiles, if the
rectangle is tileable. There are three possibilities for these two tiles, either they
are both horizontal tiles, both vertical tiles, or one is a horizontal tile and the
other is a vertical tile; Figure 5(a) shows the three squares each tile must cover
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in the respective three cases.

(a) The three tile possibilities for the two left
corners of a 6 × b rectangle, up to flips and
rotations. From left to right: both horizon-
tal tiles, both vertical, one horizontal and one
vertical.

(b) Using two τ6’s in
the left corners. No-
tice that * cannot
have a tile covering
it without creating
an untileable area.

(c) The two possible placements for the som-
brero along the left edge of a 6 × b rectangle.
The third picture is the wall created by the
two possible placements of the sombrero.

Figure 5: Arguments for the sombrero requirement along the left side of a 6× b
rectangle.

If two horizontal tiles are used in the two left corners, then by inspection the
four remaining squares along the left edge cannot all be tiled. If two vertical
tiles are used, then they must both be τ6, otherwise obvious tiling issues occur;
however, using two τ6’s forces an adjacent square to be untileable, see Figure
5(b). So one corner must use a horizontal tile and the other a vertical tile, as
seen in the right-most picture of Figure 5(a) (up to flips and rotations). Then
the square marked * in Figure 5(a) must be covered by a vertical tile. This
implies that exactly two adjacent vertical tiles must be used against the left
edge of the rectangle (anymore would create overlapping tiles) and exactly one
must be in a corner. Therefore, there are only two ways to tile this left edge:
using one horizontal tile, a τ6, and either a τ2 or a τ4. By inspection, the two
vertical tiles used in these two tilings of the left edge create a “sombrero” (Figure
5(c)), which must be placed along the left edge. This sombrero obviously has
only two possible placements and forces a wall, as seen in Figure 5(c), call it
the sombrero wall.

A segment of finite length is called a wall if there is no valid tiling of the
region in which a tile crosses that segment. In other words, if the 6×b rectangle
is tileable, then no tile crosses the sombrero wall. Notice that the symmetry
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of this tile set implies that a sombrero must be placed along the right edge of
the rectangle and hence a sombrero wall must also exist on the right side of the
rectangle. Similarly, the symmetry of this set implies that sombreros must be
placed along the lower and upper edges and sombrero walls must exist in the
upper and lower regions of any a× 6, a ≥ 4 rectangle.

Lemma 4 The 6× 6 rectangle is not tileable by T.

Proof. Suppose that the 6 × 6 rectangle is tileable by T. Then there are four
forced sombrero walls in this rectangle; however, Figure 6 shows that these four
walls separate the rectangle into two independent areas, where the inside area is
a 2× 2 rectangle. By Lemma 3, we cannot tile the 2× 2 rectangle and therefore
cannot tile the 6× 6 rectangle with T. �

Figure 6: Picture argument for Lemma 4. The 6 × 6 rectangle with the four
forced sombrero walls.

A tile, part of a tile, or tile placement/position is forced if there exists a
square such that no other tile in T, or placement of said tile, can cover the
square without creating an obvious untileable area. In pictures, such a square
will be labeled with a number and its respective forced tile will be placed in its
forced position. If a square is labeled with number n, then the forced placement
of that tile is based on the previous forced placement of tiles with squares
numbered strictly less than n. In other words, forced tiles (or parts of tiles) are
sequential in nature and are forced based on other tiles that have been already
placed (either due to lower numbers or some original tiling choice) in the region.

Lemma 5 The 6× 10 and 10× 6 rectangles are not tileable by T.

Proof. Due to the symmetry of the tile set, it suffices to show that the 6 × 10
rectangle is not tileable by T. Suppose the 6× 10 rectangle is tileable. Consider
the two squares to the right of the left sombrero wall, see Figure 7(a). If both
squares are covered by one tile, the tile must be either τ2, τ4, or τ6. Otherwise,
the two squares are covered by two tiles. Suppose they are both covered by
horizontal tiles. By inspection, the left most square in each tile must be the
one adjacent to the wall and the tiles must be placed as seen in Figure 7(b),
otherwise obvious untileable areas arise. Then wherever the sombrero is placed,
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the corner not occupied by the sombrero (marked by * in Figure 7(b)) cannot
be tiled without creating an obvious untileable area. Thus if two tiles are used
to cover the two shaded squares in Figure 7(a), then one of the tiles must be a
vertical tile; the only type of vertical tile that can do this without creating an
obvious tiling problem (after a sombrero is placed) is a vertical skew, i.e. τ2 or
τ4. In sum, either a vertical skew is used to cover at least one of the squares
adjacent to the right side of the left sombrero wall, or τ6 is used to cover both of
the squares; any other tile placed in one of these squares will create an obvious
untileable region.

(a) The two squares right of
the left sombrero wall.

(b) The placement of two hor-
izontal tiles adjacent to the
sombrero wall.

Figure 7: Determining what kind of tiles can be placed in at least one of the
squares to the right of the left sombrero wall.

Suppose τ6 is used to cover both squares, which can be seen in Figure 8(a)
along with the tiles it forces, up to any flips and rotations. Consider which
horizontal tiles can be placed in the square marked A of Figure 8(a) and which
tiles can be placed adjacent to it. If those two tiles do not cross the horizontal
wall seen in Figure 8(b), then the square marked * in Figure 8(b) cannot be
covered. Hence the scenario shown in Figure 8(c) is forced. Now there are
only two possibilities for what can cover the square marked B in Figure 8(c):
τ1 or τ5. Depending on whether or not a sombrero is placed in square i and
which tile is chosen to cover B, there are only two scenarios that do not lead
to obvious tiling problems. These scenarios are shown in figures 8(d) and 8(e);
each scenario forces tiles and leaves a square marked * untileable.

This means that τ6 cannot cover both of the squares to the right of the left
sombrero wall in Figure 7(a). Thus a vertical skew must be used to cover at
least one of the two squares shown in Figure 7(a). Up to flips and rotations
there are only two possible scenarios for this skew’s placement, see Figure 9(a),
which do not create an obvious untileable region; however, both force the cre-
ation of another wall, call this wall the skew wall, see Figure 9(b). Now by
flipping all of the the previous arguments vertically (i.e. along a vertical axis),
there is another forced skew wall in the 6× 10 rectangle, shown in Figure 9(c).
The area between these two skew walls, specifically the two squares marked by
* in Figure 9(c), obviously cannot be tilled by T. Therefore the 6×10 and hence
10× 6 cannot be tiled by T. �
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(a) The tiles that are forced if
τ6 is used to cover both blue
squares, up to flips and rota-
tions.

(b) A scenario which cannot
happen.

(c) All of the forced tiles based
on figure 8(b).

(d) One possibility for a tile
covering square B.

(e) The other possibility for a
tile covering square B.

Figure 8: Arguments against τ6 covering both squares.

(a) The two possibilities, up
to flips and rotations, for the
placement of a vertical skew
next to the sombrero wall.

(b) Another wall, created by
the possible placements of the
vertical skew.

(c) The four walls in the 6×10
rectangle

Figure 9: The forced walls in the 6× 10 rectangle, up to rotations and flips.

3 Modified Rectangles

A modified rectangle, also called a mutilated rectangle or M(a,b), is simply an
a × b rectangle with both the upper-left and lower-right corners removed (this
type of region was looked at in an unpublished paper by Hitchman and Coate).
When these modified rectangles have the right area, they are tileable by T; this
will end up being a corollary to Theorem 2 and Theorem 3, which are proved
later in this section. This section, however, specifically focuses on two subsets
of T, which partition T, call them L1 (Figure 10) and L2 (Figure 15). These
two subsets have a special property, namely when either is rotated 90◦, it is
equivalent to the other tile set.
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3.1 Tiling with L1

For what values of a and b can we tile M(a,b) with the tile set L1 (Figure 10)?

Figure 10: Tile set L1.

Theorem 2 Let a and b be integers strictly greater than 1. Then the set L1

tiles M(a,b) if and only if either
1. a ≡ 2 (mod 4) and b is odd, or
2. b = 2 and a ≡ 1 (mod 4).

Since all the tiles in L1 use four squares, then four must divide the area of
M(a,b), or 4 | (ab− 2), if M(a,b) is tileable by L1. The only two cases of when
4 | (ab− 2) are as follows:

1. a ≡ 2 (mod 4) and b is odd, or
2. a is odd and b ≡ 2 (mod 4).

Obviously we restrict our attention to modified rectangles with areas divisible
by four. Notice that Theorem 2 says that T cannot tile M(a,b) if a ≡ 3 (mod
4) or a ≡ 1 (mod 4) and b > 2. Theorem 2 will be proved with the following
four lemmas.

Lemma 6 If a ≡ 2 (mod 4) and b > 1 is odd, then L1 tiles M(a,b).

Proof. Notice that the smallest such modified rectangle, M(2,3), is actually the
tile τ1. Suppose that the statement holds for M(2,b-2) and that b > 3. Then
M(2,b) can be divided into two sections, M(2,b-2) and M(2,3), see Figure 11(a).
Therefore, M(2,b) is tileable by L1 for all odd values of b greater than 1. Now
suppose that the statement is true for M(a-4,b) and that a > 2. Then M(a,b)
can be divided into three sections, M(a-4,b), S(b), and one τ8, see Figure 11(b).
So it suffices to show that if b > 1 is odd then S(b) is tileable by L1. When b = 3
Figure 11(c) shows that L1 does in fact tile S(3). Additionally, if the statement
holds for S(b-2) and b > 3, then S(b) can be divided into three tileable sections:
S(b-2), τ1, and τ3. �

Lemma 7 If a ≡ 1 (mod 4), a ≥ 5, and b = 2 then L1 tiles M(a,b).

Proof. The smallest such modified rectangle, M(5,2), can be tiled by one τ6
and one τ8, as seen in Figure 12. Suppose the statement holds for M(a-4,2) and
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(a) M(2,b) (b) M(a,b)

(c) S(b)

Figure 11: Picture arguments for Lemma 6.

Figure 12: Picture arguments for Lemma 7.

a > 5. Then M(a,2) can be divided into two sections, M(a-4,2) and M(5,2),
shown in Figure 12, which are both tileable. �

Notice that Lemma 6 and Lemma 7 prove one direction of Theorem 2. Now
we show that these are the only two cases for when L1 tiles M(a,b). If a or b
equalled 1, then M(a,b) would be a rectangle, which by Lemma 3 cannot by
tiled by T and hence cannot be tiled by L1. Therefore, we only consider cases
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when both a and b are greater than one.

Lemma 8 If a ≡ 3 (mod 4) and b ≡ 2 (mod 4) then L1 cannot tile M(a,b).

Proof. Consider the following coloring,

3 2 3 2 3
1 4 1 4 1
2 3 2 3 2
4 1 4 1 4
3 2 3 2 3

Notice that with this coloring all tiles of L1 sum to 0 (mod 5), no matter
where they are placed. This means that if L1 can tile M(a,b), then the sum of
M(a,b) will equal 0 (mod 5), no matter where M(a,b) is placed on the coloring.
Now consider the sum of the region M(a,b). Let the coloring defined above be
expressed in arbitrary terms,

C1 C2 C1 C2 C1

C4 C3 C4 C3 C4

C2 C1 C2 C1 C2

C3 C4 C3 C4 C3

C1 C2 C1 C2 C1

Notice that C1+C2 ≡ 0 (mod 5) and C3+C4 ≡ 0 (mod 5). Then the coloring of
M(a,b) may be represented by Figure 13, where M(a,b) is separated into three
sections A, B, and D. Notice B sums to 0 (mod 5) since all rows in B have an
even number of colors, whereas A and D sum to C1 (mod 5). This means the
sum of M(a,b) is 2C1 (mod 5), where C1 ∈ {1, 2, 3, 4}. Since for all values of
C1, 2C1 6= 0 (mod 5), then L1 cannot tile M(a,b). �

Figure 13: An arbitrary coloring of M(a,b), where M(a,b) has been divided into
three sections, A, B, and D.
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Lemma 9 If a ≡ 1 (mod 4), b ≡ 2 (mod 4), and b > 2, then L1 cannot tile
M(a,b).

Proof. Consider the following coloring,

2 -1 2 -1 2
-2 1 -2 1 -2
-1 2 -1 2 -1
1 -2 1 -2 1
2 -1 2 -1 2

Notice that with this coloring all tiles of L1 sum to zero, no matter where they
are placed. Now consider the sum of the region M(a,b). Let the coloring defined
above be expressed in arbitrary terms,

C1 C2 C1 C2 C1

C4 C3 C4 C3 C4

C2 C1 C2 C1 C2

C3 C4 C3 C4 C3

C1 C2 C1 C2 C1

Notice that C1 +C2 +C3 +C4 = 0. The coloring of M(a,b) may be represented
by Figure 14, where M(a,b) is separated into two sections A and B. Notice A has
the same number of each color in each column and therefore sums to zero. On
the other hand, B is an alternating row of either 2 and -1 or 1 and -2. Since b > 2
and b is even, then B will never sum to zero. Therefore L1 cannot tile M(a,b). �

Figure 14: An arbitrary coloring of M(a,b), where M(a,b) has been divided into
two sections, A and B.

3.2 Tiling with L2

Consider the subset of T called L2, as defined in Figure 15. For what values of
a and b does this set tile M(a,b).

13

Lester: Tilings with T and Skew Tetrominoes

Published by DigitalCommons@Linfield, 2012



Figure 15: Tile set L2.

Theorem 3 Let a and b be integers strictly greater than 1. The set L2 tiles
M(a,b) if and only if either

1. b ≡ 2 (mod 4) and a is odd, or
2. a = 2 and b ≡ 1 (mod 4).

Proof. Notice that the set L2 reflected over a 45◦ line is the set L1 and vice
versa. Additionally, M(a,b) reflected over this same line is M(b,a). Then The-
orem 2 completes this proof. �

Corollary 1 T tiles M(a,b) if and only if 4 divides ab-2.

Proof. Since all tiles in T use four squares, then T tiling M(a,b) implies that
four divides the area of M(a,b), i.e. 4 divides ab − 2. Now notice that when
M(a,b) has the right area, Theorem 2 and Theorem 3 state that M(a,b) can be
tiled by either L1 or L2. Since L1 and L2 are subsets of T whose union is T,
then 4 dividing ab− 2 implies that T tiles M(a,b). �
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