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ABSTRACT

Simultaneous Localization and Mapping Using
Stereoscopic Computer Vision for Autonomous Vehicles

Creating a robotic system capable of autonomously making decisions based on the en-

vironment must first be capable of visualizing and recording its surroundings. This paper

focuses on creating a robotic system that makes use of stereoscopic imaging from two offset

camera feeds to create a 3D image. The robot is able to generate a 3D image from the

cameras and convert the 3D images into a digital map. Furthermore, the robot is able use

this model to detect its location within the digital map for navigational and mapping pur-

poses. This process of simultaneously localizing and mapping (SLAM) is a revolutionary

procedure used to generate maps in real time. By combining these three aspects, the robotic

system can generate an accurate 3D map for the region of operation. Stereoscopic imaging

provides many benefits over conventional mapping methods which allow for cheap, rapid,

and detailed autonomous mapping. This paper demonstrates how a low cost robotic system

can independently generate a 3D map in real time.
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Introduction

To successfully map an area using a robot, the robot must be able to measure distances,

create a digital map, and localize within the map. To accomplish this, the first task for the

robot is to be able to detect its surroundings. Without a way of measuring distances, the

robot would be unable to create a map. The second task for the robot is to be able to record

this map digitally so that it can be referred to later and updated as new data is collected.

Finally, the robot must be able to find its location within the map it has created. The process

of localization is vital to the the success of the project because the robot must know where it

is before it can know what to do with the distance measurements it collects. After the robot

determines its location within its map, the robot can update the map, add new data, and

correct mistakes made within the digital map. The mapping and localizing can be combined

into Simultaneous Localization and Mapping (SLAM) where the robot will create a map

as it navigates an unknown region. While this procedure could be replaced by a human

operator, there are many applications which would make human operation infeasible such as

unmanned missions to space, search and rescue operations, or future robotics applications

where the robot would need to act on its own. For the robot to be successful, it should be

able to map in real-time, be cheap, and be modular. Furthermore, the robot should rely

primarily on its vision sensor readings for all operations, with basic wheel rotation readings

to measure movement feedback. By creating an autonomous robot that is able to map out

its surroundings with vision sensors alone, this thesis illustrates the power of stereo vision

in robotics.

1
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Technology

The robotic system used to autonomously map a region consists of the vision sensors, the

processing unit, and the locomotion system. These components work together with the

custom algorithms to allow the robot to autonomously map, localize, and navigate its sur-

roundings. Figure 1 shows the robot and a matching diagram of the components. The

processing unit used for this project is a small onboard computer that processes the imaging

data and controls the wheel system.

There are several different data collection methods available for sampling distances to

walls and obstructions for robotic systems. The method that is used in this project is

stereo vision because of its potential for data collection. Stereo vision uses the difference in

perspectives between two cameras separated by a fixed distance to resolve objects, similar

to human sight. Examples of artificial stereoscopy can be seen as far back as 1840, when

two slightly different images were created and viewed with glasses to create the illusion of a

three dimensional image[1]. More recently, NASA has created a STEREO project[2] which

consists of two satellites that orbit around the earth to create 3D maps of the sun and other

solar phenomena. Stereo vision works by taking pictures simultaneously with two offset

cameras, detecting the same object in the two separated cameras, and measuring the pixel

offset. The pixel offset (disparity) can be converted into a distance map where each pixel

will represent the distance to the object which that pixel depicts. Stereo vision encompasses

both vertical and horizontal resolution, which allows for objects above and below the robot

to be mapped. Another positive aspect of this project is the use of small cameras: small

cameras are less costly than other technologies. By mounting two cameras with a known

separation the distance to features of the images can be determined. Thus, using two images,

the distance to each pixel can be calculated simultaneously. However an alternative to using

cameras are laser rangefinders.

Infrared laser rangefinders shine a laser at the target and measure the reflection to de-

termine the distance. They have an accuracy in the centimeter range for distances approx-
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Figure 1: 1) Photograph and 2) diagram of the robotic setup. The webcams (a) connect to
a small computer (b). The computer processes the image data and generated motion control
signals. These signals drive the motors wheel encoders (c)

imately up to 20 meters but do not have a large field of view. The measurement is made

by measuring the reflection of a laser, so the sensor will only be able to detect an object

directly in the path of the laser. By combining many infrared sensors, a detailed map could

be generated. However, combining sensors is costly and size restrictive. A large number of

sensors would be needed to create a detailed description of the robot’s surroundings. For our

project, using laser rangefinders would be the best alternative to using stereo vision if stereo

vision were not available. In recent years, this technology has been advanced into what is

called a scanning laser rangefinder.

Scanning laser rangefinders use a single laser rangefinder with a rotating mirror to gener-

ate a scanning line that samples every half a degree to make a map. Unfortunately, scanning

laser rangefinders only generate distances in the plane of the laser scan, so there is no ver-

tical resolution, which is a limiting factor for this project. Furthermore, scanning laser

rangefinders are expensive (starting at over five thousand dollars for a basic unit), making

them cost-prohibitive for our project, as well. Scanning rangefinders have been used in many

autonomous vehicle projects, including the DARPA car challenges[3] where autonomous cars

were programmed to navigate urban environments.

Lastly, ultrasonic rangefinders send pulses of ultrasonic sound out and listen for the
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reflection. Although they provide broad coverage, they are ineffective for distances over a

few meters. Also, they have a wide angle of “vision” per measurement meaning that they

cannot be combined to create a high-resolution map. For this reason, they are the least

suited for this mapping application.

Implementation

The robotic system consists of three main components. First, the vision sensors (Figure

1 (a)), collect all of the imaging data used. Second, there is the data processing system,

which is responsible for analyzing the image data and for generating motion control data.

Finally, the robot must have a motor controller to translate the motion control data into

motor movement.

For this project, webcams were used for the image collection because they are affordable,

robust, and easily acquired. The webcams connect directly to the onboard computer via

USB, and are mounted 10 inches apart to create a usable depth resolution from 3 to 30 feet.

The webcams and the motor controller are controlled by the onboard computer system

(Figure 1 (b)). This computer is responsible for converting the 2D imaging data into 3D

images and implementing the SLAM algorithm using this vision data. By combining the 3D

images into a 3D map, the robot can then generate a desired navigational trajectory for the

robot. Finally, this motion data must then be sent to the motor controller.

The motor controller uses digital signals corresponding to desired velocities, and trans-

lates them into analog signals that drive the motors. The robot is placed upon caterpillar

tracks, where the motion is controlled by the motors. In this project, caterpillar tracks (Fig-

ure 1 (b)) are used because they provide unpredictable movement due to the treads slipping.

This aspect is useful because the goal of the project is to navigate using vision alone. If

accurate wheels were used, the algorithm would rely on that accuracy in movement, and

thus, it would not test the limits of the SLAM algorithm. The motors are also connected to

wheel encoders which measure the wheel rotations. This data is used for speed control and

4
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in the SLAM algorithm make the robots guess of its location more accurate. The motors

will output different speeds given different loads, so a Proportional, Integra, and Differential

(PID) controller is created to account for any errors between actual motor speeds and the

desired speeds.

5

6

Quercus: Linfield Journal of Undergraduate Research, Vol. 1 [2012], Art. 1

https://digitalcommons.linfield.edu/quercus/vol1/iss1/1



Background

Stereoscopy

To create a 3D image, the robot takes advantage of the parallax effect. The parallax effect,

depicted in Figure 2, shows that two offset vision sensors, such as our eyes, see things

with slightly different perspectives. This change in perspective means objects will appear

in relatively different locations for each camera depending on the locations each camera’s

location. The robot uses parallax and combines the images from two cameras seperated by

a known distance into a single map of their differences, called a disparity map. Figure 3

shows how two images can be combined into a single disparity map. This map can then be

converted into a distance map by knowing the specifications of the camera lens used to take

the picture (like angle of view and angle per pixel across the viewable area).

When two cameras are offset from one another and then used to take a picture of the

same subject, objects closer to the cameras will be seen in comparatively different locations

on the image, while objects farther away will be closer to the same place. This is similar to

observing the landscape when driving a car. The trees that are close appear to be going by

much faster than the mountain in the background. Similarly, with two offset cameras the

difference in the object’s position will depend on its distance from the camera. The distance

between the same objects in two images is called disparity. An object that is very close to the

cameras will have a large disparity. The goal of stereoscopy is to create this disparity map.

From the map, the data can be converted into actual distances with simple calibrations. Four
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Figure 2: The parallax effect. The left and right eye look at two objects (red and blue)
which appear in different relative locations for each eye.

stereoscopic methods were tested to pick the best candidate for autonomous mapping. In

this project, the cameras will be offset horizontally, however, using vertically offset cameras

would require very little modification to the algorithms.

The first method tested, Bitwise Image Comparison, simply compares the color of each

pixel. Each pixel was compared to corresponding pixels in the same row to see where they

matched best. The location where they matched was the disparity for that pixel. The second

method, Edge Map Comparison, expanded on the first and decreased the amount of errors

by only comparing the edges. By using a Canny Filter, the edges the only pixels with color,

and thus there are fewer possibilities for matching. The third method, Vector Edge Map

Comparison, builds upon the first two methods by converting the Canny Filtered image into

a list of line vectors using a Hough Filter. This allows even faster processing because it again

decreases the amount of data. The final method, OpenCV, takes the procedures from all of

the other options but also makes educated guesses of the disparity where there are no well

defined edges.

7
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Figure 3: Stereoscopic vision and the creation of the disparity map. (a) and (b) show images
from two horizontally offset cameras. Disparity map (c) displays computed differences in an
object from two images. Light areas represent large pixel offsets, while dark areas represent
regions which have very little offset. The sample images were provided by OpenCV. The
disparity map was created using the FindStereoCorrespondence method from OpenCV[4].

SLAM

To map an area, a robot must be able to do two things: determine its location within the

existing map and add to the map with newly collected data. For example, if a robot knows

all about the room it is in, it must be able to go into a hallway and extend its map to

include the hallway. By adding onto the map in this fashion, the robot is able to create a

detailed map of a large area without any knowledge of its overall structure. This process,

called Simultaneous Localization And Mapping (SLAM), is used by many robotic systems

to build up maps of their surroundings without needing any initial hard-coded maps built

8
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Figure 4: An example of localization. The robot (the green arrow) cannot differentiate be-
tween possible locations (black arrows) until it starts to rotate and get different perspectives
on the room. As the robot rotates, the guesses of the robots location conflict with sensor
data and are removed (red arrows) until the robot is left with two possible locations (green
arrows in frame d).

in.

The first step to the SLAM algorithm is localization. It is important for the robot to

know exactly where it is so it knows where in the map to place the new data. For example, if

the robot sees a table, but is unsure of where in the room the robot is, then the robot cannot

add the location of the table to the map with any accuracy. There are two main ways that

the robot can find its location. It can either search the map systematically or make many

guesses and statistically narrow them down.

The statistical method used in this project follows the general procedure shown in the

example in figure 4 where a robot attempts to localize in a symmetric rectangular room. The

robot is initially one meter away from the wall in Figure 4(a). In this example, the robot

has one sensor which measures the distance directly in front of the robot. Thus, the robot in

this example would see a reading of one meter. Because the robot knows at this point only

that there is a wall 1 meter from itself, the robot could be in any position along the blue

9
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line in 4(b). However, as the robot turns, some of the guesses of the robot’s position (black

arrows) would show different measurements if the robot were actually there. These guesses

would have a low confidence and are thus denoted as a red arrow because the robot cannot

be in that position and orientation. As the robot turns farther (from frames c to d) all but

two of the guesses are removed because the robot is confident it cannot be in those locations.

Because the room is symmetrical, the robot cannot actually determine its position further

so this is as close as the algorithm can get to determining the robots actual location.

10
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Experiment

Stereoscopy

Several methods are available to combine two images into a 3D image. The algorithms aim

to identify similar objects in the two cameras and measure the distance between them. Each

algorithm takes a different approach to identifying similar objects. Once the objects are

identified, the distance between the objects can be converted into a distance measurement

from the robot to the pixels comprising that object.

Bitwise Image Comparison

The first method of distance map creation is a simple bitwise matching of images. The images

slide over each other one pixel at a time, and each pixel is compared with its corresponding

pixel in the other image. Then, by comparing how well each pixel matched with the other

tests, the best match can be recorded for that pixel’s disparity.

The bitwise image comparison method is the simplest to implement because each pixel is

evaluated independently based on its color. However, because two neighboring pixels of the

same object could match to two completely different objects this procedure contains a high

potential for error due to the independent comparisons. Because no data has been removed,

each pixel must be tested against many other pixels, creating a very time-consuming process.

Furthermore, this procedure has a difficult time detecting matches unless the colors of the

pixels are identical which is not always the case due to dynamic white balance and exposure

11
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Figure 5: Using the Canny Filter detects edges in images. This illustration shows two images
before and after a Canny Filter was applied. The output of the Canny Filter is either a black
or white pixel. White pixels represent an edge.

settings as well as differences in perspective. In addition, large blocks of the same color

cannot be differentiated because each pixel will match with the whole block.

Edge Map Comparison

The second method is to convert the image into an “edge map” using a Canny Filter (Shown

in Figure 5). The Canny Filter can be applied to an image in order to create a second image

of the same size. With this method, the second image will have a white pixel if there is an

edge and a black pixel if there is no edge. By varying the parameters the Canny Filter will

output a different number of edges. Then by using a similar algorithm to the bitwise image

comparison to compare the edge maps, a more accurate disparity map can be created for

the edges of objects. If an image has well-defined edges, then the lines will show up in the

edge map. Furthermore, if there are less lines, it is less likely to mistake one line for another

and create an incorrect disparity.

Bitwise edge mapping has similar speed problems as the bitwise image matching because

the same number of comparisons are made. Even though edge maps only have two colors,

unlike the millions of colors found in the original images, the process is still slow. This method

12
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Figure 6: Using the Hough filter detects edges in an image and converts them into vector
line segments. The Hough Filter takes an image, applys a Canny Filter on the image to find
the edges and outputs a list of line segments as shows in frame (d). Each line segment is
assigned a different random color to differentiate between different segments.

does, however, solve the problem of having a high probability of a mismatch because only the

most essential data is preserved - the edges. Because the rest of the data does not provide

good points of comparison, keeping only the edges is a logical way to solve the problem of

false positives. This problem is not completely alleviated though because if multiple edges

exist close together, then there is no way to determine the best match. Because the edges

are points of comparison in this method, preserving the colors at the edges would be useless.

Edges are detected based on high contrast regions, and thus picking colors to match edges

with would be impossible. Furthermore, the images only have disparities for the edges, so

there is only a partial disparity map.

Vector Edge Map Comparison

A third method is to find the lines by employing a Canny Filter and then converting the lines

into a list of line segments. This technique is useful because it will be valid only to compare

lines with similar slopes together for the disparity map. Thus, the list of comparisons will be

shorter because only similar line segments need to be compared. The Hough Filter is used

to convert the output of the Canny Filter to a list of line segments as shown in Figure 6.

The vector edge map is able to quickly generate a list of line segments from the Canny

Filter’s output, however it can only detect perfectly straight lines. If a line is slightly curved,
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it will detect many short line segments which make up the curve. In real life, the lens of

the cameras is not perfect, causing warping which will make lines appear slightly curved.

Furthermore, if the robot were to map an area which is not composed of square walls and

obstacles, it would be difficult for the robot to perform stereoscopy. Thus Vector Edge Map

Comparison does not provide a broad enough application for this thesis project[5].

OpenCV

The last stereoscopic method tested was a function provided with the “EMGU” distribution

of OpenCV[6]. This function, called FindStereoCorrespondence, took two grayscale images

and created a disparity map[4] by detecting similar objects in each picture. The OpenCV

method was slow for large images, but it sped up significantly when smaller image sizes

were used. The function used the two images and a Canny Filter on each image to generate

an edge map for each image. The algorithm then used a procedure similar to the bitwise

edge comparison described; however, it took into account all neighboring pixels as well. The

two reasons this was possible while running as fast as the other methods was because its

algorithm was more efficently designed and because the library was written in a much faster

programming language. After finding matching points, the algorithm interpolated the data

to generate regions of each distance. This allowed not only point distances to be calculated,

but it also generated distances automatically where there was no usable data. The output

of the FindStereoCorrespondence function is shown in Figure 3.

The function not only not only finds the pixel offset at the edges of each object (similar

to the edge matching or Hough Filter), but also able to detect objects inside the images and

interpolate the disparity. This process works by using the offset at the edges surrounding

the blank region to make an educated guess about the offset in the blank regions of the

image. The ability to interpolate the disparity in regions with little discernable data is

an improvement over the previous two methods because those methods simply found the

disparity at the edges. Since the distances are known all over the image, it will be simple to
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simulate this action for testing and to simulate what a robot would see if it were at any given

position in the map. Unfortunately, a negative aspect is that this process is slower than the

other methods outlined. However, it provides excellent data interpolation and is able to

provide the highest fault tolerance for images that are blurry and distorted. Furthermore,

the output at very low resolutions is useable, so faster processing times can be achieved.

SLAM

Localization

To determine the location of the robot, the program implemented a statistical model which

allowed the robot to increase the accuracty of its location over time as opposed to brute force

search for its location which is a time-consuming process. The statistical method for finding

a robot’s position is called Particle Filtering which is derived from the Monte Carlo method.

There are other methods for determining a robot’s location (like the Kalman Filters[7]), but

the Particle Filter allows multiple guesses of the robot’s location to be remembered while

the robot finds more details about its surroundings to keep or eliminate the guesses[8]. For

example, if the robot’s map contains two identical rooms and the robot is in one of them,

there is no way to determine which room it is in. If the robot leaves the room and notices

the hallway is different on each, it can then remove one of the guesses. In a particle filter,

hundreds of guesses are made as to the robot’s location. These guesses are called “Particles”.

Even the best guess for the robot’s location will not be good unless it accounts for

the robot’s movements. This application will have a moving robot and thus, each particle

is moved the same amount that the robot moved in each iteration of the algorithm. Each

particle is moved forward and turned the same amount that the robots wheel sensors measure.

However, to account for some error that is caused by wheel slipping and sensor error into

the program, a small amount of random error is added to each particles movement. This

way slight drift in sensor data can be overcome by causing the particles to drift along with
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the errors.

Next, the particles are ranked based on the likelihood that their location is actually the

real robot’s location. Since each particle has a location and a heading, the map the robot

has in memory can be used to simulate what the robot would see if it were at the particle’s

location. As an example, a particle facing a wall would see a wall directly in front of it. If

the robot has a window in front of it, this guess would not be good because the real sensor

data and what the particle “sees” are different.

Now that the robot knows which of the guesses are good and which are bad, the robot

can then start to refine where it is located. Because only a couple hundred particles are ever

used, the initial random distribution of particles will not provide a location with enough

accuracy. Therefore, the particles must be redistributed and retested. The methods with

which these particles are redistributed determines how the particle filter behaves and if it will

converge on the actual robot’s location. As the robot refines its actual location in the map,

the particles begin to cluster around likely locations of the robot in the map. Eventually,

all guess clusters but one will be removed out due to conflicting data. At this point, the

robot knows where it is and needs to use localization only to correct for wheel errors and

to check periodically if the robot is actually wrong about its location. Because the particle

filter is slow and processing time is valuable, decreasing the number of particles once the

robot has found its location allows the program to run at a higher frame rate, and thus run

more smoothly, during normal operation[9].

Table 1: Particle filter procedure
1 Randomly distribute particles and rate the particles
2 Redistribute particles based on last rating
3 Move particles based on robot’s actual movement
4 Rate particles
5 Repeat from step 2

The step that makes each particle filter unique is the way the particles are redistributed.

There are three different methods that were used in this program to redistribute the particles
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and refines the robot’s location. All of the particles were first sorted by their order through

a coarse sorting which introduces errors through the random number generator used. This

allows the general order of the sorting to be from low confidence to high confidence particles,

but allows particles to be shifted out of their exact place in the list and to perform different

redistribution methods. Then, the algorithm went through each particle choose between

the three methods of redistribution. If the particle was in the bottom 40% of the list,

the particle was removed and placed back into the map based on the positioning of other

particles. Particles of low confidence were cloned from particles of high confidence. The high

confidence particles were selected from the top 20% of the list. After cloning the particle,

some error was intentionally added based on the confidence of the original cloned particle.

When the cloned particle was very confident, the randomness was small, but when there was

less confidence, then a larger amount of error was added to the new particle. If the particles

were in the next 10% of the list, it was picked up and replaced randomly. The remainder of

particles were left where they were. This was important if the particle’s confidence was not

high enough to be cloned, but not low enough to be redistributed. Leaving particles allowed

the particle to move into better alignment through future iterations, which could create a

better guess later in the mapping. By using these three techniques, the particles are able

to generate better robot location guesses, refine their location once a probable location is

found, and account for error in the robot’s movement.

Mapping

To map out an area, the data was stored in a data structure. The way that the data was

stored dictated the performance of the program. In this project, the data was stored in an

array. This split space into small blocks of a certain size where the block can either be an

object or be empty. For this project, a block size 1cm × 1cm × 1cm was found to be the

limit for processing and memory. By changing the size of each discrete block, the resolution

of the map was changed and the performance followed. When there were small blocks, a lot
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of data was processed, but large blocks caused the resolution of the map to be poor.

In each block, the number of times something was seen in that block was recorded as well

as the number of times something was not seen in that block as a confidence that the block

was filled or not filled. That is, if the robot was looking at an area and nothing was seen

there, then the “nothing” confidence increased. This allowed a dynamic environment such

as an infrequently used room to be mapped accurately. For example, sometimes the robot

would see a person standing in the room. However, the majority of times the robot would

see no one. Thus, the number of times the robot saw no one in the room overpowered the

infrequent visitor. This choice also allowed errors to be recorded into the map without causing

difficulties. By allowing errors to be corrected, the map was more robust and allowed the

map to change with a changing environment. Another addition was to allow older memories

to fade from the map. When a new addition was made to the map, what was there before

could be faded such that if the area suddenly had a new object in it, the memory of not

having that object before faded with time and was replaced with the new data.[10].
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Results

3D Stereoscopy

As explained in the Exploration of 3D Methods section, there are four methods that were

tested to generate disparity mappings: bitwise matching, bitwise edge matching, vector

Hough Filter matching, and lastly, an OpenCV algorithm. While each method has its own

advantages, one of the most critical factors is the speed with which the algorithm can process

the data and the quality of the output. This section evaluates the speed and scalability of

the algorithms as well as the output quality.

The first two algorithms tested were a bitwise comparison of images and edge maps. One

of the most detrimental factors for these methods was that they needed to compare each pixel

in the images with every pixel in the corresponding row to find a match. With image sizes of

approximately 0.3 mega pixels and 70 levels of disparity on the full size images, the output

of the function required over 24 million pixel comparisons. These tests were both unusably

slow and provided poor data output for full resolution images. Low resolution images were

faster, but had even worse output. Because edge and image matching are the same general

procedure, they have been grouped together into a general “bitwise comparison” category.

Table 2 shows the data from bitwise comparisons. Each smaller image is a reduced copy

of the original. The rescaling processes took a 4 pixel square and averaged the pixels into

one pixel thus creating an image with half the vertical and horizontal resolution. Each test

was with a set number of disparity tests. Each disparity test offests the images by that that
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number of pixels and tests which parts (if any) match. For example, if an algorithm was

tested for only 2 disparities, it would test a 0 pixel offset and a 1 pixel offset and determine

the disparity for each pixel within the set of tests.

Table 2: Bitwise comparison data. The test was conducted using 3 different parameter
combinations as well as three images sizes. The number of disparities is the number of image
offsets tested for matching objects. The original image was taken directly from the Web
Cams. The results are averaged over 10 trials.

Test Disparities Average Time Standard Deviation
Image Size: 640 x 480 70 8,669 ms 327 ms
Image Size: 320 x 240 35 1,091 ms 184 ms
Image Size: 160 x 120 17 141 ms 31 ms

In the edge comparison, the images must also undergo a Canny Filter to get from the raw

images to the edge images. The Canny Filter is fast in comparison to the bitwise comparisons

(around 200 times faster) so it can be ignored. Furthermore, the two input parameters for

the Canny Filter can be varied with little change in processing time. Table 3 shows the

processing time data for the Canny Filters, averaged over 10 samples, is shown.

Table 3: Canny Filter data. The results are averaged over 10 trials.
Test Input Parameters Avg. Time Std. Deviation

Image Size: 640 x 480 Gaussian Size: 0, Threshold: 0 25.8 ms 6.9 ms
Image Size: 640 x 480 Gaussian Size: 100, Threshold: 100 22.7 ms 4.5 ms
Image Size: 640 x 480 Gaussian Size: 255, Threshold: 255 17.9 ms 5.1 ms
Image Size: 320 x 240 Gaussian Size: 0, Threshold: 0 5.5 ms 0.8 ms
Image Size: 320 x 240 Gaussian Size: 100, Threshold: 100 3.1 ms 0.5 ms
Image Size: 320 x 240 Gaussian Size: 255, Threshold: 255 5.5 ms 0.7 ms
Image Size: 160 x 120 Gaussian Size: 0, Threshold: 0 1.6 ms 0.1 ms
Image Size: 160 x 120 Gaussian Size: 100, Threshold: 100 0.8 ms 0.2 ms
Image Size: 160 x 120 Gaussian Size: 255, Threshold: 255 0.8 ms 0.1 ms

To reduce this lengthy processing time, the images can have a Hough Filter applied to

them to create vector lines. These vector lines can be compared with each other to generate

a similar output to the bitwise edge comparison, but the comparisons are much faster. By

finding corresponding edge lines, the offset of the lines will be the disparity of all edge pixels.

In bitwise comparison the disparity was determined by discovering which pixels matched.
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Therefore, the output of the two should be similar. However, because edge vectors are

represented as two end points (and inherently a slope) the slopes just have to be sorted and

compared, which quickly generates a set of matching edge candidates. The limiting factor

of this procedure is the Hough Filter itself. The Hough Filter is very fast but is unable

to generate useful data output unless the lines of the image are perfectly straight. Table 4

shows the timing results for the Hough Filter (Figure 6).

Table 4: Hough Filter data with Canny parameters of 100 and 100. The results are averaged
over 10 trials.

Test Average Time Standard Deviation
Image Size: 640 x 480 868 ms 112 ms
Image Size: 320 x 240 365 ms 56 ms
Image Size: 160 x 120 163 ms 12 ms

The imaging library OpenCV contains a function that takes two images and converts

them into a disparity map. This function is the slowest of all the functions. However,

because it incorporates image grouping, data interpolation, and dynamic filtering, it is the

best option of all methods explored. Furthermore, with the OpenCV function small images,

which are much faster to process, provide usefull data unlike the bitwise comparison which

does not generate an accurate output at smaller image sizes. These attributes make the

output of the function much more usable when trying to implement the SLAM algorithm,

and thus, are preferred over functions which are simply faster. In addition, as the image

resolution is decreased, the processing time significantly decreases. Even at these lower

resolutions of images, the output disparity is still clear enough to discern different objects

and to be processed for use in the SLAM algorithm. Table 5 shows the processing times for

different image sizes for the OpenCV process (Figure 5).

Table 5: OpenCV data. The results are averaged over 10 trials.
Test Disparities Average Time Standard Deviation

Image Size: 640 x 480 70 52,072 ms 1201 ms
Image Size: 320 x 240 35 5,470 ms 213 ms
Image Size: 160 x 120 17 627 ms 85 ms
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Based off of the spacing between the cameras as well as their field of view, an equation

was formed to calculate the distance to a detected object. Equation 1 shows the equation

used to calculate the distance to a detected object. By inputting the disparity of the object

in pixels, the equation will show the distance in centimeters to the object. This equation

was tuned using the minimum image size of 160x120 pixels and a maximum disparity of

17 pixels. The resolution of the model is shown in Equation 2 which is the derivative of

Equation 1. On average, the resolution for objects in the middle of the robots field of view

will be approximately 10 centimeters.

ρ = 284 ∗ e−0.077∗δ (1)

ρ = 21.868 ∗ 0.9259δ (2)

SLAM

While localization is the most important aspect of robotic navigation, it would not be possible

without a map. The generation of the robot’s map is simple. Once the location of the robot

is found, simply take the disparity map generated by the two cameras and project the image

into the 3D map. Then the map is updated to reflect the new data from the cameras.

However, this process is the most simplistic approach and it does not account for errors or

initialization. If the map has an error, the algorithm should have a mechanism for correcting

this error. This is done in the mapping algorithm. When the robot identifies an obstacle

in front of it, it increases the confidence in the map to indicate there is an obstacle while

simultaneously decreasing the probability there are any obstacles between the robot and the

observed obstacle. By recording the confidence of an obstacle instead of recording whether

there is an obstacle or not, the map can account for a dynamic environment, as well as allow

erroneous measurements to be recorded and removed without causing any problems to the
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navigation and operation.

Figure 7 show the SLAM algorithm being used to map out a room. The robot was

manually turned 45 degrees for each iteration of the algorithm. After each turn, the robot

ran the OpenCV algorithm to generate a 3D image which was added to the map. As the

robot rotated 360 degrees, it added to the map to generate an initial map for the room.

After completing this procedure, the robot will be able to navigate the room to get different

perspectives of the room to further build the map.

A limiting factor, along with processing power to complete the required calculations, was

computer memory. The data storage for the large maps consumed more then 500 Megabytes

of data, pushing the computer over its memory limit. To solve this problem, the robot’s

internal map was restricted to 100×100×30 blocks. However, by creating multiple maps with

the same dimensions and storing them in memory, the map size limit could be increased[11].

The most vital part of autonomous navigation is the process of localization. A particle

filter was implemented in order to determine the robot’s location within a map. The particle

filter takes the imaging data and the inaccurate wheel data and outputs an estimate of the

robot’s location. By updating the particle filter frequently (at least once every second),

the robot is able to narrow down on its actual location and account for any inaccuracies in

the motion data. However, due to processing limitations, this frequency had to be reduced

to once every two to three seconds. The basic particle filter algorithm has been modified

to fit our application. First, the less confident particles are redistributed around the more

confident particles. By redistributing the particles, the particles will begin to cluster faster

than if the particles were simply randomly distributed. However, a small portion of the

particles are always randomly distributed so a false positive match on the robot’s location

can be reversed. Lastly, the number of particles should vary depending on the confidence

of the robot’s location. This will allow improved performance once the robot’s location has

been found, and it will create a more smooth operation for the robot’s navigation. After

mapping out the room in Figure 7, the robot’s localization was reset so it did not know

23

24

Quercus: Linfield Journal of Undergraduate Research, Vol. 1 [2012], Art. 1

https://digitalcommons.linfield.edu/quercus/vol1/iss1/1



Figure 7: Real life mapping using stereoscopic imaging. The images show the left and right
cameras and their combined disparity map. Robot manually rotated around fixed point to
scan room and generate initial map. The last image is a top-down image of the robot’s
internal map. Filled pixels represent blocks (compiled over all height layers of the map) that
are filled. The green and blue arrows represent the robot’s actual location and the robot’s
perceived location respectively.
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Figure 8: The view from the robots new location after the map was generated (in Figure 7)
and the localization was reset. The process of re-localization can be seen in Figure 9 where
the robot acquires its location with only the map data.

where it was. It was then turned to a 35 degree angle from its initial location. The view

from its new orientation can be seen in Figure 8. Figures 9 show the particle filter finding

the robots true location with only the map generated in the previous test.
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Figure 9: Localization on the robot from the 360 degree map. This diagram shows selected
iterations from the initial state of the robot to when it found its location. The green circle and
line show the robot and its orientation. The red-yellow circles and arrows show the particles
and their orientation. Red depicts low confidence while yellow shows hight confidence. The
shades in between red and yellow show partial confidence.
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Discussion

The results of this project illustrate that robotic mapping through Stereoscopic Vision is

both possible and has provided many benefits over the current methods for mapping. Not

only is the robot able to see in horizontal resolution, stereoscopic vision allows the robot to

see vertically as well. Extending the range of vision beyond a plane into a 3rd dimension

allows the robot to map more area at once. Furthermore, the robot itself is inexpensive to

construct when compared to other available sensors. These factors make stereoscopic vision

a viable option for autonomous robotic mapping.

Stereoscopic imaging provided a convenient way to generate distances using off-the-shelf

webcams. However, the systems output was limited by the environment. Because the cam-

eras were designed to view objects at a fixed distance in constant and well-lit environments,

any variation in the lighting intensity or viewing distance caused the cameras to measure

incorrect distances while they adjusted. Furthermore, the cameras are only able to detect

objects with contrast, provided the lighting is just right. If the lighting is too bright then the

glare from any reflective surfaces prevents the cameras from detecting features, and if there

is insufficient lighting, then the robot is unable to see anything. By switching the sensors

to infrared sensors in future research, the robot may be able to see in more diverse lighting

situations. Finally, if the robot were to encounter a glass obstacle, it would be unable to see

it, as light passes through glass. This issue would be resolved by combining ultrasonic sen-

sors to supplement the vision sensors[12]. Combining multiple sensor inputs which measure

similar aspects of a system, also known as sensor fusion, allows for an improved accuracy
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over what each sensor would provide individually. By combining different vision sensors that

have distinct applications, a wider range of operating conditions will provide good results.

The limiting factor on the quality of mapping in this thesis was the processing time.

Because both the stereoscopy and the SLAM algorithms were processing intensive programs,

the inputs had to be downsized to allow frame rates of under 2 seconds. The ideal frame rate

would be around 100 to 200 millisecond frames, thus providing 5 to 10 frames per second;

however, with the current equipment, processing that quickly was not possible. With high-

end equipment, off-site processing, or faster algorithms, the output of the mapping could

be improved significantly. Faster processing power would allow for higher resolution image

stereoscopy, more disparity shift tests, smaller mapping discretization, and a larger number

of particles in the particle filter. Additionally, by retaining all camera frames between particle

filter iterations rather than discarding them, the data could be probabilistically combined to

generate more accurate images. By combining data, the particle filter would have access to

more accurate data, making up for the slow refresh rate of the filter[13]. All of these factors

would allow the robot to map the surroundings with more precision, higher accuracy, and

with less chance of erroneous readings. Furthermore, more processing power would allow the

use of high definition cameras which would significantly improve distance measurements.

High definition cameras would provide over 6 times the current camera resolution (HD

provides over 2 mega pixels of resolution, while the webcams used provided around 0.3

mega pixels).

This project focused on the strengths of stereoscopic vision. However, if this technol-

ogy were coupled with high precision laser rangefinders, accurate wheel systems, and GPS

systems, the robot would be able to map out its area of operations with very little error.

Introducing new wheel systems would allow the robot to determine its movement using

odometry. The robot’s wheel movement sensors could then be combined with GPS data to

determine its orientation and coarse position in a map to narrow the scope of localization.

High precision laser rangefinders could then augment the camera systems to create very
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accurate keypoints for localization and mapping.

By upgrading the equipment, the robot would be able to generate maps that are 100

times more precise (with discretizations down to 1mm blocks) and processing times which

would allow the robot to move at a faster rate. In addition, off site processing would allow

multiple robots to operate simultaneously using the same map. Using cooperative robotic

mapping, dozens of robots could simultaneously map large areas ranging from large offices

to complex cave systems. Rapid mapping of areas would be vital to search and rescue

operations, earthquake rescue operations, and many military reconnaissance missions.
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