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Introduction Methods Discussion 
Self-organized critical systems (SOC) are characterized by 
power law behavior and scale invariance.1 Developed for a 
sand-pile model, SOC is recognized in many systems, from 
avalanches to forest fires.2,3 The identification of protein 
folding as an SOC system is of interest in the solid phase 
synthesis of proteins as SOC mechanics can be used to better 
control how proteins behave especially with frequency 
shifting.  
 
To show that protein folding is a self-organizing system, we 
show that protein folding has power law behavior and scale 
invariance.  
 

A power law function is defined as 𝒇(𝒙)=𝒂   ​
𝒙↑𝒌  , where frequency 𝒇 is a function of size 𝒙.  is a function of size 𝒙. . 

The logarithm of the equation gives a linear function, ​
𝐥𝐨𝐠⁠𝒇(𝒙)  = ​ 𝐥𝐨𝐠⁠𝒂  +𝒌​
𝐥𝐨𝐠⁠𝒙 . Figure 1 is a typical distribution.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: (Above) 
Typical power law distribution data. 
 

For protein folding, 𝒌 is negative meaning that the  is negative meaning that the 
frequency of large events is smaller than the frequency of 
large events. Thus for a system to be considered an SOC 
system some size must be linked to a frequency such that the 
logarithm of the two provides a decreasing linear function. 
 
The scale invariance of an SOC system can be linked to the 

scalar 𝒂. A change in 𝒂 should not change 𝒌, meaning . A change in 𝒂 should not change 𝒌, meaning  should not change 𝒌, meaning , meaning 
they are independent of one another.  
 
After identifying protein folding as an SOC system, we apply 
frequency shifting. 
 
Frequency shifting occurs when one controls a system with 
small events to replace large events. Many ski resorts or 
forestry managers force small events to occur, for ski resorts 
this involves detonating small blocks of snow to create minor 
avalanches5, for forestry managers this includes controlled 
burnings6. By creating small controlled fires one reduces the 
available fuel that can make forest fires large. By creating 
small avalanches one can reduce the amount of loose snow 
that contributes to large avalanches.  
 
There appears to be some kind of conservation law that 
applies to SOC systems. Depletion of energy in small parts 
reduces the frequency that large energy changes occur.  

The energy of a protein is calculated with MATLAB by the 
equation below, from AMBER.4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The first term refers to bond lengths. Each bond is assigned an 

equilibrium length ​ 𝒃↓𝒆   and a spring stiffness ​
𝒌↓𝒃  . The second term refers to angle strain in similar 
manner. The third term, refers to dihedral angles, angles 
between the planes of the bonds and the fourth term refers to 
van der Waals forces (Lennard-Jones) with electrostatic 
influences (Coulomb’s Law).  
 
After an initial energy is calculated an atom is moved around 
adjacent particles. If the new recalculated energy is below the 
energy of the prior iteration or within a tolerance limit, then the 
iteration is accepted. If the iteration is not accepted the 
movement is ignored.  

Size is defined as both the number of consecutive folds and 
the magnitude of the energy change of a fold. Frequency is 
defined how often that size occurs relative to other sizes. 
 
Structure conservation was calculated through the element 
standard deviation (ESD)  of pairwise distance matrixes.  
 
 
 
 
 
 
 
Particle 1 and 3 are 4.8 units apart from each other in run 1, 
which changes to 4.5 and 5.1 in other runs. The ESD at each 
position of the matrixes should then be the following, 
 
 
 
 
 
 
This means that the distance between particle 2 and particle 3 
are more variable than the distance between 2 and 1. If one 
computes the average value of this matrix, we arrive at the 
value of 0.16. This gives us a score as to how conserved a 
model is. High scores infer low conservation, low scores infer 
high conservation. 

Figure 2 shows the probability distribution as size 𝑵  
changes. All fits pass the two sample Kolmogorov–Smirnov 
test. This establishes that protein folding exhibits power law 
behavior, which passes the first test of SOC systems. 
 
The slopes of fits in Figure 2 are similar (-3.36 ± 4%), which 

means that the variable 𝒌 is constant. However the intercept, ​ is constant. However the intercept, ​
log ⁠𝒂  , changes as a function of size as seen in Figure 

3. This means that the slope 𝒌 is independent of scalar 𝒂,  is independent of scalar 𝒂, , 

which is related to the size 𝑵 and passes the second test of  and passes the second test of 
SOC systems. Thus protein folding can be defined as an SOC 
system.  
 
Figure 3 displays an intuitive mechanic. The larger one makes a 
mountain the larger the avalanches become. Figure 3 shows 
that the same thing applies with protein folding. 
 
The AESD’s were calculated from pairwise distance matrixes 
(Figures 4 & 5). This reveals that conservation increases as a 
function of size (Figure 6). This intuitively makes sense, the 
longer a proteins gets the more likely there are to be familiar 
structures (like helices, or barrels, or sheets) that are 
recognized with the pairwise distance matrix. One is unlikely to 
find these structures consistently in small proteins.  
  
In Figure 7 we increased the frequency of small energy folds by 
changing the tolerance limit of our programs to force small 
folds through. In doing so, there is a large increase of small 
folds but there is a reduction of large folds. We can apply this 
knowledge to protein folding with structure induction (SI). 
 
SI7 works by forcefully inducing small helixes throughout the 
protein structure.7 These helices are rigid, much like double 
bonds in fatty acids, and reduce the tangling that occurs. 
Tangling is what prevents solid phase syntheses (SPS) of 
proteins from being successful. Whereas most proteins are 
anywhere from 100-300 residues, SPS methods have issues at 
30 due to tangling. To better control the protein SI can be used 
to create helices, small folds, to reduce the frequency of 
tangling, large folds. This type of methodology is the type of 
behavior we predict in our model, the so called frequency 
shifting. 
 
Future work on this project will monitor how SI influences real 
systems and how it influence our understanding of SOC. 

Results 
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Figure 2: (Top) 

Random protein with length 𝑵. Slope . Slope 
of each fit is at -3.36 ± 4%.  
Figure 3: (Bottom) 
intercepts Figure 2 vs. function of 
length.Slope = 1.61 ± 4.7%. Intercept = 
-0.04 ± 0.09. 

Figure 4 & 5:  
Pairwise distance matrixes for fixed 
(Top) and random (Bottom) models. The 
average ESD (AESD) of both are, 
respectively, 0.99 and 1.87.  

Figure 6: (Top) 
Conservation vs. function of protein 
size. % = 1-AESDfix/AESDrand 
Figure 7: (Bellow) 
Change in energy as the size as a 
frequency shift occurs. 

( ) ( )

( )

12 6
1

2

Angles

2

Bo

2

Dihed

0 0

1 1 0

nd

al

s

r

...

. 1..

2
4

cos   
2

...

...
N N

ij ij i j
ij

j i

b e

j ij i

e

j

a

ij

n

k b b k a a

r r
r r

n

E

V

q q
r

ϕ

π

γ

−

= = +

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥− +⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠ ⎝

= +

+ −⎡ ⎤⎣ ⎦

⎠⎣ ⎦⎩

+

+

−

⎭

−∑

∑∑

∑

∑

Ú
Ú

  1 2 3     1 2 3     1 2 3 
1 0 1.5 4.8   1 0 1.6 4.5   1 0 1.7 5.1 
2 1.5 0 2   2 1.6 0 2.1   2 1.7 0 1.5 
3 4.8 2 0   3 4.5 2.1 0   3 5.1 1.5 0 

  1 2 3 
1 0 0.1 0.3 
2 0.1 0 0.32 
3 0.3 0.32 0 

0.0 0.5 1.0 1.5 2.0

-6

-5

-4

-3

-2

-1

0

lo
g(
y)

log(x)

0 5 10 15 20 25 30 35 40 45

0.24

0.27

0.30

0.33

0.36

0.39

%
 C

on
se

rv
at

io
n

N

6.0 6.5 7.0 7.5 8.0

-1

0

1

2

3

4

 Default
 F Shift

lo
g(
f dE
)

Log(dE)
0.6 0.8 1.0 1.2 1.4 1.6

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

y-
in
te
rc
ep
t

log(N)
5 10 15 20 25 30 35 40 45

5
10
15
20
25
30
35
40
45

Particle

P
ar
tic
le

0.000
0.4775
0.9550
1.432
1.910
2.387
2.865
3.342
3.820

0.0 0.5 1.0 1.5 2.0

-3

-2

-1

0

1

2

3

 N=5
 N=10
 N=20
 N=30
 N=40

lo
g(
A
n/R
)

log(Ac)
5 10 15 20 25 30 35 40 45

5
10
15
20
25
30
35
40
45

Particle

Pa
rt
ic
le

0.000
0.2000
0.4000
0.6000
0.8000
1.000
1.200
1.400
1.600


