

Linfield College DigitalCommons@Linfield

2013 Projects

Keck Summer Collaborative Research Projects

Summer 2013

Air Pollution: The Trees Aren't Lichen It

Wes L. Hanson Linfield College

Leigh A. Hanson Linfield College

Meghan Lockwood Linfield College

Morgan Yarber Linfield College

Follow this and additional works at: https://digitalcommons.linfield.edu/keck_2013

Part of the Forest Sciences Commons, and the Terrestrial and Aquatic Ecology Commons

Recommended Citation

Hanson, Wes L.; Hanson, Leigh A.; Lockwood, Meghan; and Yarber, Morgan, "Air Pollution: The Trees Aren't Lichen It" (2013). 2013 Projects. Presentation. Submission 5. https://digitalcommons.linfield.edu/keck_2013/5

This Presentation is protected by copyright and/or related rights. It is brought to you for free via open access, courtesy of DigitalCommons@Linfield, with permission from the rights-holder(s). Your use of this Presentation must comply with the Terms of Use for material posted in DigitalCommons@Linfield, or with other stated terms (such as a Creative Commons license) indicated in the record and/or on the work itself. For more information, or if you have questions about permitted uses, please contact digitalcommons@linfield.edu.

Air Pollution: The Trees aren't Lichen it

WES HANSON

LEIGH HANSON

MEGHAN LOCKWOOD

MORGAN YARBER

NANCY BROSHOT

Research in Forest Park

- •Started in 1993, repeated in 2003 and this summer
- Vegetation (trees, shrubs and herbaceous plants) measured at 25 long-term study sites
- •Results reveal high tree mortality, especially seedlings and saplings
- •Seedlings planted at 9 additional sites have shown high mortality (0-75%)

Why High Mortality?

- •Sapling mortality was not related to mammalian grazing, soil moisture, light, slope aspect or disease
- •The site with the highest mortality is directly above the Saint John's Bridge
- Suggests air pollution as the cause

Hypothesis

- Forest soils in the Pacific Northwest are normally nutrient deficient
- Nitrogenous air pollution (from transportation and NW industrial activities) is changing the soil so that young trees do not thrive and/or survive
- We are using lichens to study air pollution levels
- Sites with higher air pollution levels (as indicated by lichens) will have greater sapling mortality

What is a Lichen?

- A mutualistic relationship between a fungal component (mycobiont) and an algal or photosynthetic bacterial component (photobiont)
- Many have nitrogen fixing cyanobacteria
- Are crucial parts of Northwest forest ecosystems
 - They are the primary source of nitrogen

Lichens are Bioindicators

- •Lichens lack a root system; absorb nutrients from the atmosphere
- •US Forest Service is using lichen diversity and abundance to determine levels of nitrogenous air pollution in forests
- •Many lichen species are intolerant of high levels of nitrogen (e.g., Lobaria)
 - Disappear from polluted forests
- Other species are nitrogen tolerant (e.g., *Platismatia*) or nitrogen loving (e.g., *Candelaria*)

Lichens

Lobaria

Platismatia

Candelaria

Goals of Our Study

- Conduct lichen surveys at 25 long-term research sites in Forest Park
- Use lichen abundance to determine nitrogenous air pollution levels at the sites; compare to N monitors (PSU study)
- Compare air pollution levels to tree, sapling and seedling survival at each site
- Produce a booklet that will allow people to easily identify urban lichens

Lichen Surveying Technique

- Each survey is centered in the long-term Forest Park study site
- Surveyors walk the area of a 120 foot radius circle looking for lichens
- We collect lichens for at least 30 minutes and no more than 2 hours
- We identify, categorize, and package each lichen
- •Lichens are then returned to the laboratory for further inspection and identification

Lichen Booklet Sample

Evernia prunastri (Antler Perfume Lichen)

A relatively easy to identify lichen. The upper surface is a yellow-green color; the lower surface is white. Branches regularly (like deer antlers). Lobes are thin (7-13 cm long) and usually 1-5 mm wide.

Can be confused with *Ramalina*. The upper and lower surfaces of *Ramalina* are the same color, and the lobes of *Ramalina* do not branch as evenly as those of *Evernia*. *Ramalina* also feels dryer and more stiff to the touch than *Evernia*.

Fun fact: Pacific Northwest *Evernia prunastri* rebranch annually, meaning that its age can be determined by the number of branch points.

