Complete Multipartite Graphs and the Relaxed Coloring Game

The Coloring Game

The Coloring Game

Two players, Alice and Bob, alternate coloring the verticies of a finite graph G with egal colors from a set X of r colors. In the d-relaxed coloring game a color $\alpha \in X$ is legal for an uncolored vertex v if v has at most d neighbors previously colored α. Alice wins the d-relaxed coloring game if every vertex in the graph is colored. Otherwise, Bob wins if there comes a point in the game where there is no legal color for a vertex. The east r for which Alice has a winning strategy in the d-relaxed coloring game is called the d-relaxed game chromatic number and is denoted ${ }^{d} \chi_{g}(G)$

Developments

History

A complete multipartite graph is a graph whos vertices can be placed into independent sets such that if P_{i} and P_{j} are distinct partite sets then each vertex in P_{i} is adjacent to each vertex in P_{j}. A complete multipartite graph is a complete equipartite graph if all and P_{j} are equipollent
mpete equipartite graphs bound the 0 - and 1 -relaxed game chromatic numbers for Theorem 1. (Dunn, 2011)
Let r and n be positive integers. If $G=K_{r * n}$, then

$$
\chi_{g}(G)= \begin{cases}r & \text { if } n=1 \\ 2 r-2 & \text { if } n=1 \text { and } r \geq 3 \\ 2 r-1 & \text { otherwise }\end{cases}
$$

Theorem 2. Let r and n be positive integers with $r \geq 2$. If $G=K_{r * n, ~ t h e n ~}{ }^{1} \chi_{g}=\left\lceil\frac{r n}{2}\right\rceil$ The classification of the game chromatic number based on the size of the partite set egs the question
Question. What is ${ }^{d}{ }_{\chi g}(G)$ if each partite set is not equipollent?
For the 0 -relaxed coloring game, the $\chi_{g}(G)$ varies depending on the number of sets a particular size

Definitions

Definition. The classification of the partite set sizes is as follows.

1. $A=\mid\left\{P_{i}:\left|P_{i}\right|=1\right.$ and $\left.i \in 1,2, \ldots, n\right\} \mid$
2. $B=\mid\left\{P_{i}:\left|P_{i}\right|=2\right.$ and $\left.i \in 1,2, \ldots, n\right\} \mid$
3. $C=\mid\left\{P_{i}:\left|P_{i}\right|=3\right.$ and $\left.i \in 1,2, \ldots, n\right\}$
4. $D=\mid\left\{P_{i}:\left|P_{i}\right| \geq 4\right.$ and $\left.i \in 1,2, \ldots, n\right\} \mid$
5. $G \mid=\sigma$ is the total number of verticies in the gaph.
6. A graph G is semi-Hamiltonian if some subgraph of G is a spanning path

Charles Dunn, Linfield College Jennifer Nordstrom, Linfield College John Portin, Linfield College
Nino Barrett, Rochester University Alexander Sistko, Bradley University Susan

Rufai, McMinnville High School

Main Results

The 0-relaxed Coloring Game
The following are a few of the man theorems concerning the 0 -relaxed game. Theorem 3. If G is a complete multipartite graph with $B=D=0$ and $A, C>0$ then

$$
\chi_{g}(G)= \begin{cases}A+2 C & \text { if } A>C+1 \\ A+2 C-1 & \text { if } A=C+1 \text { or } A=C \\ A+2 C-2 & \text { if } A<C\end{cases}
$$

Theorem 4. If G is a complete multipartite graph with $A, B>0$ and $C=D=0$ then

$$
\chi_{g}(G)= \begin{cases}A+B & \text { if } A \text { is odd } \\ A+2 B-1 & \text { if } A \text { is even }\end{cases}
$$

For all $A, B, C>0$ and $D=0$, the 0 -relaxed game chromatic numbers are now

The 1-relaxed Coloring Game

Theorem 5 (Barrett, Portin, Sistko 2012). If G is a complete multipartite, semiHamiltonian graph then $\chi_{g}(G)=\left\lceil\left.\frac{\sigma}{2} \right\rvert\,\right.$. Otherwise, if ψ is the number of vertices in $P_{1}, P_{2}, \ldots, P_{n-1}$, then $\chi_{g}(G)=\psi+1$.
Proof. We consider the case for odd σ. Let $H=v_{1} \ldots v_{n}$ be a semi-Hamiltonian path in G. We claim that at the end of each of Bob's turns, there is at most one remote vertex in H. Note that the first remote vertex will be created if after Alice colors v_{n-2}, Bob colors v_{n-1} by his strategy. Then Alice can either color v_{n} or a different vertex.
Suppose she colors some vertex $v_{i} \neq v_{n}$. Then there are at most two isolated vertices in H, and Bob can color in one of them. Otherwise Alice colors v_{n}, and there re an even number of uncolored vertices in H. If v_{n} was the last vertex, we are done; vertex in H, each uncolored vertex is necessarily the member of a pair. Since v_{n} cannot be in the same partite set as both members of a pair, then at least one member of a pair is in a partite set different from the partite set of v_{n}. Bob can then color this vertex Bob maintains this until all but one vertex is colored. Since each color is used at most twice, at least $\left\lfloor\frac{\sigma}{2}\right\rfloor$ colors have been used. Hence, Bob wins if only that many colors are available, so that ${ }^{1} \chi g(G) \geq\left\lceil\frac{\sigma}{2}\right\rceil$.

Classification

Semi-Hamiltonicity

Theorem 6. If G is a complete multipartite graph then order $\left|P_{i}\right|$ to form a nondecreasing sequence $\left|P_{1}\right|,\left|P_{2}\right|$ $\left|P_{n}\right|$. Then,
. G is semi-Hamiltonian if $\left|P_{n}\right| \leq\left\lceil\frac{\sigma}{2}\right\rceil$.
G is not semi-Hamiltonian if $\left|P_{n}\right|>\left\lceil\frac{\sigma}{2}\right\rceil$
Proof. This result is easily shown by construction. Starting in P_{n}, add vertices to a list H, which will be a path in G, by alternating between vertices in P_{n} and vertices in the P_{1}, \ldots, P_{n-1} is be in H, only vertices in P_{n} will remain. Notice, this was the optimal way to account for vertices in P_{n}. The case where P_{n} has less than $\left\lceil\frac{\sigma}{2}\right\rceil$ is left without proof.

Thus we have shown what the 1 -relaxed game chromatic number of a complete multipartite graph is in terms of its semi-Hamiltonicity, and classified when a complete multipartite graph will be semi-Hamiltonia

Open Questions

Question. The cases for A, B, and $C>0$ have been considered with $D=0$. What would happen to $\chi_{g}(G)$ if $D>0$?
Question. Although the ${ }^{0} \chi_{g}(G)$ and ${ }^{1} \chi_{g}(G)$ have been shown for complete multipartite graphs, the ${ }^{d} \chi_{g}(G)$ for $d>1$ is still unknown.
Question. For each non-negative integer d does there exist a graph G so that
$\chi_{9}(G) \leq{ }^{d+1} \chi_{g}(G)$?

Acknowledgements

1. Linfield College Faculty Student Collaborative Research Grant Program 2. The Willamette Valley REU-RET and the National Science Foundation 3. Mentors Charles Dunn and Jennifer Nordstrom

References

[1] H. Bodlaender, "On the complexity of some coloring games," Graph Theoretical puter Science, Springer-Verlag, 1991, 30-40
[2] C. Dunn, "Multipartite graphs and the relaxed coloring game," Order, Springer Science + Business Media B.V. (April, 2011)
[3] U. Faigle, W. Kern, H. Kierstead, and W. Trotter, "On the game chromatic number of some classes of graphs," Ars Combinatoria 35 (1993), 143-150.

