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Open Questions

Question. The cases for A, B, and C > 0 have been considered with D = 0. What would
happen to χg(G) if D > 0?

Question. Although the 0χg(G) and 1χg(G) have been shown for complete multipartite
graphs, the dχg(G) for d > 1 is still unknown.

Question. For each non-negative integer d does there exist a graph G so that
dχg(G) ≤ d+1χg(G)?

Semi-Hamiltonicity

Theorem 6. If G is a complete multipartite graph then order |Pi | to form a nondecreasing
sequence |P1|, |P2|, ... , |Pn|. Then,

1. G is semi-Hamiltonian if |Pn| ≤ ⌈σ2⌉.

2. G is not semi-Hamiltonian if |Pn| > ⌈σ2⌉.

Proof. This result is easily shown by construction. Starting in Pn, add vertices to a list
H, which will be a path in G, by alternating between vertices in Pn and vertices in the
remaining partite sets. Then, if Pn has more than ⌈σ2⌉ vertices, when each vertex in
P1, ... , Pn−1 is be in H, only vertices in Pn will remain. Notice, this was the optimal
way to account for vertices in Pn. The case where Pn has less than ⌈σ2⌉ is left without
proof.

Thus we have shown what the 1-relaxed game chromatic number of a complete
multipartite graph is in terms of its semi-Hamiltonicity, and classified when a complete
multipartite graph will be semi-Hamiltonian.

Classification

The 1-relaxed Coloring Game

Theorem 5 (Barrett, Portin, Sistko 2012). If G is a complete multipartite, semi-
Hamiltonian graph then 1χg(G) = ⌈σ2⌉. Otherwise, if ψ is the number of vertices in
P1, P2, ... , Pn−1, then 1χg(G) = ψ + 1.

Proof. We consider the case for odd σ. Let H = v1 ... vn be a semi-Hamiltonian path in
G. We claim that at the end of each of Bob’s turns, there is at most one remote vertex in
H. Note that the first remote vertex will be created if after Alice colors vn−2, Bob colors
vn−1 by his strategy. Then Alice can either color vn or a different vertex.

Suppose she colors some vertex vi 6= vn. Then there are at most two isolated
vertices in H, and Bob can color in one of them. Otherwise Alice colors vn, and there
are an even number of uncolored vertices in H. If vn was the last vertex, we are done;
otherwise, there are at least two uncolored vertices in H. Since vn was the only remote
vertex in H, each uncolored vertex is necessarily the member of a pair. Since vn cannot
be in the same partite set as both members of a pair, then at least one member of a pair
is in a partite set different from the partite set of vn. Bob can then color this vertex.

Bob maintains this until all but one vertex is colored. Since each color is used at
most twice, at least ⌊σ2⌋ colors have been used. Hence, Bob wins if only that many
colors are available, so that 1χg(G) ≥ ⌈σ2⌉.

...

...

The 0-relaxed Coloring Game

The following are a few of the man theorems concerning the 0-relaxed game.

Theorem 3. If G is a complete multipartite graph with B = D = 0 and A, C > 0 then,

χg(G) =











A + 2C if A > C + 1
A + 2C − 1 if A = C + 1 or A = C

A + 2C − 2 if A < C

Theorem 4. If G is a complete multipartite graph with A, B > 0 and C = D = 0 then,

χg(G) =

{

A + B if A is odd

A + 2B − 1 if A is even

For all A, B, C > 0 and D = 0, the 0-relaxed game chromatic numbers are now
known.

Main Results

Definitions

Definition. The classification of the partite set sizes is as follows:

1. A = |{Pi : |Pi | = 1 and i ∈ 1, 2, ... , n}|

2. B = |{Pi : |Pi | = 2 and i ∈ 1, 2, ... , n}|

3. C = |{Pi : |Pi | = 3 and i ∈ 1, 2, ... , n}|

4. D = |{Pi : |Pi | ≥ 4 and i ∈ 1, 2, ... , n}|

B = 2

A = 3

C = 4

5. |G| = σ is the total number of verticies in the graph.

6. A graph G is semi-Hamiltonian if some subgraph of G is a spanning path.

Developments

History

A complete multipartite graph is a graph whos vertices can be placed into indepen-
dent sets such that if Pi and Pj are distinct partite sets then each vertex in Pi is adjacent
to each vertex in Pj . A complete multipartite graph is a complete equipartite graph if all
Pi and Pj are equipollent.

The following theorems bound the 0- and 1-relaxed game chromatic numbers for
complete equipartite graphs.

Theorem 1. (Dunn, 2011)
Let r and n be positive integers. If G = Kr∗n, then

χg(G) =











r if n = 1

2r − 2 if n = 1 and r ≥ 3

2r − 1 otherwise

Theorem 2. Let r and n be positive integers with r ≥ 2. If G = Kr∗n, then 1χg = ⌈rn
2 ⌉.

The classification of the game chromatic number based on the size of the partite set
begs the question:

Question. What is dχg(G) if each partite set is not equipollent?

For the 0-relaxed coloring game, the χg(G) varies depending on the number of sets
of a particular size.

The Coloring Game

Two players, Alice and Bob, alternate coloring the verticies of a finite graph G with
legal colors from a set X of r colors. In the d-relaxed coloring game a color α ∈ X is
legal for an uncolored vertex v if v has at most d neighbors previously colored α. Alice
wins the d-relaxed coloring game if every vertex in the graph is colored. Otherwise, Bob
wins if there comes a point in the game where there is no legal color for a vertex. The
least r for which Alice has a winning strategy in the d-relaxed coloring game is called
the d-relaxed game chromatic number and is denoted dχg(G).
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