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BLOCK-DIAGONAL AND CONSTRAINT PRECONDITIONERS
FOR NONSYMMETRIC INDEFINITE LINEAR SYSTEMS.

PART I: THEORY∗

ERIC DE STURLER† AND JÖRG LIESEN‡

Abstract. We study block-diagonal preconditioners and an efficient variant of constraint precon-
ditioners for general two-by-two block linear systems with zero (2,2)-block. We derive block-diagonal
preconditioners from a splitting of the (1,1)-block of the matrix. From the resulting preconditioned
system we derive a smaller, so-called related system that yields the solution of the original problem.
Solving the related system corresponds to an efficient implementation of constraint preconditioning.
We analyze the properties of both classes of preconditioned matrices, in particular their spectra.
Using analytical results, we show that the related system matrix has the more favorable spectrum,
which in many applications translates into faster convergence for Krylov subspace methods. We show
that fast convergence depends mainly on the quality of the splitting, a topic for which a substantial
body of theory exists. Our analysis also provides a number of new relations between block-diagonal
preconditioners and constraint preconditioners. For constrained problems, solving the related system
produces iterates that satisfy the constraints exactly, just as for systems with a constraint precon-
ditioner. Finally, for the Lagrange multiplier formulation of a constrained optimization problem
we show how scaling nonlinear constraints can dramatically improve the convergence for linear sys-
tems in a Newton iteration. Our theoretical results are confirmed by numerical experiments on a
constrained optimization problem.

We consider the general, nonsymmetric, nonsingular case. Our only additional requirement is
the nonsingularity of the Schur-complement–type matrix derived from the splitting that defines the
preconditioners. In particular, the (1,2)-block need not equal the transposed (2,1)-block, and the
(1,1)-block might be indefinite or even singular. This is the first paper in a two-part sequence. In
the second paper we will study the use of our preconditioners in a variety of applications.
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1. Introduction. We study preconditioners for general nonsingular linear sys-
tems of the type

Au =

[
A BT

C 0

] [
x̃
ỹ

]
=

[
f̃
g̃

]
,

A ∈ R
n×n, B, C ∈ R

m×n, with n ≥ m.(1.1)

Such systems arise in a large number of applications, for example, the (linearized)
Navier–Stokes equations and other physical problems with conservation laws as well
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PRECONDITIONERS FOR INDEFINITE LINEAR SYSTEMS 1599

as constrained optimization problems.
As such systems are typically large and sparse, solution by iterative methods has

been studied extensively. Much attention has focused on the Navier–Stokes prob-
lem; see, e.g., [8, 16, 31, 32, 35]. The techniques for solving systems like (1.1) are
so numerous that it is almost impossible to give an overview. In addition to the
methods developed specifically for Navier–Stokes problems, existing techniques also
include Uzawa-type algorithms [9], splitting schemes [6, 12], constraint precondition-
ing [12, 17, 21, 24, 25, 26], and (preconditioned) Krylov subspace methods based on
(approximations to) the Schur complement [1, 18, 23].

We start with block-diagonal preconditioners for the general system (1.1); see
section 2 for our assumptions. Results for the general system have been obtained
before; for example, Murphy, Golub, and Wathen [23] propose the block-diagonal
preconditioner

[
A−1 0
0 (CA−1BT )−1

]
.

If defined, this preconditioner leads to (left or right) preconditioned matrices that
are diagonalizable and have at most three distinct eigenvalues. Hence, a Krylov
subspace method with the optimality or the Galerkin property—e.g., GMRES [27]
or BiCG [10]—will converge in at most three steps [23, Remark 3]. However, this
preconditioner is more expensive than direct solution by block elimination. Thus, one
typically uses approximations to A−1 and (CA−1BT )−1.

We derive such approximations from a splitting of the (1,1)-block, A = D − E,
where D can be efficiently inverted. Then, from a splitting of the preconditioned
matrix we derive a fixed point iteration and its so-called related system [15] that
have (significantly) fewer unknowns. We provide a careful eigenvalue analysis for the
preconditioned system and the related system. This analysis shows that the related
system is not only smaller than the preconditioned system but typically also leads
to faster convergence for the GMRES algorithm. Furthermore, as solving the related
system corresponds to an efficient implementation of constraint preconditioning, each
GMRES iterate for the related system satisfies the constraints, Cx̃ = g̃, in (1.1)
exactly. For many applications this is important, since a solution (accurate or less
accurate) is only meaningful if the constraints are satisfied. Hence, this approach
avoids the need to solve the problem very accurately just to satisfy the constraints, and
may lead to significant savings. For a special starting guess, a similar result is given
in [24], but the potential savings of solving a much smaller system are not elaborated.
Finally, for the Lagrange multiplier formulation of a constrained optimization problem
we show how scaling nonlinear constraints can dramatically improve the convergence
for linear systems in a Newton iteration.

This paper is the first of a two-part sequence. Here, we focus on the derivation
and analysis of our preconditioned iterations and succinctly demonstrate our results
numerically. In the second paper [19] we demonstrate our results on a variety of
applications and discuss efficient implementations of our preconditioners.

The paper is organized as follows. In section 2 we introduce the block-diagonal
preconditioners and the resulting preconditioned systems. In section 3 we study the
properties of the preconditioned matrices, in particular their eigendecompositions. In
section 4 we derive the fixed point iteration and its related system. We also analyze
the spectral radius of the fixed point iteration matrix and the spectrum of the related
system matrix. In section 5 we discuss why typically it is more efficient to apply
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1600 ERIC DE STURLER AND JÖRG LIESEN

GMRES to the related system than to the preconditioned system. In section 6 we
introduce the application for our numerical experiments, and we discuss the scaling
of nonlinear constraints in this constrained optimization problem to improve the con-
vergence in each Newton step. In section 7 we show a few numerical results, and in
section 8 we give our conclusions.

2. Block-diagonal preconditioners. Suppose that a system of the form (1.1)
is given, and that we split the (1,1)-block of A into

(2.1) A = D − E,

where D is invertible. Our only assumptions are that A and CD−1BT are invertible.
Since D and CD−1BT are both invertible, we can define the preconditioner

(2.2) P(D) =

[
D−1 0

0 (CD−1BT )−1

]
.

Multiplying A from the left or right by P(D) results in the matrices

(2.3)

[
In −D−1E D−1BT

(CD−1BT )−1C 0

]
or

[
In − ED−1 BT (CD−1BT )−1

CD−1 0

]
,

respectively. Both of these matrices are of the form

B(S) =

[
In − S N
M 0

]
, where(2.4)

MN = Im, (NM)2 = NM, S ∈ R
n×n, M, NT ∈ R

m×n, n ≥ m.(2.5)

After applying P(D) to (1.1), we are interested in solving linear systems of the form

(2.6) B(S)

[
x
y

]
=

[
f
g

]
.

Note that either the vector [x̃T , ỹT ]T or [f̃T , g̃T ]T from the original
problem (1.1) is modified to account for the application of either right
or left preconditioning.

Remark 2.1. If n = m, the matrix CD−1BT is invertible if and only if both C
and BT are invertible. In this case we can solve (1.1) directly by computing x = C−1g
and y = B−T (f − Ax). This has essentially the same cost as one multiplication of
(1.1) by (2.2), and preconditioning has no advantage over solving (1.1) directly. While
many of our results hold true for n = m, we consider this case of little interest.

Our general approach is to consider which splittings A = D − E result in pre-
conditioned systems (2.6) that are solved efficiently by an iterative method. If we
consider only the iteration count, the most effective preconditioner of the form (2.2)
is derived by Murphy, Golub, and Wathen [23]. In our notation it is P(A), cor-
responding to the trivial splitting D = A and E = 0. As shown in [23], the left
and right preconditioned matrices, both of the form B(0), are diagonalizable with at
most three distinct eigenvalues in the nonsingular case. Hence, any Krylov subspace
method with a Galerkin or optimality property—e.g., BiCG [10] or GMRES [27] (see
[14] for an overview)—will converge in at most three steps. While this is an attrac-
tive feature, the preconditioner P(A) requires multiplications by A−1. However, in
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PRECONDITIONERS FOR INDEFINITE LINEAR SYSTEMS 1601

many applications we have n � m, and the computational effort to solve for A is not
significantly less than the effort to solve for A. In addition, a difficult subproblem
arises in inverting the Schur complement CA−1BT . Since A−1 is usually not available
explicitly, CA−1BT cannot be formed without solving for A a significant number of
times. Murphy, Golub, and Wathen are, of course, aware that using P(A) is typically
prohibitive, and they remark that approximations to A−1 and (CA−1BT )−1 should
lead to clustered eigenvalues as well, where the clustering “depends on the quality of
the approximations” [23, Remark 5]. To some extent this remark was the motivation
for part of our work.

Summarizing, the general strategy must be to choose a splitting that leads to
efficiently invertible matrices D and CD−1BT and preserves the properties of the
algebraically optimal preconditioner P(A) as much as possible. To derive guidelines
for such choices we analyze how properties of the preconditioned matrices depend on
the splitting.

3. Properties of the matrices B(S). Our first goal is to identify the condi-
tions under which B(S) is singular.

Theorem 3.1. A matrix B(S) of the form (2.4)–(2.5) is singular if and only if 1
(one) is an eigenvalue of the matrix (In −NM)S. In particular, each matrix B(0) of
the form (2.4)–(2.5) is nonsingular.

Proof. The matrix B(S) is singular if and only if there exists a nonzero vector
[xT , yT ]T for which B(S) [xT , yT ]T = 0. This is equivalent to the two equations

(i) (In − S)x + Ny = 0, (ii) Mx = 0.

Equation (i) is equivalent to Sx−Ny = x. Inserting this into equation (ii), and using
that MN = Im, yields y = MSx. Hence x = 0 implies y = 0. Inserting y = MSx
into Sx − Ny = x shows that x has to satisfy (In − NM)Sx = x. There exists a
nonzero x satisfying this requirement; i.e., B(S) is singular if and only if (In−NM)S
has an eigenvalue 1.

Remark 3.2. Under the assumption that the preconditioner P(A) exists, i.e., A
and CA−1BT are both invertible, Theorem 3.1 shows that the matrices P(A)A and
AP(A) are always nonsingular. Hence the zero eigenvalue included in the discussion
of Murphy, Golub, and Wathen (cf. [23, Remark 1]) never occurs.

The inverse of B(0) can be easily computed and is given by

(3.1) B(0)−1 =

[
In −NM N

M −Im

]
= B(0) −

[
NM 0

0 Im

]
.

In case of the trivial splitting (S = 0), one can therefore simply solve (2.6) via (3.1),
which yields

(i) x = (In −NM)f + Ng, (ii) y = Mf − g.

The solution is computed using two matrix-vector products with N , one matrix-vector
product with M , and three vector additions. Therefore, the cost of this solution
method is comparable to that of just one step of a Krylov subspace method applied
to (2.6).

Next, we study the properties of eigenvalues and eigenvectors of B(S). In the
case S = 0, we can directly relate the eigenvalues and eigenvectors of B(0) to the
projection matrix NM .

Theorem 3.3. Let B(0) be of the form (2.4)–(2.5). Then B(0) is diagonalizable,
and it has the following eigenvalues and eigenvectors:
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1602 ERIC DE STURLER AND JÖRG LIESEN

• n−m eigenpairs of the form (1, [uT
j , 0]T ), where u1, . . . , un−m form a basis

of Null(NM), the nullspace of NM .
• 2m eigenpairs of the form (λ±, [uT

j , (λ±)−1(Muj)
T ]T ), where λ± ≡ (1 ±√

5)/2, and un−m+1, . . . , un form a basis of Range(NM), the range of NM .
In particular, if we denote

(3.2) U1 ≡ [u1, . . . , un−m] ∈ R
n×(n−m), U2 ≡ [un−m+1, . . . , un] ∈ R

n×m,

then the eigenvector matrix Y(0) of B(0) is given by

(3.3) Y(0) =

[
U1 U2 U2

0 (λ+)−1MU2 (λ−)−1MU2

]
,

where both [U1, U2] ∈ R
n×n and (λ−)−1MU2 ∈ R

m×m are nonsingular.
Proof. To compute the eigendecomposition of B(0), we consider the equation

B(0) [uT , vT ]T = λ [uT , vT ]T , which is equivalent to the two equations

(i) u + Nv = λu, (ii) Mu = λv.

Since B(0) is nonsingular we can assume that λ �= 0, so that equation (ii) is equivalent
to v = λ−1Mu. Inserting this into (i) and multiplying the resulting equation by λ
yields

NMu = (λ2 − λ)u;

i.e., the u-component of each eigenvector [uT , vT ]T of B(0) is an eigenvector of the
projection NM . Hence λ2 − λ is either equal to one (i.e., λ = (1 ±

√
5)/2) or equal

to zero (i.e., λ = 1).
Next note that since MN = Im, we have

m = Rank(MN) ≤ min (Rank(M), Rank(N)) ≤ m.

Hence Rank(N) = m, so that Null(NM) is equal to Null(M) and has dimension
n−m. If u1, . . . , un−m form a basis of Null(NM), then the n−m pairs (1, [uT

j , 0]T ),
j = 1, . . . , n − m, satisfy equations (i) and (ii). Furthermore, let the m vectors
un−m+1, . . . , un form a basis of Range(NM). Using these vectors in (i) and (ii) shows
that the remaining 2m eigenpairs are (λ±, [uT

j , (λ±)−1(Muj)
T ]T ), j = n − m +

1, . . . , n, with λ± ≡ (1 ±
√

5)/2.
Finally, [U1, U2] is nonsingular since this matrix is the eigenvector matrix of the

projection NM . Furthermore, if MU2 were singular, then a nonzero vector w would
exist such that MU2w = 0. However, multiplication with N yields NMU2w = U2w =
0, which is a contradiction since the columns of U2 are linearly independent.

Remark 3.4. The statement of Theorem 3.3 contains the complete eigendecom-
positions of the preconditioned matrices P(A)A and AP(A) that are the subject
of [23]. In that paper Murphy, Golub, and Wathen showed that the two matrices are
diagonalizable and derive the location of their eigenvalues.

Note that in the case n = m, we have Null(NM) = {0}, and Theorem 3.3 shows
that in this case the only distinct eigenvalues of B(0) are (1 ±

√
5)/2. As discussed

in Remark 2.1, this case is of little interest for our purposes. In the following we will
therefore assume that n > m.

Next, we derive bounds on the eigenvalues of each matrix B(S) in terms of the
corresponding matrix B(0).
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PRECONDITIONERS FOR INDEFINITE LINEAR SYSTEMS 1603

Theorem 3.5. Consider matrices B(S) of the form (2.4)–(2.5) with fixed N and
M . Let B(0) = Y(0)DY(0)−1 denote the eigendecomposition of B(0), with eigenvector
matrix Y(0) given as in (3.3), and let [U1, U2] denote the corresponding eigenvector
matrix of the projection NM . Then for each matrix S, and each eigenvalue λS of
B(S), there is an eigenvalue λ of B(0) such that

|λS − λ| ≤
∥∥∥∥Y(0)−1

[
S 0
0 0

]
Y(0)

∥∥∥∥(3.4)

≤ cS ‖ [U1, U2]
−1 S [U1, U2] ‖,(3.5)

where cS ≡
(
2 + 2

5 (λ−)2
) 1

2 ≈ 1.4672.
Proof. A given matrix B(S) can be additively split into

(3.6) B(S) = B(0) −
[

S 0
0 0

]
.

Since B(0) is diagonalizable and has eigenvector matrix Y(0), inequality (3.4) follows
from a well-known result in matrix perturbation theory [33, Theorem IV.1.12].

To prove (3.5) consider the two-by-two block decomposition

Y(0) =

[
Y11 Y12

Y21 Y22

]
,

where Y11 ≡ [U1, U2] ∈ R
n×n and Y22 ≡ (λ−)−1MU2 ∈ R

m×m are both invertible;
cf. (3.3). Then the inverse of Y(0) satisfies

Y(0)−1 =

[
(Y11 − Y12Y

−1
22 Y21)

−1 −Y −1
11 Y12 (Y22 − Y21Y

−1
11 Y12)

−1

−Y −1
22 Y21 (Y11 − Y12Y

−1
22 Y21)

−1 (Y22 − Y21Y
−1
11 Y12)

−1

]
.

An elementary computation now shows that

(Y11 − Y12Y
−1
22 Y21)

−1 =
(
[U1, U2] − U2(λ

−)(MU2)
−1 [0, (λ+)−1MU2]

)−1

=
(
[U1, U2] − [0, (λ−/λ+)U2]

)−1

=

[
In−m 0

0 (λ+/
√

5)Im

]
[U1, U2]

−1

≡ În [U1, U2]
−1, and

−Y −1
22 Y21 (Y11 − Y12Y

−1
22 Y21)

−1 = −[0, (λ−/
√

5)Im] [U1, U2]
−1 ≡ Îm [U1, U2]

−1.

Using these relations, the square of the right-hand side of (3.4) is equal to

∥∥∥∥
[

În[U1, U2]
−1S[U1, U2] În[U1, U2]

−1SU2

Îm[U1, U2]
−1S[U1, U2] Îm[U1, U2]

−1SU2

] ∥∥∥∥
2

= max
‖[a,b]‖=1

∥∥∥∥
[

În[U1, U2]
−1S ([U1, U2]a + U2b)

Îm[U1, U2]
−1S ([U1, U2]a + U2b)

] ∥∥∥∥
2

= max
‖[a1,a2,b]‖=1

∥∥∥∥
[

În[U1, U2]
−1S (U1a1 + U2(a2 + b))

Îm[U1, U2]
−1S (U1a1 + U2(a2 + b))

] ∥∥∥∥
2

≤ max
‖c‖≤

√
2

∥∥∥∥
[

În[U1, U2]
−1S [U1, U2]c

Îm[U1, U2]
−1S [U1, U2]c

] ∥∥∥∥
2D
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1604 ERIC DE STURLER AND JÖRG LIESEN

≤ 2
(
‖În[U1, U2]

−1S[U1, U2]‖2 + ‖Îm[U1, U2]
−1S[U1, U2]‖2

)

≤ 2
(
1 + (λ−/

√
5)2

)
‖[U1, U2]

−1S[U1, U2]‖2.

Taking square roots completes the proof.
Each choice of the splitting A = D−E leads to fixed matrices B(0) and B(S) for

which Theorem 3.5 will hold. Hence, the theorem, which allows S to vary, is more
general than our application requires. Furthermore, in bounding the right-hand side
of (3.4) from above by (3.5), we have used three inequalities, which should generally
be tight. Thus, we can expect the right-hand side of (3.4) to be close to (3.5).

To analyze implications of Theorem 3.5, recall that the columns of U1 and U2

form the bases of Null(NM) and Range(NM), respectively. We choose both bases to
be orthonormal, i.e., UT

1 U1 = In−m and UT
2 U2 = Im. A key ingredient of our analysis

is the singular value decomposition (SVD) of the matrix UT
1 U2,

(3.7) UT
1 U2 = ΦΩΨT = [ϕ1, . . . , ϕn−m] diag(ω1, . . . , ωk) [ψ1, . . . , ψm]T ,

where Φ ∈ R
(n−m)×(n−m) and Ψ ∈ R

m×m are both orthogonal matrices, Ω ∈
R

(n−m)×m with ω1 ≥ ω2 ≥ · · · ≥ ωk, and k = min(n − m,m). It is well known
that the singular values satisfy ωj = cos(θj), where the θj are the principal angles be-
tween Null(NM) and Range(NM); see [11, section 12.4]. Since NM is a projection,
we have Null(NM) ∩ Range(NM) = {0}, and thus ωj ∈ [0, 1), j = 1, . . . , k.

Lemma 3.6. Let UT
1 U1 = In−m, UT

2 U2 = Im, and let the SVD (3.7) be defined.
Then [U1, U2] has 2k singular values (1±ωj)

1/2, j = 1, 2, . . . , k, and an (n− 2k)-fold
singular value 1 (one), where k = min(n−m,m). In particular, the condition number
of [U1, U2] is given by

(3.8) κ([U1, U2]) =

(
1 + ω1

1 − ω1

)1/2

.

Proof. First assume that n−m ≥ m; thus k ≡ m (above). Since

[U1, U2]
T [U1, U2] =

[
Φ 0
0 Ψ

] [
In−m Ω
ΩT Im

] [
ΦT 0
0 ΨT

]
,

the singular values of [U1, U2] are the square roots of the eigenvalues of

(3.9) In +

[
0n−m Ω
ΩT 0m

]
= In +

⎡
⎣ 0 0 Ωm

0 0n−2m 0
Ωm 0 0

⎤
⎦ ,

where Ωm = diag(ω1, . . . , ωm). Following [11, pp. 448–449], we note that this matrix
has as its eigenvalue matrix and eigenvector matrix, respectively,

(3.10)

⎡
⎣ Im + Ωm 0 0

0 In−2m 0
0 0 Im − Ωm

⎤
⎦ and

⎡
⎣ Im 0 Im

0 In−2m 0
Im 0 −Im

⎤
⎦ ,

where some degrees of freedom have not been expressed explicitly. Clearly this de-
composition remains correct if some of the ωi are multiple eigenvalues or ωi = 0 for
some i. However, additional degrees of freedom arise for the eigenvectors in such
cases. Finally, we find the singular values by taking the (positive) square roots of
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PRECONDITIONERS FOR INDEFINITE LINEAR SYSTEMS 1605

the eigenvalues 1 ± ωi. From the definition of Ω we see that the largest and smallest
singular value are given, respectively, by 1 + ω1 and 1 − ω1, which proves (3.8). The
case n−m < m can be proved analogously.

Lemma 3.6 provides a general result about the eigenvector matrix of a projection.
The proof also gives the right singular vectors (the eigenvectors in (3.10)), and the left
singular vectors can be obtained by multiplication with [U1, U2]. Using Lemma 3.6,
we can simplify the bound on the eigenvalues of B(S).

Corollary 3.7. In the notation of Theorem 3.5, for each eigenvalue λS of B(S)
there is an eigenvalue λ of B(0) such that

(3.11) |λS − λ| ≤ cS

(
1 + ω1

1 − ω1

)1/2

‖S‖,

where ω1 is the largest singular value of UT
1 U2.

In particular, if ω1 = 1 − ε, then (3.11) becomes

(3.12) |λS − λ| ≤ cS (2ε−1 − 1)1/2 ‖S‖ ≈
√

2 cS ε−1/2 ‖S‖ ≈ 2.075 ε−1/2 ‖S‖.

Hence, if the angles between Null(NM) and Range(NM) are not too small, the eigen-
value perturbation depends essentially on ‖S‖. This shows that, unless the minimal
angle between Range(AU1) and Range(BT ) is very small (see the next section), the
main concern in deriving good preconditioners is to find a good splitting A = D−E.
This is a well-developed research area [15, 34]. At the end of the next section we
briefly discuss what to expect for NM and the ωi for various classes of problems.

4. An efficient implementation of the constraint preconditioner. We
now derive a smaller system whose solution leads to the solution of the overall system.
We extend the so-called constraint preconditioner for the symmetric case [17, 24, 25,
26] to the general case discussed here, and we derive an efficient method of solution.

Rather than apply the constraint preconditioner directly, we derive it from the
preconditioned system (2.6) to emphasize the relation between the two. Consider the
splitting (3.6) derived from (2.6) and the resulting system of linear equations,

(4.1) B(0)

[
x
y

]
=

[
S 0
0 0

] [
x
y

]
+

[
f
g

]
.

Multiplying both sides from the left by B(0)−1 (see (3.1)) leads to the fixed point
iteration

(4.2)

[
xk+1

yk+1

]
=

[
(In −NM)Sxk

MSxk

]
+

[
f̂
ĝ

]
,

where [f̂T , ĝT ]T ≡ B(0)−1[fT , gT ]T . Since the right-hand side depends only on xk,
the convergence of (4.2) depends only on the iteration

(4.3) xk+1 = (In −NM)Sxk + f̂ ≡ Fxk + f̂ .

The observation that a splitting of (1.1) based on the constraint preconditioner (4.5)
leads to a fixed point iteration that does not depend on yk is also made in [2], but no
consequences are mentioned. However, in the context of a multigrid algorithm, the
fixed point iteration (4.3) is mentioned in [4] for the special case that A is the discrete
Laplacian and D = αIn. Note that yk+1 in (4.2) is available essentially for free. The
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1606 ERIC DE STURLER AND JÖRG LIESEN

iteration (4.3) converges if and only if the spectral radius of F = (In−NM)S satisfies
ρ(F ) < 1.

A fixed point x of iteration (4.3) satisfies x = Fx + f̂ , or, equivalently,

(4.4) Rx = f̂ , R ≡ In − F.

This is called the related system for the fixed point iteration [15], and we can solve
(4.4) by a Krylov subspace method as an alternative to solving (2.6).

We now turn to the relation between the related system and a constraint precon-
ditioner for the general problem (1.1). In our notation this preconditioner is given
by

[
D BT

C 0

]−1

(4.5)

=

[
D−1 −D−1BT (CD−1BT )−1 CD−1 D−1BT (CD−1BT )−1

(CD−1BT )−1 CD−1 −(CD−1BT )−1

]
.

Preconditioning (1.1) from the left by (4.5) yields

(4.6)

[
D BT

C 0

]−1 [
A BT

C 0

] [
x̃
ỹ

]
=

[
D BT

C 0

]−1 [
f̃
g̃

]

(4.7) ⇔
[

In − (In −NM)S 0
−MS Im

] [
x
y

]
=

[
f̂
ĝ

]
,

where, as for the left block-diagonal preconditioned matrix B(S) given in (2.3), we
define N ≡ D−1BT , M ≡ (CD−1BT )−1 C, and S ≡ D−1 E.

It turns out that in case of left (constraint and block-diagonal) preconditioning,
the (1,1)-block of the matrix in (4.7) is precisely the related system matrix R. Hence,
solving (4.4) and computing y from (4.2) corresponds to solving the (1,1)-block of
(4.7) separately and again computing y at the end. Solving the related system rather
than the whole system (4.7) has several advantages that are pointed out in section 5.

Constraint preconditioners, mainly for Hermitian matrices A, have been discussed
in many places; most useful for our discussion are [3, 4, 12, 13, 17, 21, 24, 25, 26]. In [3,
4, 13, 17, 21, 24, 25, 26] the matrix is Hermitian, and in [3, 4, 21, 24, 25, 26] the (1,1)-
block of the matrix either is positive definite or made positive definite by transforming
the problem. In [17] the (1,1)-block may be indefinite, but it must be nonsingular.
In [12] the (1,1)-block may be nonsymmetric, but B = C (in our notation) must hold.
In all cases the constraint preconditioner itself is symmetric with a positive definite
(1,1)-block. In fact, in [21] the (1,1)-block is diagonal, and in [4, 24, 25, 26] it is
the (scaled) identity matrix. In [24, 25, 26] the authors show that a Krylov subspace
method for the right preconditioned system using a constraint preconditioner and an
appropriate starting guess leads to iterates that satisfy the constraints exactly, which is
important for the particular application. For this purpose, constraint preconditioners
have been used in optimization for some time; see the references in [13]. This feature
is also used in [21] but not elaborated. We now show that this important property
also holds for our efficient implementation for the general case.

Theorem 4.1. Take x0 = f̂ as an initial guess for (4.4) derived from left block-
diagonal preconditioning. Then every iterate xk for k ≥ 0 computed by a Krylov
subspace method will satisfy the constraint Cxk = g̃ exactly.
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PRECONDITIONERS FOR INDEFINITE LINEAR SYSTEMS 1607

Proof. In case of left block-diagonal preconditioning we have

(4.8) f̂ = (In −NM)D−1f̃ + N(CD−1BT )−1g̃,

where M = (CD−1BT )−1C and N = D−1BT . Elementary computations show that

Cx0 = Cf̂ = g̃ and CR = C, so that

CRir0 = Cr0 = C(f̂ −Rf̂) = 0 for i = 0, 1, . . . .

A Krylov subspace method applied to a linear system with R computes iterates of
the form xk = x0 +

∑k−1
i=0 αiR

ir0, and hence Cxk = g̃.
If we know a better starting guess than the one in Theorem 4.1, we can easily

exploit that when solving the related system (4.4). Furthermore, if we want to satisfy
the constraints, we proceed according to the following theorem.

Theorem 4.2. Let x0 be any initial guess for (4.4) obtained from left block-
diagonal preconditioning, and compute x1 following (4.3). Then every subsequent
iterate xk+1 for k ≥ 1 computed by a Krylov subspace method for (4.4) with initial
guess x1 will satisfy the constraint Cxk+1 = g̃ exactly.

Proof. Computing x1 following (4.3) means that x1 = Fx0 + f̂ , where f̂ is given
as in (4.8). Then the subsequent Krylov subspace method iterates are of the form

xk+1 = x1 +
∑k−1

i=0 αiR
ir1, for k = 1, 2, . . . . Now CF = 0, and, as in the proof of

Theorem 4.1, CRi = C for i ≥ 0, and Cf̂ = g̃. Therefore

Cxk+1 = Cx1 +

k−1∑
i=0

αiCRir1 = CFx0 + Cf̂ +

k−1∑
i=0

αiC(x1 −Rx1) = g̃,

which completes the proof.
In a nutshell, when solving the related system (4.4) derived from left block-

diagonal preconditioning by any Krylov subspace method, then the iterates xk satisfy
the constraints in every step when either x0 = f̂ (cf. Theorem 4.1) or x0 is arbitrary
and one “preprocessing” step of the fixed point iteration is performed (cf. Theo-
rem 4.2). These properties are important for problems where the constraints must
be satisfied exactly, even if the overall accuracy is allowed to be lax. This often
holds for problems involving discretized conservation laws. The failure to satisfy the
constraints may lead to instability and/or nonphysical solutions. In such cases, this
preconditioned iteration allows the solution of x to low accuracy in a few iterations.
This may yield significant computational savings.

Remark 4.3. In the discussion above we compared left block-diagonal and con-
straint preconditioning. In case of right preconditioning, the constraint preconditioner
leads to a system matrix of the form

(4.9)

[
In − S (In −NM) −SN

0 Im

]
,

where, as for the right block-diagonal preconditioned matrix B(S), we define N ≡
BT (CD−1BT )−1, M ≡ C D−1, and S = ED−1. Hence, unlike for left precondition-
ing, the related system matrix R obtained from right block-diagonal preconditioning
(which is still of the form R = In − (In −NM)S) is generally not equal to the (1,1)-
block of (4.9). In addition, results similar to Theorem 4.1 and 4.2 do not hold for R
derived from right block-diagonal preconditioning. When satisfying the constraints is
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1608 ERIC DE STURLER AND JÖRG LIESEN

an important issue, we therefore recommend to always use R from left block-diagonal
preconditioning.

The next important step is to bound the location of the eigenvalues of the related
system matrix R = In − F (derived either from left block-diagonal or right block-
diagonal preconditioning). As shown above, in case R is derived from left block-
diagonal preconditioning, this matrix is equal to the (1,1)-block of the matrix obtained
from left constraint preconditioning. Assuming that A is symmetric, the authors
of [17] show that the whole preconditioned matrix corresponding to (4.7) has 2m
eigenvalues equal to 1. This also holds for the general case: It is clear from (4.7) that
the matrix has m eigenvalues equal to 1 and the n eigenvalues of the related system
matrix. Since F ∈ R

n×n and dim(Range(F )) = n −m, we have dim(Null(F )) ≥ m.
Hence, R has (at least) an additional m eigenvalues equal to 1 corresponding to the
basis vectors for Null(F ).

For the remaining eigenvalues of R none of the approaches used in [12, 17, 21, 24,
25, 26] is applicable to our general case, as they all require D to be symmetric and
B = C. Because of the relation R = In − F , each bound on ρ(F ) will simultaneously
give us a bound on the distance of the eigenvalues of R from 1. Since the projection
In −NM satisfies (In −NM)U1 = U1 and (In −NM)U2 = 0, we have

(4.10) F = (In −NM)S = [U1, U2]

[
In−m 0

0 0

]
[U1, U2]

−1 S.

Theorem 4.4. The spectral radius of the fixed point iteration matrix F in (4.3)
and the eigenvalues λR of the related system matrix R in (4.4) satisfy

(4.11)
ρ(F )

|1 − λR|

}
≤ ‖S‖

(1 − ω2
1)1/2

,

where ω1 is the largest singular value of UT
1 U2.

Proof. Let Fz = λz. Then |z| ≤ ‖F‖ ≤ ‖I −NM‖‖S‖. The minimum principal
angle between Range(NM) and Null(NM) is θ1 = arccos(ω1), and following [22,
section 5.15], we get

(4.12) ‖I −NM‖ = sin(θ1)
−1 = (1 − ω2

1)−1/2.

Similar to (3.11) we can estimate the bound (4.11) for ω1 = 1 − ε ≈ 1 as follows:

(4.13)
ρ(F )

|1 − λR|

}
≤ ‖S‖

(−ε2 + 2ε)1/2
≈ (2ε)−1/2 ‖S‖.

Again, if the angles between Range(NM) and Null(NM) are not too small, the clus-
tering of the eigenvalues near 1 depends essentially on ‖S‖. This shows that, unless
the minimal angle between Range(AU1) and Range(BT ) is very small (see below), we
are mainly concerned with good splittings of the (1,1)-block of the original matrix.
This is emphasized further by the following invariance property of the preconditioned
matrices. Suppose that we scale A (1.1) as follows:

(4.14) Ã ≡
[

In 0
0 R1

] [
A BT

C 0

] [
In 0
0 R2

]
≡

[
A BTR2

R1C 0

]
,

where R1, R2 ∈ R
m×m are both invertible. After splitting A = D − E, the corre-

sponding preconditioner is given by

(4.15) P̃(D) ≡
[

D−1 0
0 (R1CD−1BTR2)

−1

]
.
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PRECONDITIONERS FOR INDEFINITE LINEAR SYSTEMS 1609

Left preconditioning yields

(4.16) P̃(D)Ã ≡
[

In − S Ñ

M̃ 0

]
=

[
In 0
0 R−1

2

] [
In − S N
M 0

] [
In 0
0 R2

]
,

with S = D−1E as before, Ñ = D−1BTR2, and M̃ = R−1
2 (CD−1BT )−1C. Thus,

M̃Ñ = MN = Im, and ÑM̃ = NM . This shows the following theorem.
Theorem 4.5. The left preconditioned matrix P̃(D)Ã as given in (4.16) has

the same eigenvalues as B(S) and also the same eigenvalue bounds relative to B(0)
(cf. Theorem 3.5 and Corollary 3.7). Furthermore, it leads to the same fixed point
iteration matrix F = (In −NM)S and related system matrix R = In − F as B(S).

In short, this theorem shows that, given A and the splitting A = D − E, only
Range(BT ) and Null(C) matter.

Remark 4.6. We have shown that the related system (4.4) derived from left
preconditioning, an efficient form of using the left constraint preconditioner (4.7),
can be derived from the left block-diagonal preconditioner. Furthermore, we have
provided bounds on the clustering of the eigenvalues, defined in the same parameters,
for all preconditioned systems. Hence, these bounds are easy to compare. We see that
the related system/constraint preconditioner always leads to bounds on the clustering
of eigenvalues that are better than those for the block-diagonal preconditioner (with
the same splitting), especially for the extreme case when ω1 → 1.

Next, we provide some perspective for the eigenvalue bounds derived here and
in the previous section. If B = C and D is symmetric positive definite, we can
compute a Cholesky factorization of the preconditioner (2.2) with the same block
structure, P(D)−1 = LLT . In that case, we can use symmetric preconditioning and
solve for L−1AL−T . It follows that NM is an orthogonal projection and ω1 = 0. For
example, if our matrices and splitting A = D − E satisfy the requirements in [17],
their approach yields real eigenvalues in the interval [1 − ρ(S), 1 + ρ(S)], where ρ(S)
denotes the spectral radius of S. If we assume symmetric preconditioning, then S is
symmetric and (In −NM)S is symmetric over Range(In −NM). Hence, we obtain
the exact same result. If we use left instead of symmetric preconditioning, the range
of NM is D-orthogonal to the nullspace of NM , and the condition number of D
determines ω1; in particular, ω1 ≈ 1 − 2/κ(D) for κ(D) large. We also get a similar
result following the approach in [12], taking for D the (positive definite) symmetric
part of A. In this case, the eigenvalues lie on the segment [1 − iρ(S), 1 + iρ(S)],
parallel to the imaginary axis. Note that this segment is included in the bound given
in Theorem 4.4; see also [7, Theorem 5.3].

Finally, we consider the general case (1.1) and the associated constraint precon-
ditioner,

(4.17) Pc ≡
[

D BT

C 0

]
.

The spaces Range(U1) = Null(C) and Range(U2) = Range(D−1BT ) and the value ω1,
which measures the smallest canonical angle between these spaces, play a fundamental
role for the constraint preconditioner, and hence for the related system (4.4). Note
that these spaces determine the projection NM . Since D is invertible, Pc is nonsin-
gular if and only if [U1 U2] is nonsingular. Furthermore, let U2R2 = D−1BT , and let
κ denote the spectral condition number. Then it is easy to see that κ([U1 U2R2]) ≥
κ([U1 U2]). Hence, ω1 determines an inherent lower bound on the conditioning of
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1610 ERIC DE STURLER AND JÖRG LIESEN

Pc. In this respect, consider the ideal case in terms of conditioning for Pc, when D,
BT , and CT all have orthonormal columns. From the norms of the blocks we have
1 ≤ σmax(Pc) ≤ 3, and we can show with some tedious algebra that for ω1 → 1,
σmin(Pc) = 1

2 (1 − ω2
1)1/2. Thus, for this special matrix Pc we have

(4.18)
2

(1 − ω2
1)1/2

≤ κ(Pc) ≤
6

(1 − ω2
1)1/2

.

Of course, if D ≈ A, ω1 plays a similar role for A (approximately). Thus, ω1 cannot
be very close to 1, unless Pc and typically A are very ill conditioned. Moreover,
depending on A, D, BT , and C, κ(Pc) and κ(A) may be much larger than the upper
bound in (4.18).

A disadvantage of the methods discussed is that they require the inverse of the
Schur-complement–type matrix CD−1BT . In many cases, though not always, this
is expensive to compute. In the block-diagonal preconditioner one can easily replace
(CD−1BT )−1 by an approximation with minor effects on the convergence. See [7] for
a discussion of eigenvalue bounds in the case of Stokes and Navier–Stokes equations.
However, this simple strategy does not work for the related system. Assume we
precondition A from the left by the block-diagonal matrix P̃ = diag(D−1, S̃−1

D ), where

S̃−1
D is an approximation to S−1

D ≡ (CD−1BT )−1. Then S̃−1
D SD is invertible and

P̃A =

[
In − S D−1BT

S̃−1
D C 0

]
=

[
In 0

0 S̃−1
D SD

] [
In − S N
M 0

]
.

Theorem 4.5 shows that the related system derived from this matrix is again In −
(In−NM)S, requiring (CD−1BT )−1. Thus, for a related system with an approximate
Schur complement we need an alternative. We will discuss this in more detail in [19].

5. GMRES for the system with B(S) versus GMRES for the related
system. We summarize the results from the previous sections to compare two ap-
proaches for solving the linear system (1.1):

1. apply GMRES to (2.6), i.e., to a system with the matrix B(S).
2. apply GMRES to (4.4), i.e., to a system with the matrix R, or, equivalently,

to the (1,1)-block of (4.7) and the associated right-hand side.
In general, the convergence of GMRES depends on the eigenvalues and eigen-

vectors of the given system matrix and their relation to the initial residual. As we
have made practically no assumptions on A or on the right-hand side of (1.1), this is
difficult to analyze. Therefore, we look only at the eigenvalue clustering of B(S) and
R as an indication of the convergence behavior of GMRES for (2.6) and (4.4).

The following considerations show why in order to solve (1.1) it is often more
efficient to apply GMRES to the related system (4.4) than to the preconditioned
system (2.6):

1. The iterates xk of GMRES applied to the related system (4.4) derived from
left block-diagonal preconditioning with the initial guess following either The-
orem 4.1 or Theorem 4.2 satisfy the constraints Cxk = g̃ in (1.1) exactly; this
is not the case for the iterates from GMRES applied to (2.6).

2. This property of using the related system leads to further advantages if we
scale the constraints to improve convergence and use an inexact Newton (it-
erative) solver; see sections 6 and 7.

3. The size of the related system matrix R is n × n, while the size of B(S) is
(n + m) × (n + m). This size advantage of R is particularly important for
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PRECONDITIONERS FOR INDEFINITE LINEAR SYSTEMS 1611

methods like GMRES that have to store and orthogonalize many vectors. We
note that the costs of computing matrix-vector products with R and B(S)
are similar. In both cases we have to perform one multiplication each with
M,N , and S.

4. The related system matrix R has all eigenvalues clustered around 1 and so
is definite (positive real) in the case of good clustering. The matrix B(S)
remains indefinite and has three clusters of eigenvalues in the case of good
clustering.

5. The center of the (only) eigenvalue cluster of R is 1. The center of the
eigenvalue cluster of B(S) which is closest to the origin is (1−

√
5)/2 ≈ −0.6,

and thus is closer to zero.
6. For ω1 = 1 − ε, the bound (4.13) for the eigenvalues of R is almost a factor

3 smaller than the bound (3.12) for the eigenvalues of B(S).
Although the latter three advantages appear to be small, we think they are im-

portant. In many cases we will have a preconditioner that is effective but does not
give very tight clustering. In such a case, the convergence of GMRES applied to
the related system (4.4) may be significantly better than that of GMRES applied
to the preconditioned system (2.6). Note that the preconditioned iterations may be
quite expensive. Furthermore, if a fair number of iterations of GMRES is required,
then the reduction of the problem size is even more important. Moreover, satisfying
the constraints even when the solution is not highly accurate is important for many
applications.

Finally, we note that the comparisons (2) and (6) are new even in the context
of the symmetric case. Moreover, it appears that eigenvalue bounds for the two
types of preconditioners in terms of the same parameters, which make comparison
(6) possible, have not been derived before. In the symmetric case, if D is symmetric
positive definite, the difference between the bounds reduces to a factor of about 1.5,
because symmetric preconditioning will make all ωi = 0.

Our numerical examples in section 7 show that using the related system (4.4)
instead of the preconditioned system (2.6) can lead to significant savings in solving
(1.1).

6. Surface parameterization as a constrained optimization problem
and scaling nonlinear constraints. The application that we use to illustrate
our theoretical results is a constrained optimization problem that arises in mesh-
flattening [28, 29], the most expensive step in surface parameterization. The latter
is of considerable interest in many areas [29], such as generating a surface mesh for
three-dimensional finite element meshing, and texture mapping in graphics [30].

The basic idea of mesh-flattening is to compute a flat triangulation that is isomor-
phic to a given faceted surface (patch) with minimal angular deformation. The algo-
rithm we briefly describe next computes mesh (b) from mesh (a) in Figures 6.1 and 6.2.
Meshes (c) and (d) in Figure 6.1 illustrate the generation of a better (and in this case
coarser) mesh using the flat triangulation; for details see [29].

To minimize angular deformation, we wish to minimize the function

(6.1) Q(α) =

#faces∑
i=1

3∑
j=1

(αj
i − φj

i )
2wj

i ,

where αj
i is the jth angle in face i in the flat mesh, φj

i is the optimal angle for αj
i , and

wj
i is a weight. Typically wj

i = (φj
i )

−2, minimizing the relative deformation of angles.
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1612 ERIC DE STURLER AND JÖRG LIESEN

(a) (b) (c) (d)

Fig. 6.1. Remeshing the three balls. From left to right are (a) the original surface mesh, (b)
the computed flat mesh, (c) the coarser remeshing in the plane, and (d) the new mesh mapped back
to the three-dimensional surface. Note the improved quality (no very small angles) of the faces in
the coarser mesh. In particular, compare the regions near the poles in (a) and (d).

(a) (b)

Fig. 6.2. Flattening the half-rabbit mesh. (a) The original surface mesh and (b) the computed
flat mesh.

The optimal angles at interior nodes are derived from the inevitable local deformation
that results from flattening a nonsmooth surface.

The angles in the flat mesh need to satisfy four classes of constraints. We denote
by G(i)(α) the row vector of all constraints in class i = 1, 2, 3, 4. The first class
of constraints is that all angles must remain positive. We handle this constraint
algorithmically [29], and so will not discuss it below. The second class of constraints
is that the angles inside each triangle sum to π. The third class of constraints is that
the angles at each interior node sum to 2π. These constraints are linear. Finally,
the fourth class of constraints is that neighboring faces must agree on the size of the
shared edge. This leads to one nonlinear constraint for each interior node of the form

(6.2) Πi sin(α
j(k)+1
i ) − Πi sin(α

j(k)−1
i ) = 0,

where α
j(k)
i indicates the angle in face i at the interior node Nk, and i runs over

the faces containing node Nk. To demonstrate the effects of scaling the nonlinear
constraints we scale the constraints G(4)(α) by η. For convenience (see below), we
also scale the constraints G(3)(α).

This leads to the constrained minimization problem

min Q(α) subject to

G(α) ≡ [G(2)(α), ηG(3)(α), ηG(4)(α)]T = 0.(6.3)

Applying the Lagrange multiplier formulation, we use Newton’s method to find a
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Fig. 6.3. Structure of a system matrix Aη,l derived from the half-rabbit model.

critical point of the Lagrangian

(6.4) L(α, λ) ≡ Q(α) + λT G(α),

where λ is the vector of Lagrange multipliers. In each Newton step we must solve the
system of equations

(6.5) Aη,l

[
x
y

]
≡

⎡
⎣ Q + ηHl JT

1 ηJT
2,l

J1 0 0
ηJ2,l 0 0

⎤
⎦
[

x
y

]
=

[
fη
gη

]
,

where

Q = ∇2
αQ(α), Hl = (λ(4))T∇2

αG(4)(α), J1 = ∇αG(2)(α), J2,l = ∇α[G(3)(α) G(4)(α)],

and

(6.6)

[
fη
gη

]
=

⎡
⎢⎢⎣

−∇αQ− λT∇α[G(2) ηG(3) ηG(4)]
−G(2)

−ηG(3)

−ηG(4)

⎤
⎥⎥⎦ .

In these equations, only the block matrices with subscript l change from one Newton
step to the next. The structure of an example matrix Aη,l is shown in Figure 6.3. To
define the two-by-two block form of Aη,l we take

(6.7) Al =

[
Q + ηHl JT

1

J1 0

]
and Bl = Cl = [ηJ2,l 0].

We consider the splitting Al = D − ηEl (cf. (2.1)), taking

D =

[
Q JT

1

J1 0

]
,(6.8)

El =

[
Hl 0
0 0

]
.(6.9)
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1614 ERIC DE STURLER AND JÖRG LIESEN

For this choice of D, D−1 is known explicitly. A formula for D−1 and more details
on the structure of Al are given in [20]. Let Sl = D−1El, Nl = D−1BT

l , Ml =(
BlD

−1BT
l

)−1
Bl, and Fl = (I − NlMl)Sl, all corresponding to η = 1. We get the

(left) preconditioned system

(6.10) Pη(D)Aη,l =

[
I − ηSl ηNl

η−1Ml 0

] [
x
y

]
=

[
D−1fη

η−1
(
BlD

−1BT
l

)−1
g

]
.

Now following Theorem 4.5 with R1 = ηI and R2 = η−1I, the eigenvalue bounds of
(6.10) are the same as the eigenvalue bounds for the matrix

(6.11)

[
I − ηSl N

M 0

]
,

and the fixed point iteration matrix and related system become, respectively,

Fη,l = η(I −NlMl)Sl = ηFl,

Rη,lx = f̂η,l, where Rη,l ≡ I − ηFl.(6.12)

Note that the right-hand side differs from that of the problem without scaling.
We see that in (6.11) and (6.12) only ηFl and ηSl, respectively, depend on η. This

leads to the following eigenvalue bounds. For Pη(D)Aη,l we get (cf. (3.4) and (3.11))

|λη,Sl
− λ| ≤ ηcS

∥∥ [U1,l U2,l]
−1Sl[U1,l, U2,l]

∥∥(6.13)

≤ ηcS

(
1 + ω1,l

1 − ω1,l

)1/2

‖Sl‖,(6.14)

and for Fη,l and Rη,l we get (cf. (4.11))

ρ(Fη,l)
|1 − λRη,l

|

}
≤ η

(1 − ω1,l)1/2
‖Sl‖,(6.15)

where ω1,l is the largest singular value of UT
1 U2 derived from I −NlMl.

Therefore we can make the eigenvalue clustering arbitrarily close!
Obviously, there is a catch in scaling the constraints. It can be seen from (6.5)

and (6.6) that for small η the nonlinear system approximates a quadratic problem
with linear constraints. The stationary point of such a system is given by the solution
of a linear system, and Newton’s method will converge in a single iteration. Moreover,
our preconditioners would be the ideal preconditioners. Thus, for small η we solve
a sequence of linear systems that are close to the linear system corresponding to
a quadratic problem with linear constraints. Hence, the convergence of Newton’s
method may slow down. Although the left preconditioned system and the related
system lead to the same solution, this convergence behavior is most obvious for the
related system. We see from (6.12) that for small η the related system matrix gets
close to the identity and hence becomes easier to solve. However, at the same time
the nonlinear components of the problem are relatively small, and hence the Newton
steps tend to be less effective, resulting in slower convergence of the Newton iteration.
Nevertheless, such scaling is useful to balance the cost of solving the linear systems
with the number of Newton iterations to reduce overall runtime. This is similar to
tuning the time-step in time-dependent problems, where a small time-step yields a
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PRECONDITIONERS FOR INDEFINITE LINEAR SYSTEMS 1615

well-conditioned problem and fast convergence but necessitates more time-steps to
reach the final simulation time. Note that for the preconditioned system (6.10) the
constraints get a weight inversely proportional to η.

Finally, with our choice of preconditioners the convergence of the linear systems
for an optimization problem with nonlinear constraints can potentially be improved
by judicious scaling. For more general problems the effect on the Newton iteration
will be more complicated to assess.

7. Numerical examples. We discuss the performance of GMRES [27] for a
problem arising in flattening the half-rabbit mesh; cf. Figure 6.2. Typically, our
mesh-flattening algorithm takes only five to ten Newton steps to converge. For our
experiments reported here we picked the Jacobian Aη,l, for which the unprecondi-
tioned linear system (6.5) required the most GMRES steps. For the half-rabbit model
this was the fourth Jacobian. To eliminate a possible correlation between the matrix
Aη,l and the right-hand side of (6.5) as well as the initial residual, we used a random
right-hand side (generated by MATLAB’s randn function) and a zero initial guess.
The matrix Aη,l is of order 1846 for the half-rabbit model, and the related system ma-
trix has order 1520. The approximate Schur complement, BlD

−1BT
l (of order 326), is

inverted using MATLAB’s Cholesky decomposition. One Cholesky decomposition is
required in each Newton step. Since D−1 is known explicitly, the computation of this
Cholesky decomposition is the most expensive part in computing the preconditioner.

Figure 7.1 shows the computed relative residual norms, ‖rn‖/‖r0‖, for GMRES
applied to the unpreconditioned system (6.5), the right block-diagonal preconditioned
system, the left block-diagonal preconditioned system (6.10), and the related system
(6.12). For the unpreconditioned system GMRES stagnates almost completely. Fur-
thermore, the convergence for the related system is significantly better than the con-
vergence for the left and right preconditioned systems, which confirms our theoretical
results.

10 20 30 40 50 60 70 80 90 100
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−3

10
−2
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−1

10
0

Fig. 7.1. GMRES performance for systems derived from the half-rabbit model: unpreconditioned
(solid), right preconditioned (dash-dot), left preconditioned (dashed), and related system (dots).

The effect of scaling the constraints on the eigenvalue clustering for the matrix
derived from the half-rabbit model is shown in Figures 7.2–7.4. Figure 7.2 shows why
unpreconditioned GMRES performs so poorly. The eigenvalues of the original matrix
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Fig. 7.2. Eigenvalues of the original system matrix derived from the half-rabbit model with
scalings η = 1, 0.1, 0.01.
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Fig. 7.3. Eigenvalues of the left preconditioned system matrix derived from the half-rabbit model
with scalings η = 1, 0.1, 0.01.

vary by several orders of magnitude, the matrix is indefinite, and many eigenvalues are
close to zero. Furthermore, scaling by η = 0.1 and 0.01 does not improve the clustering
noticeably. Left preconditioning clusters the eigenvalues close to {1, 1

2 (1 ±
√

5)}; see
Figure 7.3. In accordance with the bounds (6.13) and (6.14), the clustering improves
when the third and fourth constraints are scaled. For the related system matrix, we
see only one cluster of eigenvalues, which becomes very small when we scale by η = 0.1
and 0.01; see Figure 7.4. For η = 0.01, all eigenvalues are contained in the interval
[0.9973, 1.0029].

The convergence of GMRES for the unpreconditioned, the left block-diagonal
preconditioned, and the corresponding related system with scaling of the third and
fourth groups of constraints by η = 1 and 0.1 is shown in Figure 7.5. When using the
related system, the scaling has a dramatic effect. The relative residual norm converges
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Fig. 7.4. Eigenvalues of the related system matrix derived from the half-rabbit model with
scalings η = 1, 0.1, 0.01.
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Fig. 7.5. GMRES performance for systems derived from the half-rabbit model: unpreconditioned
(solid), left preconditioned (dashed), and related system (dots), with scalings η = 1 and η = 0.1. The
latter leads to significantly faster convergence for the left preconditioned and the related systems.

to a tolerance of 10−10 in seven steps when the third and fourth groups of constraints
are scaled by η = 0.1. The rate of convergence comes close to that obtained using
the algebraically optimal preconditioner derived by Murphy, Golub, and Wathen [23].
For the scaled left preconditioned system we also see a significant improvement in the
speed of convergence of GMRES. However, the scaled preconditioned matrices remain
indefinite (cf. Figure 7.3), so that the problem is still more difficult for GMRES to
solve than the scaled related system. This confirms that using the related system is
preferable to using the left preconditioned system.

For lack of space we are here restricted to reporting on a single application only.
However, essentially the same behavior can be seen for larger problems as well [5].
Finally, notice that, in principle, this convergence improvement is applicable to any
optimization problem with nonlinear constraints.
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1618 ERIC DE STURLER AND JÖRG LIESEN

8. Conclusions. We have extended two classes of preconditioners to general
block two-by-two linear systems with zero (2,2)-block, including the analysis of the
preconditioned systems. This required the introduction of new “tools,” particularly
for the analysis of oblique projections. We have developed a framework to analyze
and compare block-diagonal preconditioners and constraint preconditioners, in par-
ticular the efficient implementation of constraint preconditioners introduced in this
paper. So far, these preconditioners have typically been treated separately. Our anal-
ysis reveals that solving the original block two-by-two system by solving the related
system is typically the best. Not only is the related system smaller in size, and not
only does it have (typically) the best eigenvalue clustering, but, in addition, with
the correct starting guess, the iterates of any Krylov subspace method applied to the
related system (derived from left block-diagonal preconditioning) exactly satisfy the
constraints imposed in the original system. With the exception of the smaller size,
these conclusions also hold for constraint preconditioners for the general systems dis-
cussed here. In addition, our analysis and the invariance property from Theorem 4.5
led us to the concept of scaling nonlinear constraints in optimization problems to
improve the convergence of the preconditioned linear systems arising in the solution
of such problems. This scaling appears to work quite well.

Our approach is very general, as we have made practically no assumptions on the
original system. Furthermore, our framework leaves a variety of choices for the user
(choice of splitting, scalings, etc.). We have demonstrated the efficiency of our meth-
ods for Jacobians that arise in an optimization problem with nonlinear constraints,
and we will give a more detailed numerical study in the forthcoming second part of
this two-part sequence of papers [19].

Finally, we should mention that other preconditioners proposed for saddle point
problems may be competitive or better for the test problem used in this paper. How-
ever, finding the best preconditioner for this problem was not the purpose of the
present paper, and remains as future work. Probably, any competitive preconditioner
should have the property, discussed in section 6, that it significantly improves the
spectrum of the preconditioned systems by scaling the nonlinear constraints appro-
priately.

Acknowledgments. We thank Rich Lehoucq and two anonymous referees for
comments that helped to improve the content and the presentation of the paper.
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