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ABSTRACT

Several recent works predict the future of multicore systems
or identify scalability bottlenecks based on Amdahl’s law.
Amdahl’s law implicitly assumes, however, that the problem
size stays constant, but in most cases more cores are used to
solve larger and more complex problems. There is a related
law known as Gustafson’s law which assumes that runtime,
not the problem size, is constant. In other words, it is as-
sumed that the runtime on p cores is the same as the runtime
on 1 core and that the parallel part of an application scales
linearly with the number of cores. We apply Gustafson’s
law to symmetric, asymmetric, and dynamic multicores and
show that this leads to fundamentally different results than
when Amdahl’s law is applied. We also generalize Amdahl’s
and Gustafson’s law and study how this quantitatively ef-
fects the dimensioning of future multicore systems.

1. INTRODUCTION
Several recent works predict the future of multicore sys-

tems or identify scalability bottlenecks based on Amdahl’s
well-known law [1]. For example, Hill and Marty [11] ex-
tended Amdahl’s law with an area-performance model and
applied it to symmetric, asymmetric, and dynamic multicore
chips. Their results show that obtaining optimal multicore
performance requires extracting more parallelism as well as
making sequential cores faster. Basically, sequential cores
need to be made relatively larger and hence faster to execute
the serial part of an application faster, since the serial part
will eventually dominate when the number of cores increases.
Based on Amdahl’s law they also showed that dynamic mul-
ticores that can dynamically combine all resources to form
one large, sequentially cores provide the optimimal solution.
Based on Hill and Marty’s findings, two dynamic multicore
designs were presented at ISCA 2010: WiDGET [18] and
Forwardflow [7]. Other examples of the use of Amdahl’s law
include the work of Eyerman and Eeckhout [6], who show
that parallel speedup is not only limited by the serial frac-
tion but also by synchronization through critical sections,
and the work of Cho and Melhem [4], who use Amdahl’s law
to determine the optimal processor frequencies in the serial
and parallel regions with the goal of minimizing the total
energy consumption.

The implicit assumption in Amdahl’s law as well as the ex-
tensions mentioned above is, however, that the problem size
remains constant. As observed by Gustafson [10], this is vir-
tually never the case. More cores are used to solve larger and

more complex problems. For example, more cores are used
to perform weather forecasting on a larger area (e.g., [12])
or for video decoding with higher resolutions [3]. Further-
more, for many applications, when the problem size scales
the parallel part scales faster than the serial part. Gustafson
therefore proposed an alternative to Amdahl’s law which
is now known as Gustafson’s law but which he himself at-
tributed to E. Barsis. Gustafson’s law is much more op-
timistic than Amdahl’s law. While Hill and Marty briefly
mention Gustafson’s law, they state that in their view mul-
ticore designs should also operate well under Amdahl’s more
pessimistic assumptions and do not consider it further.
The main contribution of this work is two-fold. First we

generalize Amdahl’s and Gustafson’s laws by assuming that
the parallel fraction does not stay constant as in Amdahl’s
law, nor that it grows linearly with the number of cores
as in Gustafson’s law, but something in between (e.g., it
is proportional to

√
n, where n is the number of cores).

We refer to this equation as the generalized scaled speedup
equation (GSSE), since it encompasses both Amdahl’s and
Gustafson’s law by substituting the appropriate application
scaling function. Second, we apply Gustafson’s law and
the GSSE to symmetric, asymmetric, and dynamic mul-
ticores and show that they produce results that are fun-
damentally different from the results obtained by Hill and
Marty based on Amdahl’s law. Our results have several
important implications of which we mention three. First,
while Amdahl’s law indicates that symmetric multicore pro-
cessors should consist of fewer but larger and more pow-
erful cores, Gustafson’s law suggests that many tiny cores
yield the highest performance. The GSSE indicates that
fewer, more powerful cores can deliver a performance im-
provement, but the improvement is much smaller and only
occurs for smaller parallel fractions f than when Amdahl’s
law is assumed. Second, when the serial fraction is only
1%, Amdahl’s law implies that one-eighth of the area of
a large asymmetric multicore chip should be devoted to a
large, high-performance core, while the remaining area is
devoted to many small cores. Gustafson’s law, on the other
hand, indicates that in this case an asymmetric design barely
performs better than a symmetric design, while the GSSE
indicates that only 3.1% of the area should be devoted to
the large core and, even then, the asymmetric design is only
7.8% faster (in theory) than a symmetric design. Third,
under Amdahl’s law the speedup of a dynamic multicore
that can contain up to 256 simple cores is limited to 30.1.
Gustafson’s law, on the other hand, shows that a speedup
of 242 can be achieved, while the GSSE which assumes
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Figure 1: Illustration of Amdahl’s law. Amdahl’s
assumes that the normalized runtime on one core is
1.

less than perfect application scaling, indicates that still a
speedup of 136 can be achieved.

This paper is organized as follows. Section 2 reviews
Amdahl’s and Gustafson’s law and explains their underly-
ing assumptions. In addition, it presents the generalized
scaled speedup equation that subsumes both Amdahl’s and
Gustafson’s law. Section 3 applies Amdahl’s and Gustafson’s
law and the generalized scaled speedup equation to sym-
metric, asymmetric, and dynamic multicore chips using the
area-performance model proposed by Hill and Marty, and
presents and discusses the analytical speedup results. Con-
clusions are drawn in Section 4.

2. AMDAHL’S AND RELATED LAWS
Amdahl’s law assumes that a fraction f of a serial pro-

gram’s execution time is perfectly parallelizable with no
communication and synchronization overhead, while the re-
maining fraction s = 1 − f is totally sequential. Conse-
quently, if Ts is the execution time of the serial program,
the parallel execution time on p cores, T (p), is given by

T (p) = (1− f) · Ts + f · Ts/p,

since only a fraction f of the serial program’s execution time
is parallelizable. Speedup is the ratio of sequential execution
time to parallel execution time, giving

SAmdahl =
Ts

T (p)
=

Ts

(1− f) · Ts +
f ·Ts

p

=
1

(1− f) + f
p

. (1)

The last expression in this equation goes to 1/(1− f) when
p goes to infinity. So, for example, when the serial fraction
s = 1 − f is 20%, the speedup is limited to 5, no matter
how many cores are employed. Amdahl used this equation
to argue for the validity of the single-processor approach.
Amdahl’s law is illustrated in Figure 1.

Amdahl’s equation assumes, however, that the problem
size does not change when using more cores to execute the
application. In other words, the parallelizable fraction re-
mains constant, no matter how many cores are employed.
As observed by Gustafson, this is very rare. One does not
take a fixed-sized problem and run it on as many cores as
possible. In virtually all application domains, more cores are
used to solve larger and more complex problems. Gustafson
therefore argued that it is more realistic to assume that run-
time, not problem size, is constant.

1− f f · p

Ts = 1− f + f · p

1 core

1− f fp cores

Tp = 1

Figure 2: Illustration of Gustafson’s law. Gustafson
assumes that the normalized runtime on p cores is
1.

Gustafson’s law is illustrated in Figure 2. Gustafson as-
sumes that the normalized runtime on p cores is (1− f) +
f = 1. If (1−f)+f is the runtime on p cores, the runtime on
one core will be (1−f)+p·f . Consequently, the speedup ac-
cording to Gustafson (which he referred to as scaled speedup)
is given by

SGustafson =
(1− f) + f · p

1− f + f
= (1− f) + f · p. (2)

In this equation, if the serial fraction (1 − f) is 20%, the
speedup will be 80.2 on 100 cores, which is much more opti-
mistic than the speedup of 4.8 predicted by Amdahl’s law.
Figure 3, based on [17], illustrates the differences between

Amdahl’s and Gustafson’s law. Amdahl assumes that the
amount of work that can be parallelized, Wp, is constant
and independent of the number of cores p. This can be
considered overly pessimistic. Gustafson assumes that the
amount of work that can be parallelized grows linearly with
the number of cores p. This, on the other hand, can be
considered overly optimistic. For example, although video
coding is a domain that can take benefit from multi- and
many-cores [3], the resolution and computational require-
ments will not grow indefinitely.
To address the limitations of Amdahl’s and Gustafson’s

law, we propose an equation that is somewhere in between.
In this equation the amount of work that can be parallelized
is not constant as in Amdahl’s law, nor does it grow linearly
with the number of cores as in Gustafson’s law. Instead, the
amount of parallel work is proportional to a function scale(p)
that is sub-linear in p (e.g., scale(p) =

√
p). Consequently,

the normalized execution time on p cores is given by

(1− f) +
f · scale(p)

p
.

If this equation gives the normalized runtime on p cores, the
runtime on one core will be

(1− f) + f · scale(p).

The speedup is therefore given by

SGeneral =
(1− f) + f · scale(p)
(1− f) + f ·scale(p)

p

. (3)

Note that when scale(p) = 1, this equation is identical to
Amdahl’s law, and when scale(p) = p, it is identical to
Gustafson’s law. The precise scaling function is, of course,
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(b) Gustafson’s assumption.

Figure 3: Amdahl’s and Gustafson’s assumption.
Amdahl assumes the input size (or amount of work)
to be constant, while Gustafson assumes it to be
dependent on N .

1− f f · scale(p)

Ts = 1− f + f · scale(p)

1 core

1− f f ·scale(p)
p

p cores

Tp = 1− f +
f ·scale(p)

p

Figure 4: Illustration of the generalized scaled
speedup equation.

application dependent. We refer to this equation as the gen-
eralized scaled speedup equation (GSSE). The GSSE is il-
lustrated in Figure 4.

Figure 5 plots the speedups given by Amdahl’s law, Gus-
tafson’s law, and the GSSE for f = 0.5 and f = 0.9 (where
we assume that scale(p) =

√
p, which will be done through-

out this article). While Amdahl’s law indicates that the
maximum speedups that can be achieved are 2 and 10 for
f = 0.5 and f = 0.9, respectively, the speedups on 100 cores
obtained using Gustafson’s law are 50.5 and 90.1, and the
speedups on 100 cores calculated using the GSSE are 10 and

47.9. We note, however, that it is misleading to plot these
functions in a single figure, since the underlying assumptions
differ. For example, a value of f of 0.5 on 100 cores in Gus-
tafson’s law implies that the parallel fraction on a single core
is 100 times as large as the serial fraction. This corresponds
to a parallel fraction f of 100/101 = 99% in Amdahl’s law.
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Figure 5: Speedup as a function of the number of
cores for f = 0.5 and f = 0.9 assuming Amdahl’s law,
Gustafson’s law, and the GSSE.

3. IMPLICATIONS FOR MULTICORE DE-

SIGN
Hill and Marty [11] used Amdahl’s law to make assertions

about the organization of multicore chips. In particular,
should a multicore chip consist of many small and simple
cores, a few large, high-performance cores, or some mixture
of both? To do so, an area-performance model is needed to
estimate the number of cores a chip can contain, and the
performance of a core as a function of its size (in number of
transistors).
Like Hill and Marty, we assume that a multicore chip of

a given size implemented in a given technology node can
contain n Base Core Equivalents (BCEs) and each BCE has
a performance of 1. Furthermore, a core with an area of r
BCEs has a performance of perf(r), where perf(r) is between
1 and r. perf(r) can be an arbitrary function, but like Hill
and Marty, in all speedup graphs we assume perf(r) =

√
r,

which corresponds to Pollack’s / Borkar’s rule [15, 2].

3.1 Symmetric Multicores
In a symmetric multicore all cores have the same size and

performance. So a symmetric multicore chip of n BCEs can
contain n/r cores of r BCEs each, and the performance of
each core is perf(r). Under Hill and Marty’s collorary of
Amdahl’s law, the speedup of a symmetric multicore over a
single-BCE core is a function of the fraction that is paral-
lelizable (f), the chip area in BCEs (n), and the size of each
core in BCEs (r). The serial part 1− f is executed sequen-
tially by one core at performance perf(r), and the parallel
part f is executed in parallel by all n/r cores, each with a
performance of perf(r). Using this reasoning Hill and Marty
obtained the following equation for symmetric multicores:

SAmdahl
symmetric(f, n, r) =

1
1−f

perf(r)
+ f

perf(r)·n/r

=
1

1−f
perf(r)

+ f ·r
perf(r)·n

. (4)



We refer to this equation as Amdahl’s law for symmetric
multicores.

The same reasoning can be applied to Gustafson’s law.
We use one core to execute the serial part 1 − f and all
n/r cores to execute the parallel part. The parallel part,
however, is now larger. The unnormalized parallel fraction
on a single core is not f but f ·n, since the speedup is relative
to a 1-BCE core. Consequently, we obtain:

SGustafson
symmetric(f, n, r) =

1− f + f · n
1−f

perf(r)
+ f ·r

perf(r)

=
(1− f + f · n) · perf(r)

1− f + f · r
. (5)

This equation will be referred to as Gustafson’s law for sym-
metric multicores.

Similarly, for the GSSE we obtain

SGeneral
symmetric(f, n, r) =

1− f + f · scale(n)
1−f

perf(r)
+ f ·scale(n)

n/r·perf(r)

=
(1− f + f · scale(n)) · perf(r)

1− f + f ·r·scale(n)
n

.(6)

Again we observe that if scale(n) = 1, this equation is iden-
tical to Amdahl’s law for symmetric multicores (Eq. (4)),
and when scale(n) = n, it is identical to Gustafson’s law for
symmetric multicores (Eq. (5)).

Figure 6(a) depicts the results obtained using Amdahl’s
law for symmetric multicores for n = 16 and as a function of
the size of each core r. The results obtained using Gustaf-
son’s law and the GSSE for symmetric multicores are shown
in Figure 6(b) and Figure 6(c), respectively. In all figures
we assume that perf(r) =

√
r and that scale(n) =

√
n.

The results indicate that when application scaling is con-
sidered leads to fundamentally different results than when
Amdahl’s law is applied. For example, Amdahl’s law for
symmetric multicores indicates that using 16 cores of 1 BCE
each is not necessarily the optimal solution, depending on
the parallel fraction f . When f = 0.5, the optimal solution
under Amdahl’s law is to use a single large core that occu-
pies all chip resources. In fact, it can be shown analytically
that when f ≤ 0.5, a single large core will always achieve
the highest performance under Amdahl’s law for symmet-
ric multicores, independent of n, since r ≤ n. Even when
f = 0.9, the optimal solution is not a single large core, but
8 cores of 2 BCEs each. On the other hand, Gustafson’s
law for symmetric multicores indicates that 16 1-BCE cores
achieve the highest performance for each value of f ≥ 0.5.
Thus, under the assumption that the parallel fraction scales
linearly with the chip area n, many simple cores is the best
approach. The impression changes slightly when non-perfect
application scalability is assumed (Figure 6(c)). For f ≥ 0.9,
many simple cores is still the best approach, but for f = 0.5,
4 cores of 4 BCEs each perform slighlty better. However,
the performance difference between the optimal organization
and 16 cores of 1 BCE each is much smaller when the GSSE
is assumed (with scale(n) =

√
n) than suggested by Am-

dahl’s law for symmetric multicores (1.25x versus 2.125x).
Based on Amdahl’s law for symmetric multicores, Hill and

Marty concluded that researchers should seek methods of
increasing core performance even at high cost. While we
agree with this conclusion, this conclusion cannot be drawn
solely on the basis of Amdahl’s law. Rather, it is likely that
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Figure 6: Speedup of symmetric multicores of n = 16
BCEs over a single-BCE core assuming Amdahl’s
law, Gustafson’s law, and the GSSE.

there will be abundant single-threaded legacy codes for a
few decades to come.
An important question is how these results change when

Moore’s law allows many more BCEs per chip. To an-
swer this question, Figure 7 depicts the results for n = 256
BCEs. While the precise results are slightly different, in
general the same conclusions can be drawn. While Amdahl’s
law for symmetric multicores indicates that 256 single-BCE
cores never yield the highest performance (unless when f =
0.999), Gustafson’s law suggests the opposite. Furthermore,
assuming less that perfect scaling of the parallel part, the
GSSE shows that now non-single BCE cores can provide a
performance advantage, not only for f = 0.5 but also for
f = 0.9, but for f = 0.5 the performance advantage is much
smaller than predicted by Amdahl’s law (2.13x versus 8.03x),
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Figure 7: Speedup of symmetric multicores of n =
256 BCEs over a single-BCE core assuming Amdahl’s
law, Gustafson’s law, and the GSSE.

and for f = 0.9 the performance advantage is really minor
(less than 1.04x). It is questionable, however, if large sym-
metric multicores should be organized in such a way as to
obtain optimal performance for applications with a parallel
fraction f of 0.5.

3.2 Asymmetric Multicores
In an asymmetric multicore, one or more cores are larger

and more powerful than the others. Asymmetric multicores
are also called performance heterogeneous multicores, since
all cores implement the same instruction set architecture
(ISA) but at different performance levels. Besides perfor-
mance heterogeneous, there are functionally heterogeneous
multicores, where different cores support different ISAs. An
example of an asymmetric multicore is the single-ISA het-

erogeneous multicore proposed by Kumar et al. [13]. Ex-
amples of functionally heterogeneous multicores in industry
and academia are the Cell processor [9] and the SARC ar-
chitecture [16].
Amdahl’s law makes a case for asymmetric multicores

with one large core to accelerate the serial part of the execu-
tion time of an application, while many small cores are used
to execute the parallel part. In this section we investigate
if the same holds under the assumptions of Gustafson’s law
and the GSSE.
Under Amdahl’s law for asymmetric multicores, the serial

part is executed by one large core of size r BCEs and per-
formance perf(r). The parallel part, on the other hand, is
executed by both the n − r single-BCE cores and the large
core. Overall, this yields

SAmdahl
asymmetric(f, n, r) =

1
1−f

perf(r)
+ f

perf(r)+n−r

. (7)

Note that this equation assumes that perfect dynamic schedul-
ing is performed, i.e, the large core performs a larger part of
the parallel fraction than the single-BCE cores.
Similarly, we obtain

SGustafson
asymmetric(f, n, r) =

1− f + f · n
1−f

perf(r)
+ f ·n

perf(r)+n−r

(8)

and

SGeneral
asymmetric(f, n, r) =

1− f + f · scale(n)
1−f

perf(r)
+ f ·scale(n)

perf(r)+n−r

(9)

These equations will be referred to as Gustafson’s law and
the GSSE for asymmetric multicores, respectively.
Figure 8 depicts the speedup attained by asymmetric mul-

ticores over a single-BCE core for n = 16 BCEs, while Fig-
ure 9 depicts the speedup curves for n = 256. Overall, the
results indicate that asymmetric multicores indeed provide a
performance advantage compared to symmetric multicores,
but when application scaling is considered, the performance
advantage is smaller, occurs for smaller values of f , and the
optimal size of the large core is smaller than under Amdahl’s
law for assymetric multicores. For example, when n = 16
and assuming perfect application scaling (Gustafson’s law),
Figure 8(b) shows that asymmetric multicores only provide
a performance advantage for f = 0.5 and in that case the
performance benefit (compared to when r = 1) is limited
to 1.22x. When non-perfect application scaling is assumed,
Figure 8(c) shows that asymmetric multicores also improve
performance for f = 0.9, but the performance benefit is
small (1.06x). When f = 0.5, the performance benefit pre-
dicted by the GSSE for asymmetric multicores is larger, but
smaller than predicted by Amdahl’s law for asymmetric mul-
ticores (1.73x versus 2.38x).
When n = 256, the speedup benefits of asymmetric mul-

ticores increase, but still the conclusions are different when
application scaling is considered. As depicted in Figure 9(b),
Gustafson’s law indicates that asymmetric designs still only
provide a substantial performance improvement for f = 0.5,
while Amdahl’s law suggests that they provide substantial
improvements for any value of f . The GSSE, on the other
hand, indicates that asymmetric multicores of n = 256 BCEs
also yield substantially higher performance for f = 0.9,
but unlike Amdahl’s law for asymmetric multicores, not for
f = 0.99. The equations that assume application scaling
also suggest that the optimal size of the large core is smaller
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Figure 8: Speedup of asymmetric multicores assum-
ing Amdahl’s law, Gustafson’s law, and the GSSE
for n = 16 BCEs.

than the size predicted by Amdahl’s law. For example, when
f = 0.5, Amdahl’s law indicates that half the chip resources
(128 BCEs) should be devoted to the large core and still the
speedup is limited to 20.9. Gustafson’s law (Figure 9(b)),
on the other hand, indicates that when the large core is
16 BCEs (6.3% of the chip resources), near optimal perfor-
mance and a speedup of 198 are achieved. This is a much
more optimistic result, since it is questionable if a core that
is 128 times larger than a base core can and should be built
with a performance that is 11.3 times as high. It is even
more questionable if the chip area should be statically di-
vided such that optimal performance is achieved for poorly
scalable applications with a serial fraction as large as 0.5, es-
pecially considering that such a static division will hurt the
performance of applications with larger parallel fractions.
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Figure 9: Speedup of asymmetric multicores assum-
ing Amdahl’s law, Gustafson’s law, and the GSSE
for n = 256 BCEs.

Under the GSSE when f = 0.9, an asymmetric multicore
with a large core of 16 BCEs performs slightly worse (1.05x)
than the optimal design (large core of 32 BCEs).

3.3 Dynamic Multicores
In a dynamic multicore, it is assumed that up to r cores

can be temporarily aggregated to accelerate the sequential
components of an application. During the parallel phases,
the resources are divided into n 1-BCE cores again to attain
maximum speedup during the parallel phases. As indicated
by Hill and Marty, helper threads conceptually boost the
performance of a single core, since the helper threads may
e.g. prefetch data needed by the sequential main thread.
Furthermore, two dynamic multicore designs were presented
at ISCA 2010: WiDGET [18] and Forwardflow [7].



Amdahl’s law suggests that we should use a large dynamic
core of r BCEs during the serial phases and n single-BCE
cores during the parallel phases. The speedup achieved by
such a dynamic multicore processor over a single-BCE core
is given by:

SAmdahl
dynamic(f, n, r) =

1
1−f

perf(r)
+ f

n

. (10)

Gustafson’s law and the GSSE for dynamic multicores are
obtained similarly:

SGustafson
dynamic (f, n, r) =

1− f + f · n
1−f

perf(r)
+ f ·n

n

=
1− f + f · n

1−f
perf(r)

+ f
(11)

and

SGeneral
dynamic(f, n, r) =

1− f + f · scale(n)
1−f

perf(r)
+ f ·scale(n)

n

. (12)

Figure 10 (for n = 16 BCEs) and Figure 11 (for n = 256
BCEs) depict the speedups calculated using these equations
as a function of the size (in BCEs) of the large dynamic core.
While these figures display the results for up to a large dy-
namic core of n BCEs, practical considerations might keep r
much smaller than n. Obviously, in all cases the speedup in-
creases with the size of the large dynamic core. But similar
to asymmetric designs, the advantage of a dynamic multi-
core is more pronounced under Amdahl’s law than under
Gustafson’s law and the GSSE. For example, when n = 16,
Gustafson’s law and the GSSE indicate that dynamic mul-
ticores only provide a significant (more than 20%) perfor-
mance improvement when f = 0.5. A large analytical per-
formance improvement is important, since a dynamic mul-
ticore naturally incurs a higher overhead than asymmetric
designs, as additional data paths are needed to be able to
aggregate several cores. Even when n = 256, if perfect ap-
plication scaling is assumed (Figure 11(b)), dynamic mul-
ticores only provide a significant performance improvement
for f = 0.5. When less than perfect application scaling is
assumed (Figure 11(c)), dynamic multicores also provide a
significant advantage for f = 0.9, but if the dynamic large
core consists of 16 BCEs with a performance that is 4 times
higher than that of a single BCE, a speedup of 170.5 is at-
tained (versus 232 for r = 256), which is much better than
the speedup of 35.1 for r = 16 (versus 102 for r = 256)
achieved under Amdahl’s assumptions. This also has a pos-
itive implication, since it is questionable if a dynamic large
core of 256 BCEs with a performance that is 16 times higher
than that of a single BCE can be constructed. If we opti-
mistically assume that it takes one cycle to route a signal
through one BCE and that the BCEs have to be layed out
in 2D space, it takes at least 16 cycles to route an operation
from the middle of the chip to a functional unit of a core at
the corner. It is doubtful if such large operation latencies
can be completely hidden.

Figure 12 depicts the speedup of the optimal dynamic
design (with a dynamic large core of r = n BCEs) over the
optimal asymmetric design. It is easy to see that this can be
at most 2, since we can devote half of the asymmetric mul-
ticore chip to the large core and the other half to n/2 small
(single-BCE) cores. Not suprisingly, under all three scal-
ing equations, dynamic multicores provide a performance
advantage over asymmetric designs (by at most 1.63x). It
remains to be seen, however, if this is achievable in practice
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Figure 10: Speedup of dynamic multicores assuming
Amdahl’s law, Gustafson’s law, and the GSSE for
n = 16 BCEs.

since dynamic multicores naturally incur a higher overhead
than asymmetric designs. Under Gustafson’s law, however,
dynamic multicores only provide a significant performance
advantage if f = 0.5. Somewhat surprisingly, the largest
improvement is obtained under the GSSE (for f = 0.5 and
n = 256) However, it needs to be kept in mind that this is
for a dynamic large core of r = 256 BCEs, while practical
considerations might keep r much smaller than its maxi-
mum of n. If we limit the size of the large core to 16 BCEs,
the speedup of the optimal dynamic design over the opti-
mal asymmetric design is less than 1.01 when the GSSE is
assumed. Furthermore, the performance advantage of dy-
namic multicores over asymmetric designs diminishes when
f increases under Gustafson’s law and the GSSE, while un-
der Amdahl’s law this is not necessarily the case.
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Figure 11: Speedup of dynamic multicores assuming
Amdahl’s law, Gustafson’s law, and the GSSE for
n = 256 BCEs.

4. CONCLUSIONS
The main contribution of this paper is two-fold. First,

we have presented a generalized scaled speedup equation
(GSSE) that encompasses both Almdahl’s and Gustafson’s
law by substituting the appropriate application scaling func-
tion. Second, we have applied Amdahl’s and Gustafson’s
law and the generalize scaled speedup equation to the area-
performance model developed by Hill and Marty, and showed
that substantially different results are obtained. While Am-
dahl’s law makes a strong case for asymmetric and dynamic
multicores, Gustafson’s law and the GSSE show that asym-
metric and dynamic multicores can still provide a perfor-
mance advantage over symmetric multicores, but much less
so than under Amdahl’s assumptions.
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Figure 12: Speedup of optimal dynamic design over
optimal asymmetric design assuming Amdahl’s law,
Gustafson’s law, and the GSSE for n = 16 and n = 256
BCEs.

The point of this paper is not to question the contribu-
tion of Hill and Marty. On the contrary, we thank them
for starting a stimulating discussion (see Acknowledgment).
Furthermore, under the assumption that future multicore
will be used to accelerate fixed-size applications, their con-
clusions still hold. The main point of this paper is, however,
that one has to consider the scaling properties of the targeted
applications. One cannot simply take Amdahl’s law and use
it to determine the organization of next-generation multi-
cores. Moreover, it seems unlikely that multicores should
be organized such that optimal performance is achieved for
parallel applications with a serial fraction as large as 0.5. It
also seems unlikely that general-purpose multicore proces-
sors will be time-shared and thus at any time execute a single
application. It is more likely that they will be space-shared
and time-shared between several applications. Such a sce-
nario indicates that a design with a few (but not one) large
(but not huge) cores and several (but not too many) small
cores will provide optimal throughput. The few large cores
will be used to execute single-threaded applications and ap-
plications with large serial fractions as well as to accelerate
the serial phases of applications with moderate serial frac-
tions. The several small cores will be used to execute the
parallel phases of several applications in a time-shared man-
ner.



Many possibilities for future work exist. Like Hill and
Marty, we have assumed that the performance is limited
by area. One could also consider, for example, power con-
straints [14], pin count constraints, as well as Thermal De-
sign Power, area/performance, power/performance, ITRS
scaling factors, memory bandwidth, workload behavior, etc. [5].
One could consider a multi-application scenario as described
above and analyze how this affects the results. Another pos-
sibility would be to determine how the parallel fraction scales
with the problem size for typical applications. We note that
this would be somewhat reminiscent to iso-efficiency analy-
sis [8]. Iso-efficiency analysis, however, can only be applied
to relatively simple and well-understood parallel algorithms
and architectures. The simplicity of Amdahl’s law, Gustaf-
son’s law, and the GSSE is both their strength as well as
their weakness.
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