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Abstract. We study Krylov subspace methods for solving unsymmetric linear algebraic systems
that minimize the norm of the residual at each step (minimal residual (MR) methods). MR methods
are often formulated in terms of a sequence of least squares (LS) problems of increasing dimension.
We present several basic identities and bounds for the LS residual. These results are interesting
in the general context of solving LS problems. When applied to MR methods, they show that the
size of the MR residual is strongly related to the conditioning of different bases of the same Krylov
subspace. Using different bases is useful in theory because relating convergence to the characteristics
of different bases offers new insight into the behavior of MR methods.

Different bases also lead to different implementations which are mathematically equivalent but
can differ numerically. Our theoretical results are used for a finite precision analysis of implementa-
tions of the GMRES method [Y. Saad and M. H. Schultz, SIAM J. Sci. Statist. Comput., 7 (1986),
pp. 856–869]. We explain that the choice of the basis is fundamental for the numerical stability of
the implementation. As demonstrated in the case of Simpler GMRES [H. F. Walker and L. Zhou,
Numer. Linear Algebra Appl., 1 (1994), pp. 571–581], the best orthogonalization technique used for
computing the basis does not compensate for the loss of accuracy due to an inappropriate choice of
the basis. In particular, we prove that Simpler GMRES is inherently less numerically stable than
the Classical GMRES implementation due to Saad and Schultz [SIAM J. Sci. Statist. Comput., 7
(1986), pp. 856–869].
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1. Introduction. Consider a linear algebraic system Ax = b, where A ∈ RN,N

is a nonsingular matrix (generally unsymmetric) and b ∈ RN . Krylov subspace meth-
ods for solving such systems start with an initial approximation x0, compute the
initial residual r0 = b−Ax0, and then determine a sequence of approximate solutions
x1, . . . , xn, . . . such that xn belongs to the linear manifold determined by x0 and the
nth Krylov subspace

xn ∈ x0 + Kn(A, r0), Kn(A, r0) ≡ span{r0, Ar0, . . . , A
n−1r0} .(1.1)

The nth residual then belongs to the manifold given by r0 and the shifted Krylov
subspace (also called the Krylov residual subspace)

rn ≡ b−Axn ∈ r0 + AKn(A, r0) .(1.2)
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1504 J. LIESEN, M. ROZLOŽNÍK, AND Z. STRAKOŠ

The choice of xn is based on some particular additional condition. In this paper we
focus on the minimal residual (MR) principle

‖rn‖ = min
u∈x0+Kn(A,r0)

‖b−Au‖ ,(1.3)

which can be equivalently formulated as the orthogonal projection principle

rn ⊥ AKn(A, r0) .(1.4)

Since A is assumed to be nonsingular, both (1.3) and (1.4) determine the unique
sequence of approximate solutions x1, . . . , xn; see [26]. Mathematically (in exact
arithmetic), there are several different methods and many of their algorithmic vari-
ants for generating this sequence. Computationally (in finite precision arithmetic),
however, different algorithms for computing the same mathematical sequence may
produce different results.

We will call the Krylov subspace methods (1.1) generating mathematically the
approximate solutions x1, . . . , xn uniquely determined by the MR principle (1.3) (or
by the equivalent orthogonal projection principle (1.4)) MR Krylov subspace methods
(MR methods).

The MR principle (1.3) represents a least squares (LS) problem, and thus MR
methods are often described as a sequence of LS least problems of increasing di-
mension [26]. In this paper we use general results about LS residuals to analyze
the properties of different implementations of MR methods in exact as well as finite
precision arithmetic. Our approach is as follows.

In section 2 we present several basic identities and bounds for the norm of the
residual r = c − By of the overdetermined LS problem Bu ≈ c. Specifically, our
results relate ‖r‖ to the singular values of the matrix [cγ,B], where γ > 0 is a scaling
parameter, and occasionally some other data. Results of this type have been presented
in the literature before (see, e.g., [29]), and they are of importance in studying LS
problems in general. While our main focus is on MR methods, only a part of our
general LS results are used later in the paper. We believe, however, that the presented
LS results which are not directly applied here might be found useful in the context of
MR methods in the future.

In section 3 we apply results from section 2 to MR methods for the problem
Ax = b. In particular, we relate the norm of the MR residual to the conditioning of
different bases of Kn(A, r0). We derive several necessary and sufficient conditions for
fast convergence as well as for stagnation of MR methods. Our results are significantly
stronger and more complete than the corresponding results published previously [16,
17]. We point out that our results should not be interpreted as bounds for measuring
convergence. As demonstrated in the further sections, results relating residual norm
to the conditioning of different bases lead to a new understanding of MR methods.

Section 4 describes the main examples of the MR methods, in particular various
forms of the GMRES method [26]. We then apply our theoretical results about the
MR residual to finite precision analysis of the important implementations in section 5.
Our results explain why the choice of the basis is fundamental for the numerical stabil-
ity of the implementation. As demonstrated on the example of Simpler GMRES [34],
which constructs in exact arithmetic an orthonormal basis of AKn(A, r0), the best
orthogonalization technique (Householder reflections) in computing the basis does
not compensate for the loss of accuracy due to the inappropriate choice of the basis.
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LEAST SQUARES AND MINIMAL RESIDUAL METHODS 1505

Simpler GMRES is proved inherently less stable than the Classical GMRES implemen-
tation [26], which constructs in exact arithmetic an orthonormal basis of Kn(A, r0).
Our findings are illustrated by numerical experiments.

We denote by σi(·) the ith largest singular value and by σmin(·) the smallest
singular value of a given matrix. By κ(·) we denote the ratio of the largest to the
smallest singular value (condition number). We use ‖ · ‖ to denote the 2-norm, ei to
denote the ith vector of the standard Euclidean basis, and I to denote the identity
matrix.

2. Basic relations for the LS residual. As the MR methods can be expressed
as sequences of LS problems, it will prove useful to collect some basic relations for the
LS residual. We will recall some known results, prove several new results, and put
the ones known previously in a new context. Most of the results of this section will
be used in our analysis of MR methods later in the paper. We believe that they are
also of interest in the LS context in general.

Consider an overdetermined linear approximation problem

Bu ≈ c, B ∈ RN,n, c ∈ RN , n < N, rank(B) = n.(2.1)

We denote by y the LS solution of (2.1) and by r = c − By the corresponding LS
residual,

‖r‖ = ‖c−By‖ = min
u

‖c−Bu‖ .(2.2)

We introduce a real scaling parameter γ > 0 and consider a scaled version of (2.1),

Bz ≈ cγ, B ∈ RN,n, c ∈ RN , n < N, rank(B) = n.(2.3)

Note that if the right-hand side c is replaced in (2.1) and (2.2) by the scaled vector
cγ, the LS solution and the LS residual scale trivially to z = yγ and rγ. We start
with general identities relating r to the matrix [cγ,B].

Theorem 2.1. Suppose that [c,B] ∈ RN,n+1 has full column rank, and r �= 0 is
the residual of the LS problem (2.1)–(2.2). Let γ > 0 be a real parameter. Then

eT1 [cγ,B]† =
rT

γ‖r‖2
and γ‖r‖ =

1

{eT1 ([cγ,B]T [cγ,B])−1e1}
1
2

,(2.4)

where X† denotes the Moore–Penrose generalized inverse of a matrix X.
Proof. For any matrix X the Moore–Penrose pseudoinverse X† satisfies XX†X =

X (see, e.g., [5]), which using the symmetry of XX† gives XT = XTXX†. Substi-
tuting X = [cγ,B], we receive the following simple identities:

γrT = [1,−γyT ] [cγ,B]T = [1,−γyT ] [cγ,B]T [cγ,B][cγ,B]†

= γrT [cγ,B][cγ,B]† .

Since r is orthogonal to the columns of B, γrT [cγ,B] = γ2(rT c) eT1 = γ2‖r‖2 eT1 ,
which proves the first part of the theorem. The second part follows from the identity
‖eT1 [cγ,B]†‖2 = eT1 ([cγ,B]T [cγ,B])−1e1 , which can be verified by a straightforward
calculation.

The first equality in (2.4) was essentially proven (though neither the statement
nor the proof were formulated explicitly in the form presented here) in [28, relations
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1506 J. LIESEN, M. ROZLOŽNÍK, AND Z. STRAKOŠ

(2.5), (2.6), (3.7), and (3.8)]. Later it was presented (with γ = 1) in [16, Lemma 7.1]
(see also other references therein).

It is important to notice that for an arbitrary nonsingular matrix M ∈ Rn,n,

‖r‖ = ‖c−By‖ = ‖c− (BM)(M−1y)‖ = min
u

‖c− (BM)u‖ .

As a consequence of this simple observation, (2.4) will hold when B is replaced by
BM . A particularly useful choice is M = R−1, where R is the upper triangular factor
of a QR-factorization of B.

Corollary 2.2. Using the assumptions and the notation of Theorem 2.1, and a
QR-factorization B = QR of the matrix B,

eT1 [cγ,Q]† =
rT

γ‖r‖2
and γ‖r‖ =

1

{eT1 ([cγ,Q]T [cγ,Q])−1e1}
1
2

.(2.5)

It may look a bit surprising that the first rows of the matrices [cγ,B]† and [cγ,Q]†

are identical. A second look reveals that this fact is simple and natural.
Consider a full column rank matrix X = [cγ,B] ∈ RN,n+1. Then the rows of

X† are linear combinations of the rows of XT (the transposed columns of X), and
X†X = I. The last relation can be interpreted geometrically as an orthogonal relation
between the rows of X† and the columns of X. Denote by s = eT1 X

† the first row
of X†. Then s is orthogonal to all but the first column of X; i.e., it is orthogonal to
the columns of the matrix B. Because s represents a linear combination of cT and
the transposed columns of B, it must be equal to a scalar multiple of the transposed
residual rT = (c− By)T for the LS problem (2.1)–(2.2). The identity (ζrT ) (cγ) = 1
then immediately gives ζ = γ−1‖r‖−2.

The orthogonality idea clearly applies with no change when B is replaced by any
matrix BM , where M ∈ Rn,n is nonsingular. The geometrical interpretation of the
generalized inverse is simple but revealing.

The following theorem relates the norm of the LS residual (2.2) to the singular
values of the matrices B, [cγ,B], and [cγ,Q]. This theorem plays a substantial role
in our further analysis.

Theorem 2.3. Suppose that [c,B] ∈ RN,n+1 has full column rank, and r �= 0 is
the residual of the LS problem (2.1)–(2.2). Let B = QR be a QR-factorization of the
matrix B and γ > 0 be a real parameter. Then

‖r‖ =
σmin([cγ,B])

γ

n∏
j=1

σj([cγ,B])

σj(B)
(2.6)

=
1

γ
σmin([cγ,Q])σ1([cγ,Q]).(2.7)

Furthermore,

κ([cγ,Q]) =
α +

(
α2 − 4γ2‖r‖2

)1/2
2γ ‖r‖ , ‖r‖ =

α

γ

κ([cγ, Q])

κ([cγ, Q])2 + 1
,(2.8)

where α ≡ 1 + γ2‖c‖2.
Proof. Using the orthogonality of the columns of the matrix Q, the right-hand

side c and the residual r are related by the identity

c = Qh + r, h ≡ QT c, ‖c‖2 = ‖h‖2 + ‖r‖2 .
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LEAST SQUARES AND MINIMAL RESIDUAL METHODS 1507

Now consider an orthogonal matrix U ∈ Rn,n, UTU = I, such that Uh = ‖h‖e1.
Then

[cγ,Q]T [cγ,Q] =

[
1 0
0 UT

] [
γ2‖c‖2 γ‖h‖eT1
γ‖h‖e1 I

] [
1 0
0 U

]
,(2.9)

[cγ,B]T [cγ,B] =

[
1 0
0 RT

]
[cγ,Q]T [cγ,Q]

[
1 0
0 R

]
.(2.10)

Identity (2.9) shows that all but two of the eigenvalues of [cγ,Q]T [cγ,Q] are equal to
one. The two remaining eigenvalues are easily determined as the eigenvalues of the
left principal two-by-two block,

σ2
1([cγ,Q]) =

α + (α2 − 4γ2‖r‖2)1/2

2
,(2.11)

σ2
min([cγ,Q]) =

α− (α2 − 4γ2‖r‖2)1/2

2
,(2.12)

where α ≡ 1 + γ2‖c‖2. (Notice that α2 − 4γ2‖r‖2 ≥ (1 − γ2‖c‖)2 ≥ 0.) Using

κ([cγ,Q]) = σ1([cγ,Q])/σmin([cγ,Q]),

(2.8) is obtained by a simple algebraic manipulation.
Evaluating the determinants on both sides of (2.9) yields

det([cγ,Q]T [cγ,Q]) = σ2
1([cγ,Q])σ2

min([cγ,Q]) = γ2‖r‖2,

which shows (2.7). Similarly, transformation (2.10) yields

det([cγ,B]T [cγ,B]) =

n+1∏
j=1

σ2
j ([cγ,B])

= det([cγ,Q]T [cγ,Q]) det(RTR) = γ2‖r‖2
n∏

j=1

σ2
j (B),

which proves (2.6).
The relations (2.8) generalize results presented in [19, section 5.5.2]. The identity

(2.6) (with γ = 1) was first shown by Van Huffel and Vandewalle [29, Theorem 6.9],
and it also appeared (with a different proof) in [20].

Van Huffel and Vandewalle [29, Theorem 6.10] gave the following lower and upper
bounds for ‖r‖ (with γ = 1) in terms of σmin([cγ,B]) (see also [20]). Let

δ(γ) ≡ σmin([cγ,B])/σmin(B).(2.13)

Then

σmin([cγ,B])

γ
≤ ‖r‖ ≤ σmin([cγ,B])

γ

{
1 − δ(γ)2 +

γ2‖c‖2

σ2
min(B)

} 1
2

.(2.14)
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1508 J. LIESEN, M. ROZLOŽNÍK, AND Z. STRAKOŠ

Bounds for ‖r‖ in terms of the minimal singular values of B and [cγ,B], and as
little additional information as possible, were studied in detail in [20]. In particular,
when B has full column rank and

c �⊥ {left singular vector subspace of B corresponding to σmin(B)},(2.15)

then the following bounds were given in [20]:

σmin([cγ,B]) {γ−2+ ‖y‖2} 1
2 ≤ ‖r‖

≤ σmin([cγ,B])

{
γ−2+

‖y‖2

1− δ(γ)2

} 1
2

.(2.16)

Though (2.14) can be derived from (2.16) (and not vice versa; see [20]), the upper
bound in (2.16) is not always tighter than the upper bound in (2.14). When δ(γ) ≈ 1
and ‖r‖ ≈ ‖c‖, it is possible for the upper bound in (2.14) to be smaller than that in
(2.16). However, in this case the upper bound in (2.14) becomes trivial. For details,
see [20].

For δ(γ) = 1 the upper bound in (2.16) does not exist. It was shown in [22] that
if (2.15) holds, then δ(γ) < 1 for all γ > 0. As explained in [22], the role of the
assumption (2.15) is truly fundamental. If it does not hold, both theory and compu-
tation in errors-in-variables modeling are enormously complicated by the possible case
δ(γ) = 1. Fortunately, nearly all practical problems will satisfy (2.15). Nevertheless,
it is instructive to consider possible cases where (2.15) does not hold, so that δ(γ) = 1
is possible.

The lower bound in (2.14) shows that we can make σmin([cγ,B]) arbitrarily small
by taking γ small and thus ensure δ(γ) < 1 in (2.13). How small must γ be to ensure
this? The next theorem answers a variant of this question. Given σmin(B) and ‖c‖,
it shows that there is a γ0 such that γ < γ0 ensures δ(γ) < 1, but γ = γ0 does not.

Theorem 2.4. Suppose that [c,B] ∈ RN,n+1 has full column rank, y is the
solution, and r �= 0 is the residual of the LS problem (2.1)–(2.2). Let γ > 0 be a real
parameter, and δ(γ) ≡ σmin([cγ,B])/σmin(B). Define γ0 ≡ σmin(B)/‖c‖. Then

δ(γ) < 1 for all γ < γ0.(2.17)

Moreover,

y = 0 (r = c) if and only if δ(γ0) = 1.(2.18)

Proof. Note that when γ < γ0, then ‖cγ‖ < σmin(B). Therefore σmin([cγ,B]) <
σmin(B), i.e., δ(γ) < 1.

Now assume that the LS problem (2.1)–(2.2) has the trivial solution y = 0 (r = c).
Then BT c = 0, which yields

[cγ,B]T [cγ,B] =

[
‖c‖2γ2 0

0 BTB

]
.

Thus, σmin([cγ,B]) = min {‖c‖γ, σmin(B)}, δ(γ) = min {‖c‖γ/σmin(B), 1}, and
δ(γ0) = 1. Conversely, (2.14) gives with γ = γ0,

δ(γ0) ‖c‖ ≤ ‖r‖ ≤ δ(γ0) ‖c‖ {2 − δ(γ0)
2}1/2,(2.19)

which for δ(γ0) = 1 reduces to ‖c‖ ≤ ‖r‖ ≤ ‖c‖, i.e., ‖r‖ = ‖c‖, which completes the
proof.
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LEAST SQUARES AND MINIMAL RESIDUAL METHODS 1509

We see that γ0 ≡ σmin(B)/‖c‖ represents an important number. For γ < γ0 the
value of δ(γ) is always strictly less than one, and δ(γ0) = 1 if and only if the LS
problem (2.1)–(2.2) has the trivial solution y = 0. Moreover, (2.19) shows that ‖r‖ is
significantly smaller than ‖c‖ if and only if δ(γ0) is significantly smaller than one. As
an application, we will show in section 3 how these results characterize stagnation or
near stagnation of MR methods.

One consequence of Theorem 2.4 can be stated as follows: Consider a rectangular
matrix (here B) having full column rank and an additional column (here cγ). If the
norm of the additional column is smaller than the smallest singular value of the matrix
(here if γ < γ0), then appending the column necessarily decreases the smallest singular
value. If the norm of the appended column is equal to the smallest singular value of
the matrix (here if γ = γ0), then appending the column to the matrix does not change
the smallest singular value if and only if the appended column is orthogonal to all
the columns (all the left singular vectors) of the original matrix. This is a somewhat
specialized result because of the norm of the added column fixed to σmin(B). Note
that the condition is linear. The general necessary and sufficient condition under
which adding a column (with a norm larger or equal to σmin(B)) to a matrix B
does not alter the smallest singular value was given in [22]. The added column must
be orthogonal to the left singular vector subspace of B corresponding to σmin(B),
and the left-hand side of the (deflated) secular equation [22, relation (3.4)] must be
nonnegative at σmin(B). Theorem 2.4 can also be derived from this. The second part
of the condition from [22] is nonlinear.

Theorem 2.4 and the consequence stated above must be understood in their proper
context. It was pointed out in [22] that nearly all practical problems will satisfy (2.15),
that any problem Bu ≈ c can be reduced to a core problem satisfying (2.15), and
that for many formulations it makes sense only to consider problems satisfying (2.15).
Also, if the problem satisfies (2.15), then δ(γ) < 1 for all γ > 0, and in this case
(2.17) and (2.18) are irrelevant. On the other hand, (2.19) seems to be a generally
useful result. Thus γ0 ≡ σmin(B)/‖c‖ is a significant quantity, as can be seen from
the interesting but rarely practical properties (2.17) and (2.18), and the interesting
and compact bounds (2.19). Note also that in many practical problems of interest,
γ0 ≡ σmin(B)/‖c‖ will be a very small number. In particular, this suggests that for
a general LS problem the above “column addition” result will be of minor practical
use. It is, however, important theoretically because it offers a new insight into the
stagnation or near stagnation of the MR methods.

Finally, for completeness, consider a QR-factorization B = QR. Replacing B by
BR−1 = Q and y by Ry (notice that ‖Ry‖ = ‖By‖) gives the analogies of (2.14) and
(2.16),

σmin([cγ,Q])

γ
≤ ‖r‖ ≤ σmin([cγ,Q])

γ
{1 − σ2

min([cγ,Q]) + γ2‖c‖2} 1
2 ,(2.20)

σmin([cγ,Q]) {γ−2+ ‖By‖2} 1
2 ≤ ‖r‖

≤ σmin([cγ,Q])

{
γ−2+

‖By‖2

1− σmin([cγ,Q])2

} 1
2

.(2.21)

Theorem 2.4 can be reformulated in a similar way. It is interesting to note that the
bounds (2.20) do not give additional information. Indeed, since σ1([cγ,Q]) ≥ 1, the
lower bound in (2.20) follows immediately from (2.7). And since {1− σ2

min([cγ,Q]) +
γ2‖c‖2}1/2 = σ1([cγ,Q]), the upper bound is a weak reformulation of (2.7) only.
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1510 J. LIESEN, M. ROZLOŽNÍK, AND Z. STRAKOŠ

In the following section we apply results of this section to the MR Krylov subspace
methods.

3. Characteristics of the basis and the size of the MR residual. Let
ρ0 ≡ ‖r0‖, v1 ≡ r0/ρ0, w1 ≡ Av1/‖Av1‖. Consider two sequences of orthonormal
vectors, v1, v2, . . . and w1, w2, . . ., such that for each iterative step n,

Kn(A, r0) = span{v1, . . . , vn}, Vn ≡ [v1, . . . , vn], V T
n Vn = I,(3.1)

AKn(A, r0) = span{w1, . . . , wn}, Wn ≡ [w1, . . . , wn], WT
n Wn = I.(3.2)

Then the MR principle (1.3) can be formulated as

‖rn‖ = min
u∈Rn

‖r0 −AVnu‖(3.3)

= min
u∈Rn

‖r0 −Wnu‖ .(3.4)

The MR residual at step n is therefore the LS residual for the LS problems AVnu ≈
v1ρ0 and Wnu ≈ v1ρ0.

The application of the results presented in section 2 to (3.3) and (3.4) is straight-
forward: For the nth step of an MR method we consider c ≡ r0 = v1ρ0, B ≡ AVn ,
Q ≡ Wn, and r ≡ rn . The scaling parameter γ > 0 offers some flexibility. While it
seems natural to use γ ≡ ‖r0‖−1 = ρ−1

0 , other values of γ also prove useful; cf. [21]
and our discussion below.

With γ ≡ ‖r0‖−1 = ρ−1
0 , Theorem 2.3 and relations (2.7) and (2.8) give the

following identities for the relative residual norm ‖rn‖/ρ0:

‖rn‖/ρ0 = σmin([v1, Wn]) σ1([v1, Wn])(3.5)

=
2κ([v1, Wn])

κ([v1, Wn])2 + 1
.(3.6)

Identities (3.5) and (3.6) show that the conditioning of the basis [v1, Wn] of the Krylov
subspace Kn+1(A, r0) is fully determined (except for an unimportant multiplicative
factor) by the convergence of the MR methods, and vice versa. In other words,

‖rn‖ = ρ0 if and only if κ([v1, Wn]) = 1,(3.7)

and the relative residual norm ‖rn‖/ρ0 is small if and only if [v1, Wn] is ill-conditioned.
The previous statement can also be mathematically expressed by inequalities.

Dividing both the numerator and the denominator in (3.6) by κ([v1,Wn]) gives in a
simple way the bounds

κ([v1,Wn])−1 ≤ ‖rn‖/ρ0 ≤ 2κ([v1,Wn])−1.(3.8)

The upper bound in (3.8) was published by Walker and Zhou [34, Lemma 3.1].
It is interesting to note that, because of (2.11),

1 ≤ σ1([v1,Wn]) ≤
√

2,(3.9)

which shows that the size of κ([v1,Wn]) is in fact determined by the smallest singular
value σmin([v1,Wn]).
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LEAST SQUARES AND MINIMAL RESIDUAL METHODS 1511

Relations between the size of the residuals of the MR methods and the condition
number of matrices [v1,Wn] and [r0,Wn] were studied in [19, section 5.5.2]. We will
generalize the result [19, relation (5.48)] and develop an elegant tool for quantification
of the influence of the scaling parameter γ.

Theorem 3.1. Let r0, rn, and Wn be as in (3.4), ρ0 ≡ ‖r0‖, v1 ≡ r0/ρ0, and
γ > 0. Then

κ([r0γ,Wn]) ≥ κ([v1,Wn]) +
γ (ρ0 − γ−1)2

2‖rn‖
.(3.10)

Proof. Using (2.8) with the particular choices c ≡ r0, Q ≡ Wn, γ > 0, and
c ≡ r0, Q ≡ Wn, γ ≡ ρ−1

0 = ‖r0‖−1 gives

κ([r0γ,Wn]) − κ([v1,Wn])

=
1 + γ2ρ2

0 + [(1 + γ2ρ2
0)

2 − 4γ2‖rn‖2]1/2

2γ‖rn‖
− 2 + [4 − 4ρ−2

0 ‖rn‖2]1/2

2ρ−1
0 ‖rn‖

=
γ−1 + γρ2

0 + [(γ−1 + γρ2
0)

2 − 4‖rn‖2]1/2 − 2ρ0 − [4ρ2
0 − 4‖rn‖2]1/2

2‖rn‖

=
γ (ρ0 − γ−1)2

2‖rn‖
+

[(γ−1 + γρ2
0)

2 − 4‖rn‖2]1/2 − [4ρ2
0 − 4‖rn‖2]1/2

2‖rn‖

≥ γ (ρ0 − γ−1)2

2‖rn‖
.

Clearly, κ([r0γ,Wn]) is minimal for γ = ρ−1
0 , and the minimum is equal to

κ([v1,Wn]) (see also [8]). If γ �= ρ−1
0 , then with the residual norm ‖rn‖ decreasing

towards zero the condition number κ([r0γ,Wn]) grows much faster than κ([v1,Wn]).
The results considering the matrix [r0γ,Wn] will be particularly useful for our dis-
cussion of MR implementations based on the orthogonal projection principle (1.4) in
section 5.

With c ≡ r0, r ≡ rn, y ≡ yn, and B ≡ AVn, (2.16) gives the following bounds for
the residual norm in terms of σmin([r0γ,AVn]):

σmin([r0γ,AVn]) {γ−2+ ‖yn‖2} 1
2 ≤ ‖rn‖

≤ σmin([r0γ,AVn])

{
γ−2+

‖yn‖2

1− δn(γ)2

} 1
2

,(3.11)

where δn(γ) ≡ σmin([r0γ,AVn])/σmin(AVn). As mentioned in section 2, the upper
bound in (3.11) becomes intriguing for δn(γ) ≈ 1, and for δn(γ) = 1 it is not defined.

The convergence of the MR methods and the situation δn(γ) = 1 or δn(γ) ≈ 1 are

related by Theorem 2.4. Define γ
(n)
0 ≡ σmin(AVn)/ρ0. Then δn(γ) < 1 for all γ < γ

(n)
0

and

‖rn‖ = ρ0 ⇔(3.12)

δn(γ
(n)
0 ) ≡ σmin([v1σmin(AVn), AVn])

σmin(AVn)
= σmin([v1, AVn/σmin(AVn)]) = 1.

Moreover, (2.19) gives

δn(γ
(n)
0 ) ≤ ‖rn‖/ρ0 ≤

√
2 δn(γ

(n)
0 ),(3.13)
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1512 J. LIESEN, M. ROZLOŽNÍK, AND Z. STRAKOŠ

which shows that the rate of convergence of the MR methods is determined by the

size of δn(γ
(n)
0 ). Summarizing, the MR methods stagnate in steps 1 through n if and

only if δn(γ
(n)
0 ) = 1, and they nearly stagnate in steps 1 through n if and only if

δn(γ
(n)
0 ) ≈ 1. However, this specific link between convergence of the MR methods

and the value of δn(γ) can be made for γ = γ
(n)
0 only. In particular, when δn(γ1) = 1

for some γ1 > γ
(n)
0 , the MR methods do not necessarily stagnate or nearly stagnate.

They may exhibit very fast convergence while δn(γ1) ≈ 1 and very slow convergence
while δn(γ1) � 1. (For more details, see [21].)

For γ = γ
(n)
0 there is an interesting relationship between the smallest singular

values of the matrices [v1, AVn/σmin(AVn)] and [v1,Wn]: (3.5), (3.9), and (3.13) yield

σmin([v1, AVn/σmin(AVn)]) ≤
√

2σmin([v1,Wn]) ≤ 2σmin([v1, AVn/σmin(AVn)]),

which shows that these smallest singular values are very close to each other.

Using the matrix [r0γ,AVn] instead of [v1,Wn] may seem unwise because it nec-
essarily brings into play the potentially ill-conditioned matrix AVn (in comparison
to Wn having orthonormal columns). However, as shown in [22, 21], bounds using
the matrix [r0γ,AVn] are very useful for the analysis of the modified Gram–Schmidt
implementation of Classical GMRES. Notice that the bounds (3.11) are not based on
singular values only. Using ‖yn‖, the norm of the MR approximate solution, makes
(3.11) amazingly tight [22]. The parameter γ offers flexibility required for the analysis
of the GMRES method [21].

It is also possible to consider other bases of the Krylov subspaces or Krylov
residual subspaces which lead to other matrices, identities, and bounds. For example,
Ipsen [16, 17] used the matrix Kn+1 = [r0, Ar0, . . . , A

nr0], got the identity

‖rn‖ = 1/‖eT1 K†
n+1‖(3.14)

(cf. Theorem 2.1), and developed the bound ‖rn‖/ρ0 ≥ 1/(‖Kn+1‖ ‖K†
n+1‖). How-

ever, any bound based directly on the matrix Kn+1 necessarily suffers from the po-
tential ill-conditioning of the matrix [Ar0, . . . , A

nr0]. Consider the QR-decomposition
[Ar0, . . . , A

nr0] = WnRn. In light of the results presented above (see, in particular,
(2.5), (3.5), and (3.6)), the upper triangular factor Rn containing all the potential
ill-conditioning of the matrix [Ar0, . . . , A

nr0] is mathematically in no relation what-
soever to the residual rn and to the convergence of any MR method measured by
the residual norm. Except for some (rather special) examples, bounds based on the
matrix Kn+1 are therefore necessarily much weaker than the bounds based on the
matrices [r0γ,Wn] and [r0γ,AVn].

In the following we use our theoretical results to obtain new insight into the
numerical behavior of MR methods.

4. Implementations of the MR methods. Numerous residual norm mini-
mizing Krylov subspace methods have been proposed in the last decades [18, 30, 35,
1, 11, 26]. Resulting from different approaches, they generate (under different assump-
tions) approximate solutions satisfying (1.3) and (1.4). Though they are, under some
particular assumptions, mathematically equivalent, they differ in various algorithmic
aspects, and, consequently, in their numerical behavior.

We will concentrate on two main approaches which explicitly compute the basis
vectors v1, v2, . . . , vn (respectively, v1, w1, . . . , wn−1) defined in (3.1) and (3.2). In the

D
ow

nl
oa

de
d 

12
/1

4/
17

 to
 1

30
.1

49
.1

76
.1

72
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



LEAST SQUARES AND MINIMAL RESIDUAL METHODS 1513

first approach, the approximate solution xn is expressed as

xn = x0 + Vn yn

for some yn, and the residual norm is bounded in terms of σmin([v1ρ0γ,AVn]) via
(3.11). In the second approach the approximate solution is expressed as

xn = x0 + [v1,Wn−1] tn

for some tn, and for the residual norm we have the identities (3.5)–(3.6). At first
sight the second approach seems more attractive because it gives a cleaner relation
between the residual norm (which is minimized at every step) and the conditioning
of the computed basis. Its implementation is also simpler. On the other hand, the
fact that the approximate solution is in this approach determined via the basis vec-
tors v1, w1, . . . , wn−1 which are not mutually orthogonal raises some suspicions about
potential numerical problems. In this section we recall implementations of both ap-
proaches resulting in different variants of the GMRES algorithm. In section 5 we will
discuss their numerical properties.

A variety of MR methods that do not explicitly compute the vectors v1, v2, . . . , vn
or v1, w1, . . . , wn−1 have been proposed. For example, the method by Khabaza [18]
uses the vectors r0, Ar0, . . . , A

n−1r0; Orthomin [30], Orthodir [35], Generalized Con-
jugate Gradient (GCG) [1, 2] and Generalized Conjugate Residual (GCR) [10, 11]
compute an ATA-orthogonal basis of Kn(A, r0). These methods played an important
role in the development of the field. In comparison to the approaches discussed in
this paper they are, however, less numerically stable. Therefore we will not consider
them below.

4.1. Minimal residual principle: Classical GMRES. Consider an initial
approximation x0 and the initial residual r0 = b− Ax0, ρ0 ≡ ‖r0‖. In their classical
paper [26], Saad and Schultz used the orthonormal basis (3.1) (Arnoldi basis). As
noted in [33], this basis can be mathematically expressed as the Q-factor of a recursive
columnwise QR-factorization

[r0, AVn] = Vn+1 [e1ρ0, Hn+1,n], Vn+1 ≡ [v1, . . . , vn+1], V T
n+1Vn+1 = I.(4.1)

Here Hn+1,n is an (n+1)-by-n upper Hessenberg matrix with elements hi,j , hj+1,j �=
0, j = 1, 2, . . . , n − 1. If at any stage hn+1,n = 0, the algorithm would stop with
[r0, AVn] = Vn [e1ρ0, Hn,n]. Using the substitution

xn = x0 + Vn yn(4.2)

and (4.1), the MR principle (1.3) gives the LS problem for the vector of coefficients
yn:

‖rn‖ ≡ ‖b−Axn‖ = min
y∈Rn

‖r0 −AVn y‖ = min
y∈Rn

‖Vn+1 (e1ρ0 −Hn+1,n y)‖(4.3)

= min
y∈Rn

‖e1ρ0 −Hn+1,n y‖.(4.4)

To solve (4.3) we apply orthogonal rotations J1, J2, . . . , Jn sequentially to Hn+1,n to
bring it to the upper triangular form Tn:

Jn · · ·J2J1 Hn+1,n =

[
Tn

0

]
.
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1514 J. LIESEN, M. ROZLOŽNÍK, AND Z. STRAKOŠ

The vectors yn and ‖rn‖ then satisfy

[
Tn yn
‖rn‖

]
= JT

1 JT
2 · · ·JT

n e1ρ0.(4.5)

The value of the (nonincreasing) residual norm is available without determining yn,
and it can be easily updated at each iteration, while yn+1 and xn+1 will usually differ
in every element from yn and xn, respectively. We refer to this algorithm as Classical
GMRES.

Several variants for computing the basis vectors v1, . . . , vn were proposed. Saad
and Schultz [26] considered the modified Gram–Schmidt process. Walker [32, 33]
presented Classical GMRES based on Householder transformations. Iterated classical
and iterated modified Gram–Schmidt versions were studied in [9].

A variety of parallel implementations [6, 3, 12, 23, 7, 27] use various techniques
to increase the parallel efficiency of the basically sequential basis-generating process.
Parallel aspects are out of the scope of this paper.

4.2. Orthogonal projection principle: Simpler GMRES. We now consider
an implementation of an MR method derived from the orthogonal projection principle
(1.4). The approach proposed by Walker and Zhou [34], called Simpler GMRES, uses
the orthonormal basis (3.2).

This basis is computed by a recursive columnwise QR-factorization of the matrix
[Ar0γ,AWn−1]. Based on Theorem 3.1 we set γ = ρ−1

0 , and we will use this value of
the scaling parameter γ throughout the rest of this paper. Then

A[v1,Wn−1] = [Av1, AWn−1] = WnSn, Wn ≡ [w1, . . . , wn], WT
n Wn = I,(4.6)

where Sn is an n-by-n upper triangular matrix with elements si,j , sj,j �= 0. If at
any stage sn,n = 0, the algorithm would stop with [Av1, AWn−1] = Wn−1[Sn−1, ŝn].
Using the substitution

xn = x0 + [v1,Wn−1] tn ,(4.7)

the vector tn ∈ Rn solves the LS problem

‖rn‖ ≡ ‖b−Axn‖ = min
t∈Rn

‖r0 −A[v1,Wn−1] t‖(4.8)

= min
t∈Rn

‖r0 −WnSn t‖ .(4.9)

Solving the LS problem (4.8)–(4.9) in a numerically stable way represents a more
subtle task then solving (4.3)–(4.4). The main difference is in handling the right-
hand side vector r0. In (4.3)–(4.4), r0 is expressed in terms of the vectors v1, v2, . . . , vn
simply as r0 = v1ρ0. In finite precision arithmetic, until the linear independence of
the vectors v1, v2, . . . , vn is lost, this expression is maximally accurate. On the other
hand, application of the orthogonal projection principle (1.4) directly to (4.8)–(4.9)
gives the upper triangular system

Sn tn = WT
n r0.(4.10)

As demonstrated in [25], computing the vector of coefficients tn from (4.10) leads to
numerical difficulties. Numerically more stable implementations are described next.

First consider the implementation of Simpler GMRES using the modified Gram–
Schmidt process for generating the basis vectors w1, . . . , wn. A properly implemented
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LEAST SQUARES AND MINIMAL RESIDUAL METHODS 1515

algorithm for solving the LS problem (4.8)–(4.9) applies the orthogonalization pro-
cess also to the right-hand side r0 (see [4, pp. 64–65]). Then, using the recur-
sive columnwise modified Gram–Schmidt QR-factorization of the extended matrix
[Av1, AWn−1, r0],

[Av1, AWn−1, r0] = Wn [Sn, zn] +

[
0,

rn
‖rn‖

] [
0

‖rn‖

]
,(4.11)

the vector tn solves the upper triangular system

Sn tn = zn.(4.12)

The jth component of zn ≡ (ζ1, . . . , ζn)T is determined by

ζj = wT
j (I − wj−1w

T
j−1) · · · (I − w1w

T
1 ) r0 = wT

j rj−1 ,(4.13)

where we use

rj = (I − wjw
T
j ) · · · (I − w1w

T
1 ) r0 = rj−1 − (wT

j rj−1) wj−1 .(4.14)

A complete algorithm of the modified Gram–Schmidt implementation of Simpler
GMRES is given in the appendix.

Now we consider the implementation of Simpler GMRES based on Householder
reflections. It transforms the matrix [Av1, AWn−1] into upper triangular form,

Pn · · ·P2P1 [Av1, AWn−1] =

[
Sn

0

]
,(4.15)

where Pj , j = 1, . . . , n, are elementary Householder matrices. (For details, see
[9, p. 312].) Then the transformed right-hand side is determined as

zn = [Pn · · ·P1 r0]{1:n},

where [·]{1:n} denotes the first n elements of a vector. The vector of coefficients tn is
determined from (4.12). A complete algorithm of the Householder implementation of
Simpler GMRES is given in the appendix.

Related to Simpler GMRES are stabilized Orthodir [31] and the recent ATA-
variant of GMRES [25]. Both compute an ATA-orthogonal basis of Kn(A, r0), and
thus each step of these methods requires about twice as much storage and also slightly
more arithmetic operations than Simpler GMRES. They are also numerically less sta-
ble than Simpler GMRES. On the other hand, they allow easier parallel implemen-
tations because they feature step by step updates of both the approximate solution
and the residual vectors.

5. Numerical stability. In this section we analyze and compare the numerical
stability of Classical and Simpler GMRES. As mentioned in section 4, different or-
thogonalization techniques for computing the columns of Vn or Wn can be applied.
Here we focus on implementations based on Householder transformations [32, 33] and
on the modified Gram–Schmidt process [26].

For distinction, we denote quantities computed in finite precision arithmetic (with
the machine precision ε) by bars. We assume the standard model of floating point
arithmetic (see, e.g., [15, equation (2.4)]). In our bounds we present only those terms
which are linear in ε and do not account for the terms proportional to higher powers
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1516 J. LIESEN, M. ROZLOŽNÍK, AND Z. STRAKOŠ

of ε. By pk(n,m,N), k = 1, 2, . . ., we denote low degree polynomials in the number of
iteration steps n, the maximum number of nonzeros per row in the system matrix m,
and the dimension of the system N . They are introduced in a number of places in the
text; some of them depend only on one or two variables. In all cases, pk(n,m,N) ≤
ckN

5/2, where ck > 0 is a constant independent of n,m, and N . This bound is,
in general, very pessimistic; it accounts for the worst possible case. For details,
see [9, 14, 24].

5.1. Classical GMRES. In the Classical GMRES implementation the com-
puted approximate solution x̄n satisfies

x̄n = x0 + V̄nȳn + gn,(5.1)

‖gn‖ ≤ ε‖x0‖ + p1(n) ε‖V̄n‖‖ȳn‖.

It was shown in [9, 14] that the computed matrix V̄n = [v̄1, v̄2, . . . , v̄n] satisfies the
recurrence

[r̄0, AV̄n] = V̂n+1 [ρ̄0e1, H̄n+1,n] + [fn, Fn] ,(5.2)

‖fn‖ ≤ p2(m,N) ε‖A‖‖x0‖ + p3(N) ε‖b‖,
‖Fn‖ ≤ p4(n,m,N) ε‖A‖‖V̄n‖,

where the matrix V̂n+1 has exactly orthogonal columns (V̂ T
n+1V̂n+1 = In+1). The

vector ȳn is a computed solution of the finite precision analogue of the transformed
LS problem (4.4), and r̄0 satisfies

‖r̄0 − (b−Ax0)‖ ≤ p5(m,N) ε‖A‖‖x0‖ + p6(N) ε‖b‖ .(5.3)

For details, we refer to [9] and also to [24, pp. 25–26].
Our goal is not to give a complete rounding error analysis of GMRES. (For

the Householder implementation of Classical GMRES this was published in [9], and
the modified Gram–Schmidt implementation of Classical GMRES has been analyzed
in [14, 24, 21].) We wish to explain that there is a potential weakness of Simpler
GMRES which may negatively affect its computational behavior in comparison with
Classical GMRES. For this purpose we can simplify our description of the GMRES
convergence. This allows us to avoid tedious details which would make reading of this
section difficult. We will describe the convergence of Classical GMRES by the norm
of the LS residual associated with the matrix AV̄n and the computed initial residual
r̄0:

‖r̂n‖ ≡ ‖r̄0 −AV̄nŷn‖ = min
y

‖r̄0 −AV̄ny‖.(5.4)

The analysis in [14, section 3] as well as numerical experiments confirm that for
Classical GMRES ‖r̂n‖ is close to the norm of the actually computed GMRES residual
‖b−Ax̄n‖.

It follows immediately from (2.14) that the residual norm (5.4) can be bounded
in terms of the minimal singular values of matrices [r̄0, AV̄n] and AV̄n as

σmin([r̄0, AV̄n]) ≤ ‖r̂n‖ ≤ σmin([r̄0, AV̄n])

{
1 − σ2

min([r̄0, AV̄n])

σ2
min(AV̄n)

+
‖r̄0‖2

σ2
min(AV̄n)

}1/2

.

(5.5)
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LEAST SQUARES AND MINIMAL RESIDUAL METHODS 1517

We see that convergence of the residual r̂n is closely related to ill-conditioning of the
matrix [r̄0, AV̄n]; i.e., decreasing ‖r̂n‖ leads to ill-conditioning of [r̄0, AV̄n]. Moreover,
it follows from (5.2) and from classical perturbation theory (see, e.g., [13, p. 449]),
that the minimum singular values of the matrices [r̄0, AV̄n] and [ρ̄0e1, H̄n+1,n] are
close to each other:

∣∣σmin([ρ̄0e1, H̄n+1,n]) − σmin([r̄0, AV̄n])
∣∣ ≤ ‖[fn, Fn]‖ .(5.6)

Consequently, decreasing ‖r̂n‖ leads to ill-conditioning of the matrix [ρ̄0e1, H̄n+1,n].
The vector ȳn from (5.1) is a computed solution of the LS problem

min
y

‖e1ρ̄0 − H̄n+1,ny‖.(5.7)

Using (5.2), the extremal singular values of H̄n+1,n can be bounded by

‖H̄n+1,n‖ ≤ ‖AV̄n‖ + ‖Fn‖ ≤ ‖A‖‖V̄n‖ + ‖Fn‖,(5.8)

σmin(H̄n+1,n) ≥ σmin(AV̄n) − ‖Fn‖ ≥ σmin(A)σmin(V̄n) − ‖Fn‖.(5.9)

When ‖r̂n‖ (and ‖b−Ax̄n‖) decreases, σmin([r̄0, AV̄n]) and σmin([ρ̄0e1, H̄n+1,n]) also
decrease. However, while the columns of V̄n (the Arnoldi vectors) keep their lin-
ear independence (while σmin(V̄n) ≈ 1), the condition number of the computed upper
Hessenberg matrix H̄n+1,n is essentially bounded by the condition number of A. Conse-
quently, until the linear independence of the Arnoldi vectors begins to deteriorate, the
solution ȳn of the transformed LS problem and the GMRES solution x̄n are affected
by rounding errors in a minimal possible way. This distinguishes Classical GMRES
from the other MR methods, in particular from Simpler GMRES. Finite precision
analysis of the QR-factorization of the matrix H̄n+1,n via Givens rotations and of
forming the GMRES solution can be found in [9] or [24, equations (4.6)–(4.12)].

It is important to note that not the orthogonality but the linear independence of
the columns of V̄n (measured by its extremal singular values) plays a decisive role in
the relations (5.8) and (5.9). If we use Householder reflections in the Arnoldi process,
the loss of orthogonality among the computed columns of V̄n and the extremal singular
values of V̄n are bounded independent of the system parameters

1 − p7(n,N) ε ≤ σn(V̄n) ≤ ‖V̄n‖ ≤ 1 + p7(n,N) ε.(5.10)

Moreover, it was shown in [9] that the Householder implementation of Classical
GMRES is backward stable. Assuming that a conjecture similar to (5.10) holds, the
same result can also be shown for the iterated classical or modified Gram–Schmidt
implementations; see [9].

In practical computations, cheaper orthogonalization techniques like the modified
Gram–Schmidt algorithm are used. It is well known that the orthogonality among
the columns of V̄n computed via the modified Gram–Schmidt process will gradually
deteriorate. However, from [14, equation (1.7) and Corollary 2.4] it follows that

‖V̂n − V̄n‖ ≤ p8(n,m,N) εκ([v̄1, AV̄n−1]),(5.11)

and the minimal singular value and the norm of V̄n are bounded by

1 − p9(n,m,N) εκ(A)

‖r̂n−1‖/ρ̄0
≤ σn(V̄n) ≤ ‖V̄n‖ ≤ 1 +

p9(n,m,N) εκ(A)

‖r̂n−1‖/ρ̄0
.(5.12)
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1518 J. LIESEN, M. ROZLOŽNÍK, AND Z. STRAKOŠ

The columns of V̄n will thus begin to lose their linear independence only after the
relative residual norm is reduced close to the level εκ(A). Up to that point the
modified Gram–Schmidt implementation of Classical GMRES behaves about as well
as the Householder implementation.

It was shown in [20, 21] that there is a tight relation between the normwise
backward error ‖b−Axn‖/(‖A‖‖xn‖+ ‖b‖) associated with the approximate solution
xn and the condition number of the matrix [r0, AVn]. A finite precision analogy of
this statement will prove normwise backward stability of the modified Gram–Schmidt
implementation of Classical GMRES. A formal proof will be given elsewhere.

The results in [20, 21] are based on (2.16). We could have also used (2.16) instead
of (2.14) in our derivation here, which would lead to tighter estimates. However, using
(2.14) makes our derivation much simpler, and the results are fully sufficient for our
purpose.

5.2. Simpler GMRES. In Simpler GMRES the approximate solution x̄n com-
puted in finite precision arithmetic satisfies

x̄n = x0 + [v̄1, W̄n−1] t̄n + gn,(5.13)

‖gn‖ ≤ ε‖x0‖ + p1(n) ε‖[v̄1, W̄n−1]‖ ‖t̄n‖.

Analogously to (5.2), for every iteration step n there exists a matrix Ŵn with exactly
orthonormal columns (ŴT

n Ŵn = I) such that

A[v̄1, W̄n−1] = ŴnS̄n + Fn,(5.14)

‖Fn‖ ≤ p4(n,m,N) ε‖A‖‖[v̄1, W̄n−1]‖.

The vector of coefficients t̄n is computed by solving the upper triangular system with
the matrix S̄n. From (5.14) the extremal singular values of the matrix S̄n are bounded
by

‖S̄n‖ ≤ ‖A[v̄1, W̄n−1]‖ + ‖Fn‖ ≤ ‖A‖‖[v̄1, W̄n−1]‖ + ‖Fn‖,(5.15)

σmin(S̄n) ≥ σmin(A[v̄1, W̄n−1]) − ‖Fn‖
≥ σmin(A)σmin([v̄1, W̄n−1]) − ‖Fn‖.(5.16)

The minimal singular value of the matrix [v̄1, W̄n−1] can further be related to the
minimal singular value of the matrix [r̄0/‖r̄0‖, Ŵn−1], where Ŵn−1 comes from the
recurrence (5.14),

σn([v̄1, W̄n−1]) ≥ σn([r̄0/‖r̄0‖, Ŵn−1]) − ‖[v̄1 − r̄0/‖r̄0‖, W̄n−1 − Ŵn−1]‖.(5.17)

For the condition number κ([r̄0/‖r̄0‖, Ŵn−1]) it follows from (3.6) that

κ([r̄0/‖r̄0‖, Ŵn−1]) =
‖r̄0‖ +

(
‖r̄0‖2 − ‖r̂n−1‖2

)1/2
‖r̂n−1‖

,(5.18)

where r̂n−1 ≡ (I − Ŵn−1Ŵ
T
n−1) r̄0 is the LS residual associated with the matrix

Ŵn−1, ‖r̂n−1‖ = miny ‖r̄0 − Ŵn−1y‖. The identity (5.18) proves that convergence

of the residual norm ‖r̂n−1‖ and ill-conditioning of the matrix [r̄0/‖r̄0‖, Ŵn−1] are
closely related.

Summarizing, small ‖W̄n−1 − Ŵn−1‖ means κ([v̄1, W̄n−1]) ≈ κ([r̄0/‖r̄0‖, Ŵn−1]).
(It can be shown that ‖v̄1− r̄0/‖r̄0‖‖ ≤ (N +4)ε; see [9].) Using (5.15) and (5.16), we
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LEAST SQUARES AND MINIMAL RESIDUAL METHODS 1519

conclude that decreasing ‖r̂n−1‖ may lead to ill-conditioning of the upper triangular
matrix S̄n, and thus to a potentially large error in computing the vector t̄n, indepen-
dent of the (well-) conditioning of the matrix A. This important fact may negatively
affect the numerical accuracy of the approximate solution x̄n in Simpler GMRES in
comparison to Classical GMRES.

Until S̄n becomes pathologically ill-conditioned, ‖r̂n‖ is (similarly to subsection
5.1) close to ‖b − Ax̄n‖. After that the behavior of ‖r̂n‖ and ‖b − Ax̄n‖ may be
significantly different.

We have seen that the relation between the condition number of the matrix S̄n and
the condition number of the matrix [r̄0/‖r̄0‖, Ŵn−1] (the decrease of ‖r̂n‖) is strongly
affected by the size of the term ‖W̄n−1 − Ŵn−1‖. In the Householder implementation
the computed matrix W̄n−1 is, up to a small multiple of the machine precision, close
to the matrix Ŵn−1 with exactly orthogonal columns,

‖W̄n−1 − Ŵn−1‖ ≤ p7(n,N) ε.(5.19)

It follows from (5.19) that the condition number κ([v̄1, W̄n−1]) is, up to terms pro-
portional to the machine precision, equal to κ([r̄0/‖r̄0‖, Ŵn−1]). In practice one fre-
quently observes that after ‖b−Ax̄n‖/‖r̄0‖ reaches some particular point the norm of
the computed vector t̄n starts to increase dramatically (the computed results become
irrelevant due to rounding errors), and the residual norm ‖b−Ax̄n‖ diverges.

For the modified Gram–Schmidt implementation we have

‖W̄n−1 − Ŵn−1‖ ≤ p8(n,m,N) εκ(A[v̄1, W̄n−1]).(5.20)

Because κ(A[v̄1, Ŵn−1]) is potentially much worse than κ([v̄1, AV̂n−1]), the linear in-
dependence of the columns of W̄n often begins to deteriorate much sooner than the
linear independence of the columns of V̄n in Classical GMRES. Until that point the
modified Gram–Schmidt and Householder implementations of Simpler GMRES be-
have similarly. In subsequent iterations, surprisingly, the behavior of the modified
Gram–Schmidt implementation of Simpler GMRES may be better than the behavior
of the Householder implementation. For the Householder implementation of Simpler
GMRES the true residual b − Ax̄n often diverges. This has been linked to the tight
relation between κ([r̄0/‖r̄0‖, Ŵn−1]) and κ([v̄1, W̄n−1]), and, consequently, to the re-
lation between the decrease of ‖r̂n‖ and the simultaneous increase of κ(S̄n). For the
modified Gram–Schmidt implementation, after reaching a certain point no such rela-
tions hold. The norm of t̄n does not diverge, and the norm of the true residual remains
(and often slightly oscillates) on or below the level corresponding to the turning point
for the Householder implementation.

5.3. Numerical experiments. The different behavior of Classical and Simpler
GMRES implementations is demonstrated by numerical examples with the matrix
FS1836 from the Harwell–Boeing collection, N = 183, κ(A) = 1.5 × 1011, ‖A‖ =
1.2× 109. Experiments were performed using MATLAB 5.2, ε = 1.1× 10−16. House-
holder and modified Gram–Schmidt orthogonalizations have been considered for both
Classical and Simpler GMRES. In all experiments we used x = (1, . . . , 1)T , b = Ax,
and x0 = 0 (‖r̄0‖ = ‖b‖).

Figures 1 and 2 illustrate characteristics of the transformed LS problem (5.7)
for the Householder and the modified Gram–Schmidt implementations of Classical
GMRES. In both figures horizontal dotted lines represent ‖A‖ and the minimal sin-
gular value σmin(A). The dashed lines show ‖H̄n+1,n‖, the norm of the computed
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Fig. 1. Householder implementation of Classical GMRES: ‖A‖ and σmin(A) (dotted lines),
‖H̄n+1,n‖ and σmin(H̄n+1,n) (dashed lines), σmin(V̄n) (solid line), and ‖ȳn‖ (dots).
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Fig. 2. Modified Gram–Schmidt implementation of Classical GMRES: ‖A‖ and σmin(A) (dot-
ted lines), ‖H̄n+1,n‖ and σmin(H̄n+1,n) (dashed lines), σmin(V̄n) (solid line), and ‖ȳn‖ (dots).

upper Hessenberg matrix (it almost coincides with ‖A‖), and the minimal singular
value σmin(H̄n+1,n). The solid line stands for σmin(V̄n), the minimal singular value
of the matrix of computed Arnoldi vectors, and the dots depict ‖ȳn‖, the norm of the
computed solution vector of (5.7). We see that until the linear independence of the
columns of V̄n in the modified Gram–Schmidt implementation begins to deteriorate,
Figures 1 and 2 are almost identical. There is no substantial growth in ‖ȳn‖ even
after the linear independence of the computed Arnoldi vectors is completely lost (cf.
Figure 2).
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Fig. 3. Householder implementation of Simpler GMRES: ‖A‖ and σmin(A) (dotted lines),
‖S̄n‖ and σmin(S̄n) (dashed lines), σmin(W̄n) (solid line), and ‖t̄n‖ (dots).
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Fig. 4. Modified Gram–Schmidt implementation of Simpler GMRES: ‖A‖ and σmin(A) (dotted
lines), ‖S̄n‖ and σmin(S̄n) (dashed lines), σmin(W̄n) (solid line), and ‖t̄n‖ (dots).

Similar quantities are illustrated in Figures 3 and 4 for the Householder and the
modified Gram–Schmidt implementations of Simpler GMRES. The dashed lines here
represent ‖S̄n‖, the norm of the computed upper triangular matrix, and its minimal
singular value σmin(S̄n). The dots denote ‖t̄n‖, the norm of the computed solution
of the upper triangular system with the matrix S̄n.

We see that the condition number of the matrix H̄n+1,n is in Figure 1 (the House-
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Fig. 5. Householder implementation of Classical and Simpler GMRES: Normalized true
residual norm ‖b − Ax̄n‖/‖b‖ (solid line—Classical GMRES, dashed line—Simpler GMRES), and
‖r̂n‖/‖b‖ (dots—Classical GMRES, dotted line—Simpler GMRES).

holder implementation of Classical GMRES) approximately bounded by the condition
number of A, and for Figure 2 (the modified Gram–Schmidt implementation of Clas-
sical GMRES) the same is true until σmin(V̄n) begins to deteriorate. In contrast, in
both implementations of Simpler GMRES, the minimal singular value of S̄n decreases
very soon far below σmin(A). Consequently, the accuracy of the computed vector t̄n
deteriorates, and for the Householder implementation ‖t̄n‖ diverges. Also note the
difference between σmin(V̄n) and σmin(W̄n) in Figures 2 and 4.

In Figure 5 we compare the convergence characteristics for the Householder im-
plementations of both Classical GMRES (‖b − Ax̄n‖/‖b‖ is represented by the solid
line, ‖r̂n‖/‖b‖ by dots) and Simpler GMRES (‖b − Ax̄n‖/‖b‖ is represented by the
dashed line, ‖r̂n‖/‖b‖ by the dotted line). Figure 5 illustrates our theoretical consid-
erations and shows that the true residual norm of the Householder implementation
of Simpler GMRES may after some initial reduction diverge. Figure 6 uses similar
notation for the illustration of the modified Gram–Schmidt implementations. The
residual norm of Simpler GMRES again exhibits worse behavior than the residual
norm corresponding to Classical GMRES.

6. Conclusions. MR methods can be formulated and implemented using differ-
ent bases and different orthogonalization processes. Using general theoretical results
about the LS residual, this paper shows that the choice of the basis is fundamental
for getting revealing theoretical results about convergence of MR methods. It is also
important for getting a numerically stable implementation. The choice of the com-
puted basis may strongly affect the numerical behavior of the implementation. It is
explained that using the best orthogonalization technique in building the basis does
not compensate for the possible loss of accuracy in a given method which is related to
the choice of the basis. In particular, it is shown that the classical implementation of
GMRES, which is based on the Arnoldi process starting from the normalized initial
residual (as proposed by Saad and Schultz), has numerical advantages over Simpler
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Fig. 6. Modified Gram–Schmidt implementation of Classical and Simpler GMRES: Normalized
true residual norm ‖b − Ax̄n‖/‖b‖ (solid line—Classical GMRES, dashed line—Simpler GMRES),
and ‖r̂n‖/‖b‖ (dots—Classical GMRES, dotted line—Simpler GMRES).

GMRES, which is based on the shifted Arnoldi process.

7. Appendix. Here we present the implementations of Simpler GMRES used
throughout the paper.

Modified Gram–Schmidt implementation of Simpler GMRES:

x0, r0 = b−Ax0, v1 = r0/‖r0‖, w0 = v1

n = 1, 2, . . .

wn = Awn−1

j = 1, 2, . . . , n− 1

wn ← wn − ρj,nwj , ρj,n = (wn, wj)

wn ← wn/ρn,n, ρn,n = ‖wn‖

Sn =

⎛
⎜⎝

Sn−1 ρ1,n

...
0 ρn,n

⎞
⎟⎠, S1 = (ρ1,1)

rn = rn−1 − ζnwn, ζn = (rn−1, wn)

Solve Sn tn = (ζ1, . . . , ζn)T

xn = x0 + [v1, w1, . . . , wn−1] tn
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Householder implementation of Simpler GMRES:

x0, r0 = b−Ax0, v1 = r0/‖r0‖, (ζ1, . . . , ζN )T = r0, w0 = v1

n = 1, 2, . . .

Compute Pn such that Pn Awn−1 = (ρ1,n, . . . , ρn,n, 0, . . . , 0)T

Sn =

⎛
⎜⎝

Sn−1 ρ1,n

...
0 ρn,n

⎞
⎟⎠, S1 = (ρ1,1)

(ζ1, . . . , ζN )T ← Pn (ζ1, . . . , ζN )

Solve Sn tn = (ζ1, . . . , ζn)T

rn = rn−1 − ζnwn

wn = P1 . . . Pn en

xn = x0 + [v1, w1, . . . , wn−1] tn
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