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Abstract. We study necessary and sufficient conditions that a nonsingular matrix A can be
B-orthogonally reduced to upper Hessenberg form with small bandwidth. By this we mean the
existence of a decomposition AV = V H, where H is upper Hessenberg with few nonzero bands,
and the columns of V are orthogonal in an inner product generated by a hermitian positive definite
matrix B. The classical example for such a decomposition is the matrix tridiagonalization performed
by the hermitian Lanczos algorithm, also called the orthogonal reduction to tridiagonal form. Does
there exist such a decomposition when A is nonhermitian? In this paper we completely answer
this question. The related (but not equivalent) question of necessary and sufficient conditions on A
for the existence of short-term recurrences for computing B-orthogonal Krylov subspace bases was
completely answered by the fundamental theorem of Faber and Manteuffel [SIAM J. Numer. Anal.,
21 (1984), pp. 352–362]. We give a detailed analysis of B-normality, the central condition in both
the Faber–Manteuffel theorem and our main theorem, and show how the two theorems are related.
Our approach uses only elementary linear algebra tools. We thereby provide new insights into the
principles behind Krylov subspace methods, that are not provided when more sophisticated tools are
employed.
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1. Introduction. The decompositional approach to matrix computations, for-
malized by Householder in the 1950s, is counted among the “Top 10” algorithmic
ideas of the 20th century [2]. One of the best known of these decompositions is the
tridiagonalization of a nonsingular hermitian matrix A; see, e.g., [7, Chapter 9.1.2]. In
a nutshell (and without specifying the respective matrix dimensions), for each nonzero
vector v there exists a matrix V with first column v, and a square tridiagonal ma-
trix H, such that AV = V H, and the columns of V are mutually orthogonal in the
Euclidean inner product. This decomposition is computed by the hermitian Lanczos
algorithm, and is sometimes called the orthogonal reduction to tridiagonal form. It is
easy to see, by comparing columns in the matrix equation AV = V H, that the first j
columns of V form a basis of Kj(A, v) ≡ span{v, . . . , Aj−1v}, the jth Krylov subspace
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ORTHOGONAL HESSENBERG REDUCTION 2149

generated by A and v. The importance of this reduction from a theoretical as well as
from a practical point of view can hardly be underestimated.

When A is nonhermitian, we are naturally led to ask for generalizations of the
orthogonal reduction to tridiagonal form. Specifically, we ask if there exists a hermi-
tian positive definite (HPD) matrix B such that a nonsingular nonhermitian A can
still be B-orthogonally reduced to an upper Hessenberg matrix with small bandwidth.
B-orthogonally here means that the columns of V are orthogonal in the B-inner
product.

This paper studies necessary and sufficient conditions on A that guarantee the
existence of such a B-orthogonal reduction. Our subject seems to be elementary, and
one might suspect that it is covered in many textbooks on numerical linear algebra.
However, while it appears to be common knowledge that the orthogonal reduction to
tridiagonal form does not exist in general, see, e.g., [7, p. 499], we are not aware of
any publication where the potential for generalizations has been thoroughly studied.

On the other hand, the related question of necessary and sufficient conditions
on A for the existence of a short-term recurrence for computing B-orthogonal Krylov
subspace basis vectors was completely solved by the fundamental theorem of Faber
and Manteuffel [4]. Denoting the columns of V by vj , we say that these vectors can
be computed by an (s + 2)-term recurrence, when only the previous s + 1 vectors,
vj−s, . . . , vj , are required to compute vj+1. For example, if the matrix H in the
decomposition AV = V H is tridiagonal, then the vectors vj are computed by a 3-
term recurrence. This is a key recurrence in many algorithms, including the famous
conjugate gradient method. One immediately expects that for a given matrix A the
existence of an (s+2)-term recurrence for computing a B-orthogonal Krylov subspace
basis is equivalent to B-reducibility of A to upper Hessenberg form with bandwidth
s+ 2. However, due to intricate details that are easily overlooked, this expectation is
in general false.

Our paper has the following goals. First, we give a thorough analysis of the
B-reducibility of a nonsingular matrix A to upper Hessenberg form with small band-
width. This is an interesting matrix property that apparently was not studied previ-
ously. Despite common belief, the necessary and sufficient conditions so that A has
this property are not the same as the necessary and sufficient conditions in the Faber–
Manteuffel theorem. This situation deserves to be clarified. Second, the proofs in this
paper use standard tools of linear algebra only. We thereby hope to provide some ad-
ditional insight into the necessity of the conditions in the Faber–Manteuffel theorem,
for which no elementary (linear algebra based) proof is known. Third, we intend to
improve the understanding of B-normality, the central necessary and sufficient con-
dition in our context, by completely characterizing the set of HPD matrices B with
respect to which a given matrix A is B-normal. Finally, our goal is to help in the
general understanding of the foundations of and principles behind Krylov subspace
methods.

The paper is organized as follows. In section 2 we discuss the basic algorithm
for B-orthogonal Hessenberg reduction of a matrix and for computing B-orthogonal
Krylov subspace bases. In section 3 we explain the sufficiency of B-normality in our
context, and study this important concept in detail. In section 4 we discuss the neces-
sity of B-normality. In section 5 we relate our results to the Faber–Manteuffel theorem
and the existence of short-term recurrences for computing B-orthogonal Krylov sub-
space bases. Concluding remarks in section 6 close the paper.

Throughout the paper we assume exact arithmetic. In particular, the word
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2150 JÖRG LIESEN AND PAUL E. SAYLOR

“computation” in this paper does not refer to a finite precision computation.

2. B-orthogonal reduction to upper Hessenberg form. Let A be any non-
singular N by N matrix, let v1 be any nonzero N -vector (v1 is assumed to be nonzero
to exclude trivialities), and let

Kj(A, v1) ≡ span {v1, Av1, . . . , A
j−1v1} for j = 1, 2, . . . ,(2.1)

denote the jth Krylov subspace generated by A and v1. It is well known that the
Kj(A, v1) form a nested sequence of subspaces of increasing dimension, and that there
exists an index

d = d(A, v1) ≡ dimKN (A, v1) ,(2.2)

which is often called the grade of v1 with respect to A, for which

K1(A, v1) ⊂ · · · ⊂ Kd−1(A, v1) ⊂ Kd(A, v1) = Kd+1(A, v1) = · · · = KN (A, v1) .

Furthermore, for each v1, d ≤ d(A), where d(A) denotes the degree of the minimal
polynomial of A.

For any N by N HPD matrix B, the function 〈·, ·〉B , defined by 〈x, y〉B ≡ y∗Bx
for N -vectors x and y, is a positive definite inner product. Suppose that, for a given
nonsingular matrix A, vector v1, and HPD matrix B, we want to compute bases of the
Krylov subspaces Kj(A, v1), for j = 1, 2, . . . , d, that are orthogonal with respect to
the inner product 〈·, ·〉B (B-orthogonal). In other words, we want to compute vectors
v1, v2, . . . , vd such that

span {v1, . . . , vj} = Kj(A, v1) , j = 1, . . . , d ,(2.3)

〈vj , vk〉B = 0 , j �= k, j = 1, . . . , d , k = 1, . . . , d .(2.4)

Starting from v1, this familiar and important task is performed by the following
basic algorithm:

vk+1 = Avk −
k∑

j=1

hjkvj , k = 1, . . . , d ,(2.5)

where

hjk =
〈Avk, vj〉B
〈vj , vj〉B

.(2.6)

Apparently, this algorithm is nothing but the classical Gram–Schmidt implementation
of Arnoldi’s method; see, e.g., [7, Chapter 9.4.1].

Rewriting (2.5) in the form

Avk = vk+1 +

k∑
j=1

hjkvj , k = 1, . . . , d ,

yields the matrix representation

A [v1, . . . , vk] = [v1, . . . , vk+1]

⎡
⎢⎢⎢⎢⎣

h11 · · · h1k

1
. . .

...
. . . hkk

1

⎤
⎥⎥⎥⎥⎦ ,(2.7)

D
ow

nl
oa

de
d 

12
/1

4/
17

 to
 1

30
.1

49
.1

76
.1

72
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



ORTHOGONAL HESSENBERG REDUCTION 2151

or

AVk = Vk+1Hk+1,k , k = 1, . . . , d− 1 ,(2.8)

where Hk+1,k is a (k + 1) by k unreduced upper Hessenberg matrix. Since vd+1 = 0,
the matrix representation for k = d may be written as

AVd = Vd

⎡
⎢⎢⎢⎢⎣

h11 · · · · · · h1d

1
. . .

...
. . .

. . .

1 hdd

⎤
⎥⎥⎥⎥⎦ = VdHd ,(2.9)

where Hd is a d by d unreduced upper Hessenberg matrix. The B-orthogonality of
the basis vectors, cf. (2.4), in this notation means that V ∗

d BVd is a diagonal matrix.

For given A, v1, and B, the decomposition (2.9) always exists and conditions
(2.3) and (2.4) define it uniquely up to scaling of the columns of Vd. There are in
fact several different algorithms that realize conditions (2.3) and (2.4). But in exact
arithmetic all these algorithms lead to a decomposition of the form

A(VdD) = (VdD) (D−1HdD) ,

where Vd and Hd are as in (2.9), and D is a nonsingular diagonal matrix. Clearly,
the nonzero pattern of Hd is invariant under diagonal similarity transformation, and
thus, for given A, v1, and B, conditions (2.3) and (2.4) lead to a uniquely defined
nonzero pattern of Hd.

In the following we will be mostly interested in this pattern, particularly in the
upper bandwidth of Hd. We call an upper Hessenberg matrix (s+2)-band Hessenberg,
if it has no nonzero entries above its sth superdiagonal. (Here the 0th superdiagonal
is the diagonal.) This gives rise to the following definition.

Definition 2.1. The nonsingular matrix A is B-reducible to (s + 2)-band Hes-
senberg form if there exists an HPD matrix B such that for each v1, either Hd in the
decomposition (2.9) is (s + 2)-band Hessenberg, or d ≤ s + 1.

Note that for each nonsingular matrix A, s ≥ 0 in Definition 2.1, since a 0- or
1-band Hessenberg matrix Hd is singular, which contradicts the nonsingularity of A.
Hence B-reducibility to 2-band Hessenberg (lower bidiagonal) form is the one with
smallest possible bandwidth that may occur. On the other hand, s ≤ d(A)−1 always
holds as well, since no matrix Hd in (2.9) can possibly have more than d(A) − 1
superdiagonals. The condition d ≤ s + 1 in Definition 2.1 covers the trivial cases in
which Hd has at most s+ 2 bands simply because it is of size at most s+ 1 by s+ 1.

The classical example is the one for s = 1, namely the reduction to tridiagonal
form (tridiagonalization) with respect to the Euclidean inner product (i.e., B = I).
For each nonsingular hermitian matrix A and each v1 the decomposition (2.9) exists,
where Hd is a tridiagonal (3-band Hessenberg) matrix and V ∗

d Vd is diagonal; see,
e.g., [7, Chapter 9.1.2].

In the following sections we will study sufficient (section 3) and necessary (sec-
tion 4) conditions that A is B-reducible to (s + 2)-band Hessenberg form. We will
then relate our result to the Faber–Manteuffel theorem, which gives necessary and
sufficient conditions on A so that for each v1, a B-orthogonal Krylov subspace basis
can be computed by an (s + 2)-term recurrence (section 5).
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2152 JÖRG LIESEN AND PAUL E. SAYLOR

3. Sufficiency and characterization of B-normality. Let us consider the
sufficient conditions that a given nonsingular matrix A is B-reducible to (s+ 2)-band
Hessenberg form. A trivial sufficient condition is that the minimal polynomial of A
has degree d(A) ≤ s + 1. Then, for each v1 we obtain d ≤ d(A) ≤ s + 1, and the
second sufficient condition in Definition 2.1 is always satisfied. Thus, if d(A) ≤ s+ 1,
then A is B-reducible to (s + 2)-band Hessenberg form for each HPD matrix B.

If d(A) > s + 1, we require that there exists an HPD matrix B so that for each
v1 with d > s + 1 the matrix Hd in (2.9) is (s + 2)-band Hessenberg, i.e., that

hjk = 0 for j + s + 1 ≤ k ≤ d .(3.1)

From (2.6) it follows that hjk = 0 if and only if

0 = 〈Avk, vj〉B = 〈vk, A+vj〉B ,

where A+ ≡ B−1A∗B is the B-adjoint of A.

Now suppose that A+ = ps(A) for a polynomial ps of degree s. Then, since each
vj is of the form vj = pj−1(A)v1,

A+vj = ps(A)pj−1(A)v1 ∈ Kj+s(A, v1) .

But then B-orthogonality of vk to span{v1, . . . , vk−1} = Kk−1(A, v1) for all k ≥ 2
shows that (3.1) indeed holds for j + s + 1 ≤ k ≤ d. We formally state the nontrivial
sufficient condition for B-reducibility of A to (s + 2)-band Hessenberg form in the
following definition.

Definition 3.1. If there exists an HPD matrix B such that

A+ ≡ B−1A∗B = ps(A)

for a polynomial ps of degree s, then the matrix A is called normal of degree s with
respect to B, or short B-normal(s).

Using this definition we can state our main theorem.

Theorem 3.2. The nonsingular matrix A is B-reducible to (s+ 2)-band Hessen-
berg form if and only if either A is B-normal(s), or d(A) ≤ s + 1.

Above we have shown sufficiency. Before we continue with necessity we will study
the important concept of B-normality in more detail. We start with a collection of
equivalent characterizations.

Theorem 3.3. For any matrix A the following are equivalent:

(1) There exists an HPD matrix B such that A+ = p(A) for a polynomial p.
(2) There exists an HPD matrix B such that AA+ = A+A.
(3) A is normalizable (similar to a normal matrix).
(4) A is diagonalizable.
(5) There exists an HPD matrix B such that A and A+ (for this B) have the

same complete set of B-orthogonal eigenvectors.

Proof. (1) ⇒ (2). Obviously, p(A)A = Ap(A) for each polynomial p.

(2) ⇒ (3). Assume (2) and define the matrix A ≡ B1/2AB−1/2, to which A is
similar. Then AA∗ = A∗A, i.e., A is normal.

(3) ⇔ (4). Suppose that A is normalizable, A = S−1MS with M normal. Since M
is diagonalizable [8, Condition 11], A is diagonalizable as well. If A is diagonalizable,
A = WDW−1 with D diagonal, it is obviously similar to the normal matrix D.

D
ow

nl
oa

de
d 

12
/1

4/
17

 to
 1

30
.1

49
.1

76
.1

72
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



ORTHOGONAL HESSENBERG REDUCTION 2153

(3) ⇒ (1). Again assume that A = S−1MS with M normal. Define B = S∗S,
which is HPD. By [8, Condition 17], M∗ = p(M) for some polynomial p, which implies
A+ = (S∗S)−1A∗(S∗S) = S−1M∗S = S−1p(M)S = p(A).

(3) ⇒ (5). If A = S−1MS with M normal, define B = S∗S, which is HPD.
By [8, Condition 11], there exist a unitary matrix U and a diagonal matrix D such
that M = U∗DU . Hence, A = (US)−1D(US), where the columns of the matrix
(US)−1 form a complete set of eigenvectors of A. It is easy to see that these are
B-orthogonal. In addition, A+ for this B is of the form A+ = (US)−1D∗(US), and
hence has the same set of eigenvectors as A.

(5) ⇒ (2). If there exists an HPD matrix B such that A+ = WΛW−1 and
A = WDW−1, where Λ and D are diagonal, then AA+ = WDΛW−1 = WΛDW−1 =
A+A.

The implications in Theorem 3.3 have appeared in the literature before. In par-
ticular, the equivalence of (1), (2), (4), and (5) was proven in [5, Theorem 5 and
Corollary 6], and later cited and used, for example, in [9, Theorem 4.4] and [1, p. 772].
However, the proofs in [5] are different from ours, as they do not directly make use
of the fact that B-normality is equivalent to normalizability. Because we use this
equivalence our proofs appear to be almost trivial, and the list of conditions in The-
orem 3.3 can be easily extended by exploiting the lists of equivalent conditions of
normality [3, 8], and rephrasing each such condition in terms of normalizability.

We will now characterize the HPD matrices B with respect to which a given
(diagonalizable) matrix is normal. Clearly, the matrix B might not be uniquely
defined. For example, if A itself is HPD, then it is normal with respect to B = I
and B = A.

As shown in Theorem 3.3, A is normal with respect to an HPD matrix B if and
only if it has a complete set of B-orthogonal eigenvectors. Let these eigenvectors wi be
scaled to have B-norm one, i.e. w∗

iBwi = 1, and suppose the wi are the columns of the
matrix W . Then W ∗BW = diag (w∗

iBwi) = I. This is equivalent to B = (WW ∗)−1.
On the other hand, let B = (WW ∗)−1, where the columns of W form any complete
set of eigenvectors of A. Then an easy calculation shows that AA+ = A+A, i.e., that
A is normal with respect to B. We thus have proven the following theorem.

Theorem 3.4. Suppose that the matrix A is diagonalizable. Then the set of all
HPD matrices B with respect to which A is normal is given by

{ (WW ∗)−1 : W is an eigenvector matrix of A } .(3.2)

The characterization (3.2) allows us to derive an expression for the unique B-
adjoint of A in case A is normal with respect to B.

Corollary 3.5. Suppose that the matrix A is diagonalizable, A = WΛW−1,
and that it is normal with respect to an HPD matrix B. Then the B-adjoint of A
corresponding to this B is given by

A+ = W Λ∗ W−1 .(3.3)

In particular, the B-adjoint of A is unique for all HPD matrices B with respect to
which A is normal. Moreover, A is B-normal(s) if and only if A is diagonalizable
and ps(Λ) = Λ∗ for a polynomial of degree s.

Proof. Each HPD matrix B with respect to which A is normal is of the form
(3.2). A direct computation shows that A+ = B−1A∗B has the form (3.3), which is
unique since it does not depend on the particular choice of W (similarly to A itself).
For the second part of the corollary, suppose that A is B-normal(s), i.e., A+ = ps(A)
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2154 JÖRG LIESEN AND PAUL E. SAYLOR

for a polynomial of degree s. Then A must be diagonalizable, A = WΛW−1, and
(3.3) shows that A+ = WΛ∗W−1 = ps(A) = Wps(Λ)W−1, which yields ps(Λ) = Λ∗.

The proof of the reverse implication is similar.
Remark 3.6. The second part of this corollary was also derived in [9, Theo-

rem B.1]. There the authors used a proof different from ours, and do not comment
on the uniqueness of the B-adjoint in general.

As shown by Corollary 3.5, the B-normal degree of a diagonalizable matrix is de-
termined by the location of its eigenvalues. It is well known that the B-normal(1) ma-
trices are precisely the diagonalizable matrices that have all eigenvalues on a straight
line in the complex plane [4, Lemma 3]. By sufficiency, each such matrix A is B-
reducible to 3-band Hessenberg (tridiagonal) form. The standard examples are the
hermitian and skew-hermitian matrices, that are all I-normal(1). Rare practical ex-
amples of B-normal(1) matrices that are normal with respect to an HPD matrix B �= I
were derived in [6].

When the eigenvalues of the diagonalizable matrix A do not lie on a line, A
must have B-normal degree s > 1. The question then arises about the lowest degree
polynomial ps for which ps(Λ) = Λ∗. A recent result of Khavinson and Świa̧tek [10]
shows that each harmonic polynomial of the form ps(z)−z̄, where ps is a polynomial of
degree s > 1, has at most 3s−2 complex zeros. Consequently, the class of B-normal(s)
matrices with s > 1 contains diagonalizable matrices that may have at most 3s − 2
distinct eigenvalues. This shows that the maximal size of the B-normal(s) matrices
for small s > 1 is severely limited. We illustrate the results of this section by an
example for s = 3.

Example 3.7. Consider the third degree harmonic polynomial

−1

8
z(z2 − 9) − z̄ , which has the 7 roots 0, ±1,

±5 ±
√
−7

2
.

We use the nonzero roots to define the diagonal nonsingular 6 by 6 matrix

A = diag

(
±1,

1

2
(±5 ±

√
−7)

)
.

By the second part of Corollary 3.5, this matrix is B-normal(3), and by (3.3) its
unique B-adjoint is given by A+ = A∗ = A. Theorem 3.4 shows that A is normal
with respect to all diagonal HPD matrices B. If we use any such matrix B and any v1

with d = 6 in the basic algorithm (2.5)–(2.6), then sufficiency in Theorem 3.2 shows
that the resulting matrix H6 in (2.9) is 5-band Hessenberg. In fact, A is B-reducible
to 5-band Hessenberg form for any diagonal HPD matrix B.

4. Necessary conditions. In this section we will show that the conditions in
Theorem 3.2 are necessary. To avoid confusion, we will in this section denote the grade
of the vector v1 with respect to A by d(A, v1), cf. (2.2). Furthermore, we assume that
the given nonsingular N by N matrix A is nonderogatory, i.e., that d(A) = N . This
assumption is made for notational convenience, and without loss of generality. In
case A is derogatory, we may in our derivation restrict to starting vectors v1 with
d(A, v1) = d(A) and all results will then hold for N replaced by d(A). We start our
discussion with proving an essential technical lemma.

Lemma 4.1. For a nonsingular and nonderogatory N by N matrix A there exists
an HPD matrix B such that

A+v1 ∈ Ks+1(A, v1) for all v1 with d(A, v1) = N ,(4.1)
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ORTHOGONAL HESSENBERG REDUCTION 2155

if and only if either A is B-normal(s) for 0 ≤ s ≤ N − 2, or s = N − 1.

Proof. We first prove sufficiency. Suppose that s = N − 1. Then for all v1 with
d(A, v1) = N , Ks+1(A, v1) = KN (A, v1) is equal to the whole (real or complex) N -
dimensional space and thus A+v1 ∈ KN (A, v1) holds for all HPD matrices B. Now
consider that 0 ≤ s ≤ N − 2 and that A is B-normal(s). This means there exists
an HPD matrix B for which A+ = ps(A) for a polynomial ps of degree s. Hence for
each v1, A

+v1 = ps(A)v1 ∈ Ks+1(A, v1).

We next prove necessity, the harder part. Suppose that there exists an HPD
matrix B such that (4.1) holds for some s with 0 ≤ s ≤ N − 2 (in case s = N − 1 we
are done). We need to show that A is B-normal(s).

Let A = [X1, . . . , Xl] diag(J1, . . . , Jl) [X1, . . . , Xl]
−1 denote the Jordan canonical

form of A, with the distinct eigenvalues λ1, . . . , λl. Since A is nonderogatory, only one
Jordan block corresponds to each eigenvalue and, hence, each Xm, m = 1, . . . , l, is a
Jordan chain. Then it is easy to show that the vectors v that satisfy d(A, v) = N are
precisely the vectors that have a nonzero component corresponding to the last vector
of each Jordan chain Xm. As a consequence, when we choose any v with d(A, v) = N ,
and any nonzero scalar γ with γ �= −λm for m = 1, . . . , l, then the vector w ≡ γv+Av
will satisfy d(A, v) = d(A,Av) = d(A,w) = N . In particular, we can find N linearly
independent vectors v, such that v, Av, and w ≡ γv +Av for each nonzero γ �= −λm,
m = 1, . . . , l, satisfy d(A, v) = d(A,Av) = d(A,w) = N .

Suppose that one such vector v is chosen, and let w ≡ γv + Av for some fixed
nonzero γ �= −λm, m = 1, . . . , l. Then d(A,w) = N , so that by (4.1), A+w ∈
Ks+1(A,w). Hence there exist coefficients α(w)

j , j = 0, . . . , s, such that

A+w =

s∑
j=0

α(w)

j Ajw

= γ

s∑
j=0

α(w)

j Ajv +

s∑
j=0

α(w)

j Aj+1v

= γα(w)

0 v +

s∑
j=1

(γα(w)

j + α(w)

j−1)A
jv + α(w)

s As+1v .(4.2)

Similarly, there exist coefficients α(v)

j and α(Av)

j , j = 0, . . . , s, such that

A+w = γA+v + A+(Av)

= γ

s∑
j=0

α(v)

j Ajv +

s∑
j=0

α(Av)

j Aj+1v

= γα(v)

0 v +

s∑
j=1

(γα(v)

j + α(Av)

j−1)Ajv + α(Av)

s As+1v .(4.3)

Now note that since d(A, v) = N and 0 ≤ s ≤ N − 2, the vectors v, . . . , As+1v are
linearly independent. Thus, the equality of (4.2) and (4.3) implies that

α(v)

0 = α(w)

0 ,(4.4)

γα(v)

j + α(Av)

j−1 = γα(w)

j + α(w)

j−1 , j = 1, . . . , s ,(4.5)

α(Av)

s = α(w)

s .(4.6)
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2156 JÖRG LIESEN AND PAUL E. SAYLOR

Let us define ηj ≡ α(Av)

j −α(v)

j for j = 0, . . . , s. By construction, the ηj do not depend
on γ. Moreover, we claim that ηj = 0 for j = 0, . . . , s.

If s = 0, then the set of conditions (4.5) is empty and our claim follows directly
from comparing (4.4) and (4.6). To show our claim for 1 ≤ s ≤ N − 2, we rewrite
(4.5) in the equivalent form

α(w)

j = α(v)

j +
1

γ
(α(Av)

j−1 − α(w)

j−1) , j = 1, . . . , s .(4.7)

Then (4.6) and (4.7) for j = s yield

ηs =
1

γ
(α(Av)

s−1 − α(w)

s−1) .

In this formula we can replace α(w)

s−1 by the right-hand side of (4.7) for j = s− 1,

ηs =
1

γ

(
α(Av)

s−1 − α(v)

s−1 −
1

γ
(α(Av)

s−2 − α(w)

s−2)

)
=

1

γ

(
ηs−1 −

1

γ
(α(Av)

s−2 − α(w)

s−2)

)
.

In the same way we now exploit (4.7) for j = s − 2, . . . , 1, and finally use (4.4) to
replace α(w)

0 by α(v)

0 . The result of this process is equivalent to the relation

s∑
j=0

(−1)s−j ηj γ
j = 0 .(4.8)

The coefficients ηj do not depend on γ, so that the left-hand side of (4.8) is a poly-
nomial in γ of degree at most s. Since γ is allowed to vary almost freely without
violating the assumption d(A, v) = d(A,Av) = d(A,w) = N (see above), but on the
other hand (4.8) must always hold, we conclude that ηj = 0 for j = 0, . . . , s.

To summarize, since d(A, v) = d(A,Av) = N , (4.1) implies that A+v = ps(A)v
and A+Av = qs(A)Av for two polynomials ps and qs of degree at most s, respectively.
But since we have just shown that ps = qs, we receive

A+Av = qs(A)Av = ps(A)Av = Aps(A)v = AA+v .

Since we can find N linearly independent vectors v for which this is true, we conclude
that A+A = AA+, and indeed A must be B-normal(s).

Remark 4.2. This lemma represents a strengthened version of a result of Faber
and Manteuffel [4, Lemma 2]. In their result, (4.1) is replaced by “A+v1 ∈ Ks+1(A, v1)
for all v1,” and their proof of necessity uses an eigenvector v1 of A, i.e., a vector v1 with
d(A, v1) = 1. Our proof is inspired by an idea of Voevodin and Tyrtyshnikov [12].

Necessity in Theorem 3.2. We now come to the main goal of this section,
namely the proof of necessity in Theorem 3.2. Our supposedly necessary condition
reads either A is B-normal(s), or N − 1 ≤ s. We will prove this by assuming the
opposite and then showing that A is not B-reducible to (s+2)-band Hessenberg form.

The opposite of our necessary condition is that A is not B-normal(s) and 0 ≤
s ≤ N − 2. But this is precisely the opposite of the nontrivial necessary condition in
Lemma 4.1. Therefore, Lemma 4.1 implies that for each HPD matrix B there exists
at least one vector v1 with d(A, v1) = N such that A+v1 /∈ Ks+1(A, v1). On the other
hand, since d(A, v1) = N , A+v1 ∈ KN (A, v1). Hence A+v1 is a linear combination of
the basis vectors v1, . . . , vN computed by (2.5),

A+v1 =

N∑
j=1

βjvj ,
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where (at least) one of the coefficients βj , s + 2 ≤ j ≤ N , is nonzero. Let this be the
coefficient with index k. Then, according to (2.6) and the B-orthogonality conditions
(2.4),

h1k =
〈Avk, v1〉B
〈v1, v1〉B

=
〈vk, A+v1〉B
〈v1, v1〉B

=
βk 〈vk, vk〉B
〈v1, v1〉B

�= 0 ,(4.9)

for an index k with s+2 ≤ k ≤ N . Consequently, A is not B-reducible to (s+2)-band
Hessenberg form, which completes the proof of necessity.

5. The existence of (s + 2)-term recurrences. We next relate Theorem 3.2
to the existence of an (s + 2)-term recurrence for computing B-orthogonal Krylov
subspace bases.

Suppose that, for a given nonsingular matrix A, vector v1, and HPD matrix B,
only the previous s + 1 vectors vk, vk−1, . . . , vk−s are required to compute vk+1, k =
1, . . . , d− 1, in (2.5). Then we say that the B-orthogonal basis v1, . . . , vd of Kd(A, v1)
is computed by an (s + 2)-term recurrence.

Note that the basic algorithm (2.5)–(2.6) has computed all basis vectors v1, . . . , vd
in step k = d − 1. Therefore, in terms of the matrix representation (2.8), the B-
orthogonal basis vectors are computed by an (s + 2)-term recurrence, if Hd,d−1 is
(s+2)-band Hessenberg. We stress that, unlike for the B-reducibility to (s+2)-band
Hessenberg form, we here use Hd,d−1 and not Hd. It is a subtle and easily overlooked
fact that the last column of Hd plays no role for the computation of the basis vectors
v1, . . . , vd. This column indeed may be full, and still the basis vectors are computed
by an (s + 2)-term recurrence.

Definition 5.1. The nonsingular matrix A admits an (s+2)-term recurrence, if
there exists an HPD matrix B so that for each v1, either Hd,d−1 in the decomposition
(2.8) is (s + 2)-band Hessenberg, or d ≤ s + 2.

The difference in the trivial conditions between this definition and Definition 2.1
(d ≤ s+2 versus d ≤ s+1) precisely corresponds to the different roles of the matrices
Hd,d−1 and Hd. We immediately realize that if a nonsingular matrix A is B-reducible
to (s + 2)-band Hessenberg form, then it also admits an (s + 2)-term recurrence.
The reverse implication, however, does not hold. In other words, B-reducibility to
(s + 2)-band Hessenberg form and admissibility of an (s + 2)-term recurrence are in
general not equivalent. As an example, consider any nonsingular 3 by 3 matrix A with
d(A) = 3. Then each v1 with d = 3 leads to an H3 of the form

H3 =

⎡
⎣ h11 h12 h13

1 h22 h23

0 1 h33

⎤
⎦ .

Trivially A admits a 3-term recurrence as each H3,2 has only 3 nonzero bands (here
s = 1). But B-reducibility to 3-band Hessenberg form requires that h13 = 0 for all v1.
Since d(A) = 3 > s + 1, this holds by Theorem 3.2 only when A is B-normal(1).

Necessary and sufficient conditions for admissibility of an (s+2)-term recurrence
were proven in the fundamental paper of Faber and Manteuffel [4].

Theorem 5.2 (Faber–Manteuffel theorem). The nonsingular matrix A admits
an (s + 2)-term recurrence if and only if either A is B-normal(s), or d(A) ≤ s + 2.

The proof of this result is based on a highly nontrivial and clever construction,
which, unfortunately, provides little insight into the necessity of B-normality. A
similar result was announced by Voevodin [11], but its proof by Voevodin and Tyr-
tyshnikov [12] is difficult to understand and appears to be unknown even to many
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2158 JÖRG LIESEN AND PAUL E. SAYLOR

specialists in the field. Comparing Theorem 3.2 with the Faber–Manteuffel theorem
yields the following important observation.

Corollary 5.3. The nonsingular matrix A with d(A) > s + 2 is B-reducible to
(s + 2)-band Hessenberg form if and only if it admits an (s + 2)-term recurrence.

In other words, in all cases of practical interest; i.e., when d(A) is “large” and s
is “small,” the two matrix properties studied in this paper in fact are equivalent.

6. Concluding remarks. The reader may now ask if we successfully tried to
prove necessity in the Faber–Manteuffel theorem using similar elementary (linear al-
gebra) means as for our Theorem 3.2. The answer is yes, we tried, but no, we were
unsuccessful. To explain the main difficulty, at least in our opinion, consider our
proof of necessity in section 4. We assume the opposite of the necessary conditions
and construct a certain nonzero entry h1k, s + 2 ≤ k ≤ N , in the first row of HN , cf.
(4.9). Hence HN cannot be (s + 2)-band Hessenberg, which leads to a contradiction
showing that the conditions are indeed necessary. Except for the range s+2 ≤ k ≤ N ,
we have no information about the location of the nonzero entry h1k. If we could show
that indeed h1k �= 0 for a k in the range s + 2 ≤ k ≤ N − 1, then HN,N−1 cannot be
(s + 2)-band Hessenberg either. This could subsequently be used to show necessity
in the Faber–Manteuffel theorem. However, it is apparently quite difficult to “fix” k
inside the range s + 2 ≤ k ≤ N − 1.
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