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  Abstract:   This article evaluates several adaptive 

approaches to solve the principal component analysis 

(PCA) problem applied on single-lead ECGs. Recent stud-

ies have shown that the principal components can indi-

cate morphologically or environmentally induced changes 

in the ECG signal and can be used to extract other vital 

information such as respiratory activity. Special interest 

is focused on the convergence behavior of the selected 

gradient algorithms, which is a major criterion for the 

usability of the gained results. As the right choice of learn-

ing rates is very data dependant and subject to movement 

artifacts, a new measurement system was designed, which 

uses acceleration data to improve the performance of the 

online algorithms. As the results of PCA seem very prom-

ising, we propose to apply a single-channel independent 

component analysis (SCICA) as a second step, which is 

investigated in this paper as well.  
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   Introduction 
 Principal component analysis (PCA) is a widely accepted 

method in statistical data analysis with respect to dimen-

sion reduction, feature extraction, data decorrelation, and 

whitening [ 14 ]. Moreover, PCA is usually performed as a pre-

processing step to independent component analysis (ICA), 

which, itself, is commonly used in the applications of blind 

source separation (BSS). In biosignal processing, statisti-

cal calculations like PCA and ICA, have gained increasing 

popularity in the past decades [ 6 ]. It has also been shown 

that even from a single-lead ECG, valuable information like 

morphologic variability, ventricular repolarization, atrial 

fibrillation or myocardial ischemia can be extracted by PCA 

[ 3 ]. Langley et al. have used PCA by eigenvalue and eigen-

vector decomposition to extract an ECG-derived respiration 

feature from a single-lead ECG [ 2 ,  16 ]. 

 The PCA problem can be stated as follows. Find an 

orthogonal transformation matrix  A  such that the ele-

ments of the centered measurement vector  x  become 

uncorrelated: 

  y  = Ax .  (1) 

 Thus, the covariance matrix of the transformed data set 

 y  is diagonal. It can be shown that PCA is equivalent to the 

variance maximization of the principal components (PCs), 

which are represented by the elements of  y  and that the solu-

tion of maximizing the variance is given by the unit-length 

eigenvectors of the covariance matrix   C x    of  x  [ 14 ]. Because 

of nonstationarity, it would be necessary to reestimate   C x    
and recalculate the eigenvectors periodically, which can be 

critical when high-speed processing of on line-arriving data 

samples is needed. This makes adaptive, computationally 

efficient online learning algorithms very attractive. Gradi-

ent algorithms based on the neural networks ’  (NN) learning 

rules allow the estimation of the eigenvectors without using 

second-order statistics at all [ 13 ]. It is also known that the 

more sophisticated ICA calculations can be implemented 

with the help of efficient online approaches [ 13 ], which has 

also attracted the attention of this paper. 

 In [ 18 ], we have evaluated different learning algo-

rithms in an attempt to extract respiratory activity out of 

single-lead ECGs acquired from the Physionet Database. 

As the results were quite promising, we decided to develop 

a new measurement system consisting of a wireless mul-

tichannel ECG sensor-module in combination with a 

piezo respiration belt sensor- module. This enables us to 

collect specific data sets and to gain quantitative results 

that help to evaluate the performance of the discussed 

approaches. In our study, we carried out dedicated exper-

iments to investigate the influence of movement artifacts 

on the learning processes of the estimated eigenvectors. 

It turns out that the additional acquired three-axis accel-

eration signals acquired by our hardware can be used to 
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significantly improve the outcome of the suggested algo-

rithms. Moreover, we devised special measurement pro-

cedures that aimed at detecting interruptions in breath-

ing  –  which might be helpful when dealing with apnea 

 –  and in tracking different breathing rates out of the sin-

gle-lead ECGs. Especially, therapies in the field of sleep 

medicine could greatly benefit from the online calculated 

results, as it might be possible to abstain from additional 

respiratory hardware completely. 

 The paper is organized as follows. In the first part of 

Theoretical backgrounds, we briefly depict the underlying 

PCA neural network layer, which is used to implement the 

indivi dual learning algorithms. It is also shown that this 

software framework can be flexibly used for adaptive ICA 

implementations. 

 In the second part of that section, a short overview of 

the selected gradient ascent algorithms and their respec-

tive learning rules is given, whereas the third part con-

cerns itself with the specific ECG processing approaches. 

Methodology introduces the data sets from the Physionet 

database and depicts the elaborated experimental setups, 

which were used to collect unique laboratory records. 

This part is followed by a short presentation of the before-

mentioned innovative measuring system emphasizing its 

capabilities and special features. The obtained results are 

presented and discussed in the second part of that paper, 

where the performance of the different algorithms is 

studied and possible applications of PCA and ICA applied 

to single-lead ECG data are evaluated. The last section fin-

ishes with the summarized conclusions.  

  Theoretical backgrounds 

  PCA neural network 

 A neat way for the online computation of the PCA 

expansion has been proposed by Oja, who introduced 

an artificial NN as an adaptive system layer that receives 

online-arriving streaming data and estimates the PCs [ 17 ]. 

This idea has led us to build a linear PCA layer as shown 

in  Figure 1 , which is used to implement the algorithms 

described in the next subsection. A global PCA object can 

contain several NN objects, which are, themselves, config-

urable by numerous neuron objects. Therefore, it is easily 

possible to implement arbitrary network configurations 

like multilayer and feedback structures. As there are also 

adaptive solutions to the ICA problem, which are based 

on the gradient algorithms estimating and minimizing 

measures of non-Gaussianity like kurtosis or negentropy 

[ 13 ], the proposed framework can be used for these tasks 

as well.   

  Learning algorithms 

 The learning algorithms work as an iteration process on 

the data set where the weight vectors,   w    i  , are adjusted in 

each step and finally converge to the corresponding eigen-

vectors. The gradient algorithm finds the local minima in 

a multidimensional contrast function,  ψ (  w  ), with the help 

of the update rule 
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 Figure 1      The PCA NN layer used by the online learning algorithms.    
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 in which   α  ( t ) specifies the learning rate. In the scope of 

this study, we selected five well-established learning rules 

from literature for implementation. 

 The stochastic gradient ascent (SGA) approach, which 

was introduced by Oja [ 17 ], can be seen as the pioneer-

ing work to implement an online computation of the 

PCA expansion. Basically, the gradient of the variance   
2

1y  

is estimated with respect to the weight vector   w   
1
 , which 

results in the general learning rule expressed in Equation 

3 [ 17 ]. 
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 A modification of this learning rule resulted in the 

generalized Hebbian algorithm (GHA) by Sanger [ 23 ], who 

revised the deflationary approach to calculate the minor 

components. An attempt to calculate all the components 

in parallel by using lateral connections within the NN 

was proposed by Kung et al. in their APEX algorithm [ 15 ]. 

Using a recursive least squares (RLS) principle to enhance 

the convergence behavior, which depends on the learning 

rate, has been suggested in the PASTd algorithm intro-

duced by Yang [ 25 ]. In this work, we have also evaluated 

a relatively new learning algorithm, which promises fast 

convergence speed and robust stability [ 22 ]. 

 In [ 9 ], the authors provide a real-time PCA (RTpca) 

implementation based on a DSP system to implement the 

following learning algorithm, 
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 Here,  T ∈  [0; 1] is the parameter that determines the 

convergence speed. 

 All considered algorithms have linear complexity. 

The point of interest focuses on the estimated eigenvec-

tors, which are compared against those gained by the 

classical closed-form computation of the covariance 

matrix,   C x   . At this stage, all the algorithms have been 

implemented in MATLAB. No sophisticated functions 

have been used so that porting them to C should be an 

easy task.  

  Online ECG processing 

 In the first step of the processing chain, a multidimen-

sional observation matrix is extracted from each sampled 

ECG channel. This is done by extracting a segment of 

 N  samples adjusted by the corresponding QRS complex. 

This step is iterated over a set of  M  QRS complexes, result-

ing in an  N  ×  M  observation matrix  X , which can be seen as 

the realizations of the random process  x . 

 The window length  N  has a significant influence on 

the behavior of the algorithms [ 3 ]. With respect to the 

ECG-derived respiration, Langley et al. pointed out that 

a segment size containing the length of a QRS complex 

provided the best results [ 16 ]. In the scope of this study, 

we also found extracting a whole QRS complex to be most 

promising and, therefore, set the window size to  N  =  41  

samples ( 164  ms). 

 When working with the data sets downloaded from 

the Physionet Database, the professionally annotated QRS 

complexes have been used. When processing our own 

data sets, we have been using a filterbank algorithm for 

reliable QRS complex detection [ 1 ]. 

 Castells et al., then, propose to calculate the  M  ×  M  cor-

relation matrix 

    

1ˆ ,
M

= T
xR XX

 
(8) 

 whose PCs can be used to extract an intrabeat correlation. 

They also suggest to calculate an  N  ×  N  correlation matrix 

    
1

,
N

= T
XR X X
�

 
(9) 

 which, after PCA decomposition, yields an interbeat cor-

relation of the ECG signal [ 3 ]. Both approaches require the 

full data set to be available when calculating the correla-

tion matrices. This makes an online calculation impossi-

ble and requires a computationally complex recalculation 

of the correlation matrices and its subsequent PCA expan-

sion every time a new sample is added. 

 In our approach, we overcome this problem by 

feeding the earlier-mentioned learning algorithms one 

QRS block at a time, yielding an adaptive estimation 

of the eigenvectors. If this approach turns out to work 

flawlessly, one could estimate the PCs of ˆ
xR online and, 

thereby, track the morphological changes in the ECG beat 

signals. An online estimation of the PCs derived from XR
�
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is not possible though, as the whole data set would be 

needed again. 

 In order to evaluate the estimation process of the 

learning algorithms, we introduce the following two 

criteria. 

 Approximation error 

    
- .i

appr i
i

e = ν
w
w  

(10) 

 Orthonormality error 
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 The approximation error,  e appr  , sums up the absolute 

difference of the angle spanned by the  i th eigenvector, 

 ν i  , calculated by the traditional eigenvector decomposi-

tion of the covariance matrix and the corresponding  i th 

eigenvector,   w    i  , estimated by the learning algorithm. It 

is principally accepted that the proposed PCA learning 

algorithms have problems in estimating the minor PCs 

[ 13 ]. As a large part of the ECG signal energy is concen-

trated on the first PCs, we only concentrate on estimat-

ing the first four eigenvectors. As it is also the case that 

the order of the eigenvectors is mixed up during the 

adaption process, the approximation error,  e appr  , is prone 

to wrong pairing of   w    i   and  ν i .  Therefore, we defined an 

additional criterion, the orthonormality error,  e orth  , 
which is calculated by the dot product of the estimated 

eigenvectors. In addition to these values for the proper 

assessment of the algorithms, one has to consider the 

number of iteration steps needed until convergence is 

reached. 

 Further, it can be shown that some learning algo-

rithms are able to estimate the eigenvalue [ 5 ]. With respect 

to the RTpca algorithm, one can easily show that  num(n)  

in Equation 6 will converge to 
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1
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n
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 which corresponds to the variance of the projected 

elements. 

 The main notion of this paper is to suggest a suitable 

learning algorithm to analyze multiple single-channel 

ECGs. Using this approach, we can provide online calcula-

tions  –  being the central innovation of this paper  –  of the 

initially mentioned single-channel PCA applications like 

adaptive respiratory activity extraction. 

 Processing contigious blocks, extracted from single-

channel signals as discussed so far, has also been pro-

posed in the single-channel ICA (SCICA) application 

presented in [ 7 ]. Assuming disjoint spectral support of the 

stationary sources, one can extract independent compo-

nents out of the observation matrix. Hyv ä rinen has intro-

duced a computationally efficient fixed-point algorithm, 

called fastICA, which extracts the ICs by maximizing the 

kurtosis or negentropy of the observation signals [ 11 ,  12 ]. 

Hyv ä rinen also shows that the kurtosis and negentropy 

can be estimated by the gradient algorithms allowing 

adaptive implementations for the problem as well. Thus, 

we also apply the SCICA approach in the scope of this 

work.   

  Methodology 

  Data sets 

 For a better reproducibility of the conducted signal pro-

cessing tasks, data sets of single-lead channels were 

obtained from the Fantasia Database of Physiobank ATM, 

which provides a single-channel ECG and a respiratory 

signal sampled at 250 Hz [ 19 ]. As no special experiments 

were carried out in these data sets, records of 10-min dura-

tion were arbitrarily chosen. Unfortunately, such data is 

not always suited for specific research, as the environ-

mental circumstances and other important details are 

sometimes unknown or incomplete. 

 To further investigate the drawbacks and opportuni-

ties of the discussed applications, we initialized a small 

field study of 50 healthy subjects. Each proband took part 

in three different experiments, which are presented in 

more detail in the next subsection. 

 Principally, these experiments aimed at three 

points. First, we wanted to evaluate and compare the 

performance of the proposed algorithms in terms of 

accuracy and convergence speed. For that reason, data 

sets from Physionet have been referred to. Second, it is 

well known that signal disturbances induced by move-

ment artifacts generally impede biosignal processing 

tasks and also severely hamper the estimation pro-

cesses as will be shown in this paper. For that reason, 

we included coordinated measurements with typical 

movement artifacts. As the acceleration data is also 

recorded with our sensors, we have a valuable refer-

ence that can help to significantly improve the per-

formance of the adaptive algorithms. Finally, we have 

special interest in the online tracking of respirational 

activity. On this account, the measurements included 

different breathing patterns and predetermined breath 

interruptions.  
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  Measurement system 

 In preparation of the conducted laboratory experiments, 

we developed a new wireless sensor system that allows 

us to sample a three-channel ECG and a respiratory signal 

simultaneously [ 10 ,  21 ]. 

 The sensor nodes consist of a very energy-efficient 

 MSP430F1611  (Texas Instruments, Dallas, TX, USA) micro-

controller [ 24 ], a  CC2500  (Texas Instruments, Dallas, 

TX, USA) low-power 2.4-GHz RF transceiver, a three-axis  

ADXL330  (Analog Devices, Norwood, MA, USA) acceler-

ometer, and an SD card for data storage. The ECG sensor is 

equipped with an  ADS1298  (Texas Instruments, Dallas, TX, 

USA) analog ECG/EEG front end that allows multiple-chan-

nel ECG sampling, which is based on 24-bit delta-sigma 

analog-to-digital converters with built-in programmable 

gain amplifiers. Respiration is obtained by a sensor module 

using a medical piezo respiration belt from VERMED. ECG, 

respiration, and the acceleration data are sampled at 250 

Hz. The energy consumption of one sensor in active meas-

urement mode was determined around 100 mW, which 

guarantees operation of almost 48  h when driven by a 

small-size lithium ion battery, typically used in mobile 

phones. The measurement setup is shown in  Figure 2 .   

  Experimental setup 

 In the scope of this study, 50 healthy subjects (70% male, 

30% female, ages 21 – 52 years) have volunteered to take 

part in a three-measurement experiment to acquire a 

three-lead ECG according to Einthoven as well as a respir-

atory signal recorded by a respiratory piezo belt, which is 

worn on the lower left side of the thorax. 

Respiration sensor-
node with piezo belt
and 3-axis ACC sensor

Multi channel
ECG sensor node

 Figure 2      The measurement system consisting of a three-channel 

ECG sensor and a respiratory belt sensor.    

  Experiment I 

 In the first measurement, all the subjects were asked to 

follow four different breathing patterns in a sitting posi-

tion. This measurement was conducted over a duration 

of 10 min. In the first 2 min, the subjects were asked to 

breathe normally, followed by the four 2-min intervals 

were a specific breathing frequency of either 10, 12, 15, 

or 20 breaths per minute (bpm) should be followed that 

has been supplied in the form of a real-time sinewave 

plot inside a MATLAB script. The order of the different 

breathing frequencies was randomly changed for each 

measurement.  

  Experiment II 

 Next, a measurement in the supine position extending 

over a period of 7:45 min has been conducted. After exactly 

4 min, the subjects were asked to stop breathing for 15 s, 

followed by two consecutive 60 s of normal breathing and 

15 s of holding breath periods, concluded by a last minute 

of normal breathing.  

  Experiment III 

 The last recording is comprised of an 8-min period while 

quietly sitting at the desk, with two interruptions of stand-

ing up, walking for 5 s to induce the movement artifacts 

and sitting down again.  Figure 3  plots a fragment of each 

measurement, showing the respiratory signal and ECG 

lead II together with the offline-detected QRS complexes. 

In the third plot, the acceleration data is provided as well, 

which is a valuable reference to adjust the configurations 

of the learning algorithms, as will be shown in the results 

section.  

 One serious drawback of the single-channel approach 

is the dependence on the QRS complex detection perfor-

mance, which, in turn, crucially depends on the signal 

quality. The third plot in  Figure 3  already provides a 

slight impression of the influences of the movement arti-

facts. Therefore, we carefully investigate the adaption 

behavior of the selected algorithms within such critical 

time episodes. Here, experiment III is of special interest, 

as these data sets show motion artifacts at known time 

periods supplied with a three-channel acceleration signal 

that serves as a further reference. This knowledge is then 

used to derive solutions that significantly strengthen the 

robustness and performance of the learning algorithms. 

It should be noted that the respiration reference signal is 
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also strongly affected by motion artifacts, as a piezo belt 

is not a very robust construction. In experiments I and II, 

no artifacts are occurring, providing a nondisturbed ref-

erence signal in our database. These records are used to 

test the algorithms on their ability to determine changing 

breathing frequencies and stops in breathing.    

  Results 
 The results of the initial performance tests evaluating the 

different algorithms are summarized in  Table 1 . The overall 

performance of a specific algorithm depends on multiple 

factors, namely, the initialization of the weight vectors, 

the implementation of the learning rate and its initial 

value, the block length of the extracted segments, and the 

signal quality. In this test, 100 measurements on the five 

data sets of the Physionet Fantasia record have been used. 

Each data set was processed 20 times by each algorithm 

with random starting points of the weight vectors and 

changing block sizes (including either the QRS complex 

or the whole beat). A threshold of 0.1 of the approxima-

tion error,  e appr   (Equation 10), was set as a global criterion 

that determined convergence. The average number of the 

iteration steps needed by the corresponding algorithm 

to achieve convergence on a specific data set is recorded 

in  Table 1 . As can be clearly seen, the RTpca algorithm 

seems to outperform the other algorithms with respect 

to the number of estimated PCs and convergence speed. 

We deliberately chose arbitrary data sets out of the Phy-

sionetbank, which contained a certain degree of artifacts 

and were not preprocessed. Applying the algorithms on 

data sets without artifacts will considerably improve the 

results of all the algorithms, although RTpca still performs 

best. It should be mentioned again that the performance 

could significantly change when adjusting the learning 

rates. At this point, we cannot preclude that there might 

be a configuration that outperforms the above-presented 

results. Nonetheless, the RTpca results are very satisfying 

and convinced us to select the RTpca algorithm for the fol-

lowing analysis.  
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 Figure 3      The raw signals (sampling frequency: 250 Hz)  –  Experiment I: subjects had to follow different breathing rates. Experiment II: 

subjects were asked to stop breathing at intervals. Experiment III: movement artifacts and ACC signals.    
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 As indicated, the movement artifacts have a signifi-

cant influence on the signal quality and, therefore, might 

also disturb the learning process considerably. In order to 

draw a statistically significant conclusion, we analyzed 

the convergence behavior of the eigenvectors estimated 

from the data sets of Experiment III as discussed in previ-

ous section. Moreover, we made sure to keep the learn-

ing rate at a small constant value to retain the ability 

to track nonstationary statistics. In  Figure 4 , we plotted 

the lengths of the first four estimated eigenvectors along 

with the sampled ACC signals. Usually, the eigenvectors 

tend to have unity in length when converging against the 

plausible results. Apparently, the environmental change 

of the system leads to a reorientation of the estimation 

process, as can be seen by the spikes, which coincide 

with the activity in the ACC signal.  

 A Student’s t-test was run over all the 50 data sets, 

which confirmed a statistical significance in the changing 

energy of the ACC signal when spikes in the eigenvector 

estimation have been detected. As a p-value of 3.27×10 -14  has 

been obtained, the null hypothesis (no correlation between 

the ACC spikes and the EV spikes) can be discarded. 

 A major focus has been the extraction of respiratory 

activity out of the single-lead ECG. Therefore, Experiment 

 Table 1      Performance of the different algorithms applied on the five data sets from Physionet Fantasiabase. All the values are averaged over 

20 calculations on the same data set with slightly changing configurations (block size, initialization). Each cell contains the number of itera-

tions that have passed to estimate the corresponding principal component PC1/PC2/PC3/PC4. No value means that the corresponding PC 

could not be estimated.  

 Record  SGA  GHA  APEX  PASTd  RTPCA 

 f1o10  45/95/-/-  99/173/-/-  30/152/-/-  121/240/650/-  61/158/288/685 
 f1y01  88/97/-/-  101/158/-/-  131/187/-/-  127/302/551/-  34/121/332/721 
 f1y09  23/55/-/-  54/103/-/-  58/95/-/-  77/201/499/-  15/61/82/890 
 f2o03  55/87/-/-  74/130/-/-  99/205/-/-  84/225/600/-  47/99/220/643 
 f2o09  77/132/-/-  95/147/-/-  113/215/-/-  97/198/540/-  65/131/198/732 

Bold indicates the best results.
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 Figure 4      The eigenvector corruption during the ACC activity.    

I was designed to determine the ability of the learning 

algorithm RTpca to detect the respiratory signal as was 

described in subsection Experimental Setup. Experiment 

I consists of five periods with different breathing rates. 

The first period was ignored, which contains the arbi-

trary respiration patterns. Thus, each record provides 

four separate samples of 2 min each. As the time intervals 

are known, the corresponding 2-min intervals have been 

extracted from ECG I, ECG II, and the reference respiratory 

signal, respectively. Next, the PCs have been calculated 

offline using the singular value decomposition (SVD) [ 8 ], 

and the online RTpca algorithm was applied to estimate 

the PC containing the respiratory activity. In [ 16 ], it was 

already shown that the offline SVD achieves good results 

in respiratory signal extraction. To double check, we com-

pared the estimated PC by RTpca with the calculated PC 

by SVD, on the one hand and the estimated PC with the 

reference signal on the other hand. Therefore, the magni-

tude squared coherence,  Coh xy  , and the correlation as the 

maximum of the crosscorrelation of the estimated PC and 

the reference breathing signal have been determined. 
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 The extracted time signal is shown in  Figure 5 , 

using a spline interpolation to plot the graph, whereas 

 Figure 6  summarizes the obtained results by the different 

algorithms, based on the 50 data sets (which will sum up 

to 200 2-min samples) of our study. As can be extracted 

from the values summarized in the boxplot, the perfor-

mance of the RTpca learning algorithm yields satisfying 

results in terms of respiratory signal extraction.   

 As another sample application of how the dynam-

ics of the online-calculated eigenvectors can be used to 

track the changes in the breathing, the alterations in the 
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length of the estimated eigenvectors have been further 

used to detect the periods of the held breath in Experi-

ment II. To do so, each major change in the length trig-

gered a MATLAB script to detect the changes in breathing. 

By comparing the power spectral density of the lower fre-

quencies, right before and right after the change of the EV 

length, the periods of holding the breath in Experiment II 

could be detected.  Table 2  gives the results.  

 As was already indicated, the SCICA approach has 

also been tested as a new method to extract a respira-

tional feature. The results are provided by Figures 5 and 6, 

allowing a direct comparison with the performance of the 

RTpca algorithm.  

  Discussion 
 The presented results are very promising with respect to 

the different applications. The conclusion drawn from 
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 Figure 5      The estimated respiratory activity (top) calculated by 

fastICA (bottom) calculated by RTpca.    
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 Figure 6      The RTpca, SVD, and SCICA performance in the respira-

tory component extraction from the different ECG leads. The boxplot 

shows the correlation and coherence of the estimated respiratory 

signal and respiratory reference signal.    

 Table 2      The detection rate of the periods without breathing in 

Experiment II as a percentage of the total number of events.  

 True positive  True negative  False negative  False positve 

 95.8%  94,8%  4.2%  5.2% 

the correlation of the changes in the length of the EV 

and ACC activity as presented in the previous section is 

twofold. First, we could immediately stop the learning 

process whenever there is a minimum activity within the 

ACC signals. When using the RTpca algorithm, this could 

be done by increasing the value of the parameter T (see 

Equation 4). This would require a measurement system 

as presented in this work though. Second, we also come 

to the conclusion that, instead of using an ACC signal as 

the indicator for the environmental changes, it is possible 

to configure a separate RTpca neuronal network, solely 

for the task of detecting the changes in the eigenvectors, 

which can be done by fixing the learning rate to a small 

constant value, as was done in the previous example. The 

information generated by this NN can then be used to 

coordinate the learning rates of another NN, which is sup-

posed to track the actual eigenvectors instead. 

 Analyzing the results of the conducted respiratory 

experimentes, we can claim to extract a surrogate respira-

tory signal information out of a single-channel ECG online. 

Referring to the different ECG leads, in our data sets ECG 

II provided slightly better results than ECG I. In general, 

however, the leads most suited for respiratory estimation 

are known to change from subject to subject [ 20 ]. Moreo-

ver, several ideas that utilize single-channel ECG data to 

detect the obtrusive sleep apnea have been presented in 

[ 4 ]. As the approaches of this paper have proven success-

ful in the detection of stops in breathing, it is conceivable 

that the changes in the properties of the online-estimated 

eigenvectors can endorse the tools used in sleep studies to 

indicate the incidence of apnea. 

 It strikes out that the achieved outcome of the SCICA 

is significantly better than the RTpca approach. Moreover, 

the SCICA outperforms the results obtained by SVD. Plot 

(B) in  Figure 5  shows the estimated independent compo-

nent that contains the respirational signal.  

  Conclusion 
 In this work, we have evaluated several adaptive 

approaches to solve the PCA expansion of single-lead ECG 

signals. We have been able to identify the RTpca algorithm 

as a proper and well-performing choice to estimate the 
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first four principal components. It was verified that a sur-

rogate respiratory signal can be found in one of the PCs. 

Therefore, it is even conceivable to completely abstain 

from additional hardware to obtain a respiratory signal. 

 Further, the great improvement of the adaptive 

approach implemented in this work is the ability of online 

extraction of the respiratory component. This is a valu-

able property, especially when immediate processing of 

the sampled signals is required. We mentioned the appli-

cation in sleep medicine as an interesting example that 

can capitalize on our results in terms of less hardware 

and online detection of the changing breath patterns that 

might assist in real-time apnea detection. 

 Not only the extraction of the respirational features 

but also the gathering of the other vital parameters like 

morphologic variability, which can be derived from the 

eigenvalue distribution as discussed in [ 3 ], can profit from 

the presented online approach. 

 Typically, adaptive approaches that rely on data-

dependent learning rates are difficult to handle, as their 

output significantly depends on the current configuration. 

An innovative measurement system has been proposed 

that, next to the physiological biosignals, also acquires 

acceleration data. This information can be used to recon-

figure the learning rates and stop adaption in the noisy 

segments, for example, which enhances the performance 

as the system reconverges much faster. 

 Compared with the traditional approach of SVD, the 

computational load is significantly reduced as the online 

algorithms can be implemented on the resource-saving NN 

structures, thereby, being attractive for implementations on 

the low-performance systems like the mobile sensor nodes. 

 In a final step, the single-channel ICA approach was 

applied to extract the respiratory signal. In the first tests, 

a batch implementation of the fastICA algorithm clearly 

outperformed the PCA expansion approach in terms of 

accuracy. As online approaches of the fastICA algorithm 

exist, it seems promising to resort to an adaptive approach 

of the fastICA problem as well.   

 Received December 5, 2012; accepted January 28, 2013; online first 

March 13, 2013  
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