
4932 | Soft Matter, 2016, 12, 4932--4943 This journal is©The Royal Society of Chemistry 2016

Cite this: SoftMatter, 2016,

12, 4932

The effect of charge separation on the phase
behavior of dipolar colloidal rods

David M. Rutkowski,a Orlin D. Velev,a Sabine H. L. Klappb and Carol K. Hall*a

Colloids with anisotropic shape and charge distribution can assemble into a variety of structures that could

find use as novel materials for optical, photonic, electronic and structural applications. Because experimental

characterization of the many possible types of multi-shape and multipolar colloidal particles that could form

useful structures is difficult, the search for novel colloidal materials can be enhanced by simulations of

colloidal particle assembly. We have simulated a system of dipolar colloidal rods at fixed aspect ratio using

discontinuous molecular dynamics (DMD) to investigate how the charge separation of an embedded dipole

affects the types of assemblies that occur. Each dipolar rod is modeled as several overlapping spheres fixed

in an elongated shape to represent excluded volume and two smaller, embedded spheres to represent the

charges that make up the extended dipole. Large charge separations predominately form structures where

the rods link head-to-tail while small charge separations predominately form structures where the rods

stack side-by-side. Rods with small charge separations tend to form dense aggregates while rods with large

charge separations tend to form coarse gel-like structures. Structural phase boundaries between fluid,

string-fluid, and ‘‘gel’’ (networked) phases are mapped out and characterized as to whether they have global

head-to-tail or global side-by-side order. A structural coarsening transition is observed for particles with

large charge separations in which the head–tail networks thicken as temperature is lowered due to an

increased tendency to form side-by-side structures. Triangularly connected networks form at small charge

separations; these may be useful for encapsulating smaller particles.

Introduction

Colloidal particles can assemble into a rich variety of structures
that hold promise for application in biotechnology,1–3 photo-
nics,4–7 and electronics or computation.8–10 When the shape,
surface coating or internal charge distribution of the particles are
anisotropic, the diversity of possible structures becomes even
richer, offering enhanced opportunities for tuning the local order,
leading to interesting and novel colloidal architectures including
chains, crystals, gels and ribbons.11 Particles with anisotropic
shape including suspensions of rod-shaped particles12 can form
both nematic and smectic phases, a feature useful in display
devices.13 Similarly, patchy particles including Janus particles can
self-assemble into a multitude of different phases including giant
micelles and bilayers.14 These anisotropies can be manipulated
through imposition of external fields leading to even better
control over the structures formed.15–18

Not surprisingly, colloidal particles with anisotropic charge
distributions exhibit complex phase behavior. Distributions of

electric or magnetic charges in a colloidal particle can be
treated as one or more embedded dipoles. The simplest type
of colloidal particle with charge distribution is the dipolar
sphere which has a single point-dipole located in its center.
The anisotropic distribution of charge on dipolar spheres leads
to a propensity to form chains, especially in response to external
electric fields and, as a consequence, holds promise for creating
photonic crystals with novel symmetries, electrical materials,
and water-based electrorheological fluids.11,19,20 Manipulating
these chains with external electric or magnetic fields may allow
for the formation of materials with switchable properties such as
switching from radiation absorber to reflectors.11 Here we con-
sider dipolar rods – colloidal particles with anisotropies in both
shape and charge distribution – to obtain a basic understanding
of how these two factors combine to yield interesting phase
diagrams.

Dipolar colloidal rods display more complex phase behavior
than particles with only one form of asymmetry, such as dipolar
spherical particles or rod-shaped particles. For example, electri-
cally dipolar rods have been created experimentally by Zhang et al.
using PRINT which they found aligned in a head-to-tail fashion
along an external electric field.21 Kozek et al. have synthesized
nano-meter sized dipolar rods by coating a gold rod in silica
and then attaching a magnetic overcoat to the silica layer.
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These particles have been found to align with an external electric
field.22 Magnetic dipolar rods can be created experimentally by
methods such as covering silica rods with a thin layer of nickel
so that the rods become magnetically responsive.23 These rods
have been found to form cyclical structures that are responsive to
an external field. Gold nanorods synthesized by Fava et al. with
cetyl trimethyl ammonium bromide (CTAB) on the sides and
polystyrene molecules (PS) on the ends assemble into chains,
side–side oriented chains, raft structures, and even spheres,
depending on solvent quality.24 Nanorods which instead have
poly(N-isopropylacrylamide) (PNIPAm) on the ends, have been
found to photothermally self-assemble into chains.25 Many of
the techniques used for fabricating multipolar particles suffer
from either low yields or high polydispersity, limiting the
practicality of experimentally investigating the bulk phase pro-
perties of these particles.19 As a consequence, most experimental
and many simulation investigations, including this work, focus
on the behavior of dipolar colloidal rods at surfaces.

A number of simulation techniques have been used to inves-
tigate the phase behavior of colloidal particles that are either
rod-like, dipolar or both. Bolhuis and Frenkel found using a
combination of Monte Carlo techniques and Gibbs–Duhem
integration that the phase diagram for hard rods is highly
dependent on their aspect ratio, displaying a nematic phase
and smectic phase at moderate aspect ratios and densities.12

McGrother and Jackson used both canonical and Gibbs ensemble
Monte Carlo (GEMC) to simulate a system of dipolar sphero-
cylinders with a point dipole embedded in the center and found
evidence for vapor–liquid coexistence as the aspect ratio
increased.26 Alvarez and Klapp applied Monte Carlo simula-
tions to systems of dipolar rods with permanent magnetic
dipole moments modeled as fused magnetic dipolar spheres.27

Additionally, they investigated rod-like particles with a longi-
tudinal point dipole and found clusters of parallel rods as we do
in our simulations at low charge distances.28 Miller et al. used
molecular dynamics to investigate systems of dipolar dumbbells,
representing the dipole–dipole interaction by a combination of a
soft-sphere interaction and Coulombic interaction, and found
that these particles aligned into head-to-tail chains.29 Schmidle
et al. performed simulations of two dimensional systems of
dipolar spheres in the presence of electric fields and found
close agreement between the structures formed in simulation
and the experimentally observed structure formed by similar
particles.30,31 Goyal et al. showed using discontinuous molecular
dynamics (DMD) simulations that three-dimensional systems of
spherical dipolar colloidal particles32 form a number of phases
including low volume fraction gels and high volume fraction
hexagonally-close-packed, body centered tetragonal and face-
centered cubic phases. Additionally, they found that mixtures
of these particles formed bicontinuous gels.33 Like Goyal et al. we
have used a short-ranged potential designed to mimic electro-
static charges interacting in a high salt solution.

The long term goal of our investigation into the phase behavior
of colloidal particles via molecular-level computer simulations is
to screen the many types of structures formed by anisotropic
particles so as to identify the ones that would be of interest for

advanced applications. Molecular simulation has an advantage
over experiment in this regard because precisely defined, mono-
disperse ‘‘molecules’’ of virtually any type can be generated. In
contrast, many of the techniques for fabricating particles,
including microcontact printing, Pickering emulsion techni-
ques, and oil water emulsion techniques, cannot produce large
quantities of monodisperse particles.19 This makes it hard to
identify the specific molecular features which are responsible for
the behaviors of the particles. An attractive alternative, therefore,
is to first identify interesting structures through computer
simulation and then to explore these structures more precisely
through experimentation.

The objective of the current research is to systematically
investigate how the internal charge separation of dipolar colloidal
rods affects the types of assemblies that occur over a range of
temperatures and densities with the internal charge separation
of the extended dipole being the control parameter. While
others have investigated dipolar colloidal rods through simula-
tion, the focus has usually been on how the aspect ratio of the
rod affects the phase behavior27,34 instead of how the internal
charge separation affects the phase behavior, as we focus on in
this work. A key consideration in the types of assemblies that
form is the alignment of the particles at different conditions.
A pair of rods can in general align in two orientations: either
head-to-tail or side-by-side.26,27,34 In our model a shift between
these two orientations occurs when the charge separation is varied.
The exact charge separation value that defines the boundary
between these two orientations depends on both the aspect
ratio of the rod and the expression for the potential energy of
interaction between the electric charges, herein represented
by a screened Coulomb potential, i.e. a Yukawa potential. A
Yukawa potential was chosen because it allows for a faster
evolution of the system than would a Coulomb potential with
long range interactions. The simulations approach is used to
map out the conditions under which a system of 2-d dipolar
rods will predominantly align side-by-side or head-to-tail.
While it can easily be determined if an isolated pair of particles
will form head–tail or side–side pairs, the details of where these
transitions occur in many particle systems and whether there
are any other structural transitions is more challenging to
discern without performing simulations.

Simulations of systems of dipolar particles can be classified
according to how the dipole moment is represented: by a point
dipole or by an extended dipole. Those simulations implement-
ing a point dipole representation use the standard expression for
the dipole–dipole interaction potential and are more suitable
when the separation between the charges of the dipole is small.26

The expression breaks down when the interparticle separation is
on the same order of magnitude as the separation between the
charges that make up the dipole. This can be dealt with by either
adding higher order terms to the expansion, e.g. quadrupolar,
octapolar, etc., or by explicitly modeling the individual charges
with an extended dipole.35 Simulations with extended dipoles
typically use a form of the Coulomb potential between the
individual positive and negative charges on different molecules29,36

and are more appropriate when the two charges are separated

Paper Soft Matter

Pu
bl

is
he

d 
on

 2
9 

A
pr

il 
20

16
. D

ow
nl

oa
de

d 
by

 T
U

 B
er

lin
 -

 U
ni

ve
rs

ita
et

sb
ib

l o
n 

18
/0

5/
20

17
 1

4:
21

:5
2.

 
View Article Online

http://dx.doi.org/10.1039/c6sm00317f


4934 | Soft Matter, 2016, 12, 4932--4943 This journal is©The Royal Society of Chemistry 2016

by a distance on the same order or greater than the distance
separating the centers of the dipoles. Dipolar spheres with
embedded, extended dipoles have been used in simulation to
learn how the charge separation affects the phase behavior.35,37

Simulations of dipolar rods with extended dipoles have also
been performed but, as mentioned earlier, these have focused
on how the aspect ratio of the rods, not the charge separation
alone, affects the phase behavior.36 Because we are interested in
how changing the charge separation within a dipolar rod affects
phase behavior, we have chosen to explicitly model the charges
on the dipole rather than use a point dipole representation.

The method we have chosen to use for our simulations of
dipolar rods is discontinuous molecular dynamics simulations
(DMD). Unlike typical molecular dynamics (MD) simulations
in which the interaction between two particles is represented
by a continuous function of the inter-particle distance, DMD
uses potentials that are a discontinuous function of the inter-
particle distance. The advantage of using a discontinuous
potential is that when two particles are between discontinuities
nothing needs to be calculated and the particles move ballisti-
cally. The particle velocities change only when the two particles
reach a discontinuity. As a consequence, DMD moves through
time by advancing between ‘‘collision’’ events rather than using
a fixed time step as in MD. For this reason, DMD is an event-
driven algorithm; it uses an event scheduling queue to deter-
mine the soonest to occur collision in the system and then
updates the entire system to that time. The DMD algorithm is a
much faster procedure than calculating the potential between
each particle at the discrete uniformly-spaced time steps asso-
ciated with MD. This speedup allows the simulation of longer
timescales than would typically be possible and is applicable to
our system since rods take longer time to achieve their equili-
brium state than spheres due to their extra rotational modes.

In this paper we present results from DMD simulations of
dipolar rods modeled as spherocylinders with a length to width
ratio of 4 : 1 for four values of the charge separation to width
ratio (2.5, 3.0, 3.5, and 3.7). Our simulations were performed in
2-d, where 2-d means a two dimensional simulation box, to
better correspond with experiments in which colloidal particles
are placed on a glass slide or have sedimented onto a surface.19,38

Since we are interested only in the general phase behavior of
dipolar colloidal rods we have not modeled a specific system,
but have developed a system guided by experimentally feasible
parameters. We investigate the conditions at which the fluid
phase, the string-fluid phase, the ‘‘gel’’ phase, the head-to-tail
ordered phase, and the side-by-side ordered phase occur. The
definitions of these phases are described in the Model and
methods section.

Our results include the following highlights. Phase diagrams
in the area fraction vs. temperature plane have been calculated for
all four charge separations investigated (2.5, 3.0, 3.5 and 3.7) which
delineate boundaries between the three main phases investigated
(fluid, string-fluid and ‘‘gel’’) along with other transitions indicat-
ing the development of head–tail and side–side ordering. We also
discovered a structural coarsening transition for systems of
particles with charge separations 3.5 and 3.7; where structural

coarsening refers to the thickening of network structures as
head–tail ‘‘gels’’ formed at intermediate temperatures additionally
form side–side structures at low temperatures. Rods with a charge
separation of 3.0 form a mixed side–side and head–tail ‘‘gel’’ at
low temperatures, which does not seem to be the equilibrium
structure, suggesting the rods are dynamically arrested in a
metastable state. Rods that form head–tail aggregates percolate at
higher temperatures than those that form side–side structures,
with the shortest charge separation, 2.5, percolating only at
intermediate area fractions.

Model and method

We represented our 4 : 1 aspect ratio dipolar rod by a group of
seven overlapping spheres, which are each separated from their
nearest neighbor by a distance of 0.5s resulting in an aspect
ratio of 4 : 1; the spheres are bonded together to approximate
the rod shape as shown in Fig. 1. We chose to use an aspect
ratio of 4 : 1 since this is closest to nanorods created by Wu and
Tracy.39 We chose to use a distance of 0.5s arbitrarily, but
found it resulted in a small difference between the area of a true
spherocylinder and our model as discussed in our conclusions
section. Seven spheres are used based on the aspect ratio and
distance between nearest spheres in the rod. Since DMD is an
event-driven simulation technique, it is significantly easier
to find collision times between particles if the particles are
spheres rather than another shape. The positive and negative
charges are represented by two smaller spheres embedded at
selected locations near the ends of the dipolar rod; hence this is
an extended dipole representation. The larger spheres have
a diameter of s while the smaller spheres representing the
charges have a diameter of 0.3s. The smaller spheres were
chosen to have a diameter of 0.3s to correspond with work
performed previously by Goyal et al., but were otherwise chosen
arbitrarily.32 These larger spheres do not interact with each
other on the same chain, and are bonded to nearest neighbors
and next nearest neighbors using the method of Bellemans.
The length of the bonds between neighboring spheres varies
between (1 � d)s and (1 + d)s where s is the length of the bond
between the centers of the spheres and d is the so-called
Bellemans’ constant which is used to define how tightly the
spheres are bound to each other.40

In our simulations we set d equal to 7.654 � 10�3 in reduced
units of length, which serves to keep the rod relatively straight,

Fig. 1 Model of 4 : 1 dipolar rod used in our DMD simulations incorporating
seven spheres bonded together to represent the excluded volume of the
rod and two smaller spheres shown in red and blue at the ends to represent
the charges of the extended dipole. The outermost square wells for the
charged spheres are shown as dashed circles.
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and keeps the angle between the center sphere and the two end
spheres of the rod greater than or equal to 170 degrees. The
Bellemans’ constant for the smaller spheres is the same as that
for the large spheres so that all the distances are consistent
(i.e. all bonds can be at either their shortest or longest distance
without any bond overlapping). The small spheres are bonded
to the large sphere at the end of the rod that they are closest to.
They are also bonded to each other so that they maintain their
position within the rod. The small spheres are used only to
localize the centers of the charge and do not interact with the
uncharged spheres except through bonds within the rod.

The small spheres in different rods interact with each other
via a square well (i.e. attractive) potential if the charges that the
spheres represent are of opposite sign while they interact with a
square shoulder (i.e. repulsive) potential if the charges are of
the same sign. The square shoulder has the same boundaries and
magnitude as the square well, but has positive energies instead of
negative ones. The pair potential between charges on the ends of
different rods was modeled as a three-step square-well or square-
shoulder potential designed to approximate a Yukawa potential.
The Yukawa potential, also known as the screened Coulomb
potential, is defined as

U(r*) = �e/r* exp(�k*(r* � 1)) (1)

where U(r*) is the potential energy between a pair of charges
with opposite sign, e is a constant with units of energy related to
the strength of the interaction, k* is the reduced inverse Debye
screening length and r* is the dimensionless distance, defined
as r* = r/s, between two charges.41 The parameters for the
Yukawa potential used in our simulation were chosen to be
characteristic of rods with a diameter of 20 nm, the typical size
of the gold nano-rods synthesized by Kozek et al. and Maity
et al.,22,42 and suspended in a solution of 10�5 M NaCl. From
these values, we calculated the Debye length, 1/k, to be 96.1 nm
using the formula for 1 : 1 electrolytes, 1/k = 0.304/[NaCl]0.5,
where [NaCl] is the concentration of NaCl in solution.43 The
reduced inverse Debye length, k* = sk, is thus 0.208. The
reduced temperature for our simulations is T* = T̃kBT/e where
kB is the Boltzmann constant, e is the constant in the Yukawa
potential, and T̃ is equal to 0.864. T̃ was calculated by setting
our Yukawa potential equal to a simplified Coulomb potential,
UC(r*) = �1/r*, at the distance of closest approach for two
charged spheres in our simulations, r* = 0.3. The reduced area
fraction in our simulations is defined as r* = rs2.

For the continuous Yukawa potential just defined, we plot
the boundary between head–tail dominated and side–side
dominated regions in the reduced charge separation vs. rod
length parameter space in Fig. 2, creating a ground-state phase
diagram for a pair of dipolar rods. This boundary is calculated
by equating the total potential energy of a pair of rods in the
head–tail configuration and a pair in the side–side configuration
to give the charge separation at which the two configurations are
equal in energy for a given rod length. This plot has the correct
limiting behavior in that it predicts that dipolar spheres, which
have a rod length of 1.0, should always form head–tail structures,
regardless of the charge separation. For our system of dipolar rods

which has an aspect ratio of 4 : 1, the internal charge separation at
which the head–tail and side–side configurations have the same
interaction energy is 3.43 in reduced units of length.

The full definition of the three step discontinuous potential
well used to model the interaction between centers of oppositely-
signed charges on each rod is given below. The potential used
between charges of the same sign has the same boundaries and
energy magnitudes, but opposite signs for the epsilon values
defined below, i.e. it is a square shoulder.

USWðrÞ ¼

1 if ros1

�e1 if s1 o ros2

�e2 if s2 o ros3

�e3 if s3 o ros4

0 if r4s4

8>>>>>>>>>><
>>>>>>>>>>:

(2)

The values of the interaction energy parameters are e1 = 3.129,
e2 = 1.717, and e3 = 0.719 while the values for the well
boundaries are s1 = 0.3s, s2 = 0.433s, s3 = 0.595s, and
s4 = 1.1s. A comparison between this discontinuous potential
and the Yukawa potential on which it is based is shown below in
Fig. 3. In the Appendix we describe the procedure that we used to
determine the e and s values listed above and the discontinuous
potential between oppositely charged small spheres shown in
Fig. 3. Here we just point out that the discontinuous charge–
charge potential used to mimic the Yukawa potential was chosen
not by matching the charge–charge potential directly but by
matching the total potential between a pair of dipolar rods, the
‘‘rod–rod potential’’, over a variety of configurations.

We performed simulations at four values of the charge separa-
tion, two that should predominately form side–side aggregates,
charge separations 2.5 and 3.0, and two that should predominately

Fig. 2 Plot of charge separation versus rod length both reduced by the
rod width, which shows the regions where a head–tail pair of dipolar rods is
preferred and where a side–side pair of dipolar rods is preferred. The dashed
conformation delineation line shifts slightly depending on the potential used
to model the interactions between the charged groups in the dipolar rod.
The hashed region is infeasible because it has charge separations that are
longer than the rod itself. The dotted line indicates the aspect ratio at which
the simulations in this paper were performed.
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form head–tail aggregates, charge separations 3.5 and 3.7. The
only difference between these simulations was the distance
between the charges in the embedded, extended dipole.

For all charge separations we followed the same simulation
procedure. Our systems consisted of 500 dipolar rods with
aspect ratio 4 : 1 in a square 2-d simulation box with periodic
boundary conditions. As with regular MD, DMD is naturally
performed in the NVE ensemble since energy is conserved
between collisions. In order to implement constant temperature,
we used the Andersen thermostat, in which a randomly-chosen
particle collides with a ‘‘ghost’’ particle so that the system attains
a Boltzmann distribution around the desired temperature.44 We
started at a high reduced temperature, T* = 5.0, in order to get a
random configuration and then slowly lowered the temperature
in a simulated annealing procedure. Simulated annealing allows
us to examine structures that are close to equilibrium across a
wide range of temperatures. The temperature was lowered in
discrete steps; first in steps of 1.0 in reduced units, then steps of
0.1 from 2.0 to 0.30 and finally in steps of 0.01 from 0.30 to 0.01
allowing the system to equilibrate for 100 million collisions at
each temperature step. We decrease the temperature in slower
increments at lower temperatures because equilibrium takes
longer to reach at lower temperatures. We stopped the cooling
procedure once the temperature reached a value of 0.01. At this
temperature a ‘‘gel’’ or aggregate structure had formed for all
rods simulated.

In order to determine what phase the system is in, we need
to first define the clustering criterion for our particles. In
our simulations we define two rods to be in the same cluster
if oppositely charged spheres on this pair are within each
other’s outermost well, which is 1.1s. If the charges are of
the same sign they are not counted as a pair, since their inter-
action is repulsive instead of attractive as is required for a
cluster to be established. If a rod is determined to be in a
cluster with a second rod which is in turn in a cluster with
a third rod all three rods will be considered to be in the

same cluster. A cluster containing all of the particles in the
system is therefore possible.

The percolation probability, P, gives the probability of finding
a spanning or percolating cluster in a given system and is
defined as the number of configurations which have a cluster
that is percolated, Cper, over the total number of configurations
investigated, C.

P = hCper/Ci (3)

A cluster is percolated if it connects to itself and spans the box,
forming a cluster of infinite length when periodic images of the
box are included. For a given configuration, the percolation
state is 1 if the system is percolated and 0 if the system is not
percolated.45 The percolation probability at a given temperature
step in our simulations is the average of this percolation state
over 20 configurations at that temperature. The boundary between
the ‘‘gel’’ phase, which is associated with a system that is per-
colated, and the string-fluid phase, which is associated with a
system that is not percolated, is determined by locating the
inflection point in the percolation probability vs. temperature
curve. We determined the transition temperature between per-
colated and non-percolated states by plotting the percolation
probability versus temperature and then fitting a tanh function
to this curve in order to find the inflection point as shown in
Fig. 4(a). This inflection point gives the percolation temperature,
which is the transition temperature between the string-fluid and
‘‘gel’’ phases.45

The extent of polymerization, F, gives a measure of when the
particles start to associate, and is defined as the ensemble
average of the number of rods in the system that are in a cluster,
Na, divided by the number of rods in the system, N,

F = hNa/Ni (4)

The extent of polymerization varies between 0 and 1 since there
cannot be more rods in a cluster than the number of rods in the
system. The inflection point in a plot of the extent of polymer-
ization versus temperature defines the boundary between fluid
and string-fluid phases for a given area fraction as shown in
Fig. 4(b). In order to find the inflection point, we fit the extent
of polymerization versus temperature to a logistic5 curve which
has the form F = C1 + (C2 � C1)/(1 + (C3/T)C4)C5 which involves

Fig. 3 Plot comparing the continuous Yukawa potential energy and our
discontinuous potential energy between charges of opposite sign versus
the distance between the centers of the two charges. Charges with the
same sign interact through a square shoulder that has the same energy
boundaries and magnitudes, but has positive values of energy instead of
negative.

Fig. 4 Order parameters calculated in our simulations along with sample data
(blue points) and curves fit to the data (red lines). (a) Percolation probability and
an example of a percolated system. (b) Extent of polymerization and an
example of a string-fluid.
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5 fitting constants (C1, C2, C3, C4, C5). We are not suggesting
that this function underlies the relationship between the tem-
perature and the extent of polymerization for our system, and
have only used this function to get a smooth curve with which
to find the inflection point.

Two order parameters were developed to determine whether
the system is arranged in a head-to-tail or a side-to-side arrange-
ment. A rod is defined to have a head–tail partner if oppositely
charged spheres on nearby rods are less than 1.1s from each
other provided that the remaining two charged spheres are
further than 1.1s from each other. (see Fig. 5(a)) A single rod
can have multiple head–tail partners, but our head–tail order
parameter only measures whether or not a rod has at least one
head–tail partner. The head–tail order parameter, H, is defined as
the average number of rods with at least one head–tail partner,
NH–T, divided by the number of rods in the system.

H = hNH–T/Ni (5)

Like the extent of polymerization, the head–tail order parameter
must be between 0 and 1. In order to determine the boundary
between non-head–tail ordered and head–tail ordered we fit this
order parameter versus temperature to a logistic5 curve as shown
in Fig. 5(a). The inflection point in this curve was taken to be this
boundary.

A rod is defined to have a side–side partner if a pair of
oppositely charged spheres on the two rods are less than a
distance of 1.1s from each other and the other two charged
spheres are also less than a distance of 1.1s. (see Fig. 5(b)) As
with the head–tail order parameter, a single rod can have
multiple side–side partners, but our side–side order parameter
only measures whether or not a rod has at least one side–side
partner. The side–side order parameter, S, is defined as the
average of the number of rods that have at least one side–side
partner, NS–S, divided by the number of rods in the system.

S = hNS–S/Ni (6)

In order to determine the boundary between non-side–side
ordered and side–side ordered we fit this order parameter versus
temperature to a logistic5 curve. Again the inflection point in
this curve versus temperature is taken to be the boundary
between non-side–side ordered and side–side ordered as shown
in Fig. 5(b). Two rods cannot be both a head–tail pair and a

side–side pair; the order parameters are defined in a way that
they are exclusive of each other.

Results

We present the simulation results for four systems: two that
should predominately form head–tail structures (internal charge
separations of 3.7 and 3.5) and two that should predominately form
side–side structures (internal charge separations of 3.0 and 2.5).

We first present the results for dipolar rods with an internal
charge separation of 3.7. The phase diagram for this system
plotted in the volume area fraction versus temperature plane
is shown in Fig. 6. As the system is cooled from a reduced
temperature of 5.0, it first transitions from a fluid phase to a
string-fluid phase. While each pair making up the clusters in
this string-fluid has to be at least head–tail (H–T) ordered or
side–side (S–S) ordered, the system as a whole is not considered
S–S ordered or H–T ordered until the S–S order parameter or
the H–T order parameter displays an inflection point. Thus the
string-fluid at intermediate area fractions is neither H–T nor
S–S ordered. This globally disordered string-fluid further tran-
sitions to a string-fluid with global H–T order, and so is called
an H–T string fluid. Upon further cooling the system transitions
to an H–T ‘‘gel’’, and then further transitions to a ‘‘gel’’ with
both H–T and S–S order. This last transition reflects a coarsening
of the overall ‘‘gel’’ structure where the single strands of the

Fig. 5 (a) Head–tail order parameter and an image of a pair of rods that are
head–tail ordered. (b) Side–side order parameter and an image of a pair of
rods that are side–side ordered.

Fig. 6 Phase diagram for 4 : 1 dipolar rods with charge separation of
3.7 plotted in the area fraction vs. temperature plane. Fluid, string-fluid,
H–T string-fluid, H–T ‘‘gel’’ and H–T & S–S ordered ‘‘gel’’ phases are present
in this diagram.
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H–T ‘‘gel’’ aggregate together to form S–S aggregates, resulting in
a more compact structure. Images of both the head–tail ordered
‘‘gel’’ and the coarser ‘‘gel’’ (H–T and S–S) are shown in Fig. 6 as
well along with images of the string-fluid and fluid phases. At
high area fractions the percolation line crosses the polymerization
line resulting in the system being percolated at a higher tempera-
ture than that at which all the rods in the system have partners.
This suggests that the system has a percolated group of rods but
that not all rods in the system have a partner. A difficulty with this
high area fraction region, however, is that the polymerization
probability always has a large value even at high temperatures
because the particles are forced to be near each other due to area
constraints. At higher area fractions, the polymerization prob-
ability indicates a transition from a state in which the majority of
rods have a partner to a state in which all of the rods have a
partner. This is in contrast to lower area fractions where the
polymerization probability indicates the transition from a state
in which no rods have a partner to a state in which most rods
do have a partner. Thus as we increase area fraction our distance
based clustering parameters may be misrepresenting where
boundaries should occur.

Plots of the S–S order parameter versus temperature for
charge separation 3.7 rods display a sudden decrease as the
temperature is lowered just before the ‘‘gel’’ transition is reached
at all area fractions. Before this dip, the S–S order parameter
behaves as expected, increasing slightly as the temperature is
decreased up to a reduced temperature of around 1. As the
temperature is lowered further, the S–S order parameter first
decreases and later increases as the ‘‘gel’’ structure coarsens. This
dip in the S–S order parameter occurs roughly at the temperature
where the H–T order parameter approaches 1. This suggests that
the formation of the largest H–T ordered structures depletes
some of the S–S partners that existed at higher temperatures.
This is the only charge separation and order parameter which
displays this behavior.

We next present the results for dipolar rods with an internal
charge separation of 3.5. The phase diagram for this system is
shown in Fig. 7 It is very similar to that for charge separation of
3.7 with two main exceptions. The first exception is that the
globally disordered string-fluid region for charge separation
3.5 exists over a wider range of temperatures than for charge
separation 3.7. The second exception is that the H–T order
transition is shifted towards lower temperatures especially at
higher area fractions. Consequently, this system transitions from
a globally disordered gel phase into a H–T ‘‘gel’’ phase at area
fractions above 0.35. Like the previous system, this system also
displays a ‘‘gel’’ coarsening at the lowest temperatures where the
system is a ‘‘gel’’ with both H–T and S–S order. At these low
temperatures the S–S order parameter for this system is notice-
ably higher than for the previous system at the same tempera-
ture. This is consistent with the idea that as the charges move
closer together the rods are more likely to form S–S pairs even
though the dominant pair structure formed should still be H–T
for this system. The higher S–S order parameter also results in
thicker structures than in the charge separation 3.7 case, since
there are more S–S pairs.

Fig. 8 Phase diagram of dipolar rods with 3.0 charge separation plotted in
the area fraction vs. temperature plane. Fluid, string-fluid, H–T ‘‘gel’’ and
H–T and S–S ‘‘gel’’ are present.

Fig. 7 Phase diagram for dipolar rods with charge separation 3.5 plotted in
the area fraction vs. temperature plane. Fluid, string-fluid, H–T string-fluid,
H–T ‘‘gel’’, ‘‘gel’’, and H–T and S–S ‘‘gel’’ are present.
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The third system investigated consists of dipolar rods with an
internal charge separation of 3.0. This is the first of two systems
considered that predominately form S–S structures. The phase
diagram for this system is shown in Fig. 8. As the temperature is
lowered this system shows a transition from a fluid into a globally
disordered string-fluid which, upon further cooling, transitions
to a S–S string-fluid at high area fractions or a string-fluid which
has both S–S and H–T order at low area fractions. Both of these
string-fluids transition directly to a ‘‘gel’’ which has both H–T
and S–S order as the temperature is lowered further. The occur-
rence of this H–T and S–S ‘‘gel’’ phase does not seem to indicate a
coarsening as it did in the charge separation 3.5 and 3.7 cases
since the ‘‘gel’’ phase that forms has a very open structure with
groupings of three rods forming triangular aggregates as can
be seen in Fig. 8. While triangular aggregates are unusual for
systems of dipolar spheres they have been seen in prior simula-
tions of dipolar rods.36

The fourth and final system investigated consists of dipolar
rods with an internal charge separation of 2.5. Since the charges
on the rods with an internal charge separation of 2.5 are far
from the ends of the rods, the rods do not experience any
attraction if they are in H–T alignment using our discontinuous
potential. This obviously favors the formation of S–S structures.
Consequently, this system transitions from a fluid to an S–S string-
fluid at all area fractions as can be seen in the phase diagram
for this system in Fig. 9. For this system the polymerization

probability curve nearly coincides with the S–S order curve,
which further indicates the particles are only ordering in an
S–S fashion. Upon further cooling and at intermediate area
fractions this S–S string-fluid transitions to a coarse S–S ‘‘gel’’.
At low area fractions (below 0.25) and at very high area fractions
(above 0.60) the system does not have a stable percolation
transition. Examples of non-percolated structures at very low
and very high area fractions are shown in Fig. 9. The absence of
a percolation transition at low area fraction is likely a con-
sequence of the S–S ordering of the system. S–S aggregates have
a more difficult time spanning the box than H–T aggregates
since the S–S aggregates have smaller aspect ratios than the
H–T aggregates We believe that the disappearance of the per-
colation transition at high area fractions occurs because the
system is jammed. The S–S clusters form individual domains
instead of long structures which percolate. Although percolated
structures may be the true equilibrium structure, our system
does not reach this state and becomes stuck in a meta-
stable, non-percolated state. Interestingly, a similar structure
has been seen experimentally with rods that have surfactant
molecules attached to their sides46 and in simulations of 2-d
spherocylinders.47

Discussion and conclusions

We have calculated phase diagrams for monodisperse systems
of 4 : 1 dipolar colloidal rods with internal charge separations of
3.7, 3.5, 3.0, and 2.5 using discontinuous molecular dynamics
simulations with a charge–charge potential that is a disconti-
nuous approximation to a Yukawa potential. These phase
diagrams displayed fluid, string-fluid and ‘‘gel’’ phases which
were further characterized either by H–T or S–S ordering of
the rods. We found a gel coarsening transition for systems of
dipolar rods with charge separations of 3.5 and 3.7 which was
indicated by an increase in the S–S order parameter. Dipolar
rods with charge separations of 3.0 were found to form ‘‘gels’’
with mixed S–S and H–T ordered structures. Dipolar rods with
charge separations of 2.5 formed coarse ‘‘gels’’ containing only
S–S structures over a limited range of area fractions. Considera-
tion of the four cases discussed indicates that as the charge
separation is decreased, the temperature at which the percolation
transition occurs shifts to lower values. The main reason for
this is that the interactions between the charges become weaker
as the charge separation is reduced since the charges become
further embedded within the rod. The fluid to string-fluid
boundaries also shift towards lower temperatures as the charge
separation is reduced for the same reason.

The novel aspects of our contribution are the following.
While others have investigated how the rod aspect ratio affects
the phase behavior27,34 we instead focus solely on the internal
charge separation. We find that coarse gel-like structures form
at high charge separations while denser aggregates form at low
charge separations. This suggests that in order to readily form
low volume fraction gel structures, the internal charge separation
within dipolar colloidal particles should be large as possible.

Fig. 9 Phase diagram of dipolar rods with charge separation 2.5 plotted in
the area fraction vs. temperature plane. Fluid, S–S string-fluid, and S–S
‘‘gel’’ are present. There is no H–T transition for this system; the rods
always line up in S–S fashion.
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We find triangularly connected networks at charge separation
3.0, which may be of use for encapsulating smaller particles.
An intriguing gel coarsening transition occurs for the two
largest charge separations investigated, which suggests using
temperature to control the density of a gel of rod-like colloidal
particles. Our simulations illustrate how the area fractions,
connectivity and coarseness of gel structures can be tuned on
the basis of the type of rod-like particles undergoing assembly.
The structures formed in our simulations could constitute
model systems for low volume fraction gels or materials whose
properties (e.g. viscosity, conductivity, etc.) are controllable by
dialing in the core–shell parameters for the individual colloidal
particles or the strength of the magnetic or electric field
polarization.

By determining which self-assembled structures our dipolar
rods can possibly form and at what conditions, we have aided
our experimental colleagues in determining the types of phases
and structures which will form from various synthesized core–
shell rod-like particles. An example of such a core–shell particle
is a ferromagnetic nanorod with an inorganic shell overcoat,
the thickness of which could determine whether these mag-
netic dipoles form head-to-tail or side-by-side structures, i.e.,
the relevant regions on Fig. 2.42 The magnitude of the dipole
could be controlled by the changing the strength of the external
field, leading to the polarization of the ferromagnetic core.
Though the structures formed at low temperatures in our simu-
lations may not be equilibrium states, they may still repre-
sent states which could be experimentally accessible through
rapid cooling or rapid gel-formation after momentary magnetic
polarization.

Our use of DMD and a rod model with short range inter-
actions was motivated by our desire to highlight regions of the
phase diagram for further investigation by experimentalists.
This combination of model and simulation technique allowed
us to investigate these complex particles quickly and efficiently.
The main advantage of DMD is the limited computational
resources required (a single processor workstation) in compar-
ison to simulation techniques which use continuous potentials.
While the speed of continuous potential simulation techniques
has increased through the creation of parallel algorithms, DMD
still allows us to simulate more systems in a short time frame
given limited computational resources. Though our simula-
tions focused on situations with high salt concentration where
short-range interactions were appropriate, it is interesting that
the aggregate structures obtained from our simulations appear
similar to those obtained in simulations employing long range
interactions. Accounting for long range continuous potentials is
often the most time consuming part of a simulation; obtaining
results which could be qualitatively correct via short range
potentials is an attractive idea.48

The structures formed in our simulations appear consistent
with those found by others who have simulated dipolar rods.
For instance, McGrother et al. found that dipolar rods with an
embedded point dipole form S–S structures when the aspect
ratio is greater than or equal to 2 : 1 and H–T structures when
the aspect ratio is smaller.26 Varying the aspect ratio of a rod

with a point-dipole is equivalent to exploring the x axis in our
Fig. 2; the switch between H–T and S–S on this line occurs at an
aspect ratio of approximately 1.30 : 1, which is consistent with
what McGrother et al. had found. Simulations by Aoshima and
Satoh of dipolar rods with an extended dipole form H–T and
S–S structures as well as higher order structures including
triangular and double chain structures.36 By simulating rods
of several aspect ratios with the same difference between rod
length and charge separation, they found that the structures
formed in their simulations switched from H–T dominated to
S–S dominated as the aspect ratio increased. Their systems
would fall on a line parallel to the boundary between the H–T
favored and the infeasible region in Fig. 2. According to Fig. 2, all
three of their charge separations would be in the S–S favorable
region. This suggests that if we were to simulate the same parti-
cles we would likely obtain different results from Aoshima and
Satoh, and our system would be predominately S–S structures and
would not switch to an H–T dominated system. Our results also
appear to be consistent with simulations of magnetic nanorods
composed of fused dipolar spheres performed by Alvarez and
Klapp.27 They do not find nematic order at our aspect ratio
regardless of the interaction energy and their percolation transi-
tions occur at decreasing volume fraction as the interaction
energy is increased (temperature decreased).

Since the type of behavior observed, phase separation or self-
assembly into chains, has been found to depend on the type of
model used, at least for dipolar spheres, it is instructive to
compare the types of behaviors that we observe for dipolar rods
with those observed using other models.37 Grand canonical
Monte Carlo simulations of hard sphere point dipoles,49

Wang–Landau simulations of Stockmayer fluids with high
dipole strength,50 and Monte Carlo simulations of hard sphere
extended dipoles37 all result in the formation of chains of
particles, while simulations of the Stockmayer fluid with low
dipole strength appear to exhibit vapor–liquid equilibrium.51

Both simulations of dipolar spherocylinders and dipolar dumb-
bells have found ranges of aspect ratios where vapor–liquid
coexistence occurs.26,52,53 Since our model does not include a
Stockmayer-like potential and our aspect ratio is significantly
above the aspect ratio where spherocylinders display vapor–
liquid coexistence, we would expect that our simulations would
not display vapor–liquid equilibrium and would instead form
chains of particles.

Though small, the differences between the model used in
our simulations and a true spherocylinder could potentially
lead to anomalous behavior. The percent difference in area
between a spherocylinder and the rod used in our simulation is
3.44% due to small gaps between the spheres in our model.
If these gaps are too large, they could cause the rods to stack in
an offset manner or potentially cause the rods to have a more
difficult time sliding past each other at high area fractions.
Donaldson and Kantorovich have encountered an analogous
situation where cubes constructed from spheres were found to
stack closer to each other than true cubes would; these authors
surmise that this is the cause of the slight discrepancy observed
between their theory and simulation results.54 We have not,
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however, observed our rods stacking in an offset manner in our
simulations. Unlike many rod models, ours is not infinitely
stiff. This may allow rod particles in our simulations to diffuse
past each other more easily than true spherocylinders would.
However, we have calculated the persistence length of our rods
without charges to be 38.7s � 2.6s, which is significantly higher
than our rod length of 4.0s.

One issue with all of our simulations is whether the struc-
tures we measure are equilibrium in nature or simply long lived
transient states. The low area fraction non-percolated structure
in Fig. 9 in particular suggests that we are not reaching a true
equilibrium state since the clusters do not aggregate together
even though there is seemingly nothing keeping them apart.
For the conditions in this region (charge separation 3.5, low
area fraction, low temperature) in particular we ran simulations
which were twice as long but we were unable to obtain appre-
ciably different results. From this, we cannot rule out that our
simulations may simply be long lived transient states, and our
phase diagrams are therefore not describing equilibrium struc-
tures. We suggest that our simulations may be limited by both
the tight bonding we had to implement in order to maintain a
rigid rod shape and the implementation of our Andersen
thermostat which tended to slow down the dynamics of the
system. Simulations using a rigid rod with a different thermostat
may have a higher chance of reaching a state more suggestive of
equilibrium.

Appendix

We designed the discontinuous charge–charge potential to
mimic the Yukawa potential by matching the discontinuous
and continuous total potential between a pair of dipolar rods,
the ‘‘rod–rod potential’’, over a variety of configurations. The
rod–rod potential is the sum of the four interactions between
the positive and negative charges on a pair of rods, not count-
ing interactions between charges on the same rod. We investi-
gated the rod–rod continuous potential as a function of the
angle between two adjacent rods, the so called ‘‘joint’’ angle, g,
as described by Alvarez et al.27 This angle is defined as g = y/p,
where y is the angle between the two rods i.e. the rods are
in a side-by-side alignment when g = 1 and are in head–tail
alignment when g = 0 as shown at the top of Fig. 10. Fig. 10
displays the rod–rod continuous potential versus g as dashed
lines for charge separations of 3.0 (blue), 3.5 (red), and 3.7
(black). The corresponding rod–rod discontinuous potentials
are shown in solid lines and were calculated using the con-
tinuous potential given in eqn (1) of the main text. In order
to capture both head–tail and side–side tendencies it was
essential that the rod–rod discontinuous potential be a good
approximation to the rod–rod continuous potential at charge
separations both above and below the dashed line in Fig. 2.
The goal, therefore, was to develop a discontinuous rod–rod
potential which matched the continuous one at extreme values
of g to give correct energies for head-to-tail and side-by-side
arrangements of the dipoles.

We chose the locations for the discontinuities in our dis-
continuous charge–charge potential using the following approach.
For a charge separation of 3.7 we wanted a discontinuity in the
discontinuous rod–rod potential at g = 0.6 because this is approxi-
mately the angle at which an inflection point occurs for the
continuous rod–rod potential as seen in Fig. 10. This required a
discontinuity in the charge–charge potential at a reduced charge–
charge distance of 0.595. Similarly, at a charge separation of 3.5 we
needed a discontinuity at g = 0.6 which required a discontinuity in
the charge–charge potential at a reduced charge distance of 0.433.
In addition to creating a discontinuity in the rod–rod potential for
a charge separation of 3.5 this generated a discontinuity in the
rod–rod potential for charge separation 3.7 at a g of approximately
0.4. Our final discontinuity was chosen to match the rod–rod
potential for all three charge separations at g = 0. We arbitrarily
chose a reduced charge–charge distance of 1.1 for this disconti-
nuity in order to hold the rods ‘‘tightly’’ in a side–side configu-
ration and this generated a discontinuity in the rod–rod potential
at small g values. This defines the three discontinuities used in our
model charge–charge potential.

We chose the depths (heights) of the square well (square
shoulder) charge–charge potential using the following approach.
We forced the depth of the innermost well in our charge–charge
potential to take a value of �3.129, the value of the continuous
rod–rod potential at g = 1 for charge separation 3.7 as shown by
the black dashed line in Fig. 10. Similarly, we set the depth of the
middle well for the charge–charge potential to be �1.717 so that
the discontinuous rod–rod potential would match the continuous
potential at g = 1 for charge separation 3.5. We set the depth of
the outermost well to be �0.719, half the value of the average
rod–rod continuous potential at g = 0, since there are two charge
pairs within this distance, in order to match to the continuous
rod–rod potential for the three charge separations at g = 0. This
completes the definition of the charge–charge discontinuous
potential used in our simulations.

Fig. 10 The rod–rod potential energy vs. ‘‘joint’’ angle curves for the Yukawa
potential (dashed lines) and our discontinuous potential (solid lines). The
three-step discontinuous potential used in our simulations was derived by
matching the rod–rod potential energy calculated for the continuous Yukawa
potential with that for the discontinuous potential. Black, red and blue lines
are for charge separation 3.7, 3.5 and 3.0, respectively.
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