
83

A MODEL OF HETEROGENEOUS DISTRIBUTED SYSTEM FOR

FOREIGN EXCHANGE PORTFOLIO ANALYSIS

Dragutin Kermek
1
, Tomislav Jakupi

2
, Neven Vr ek

1

1University of Zagreb,Faculty of Organization and Informatics, Varaždin, Croatia

{dkermek | nvrcek}@foi.hr
2Koprivnica 48000, Trg kralja Tomislava 8, Croatia

tjakupic@yahoo.com

Abstract: The paper investigates the design of heterogeneous distributed system for
foreign exchange portfolio analysis. The proposed model includes few separated and

dislocated but connected parts through distributed mechanisms. Making system distributed

brings new perspectives to performance busting where software based load balancer gets
very important role. Desired system should spread over multiple, heterogeneous platforms

in order to fulfil open platform goal. Building such a model incorporates different patterns

from GOF design patterns, business patterns, J2EE patterns, integration patterns,
enterprise patterns, distributed design patterns to Web services patterns. The authors try to

find as much as possible appropriate patterns for planned tasks in order to capture best

modelling and programming practices.

Keywords: foreign exchange portfolio analysis, distributed system, design pattern,

refactoring, load balancer, Web service.

1. INTRODUCTION

In the nature of Web application are unpredictable number of concurrent users

and therefore unpredictable load peak moment and duration. Acceptable response

time shortens from year to year [1, 2, 3] so new technologies and techniques must

give an answer to response time issue. Modern information and communication

technologies have significant impact on many software systems where Web

applications are one of the most exposed types for common users. One of the most

important issues concerning Web application is performance (latency, throughput,

efficiency, scalability) [4] where expensive hardware and network infrastructures

usually have been prime objects that enable feeding increased users’ information

“hunger”. At the same time, software systems must be designed to take part in that

solution to make the most of the hardware but also keeping in mind to cut down

total expenses.

UDC: 004.42

Original scientific paper

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/14394001?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

D. Kermek, T. Jakupi , N. Vr ek. A model of heterogeneous distributed system...

84

Building high-capability Internet-based system that must work under 24/7

scheme with constant fear of spreading over to many users that could shutdown the

whole operation, is not an easy task. System architects have their cards in sleeves

and according to Dyson and Longshaw [1] they are active-redundant elements,

load-balanced elements, dedicated web and application servers, data replication,

connection limitation, and resource pooling, just to mention few of them.

Unfortunately, most of them are very expensive hardware equipment that only

could afford big companies. Others must find different approach to solve

performance issue.

Today is very common to plan a system based on cluster with many relatively

cheep computers (personal or workstation) instead of very expensive

mainframe/server. Integration on those computers into coherent system is done by

some kind of distributed system hidden behind the façade put by web (or desktop)

application.

The paper presents an object-oriented model of a distributed application based

on two different technologies (RMI and Web services). When authors model new

system they can quest for suitable well documented elements known as design

patterns [5] that give them advantages to capture best known solutions to particular

project parts and integrate them into new system.

The paper starts with a short description on the problem domain with

architecture overview of distributed technologies. It is followed by analysis of three

layers: business, data and presentation. Finally, some conclusions are given on the

topic.

2. SHORT DESCRIPTION OF THE PROBLEM DOMAIN

New system should serve as a Web application that gives users a possibility to

create one or more private portfolios. Each portfolio has its starting date, amount of

money to invest in at least 3 foreign currencies. It is up to a user to define the

starting date for a portfolio and initial division of money among chosen foreign

currencies. Giving opportunity to a user to pick a date from the part has its reasons

in analysing previous currencies trends and forecasting similar ones for the future

in order to maximise earning. A user chooses when he/she will sell or buy some

amount from his foreign currencies pool.

The functionality of proposed Web application can be divided between the

main functionality, the analytical part of the application, and the background

subsystem. The main functionality includes user related tasks, creation of a new

currency portfolio, user's division of the starting balance among the foreign

currencies in portfolio and management of transactions i.e. buying and selling.

Analytical part includes various reports like the value of the foreign currency,

portfolio state or profit through time interval and suggestion of the most profitable

transaction in user defined time interval. The background subsystem acquires

foreign currency rates from public data sources (banks) on scheduled daily base or

on demand for time interval, and stores them in a local database.

Portfolio state report is one of the most time and resource challenging report

offered by the Web application. This report includes daily value of deposit (which

Journal of information and organizational sciences, Volume 30, Number1 (2006)

85

is increased by selling some amount of one currency and decreased by buying new

amount of other currency), daily values of every currency in portfolio and their

sum. When user sets the interval and requests the portfolio state report, Web

application would normally start processing given input data and after some

amount of time the report would be presented to the user. The bigger the interval

the greater is the impact on the time required for the processing and, of course, on

the performance of the Web server hosting the Web application since the process

involves considerable amount of calculations per day of interval. For these reasons

more efficient solution is required and one option would be the distribution of work

over the network.

One of the goals was to design a system that consists of subsystems with

multiple applications that could be used for new projects. Typical example is

foreign currencies rates data acquisition and serving subsystem. List of its tasks

includes following: ease access to data, provide independence from original data

sources, and offer new set of services based on single data request but what is more

important on data collections request, too. For those tasks could be allocated two

servers with separated functions where on of them serve as a database server for

the subsystem. Due to relatively low need for processor power on data acquisition

part it is very logical to use only one server for all tasks until response time is

acceptable for other subsystems that rely on it.

2.1. ARCHITECTURE OVERVIEW OF DISTRIBUTED TECHNOLOGIES

The requirements analysis put some fixed points for the project and one of

them is implementation in J2EE – Java 2 Enterprise Edition but without EJB –

Enterprise Java Beans. To make a distributed system that fits the goal and the

purpose set in the previous text the first step is to choose the proper approach. One

of the simplest solutions here would be to use RMI – Remote Method Invocation

[6], Java's simple, network-independent and portable solution for distributed

computing. Moreover, since it is an all-Java solution authors can reuse code

responsible for generating portfolio state reports they have developed with Web

application. Distributed system is composed of the client part, in this case Web

application with software-based load balancer and at least two servers. Servers

have Java Virtual Machine installed and configured and RMI registry started so

server-side Java application can instantiate and register remote object in RMI

registry. Remote object implements the algorithm for generating portfolio state

reports inside a method. A client, Web application, can with a help of server's RMI

registry for obtaining reference to remote object, instantiate remote object and call

this method in a way also defined by RMI specification.

Software-based load balancer has an important role here. Its primary objective

is to divide big intervals for portfolio status report in equal parts and dispatch every

part to a different server. Locally, every remote method call is performed in its own

thread. When server returns result thread has finished and result can be picked up

by load balancer. When all threads are done and results are picked up, they are

merged, sorted and represented to the user. If the interval is not so big, for example

less then 10 days, load balancer does not divide it or call remote methods to do the

D. Kermek, T. Jakupi , N. Vr ek. A model of heterogeneous distributed system...

86

job. It simply calls local method and whole job is done locally. This is primarily

because all the network activities performed, when servers for portfolio state

analysis are invoked, can result in an unnecessary overhead.

One can see that the Web application and the servers for custom analysis are

pretty strongly tied together. The strong association between the two results from

the fact that the analysis servers are direct extension of the Web application

intended to free resources of the server that hosts the Web application and at the

same time boost performance of the Web application by utilizing networking,

distribution of work and parallelism.

Web service for foreign currencies is a part of the model which is also an

aspect of distributed computing. It relieves the Web application and the analysis

applications from the job of retrieving and managing the courses. This job is totally

oblivious to the Web application because it provides the service with information

about the course and expects from the Web service to return proper course value

according to input information. Why use Web services here and not distributed

computing with RMI? First of all, the job of retrieving and managing courses is not

directly associated with the purpose of the Web application, so we can freely

outsource it. Also, other clients could make use of such Web service because Web

services are XML-based, and that directly means, they are open for everyone who

needs them. Client of Web service can be any type of client at all, it only needs

Web service's descriptor (WSDL) which is an XML document and then, using

SOAP (also XML-based), can initiate communication with Web service. If we had

used pure Java solution (RMI), then only Java clients could have used such service.

As mentioned before the job of the Web service is to retrieve courses and they

can be retrieved from any source. It can be some on-line bank or some other non-

XML service which has its own proprietary protocol for offering course

information. Our Web service takes data from joint database that is updated by

background subsystem for foreign currencies rates acquisition.

As we can see all components of the proposed model are platform-independent

which one of the basic characteristics of Java platform is. The authors use it for

development of Web application and its supporting distributed system, but also for

the Web service. More important fact about the Web service is its mentioned

availability to all kind of clients thanks to XML. Also, if authors are going to

completely change the platform and implement service in some other programming

language, this wouldn't influence clients too much. The only thing relevant to the

outside world that could change would be the Web service's descriptor. Clients

would then have to update the way they access service using SOAP according to

the new WSDL and that's it.

The architecture of the model is shown in Figure 1. Internal data flows between

subsystems are shown with thick double arrows.

Journal of information and organizational sciences, Volume 30, Number1 (2006)

87

Figure 1. Architecture of the model

3. BUSINESS LAYER ANALYSIS
Buying and selling foreign currencies is a typical trading activity where

exchange rates depend on changing market conditions on daily bases. According to

Fowler’s trading system for a bank [7] each trade is described by Contract pattern,

a simplest kind of financial deal of buying some Instrument (foreign exchange rate)

from another Party (usually bank is the problem domain). Eriksson and Penker [8]

list a contract pattern but as a business pattern namely in the category resource and

rule patterns.

A contract is useful for businesses that rely on tracing directions of deals,

especially when deep analysis should be performed. This two-way pricing

behaviour (one price where we buy and another when we sell) is captured by a

Quote. Application’s clients need to invest in at least three foreign currencies and

they are captured by a Portfolio, which is a collection of contracts. The goal for a

party on a financial market is gaining some profit. The profit in this problem

domain is expressed by a difference in a current value of the portfolio (or at some

date) and its initial value. The value of the portfolio is the sum of the values of

underlying contracts that are priced according to some Scenarios as representation

of the state of the market, either real or hypothetical. The problem domain could

D. Kermek, T. Jakupi , N. Vr ek. A model of heterogeneous distributed system...

88

have many different scenarios but authors are mainly oriented to hypothetical ones

with historical data. Figure 2 shows simple class diagram of the domain model.

Figure 2. Class diagram of the domain model

Arlow and Neustadt [9] use Money archetype pattern as a focal point for trade

affairs. It should be enough to say how complex it is that its class diagram consists

of more than twenty classes. The authors extracted some elements from Money

archetype pattern and used them in the domain model. Currency, Locale,

ISOCountryCode, ExchangeRate, CurrencyConverter archetypes, and their

subclasses are main targets. They have better expressive power for the domain

model then relationship among Instrument, Quote, and Timepoint. Figure 2 shows

an excerpt from the Money archetype pattern where classes gather around

Currency. Finally, to get more usable domain model Currency could be put instead

of Instrument.

Figure 3. Class diagram of an excerpt of the Money archetype pattern [9]

Journal of information and organizational sciences, Volume 30, Number1 (2006)

89

The portfolio analysis is a perfect place where many design patterns from one

of the most important design pattern book known as a GOF (Gang-of-five) book

[5] could have their place in the model. For instance, Strategy pattern [5] is used to

encapsulate each different portfolio analysis algorithms, and make them

interchangeable. As said, the load balancer has very important role in the system.

Its main functionality is bases upon Composite pattern [5] to compose distributed

objects in two level tree structures to represent path-whole hierarchy for analysis. It

is also very useful when one want to improve performance by caching some data.

Objects could be created using Factory Method pattern [5] when one need to

integrate classes specialized for some type of analysis. Load balancer must be

implemented as Singleton pattern [5] in order to centralize dispatching subtasks

accordingly to analysis servers and their freedom to serve new requests. On some

rare situation one might use Chain of Responsibility pattern [5] to pass request

along the chain (analysis servers) until one of them handles it.

4. DATE LAYER ANALYSIS

Date sources have very important role in most application thus one must take

care of a way he/she organizes data access and manipulation in persistent storages.

According to architecture of the model (figure 1) two data sources exist, first one

serves only client transactions and second one collects foreign exchange data from

other resources and serves requests for foreign exchange rate on a particular date or

time interval. Although their purposes are quite different their internal logic could

have the same underlying mechanism based on Data Access Object pattern.

According to [11] one should use data access objects when want to decouple the

persistent storage implementation from the rest of application, provide a uniform

data access API for a persistent mechanism to various types of data sources,

organize data access logic and encapsulate proprietary feature to facilitate

maintainability and portability.

Very often one tries to boost efficiency or usability of some software module

or just wants to avoid most-known bad program practices. Refactoring looks like

proper solution to needs like these. Fowler [10] defines refactoring as a change

made to the internal structure of software to make it easier to understand and

cheaper to modify without changing its observable behaviour. General refactoring

policy concerning data source usage proposes implementing a connection pool in

order to [11] pre-initialize multiple connections, improving scalability and

performance.

Up to now it should be clear that the most data-oriented traffic inside the

system will be around Web service. Target platform J2EE provides Web Service

Broker pattern [11] that is a member of integration tier patterns and serves as a

broker to one or more services. In the system these services deal with a plain old

java object (POJO) because we want to implement system without EJB container.

Each client’s request to create portfolio must begin with uploading a list of

currencies from Web service server or Web application server must previously

replicate currency table to local database. The authors prefer first approach

although it is considerable slower then second one but it does not have redundant

D. Kermek, T. Jakupi , N. Vr ek. A model of heterogeneous distributed system...

90

data and does not need any additional module for data replication. Target Web

service mainly deals with Business Object Pattern [11, 12] in order to capture best

of object-oriented approach and to use the same intrinsic logic throughout the

whole system. There are few important hints when Web service a business object

represents. Some objects might have very complex structure with components that

contain additional complex data type and so on. Such tree could have few layers of

inclusion and pool unpredictable amount of data. Inheritance have very important

role in object-oriented modelling but Web service designer should be aware that

Web service clients could be many programming platforms and not all of them are

capable of translating inheritance into similar form.

Some tasks need relatively small amount of data (e.g. one or two currency

objects) so they could call the Web service as many times as they need. Other tasks

(exchange rate trend analysis) that are oriented towards broader time interval need

different approach to minimize unnecessary data traffic between a Web service

client and a server. Common logic says that the Web service should have additional

parameters to be able to capture data collection and return it to a caller instead of

performing multiple calls for single data. The obvious solution is Business Object

Collection Pattern [12] that consists of many single business objects. Its core

functionality must provide access methods to fetch single business object based on

its position in a collection or key.

Second part of distributed environment (RMI) is just an extended arm of the

Web application that operates on other computer. Good thing is that the number of

these distributed objects depends only on available number of computers to host

them and demand to instantiate and run single object on chosen computer. The

RMI module presents Remote Facade [13] pattern due to its aim to provide coarse-

grained facade on fine-grained object to improve efficiency over a network. The

authors use it mainly to perform portfolio analysis for broader time interval that

returns serialized bulk object containing all important calculations as lower layer

objects. Almost each calculation inside portfolio analysis needs foreign exchange

rate so very intensive traffic between the analysis server and the Web service

server should be expected.

5. PRESENTATION LAYER ANALYSIS

Last but not the least important part of the model is a presentation layer. It has

very significant role for many systems because it is the first (and probably only)

visible part of the system for users. Therefore, developers should devote very

significant attention to user interface in order to provide users with different data

presentations. A typical situation in the system is browsing portfolio value or

foreign exchange rate over some time interval. Some users prefer data presented as

a chart while other as a table. It should be very wise to apply one of the most used

architectural patterns named Model-View-Controller (MVC) [5, 13, 14]. The

authors plan to use Java applet to visualize data so a controller will capture user’s

action (e.g. selection of desired visual presentation type, change of time interval,

change of scale, etc), and translate it into request for the model or associated view.

The View will present data to the user, so one can say that the user sees only view

Journal of information and organizational sciences, Volume 30, Number1 (2006)

91

component from MVC. The model will request data from the analysis server or the

Web service server and serve to the view as data provider. Any change in the

model will trigger appropriate action in the view.

The rest part of the presentation layer is HTML oriented with implementation

in the Java servlet or Java Server Page (JSP) technologies where JSP is more

suitable when one wants to separate business logic from the presentation. It must

be point out that J2EE platform promotes separation of concerns [11] therefore its

system is stack based where user interface is covered in two tiers: Client and

Presentation. A client can be Web browser, earlier mentioned Java applet, or some

device. Presentation tier deals with presentation logic required to service clients

that access the system. The proposed system uses few presentation tier patterns

among many of them.

There are many reasons to tract users’ activities on the system. All users’

requests must be logged in some file or database in order to perform some

analyses. Intercepting Filter pattern [11] is very useful for this kind of task

because J2EE framework calls filter class method doFilter(...) on every user

request. Inside the method one can do some request data processing, measure

execution time, log data, etc. HTML formatting could be very simple and

straightforward but also very complex that integrates many modular parts. Simple

visual design includes at least header, footer, menu on the left side, and content in

central part of window. The solution is described in Composite View pattern [11]

and it’s up to developer to select appropriate strategy among proposed.

6. CONCLUSION

The first objective of designing a model of heterogeneous distributed system

for foreign exchange portfolio analysis was to make it fit a wide range of

environments and to scale it according to user demand. The authors planned to use

software components to perform critical tasks instead of expensive hardware. The

second objective was to find as much as possible appropriate patterns for planned

tasks in order to capture best modelling and programming practices. The authors

used different types of patterns like GOF design patterns, business patterns, J2EE

patterns, integration patterns, enterprise patterns, distributed design patterns to Web

services patterns. The paper presents just some of the most interesting patterns used

in the model. The number of pattern categories shows how deep and wide a pattern

community is involved in the process of software developing. It is up to software

developers to educate themselves to use patterns instead of reinventing the wheel

or repeat commonly occurring bad practices that are documented as antipatterns

[4].

REFERENCES :

[1] Dyson, P., Longshaw, A. Architecting Enterprise Solutions, Patterns for High-

Capability Internet Based Systems, John Wyles & Sons, 2004.

[2] ProactiveNet. Speed is King!

http://www.proactivenet.com/Library/Speed_Is_King.pdf

D. Kermek, T. Jakupi , N. Vr ek. A model of heterogeneous distributed system...

92

[3] Nelson, M. G. Fast Is No Longer Fast Enough.

http://www.informationweek.com/789/web.htm

[4] Greenfield, J., Short, K. Software Factories: Assembling Application with

Patterns, Models, Frameworks, and Tools, Wiley Publishing, 2004.

[5] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns, Elements of

Reusable Object/Oriented Software, Addison-Wesley, USA, 1995.

[6] Farley, J. Java Distributed Computing, O’Reilly, 1998.

[7] Fowler, M. Analysis Patterns: Reusable Object Models, Addison Wesley

Professional, 1997.

[8] Eriksson, H-E., Penker, M. Business Modelling with UML, Business Patterns at

Work, 2000.

[9] Arlow, J., Neustadt, I. Enterprise Patterns and MDA, Building Better Software

with Archetype Patterns and UML, Addison Wesley, 2004.

[10] Fowler, M. Refactoring: Improving the Design of Existing Code, Publisher:

Addison Wesley Professional, 1999

[11] Alur, D., Crupi, J., Malks, D. Core J2EE Patterns, Best Practices and Design

Strategies, 2nd Edition, Sun Microsystems Press, 2003.

[12] Monday, P.B. Web Service Patterns: Java Edition, Apress, 2003.

[13] Fowler, M. Patterns of Enterprise Application Architecture, Addison Wesley

Professional, 2003.

[14] Buschmann, F, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. Pattern-

Oriented Software Architecture: A System of Patterns. Addison-Wesley,

Reading, MA, 1996.

Received: 31 October 2005

Accepted: 30 June 2006

