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In this paper we focus on identification and time optimal control of nonlinear processes modeled as piece-
wise affine systems. We combine the piecewise ARX process model identification based on clustering and
the constrained time optimal controller design for discrete-time piecewise affine systems. The two procedures
are improved and bound into a systematic procedure for design of high-performance nonlinear control sys-
tems: from the identification data to the closed-form time optimal controller. We successfully experimentally
verify the procedure on the electronic throttle control system case study.
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1 INTRODUCTION

Constrained optimal control methods offer a
way of systematic design of high-quality control
systems for demanding applications. The control
system respects the given constraints on its vari-
ables and achieves performance that is optimal
with respect to the design objective. In most cases
the optimal control designs require a mathematical
model of the controlled process. While the con-
strained optimal control with linear process mod-
els nowadays becomes classic, its extension to
general nonlinear models is still unresolved.

As one of the first promising lunges in the area
of nonlinear model based optimal control, in this
decade evolved discrete-time linear hybrid systems
based optimal control [1]. Discrete-time linear hy-
brid systems are basically systems that have both
continuous- and discrete-valued variables. They
consist of several linear differential equations and
of logic rules resolving which equation is current-
ly valid for model evolution. As such, they are
used to model a wide class of dynamical systems.
Especially useful for optimal control is the Dis-
crete-Time Piecewise Affine (DTPWA) class of hy-
brid systems. DTPWA systems comprise several
affine equations for state-updates, each valid in a
separate polyhedral set of the state-input space.
They are under very mild assumptions equivalent
to many other classes of hybrid systems [2] and
are very useful since they can approximate any
nonlinear system.

In this paper we focus on explicit state-feedback
reference-tracking controller design. The term »ex-
plicit« means that such design yields the optimal
controller in a closed-form, i.e. as an explicit func-
tion of the state measurements, output references
and past control inputs. We use Constrained Time
Optimal Control (CTOC) problem formulation [3]
for DTPWA systems where the objective to be
minimized is the time needed for the system to
confine to certain invariant state-space target set.
A set of system states is called invariant if for any
state in the set one can find a control action that
keeps the state trajectory in the set. The optimal
control law by CTOC for DTPWA systems is in
most cases non-unique, but it can always be selec-
ted in the PWA, i.e. in the lookup-table form [3].

About 90 % of the optimal control system de-
sign time is spent on obtaining the representative
mathematical model of the process [4]. Two ways
of obtaining the DTPWA process model are: (i) ana-
lytical derivation from the first-principles (physi-
cal laws of conservation) and (ii) direct model iden-
tification.

The analytical way is suitable if the model can
be directly from the first-principles derived in the
form of several linear differential equations and
logic rules that resolve which equation is valid. If
this is not the case, difficulties occur in parame-
terizing the nonlinear model itself and linearizing
it. A very hard issue is the choice of linearization
points for the PWA model design and additionally,
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in case of continuous-time models, discretization
could generate unwanted effects in the resulting
DTPWA model (see e.g. the case of friction non-
linearity in [5]). Such model design induces a lot
of unwanted degrees of freedom that, in most ca-
ses, deteriorate the model approximation abilities.

An attractive alternative to analytical PWA mo-
del design is the model identification in PieceWise
ARX (PWARX) form [6]. Basically, PWARX mo-
del maps regression vectors, formed of the past
and present process inputs and outputs, to the pre-
dicted outputs using one of several ARX models.
Identification of the PWARX model is a hard task
since one has to simultaneously estimate the coef-
ficients of each ARX submodel and the polyhedral
regions in the regression vectors space where those
submodels are valid. Several procedures were pro-
posed in the last few years for this task [7, 6].
When the a priori knowledge on the process is li-
mited and the measured outputs are corrupted with
noise, one of the most appropriate methods for
PWARX process model identification is the clus-
tering-based procedure introduced in [8]. A local
ARX model is identified around each regression
vector and the obtained model parameters are clus-
tered by similarity in the pre-fixed number of clus-
ters (affine models). The final parameters in each
cluster are obtained by utilizing the weighted
mean. The separating hyperplanes between the clu-
sters in the regressor space are finally computed
using some of linear classification techniques
which yields the model polyhedral partition.

This paper binds the clustering-based PWARX
model identification technique [8] and CTOC for
DTPWA systems [3], with improvements presented
in [9], to give a unified approach to explicit opti-
mal controller design for piecewise affine systems.
Two important modifications are introduced in the
standard clustering-based PWARX model identi-
fication [8]: (i) systematic pre-processing of the
identification data and (ii) linear classification of
clusters through linear classification of vertices of
clusters. DTPWA models that straightforwardly
follow from identified PWARX model usually
have a complex model partition and are thus pro-
blematic in the time-optimal controller computa-
tion phase. We introduce important computational
modifications in the controller design phase that
keep the resulting controller time-optimal, while
ensuring its implementability even for complex
models. As a case-study, this unified approach is
used to design a time-optimal controller for the
electronic throttle used in cars with internal com-
bustion engines. Electronic throttle is highly non-
linear and as such requires quality control to ope-

rate according to the demands of the automotive
industry [5].

The paper is divided into five sections. After
this introductory section we outline the clustering-
-based identification procedure with the proposed
modifications in Section 2. Then we proceed with
the exposition of controller computation in Section
3. The unified identification-control approach using
DTPWA process model is applied to the electronic
throttle control system design in Section 4. The
paper conclusions are given in Section 5.

2 CLUSTERING-BASED IDENTIFICATION OF 
PIECEWISE ARX MODELS

PWARX models map the regression vector to
the next process output using a PWA map. The re-
gression vector ϕ ∈ ún is formed of the observed
process data — past and present inputs and outputs:

(1)

where k denotes the discrete-time instant, y ∈ ú is
the process output and u ∈ úm the process input,
na and nb are the numbers of past outputs and in-
puts used in the regression vector, n = na + mnb. No-
te that we restrict our attention to MISO models.
However, the procedures outlined in the sequel can
be straightforwardly extended to identify MIMO
models [6, 10]. Piecewise affine function f on the
regression vector ϕ is defined as

(2)

where s is the number of affine terms in f, Θi ∈
∈ úm+1 is the parameter vector and Φ i is the poly-
topic region where i-th affine function is valid.
Polytopes Φ i ∈ ún form a partition of the polyto-
pic regressor set Φ :

(3)

where Φ is a polytope usually defined by the phy-
sical constraints on inputs and outputs. Note that
we allow f to be multiple-valued on ¶Φ i ∩ ¶Φ j for
i ≠ j. PWARX model is of the form

yk + 1 = f(ϕk) + ek,               (4)

where e is the model prediction error.
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The goal of the identification procedure is to es-
timate f based on a given data-set containing N
pairs (ϕk, yk+1), with 1 ≤ k ≤ N, such that the model
prediction error is as small as possible. The un-
knowns in f are: s, na, nb, Θi, Φ i. Most often the
numbers of past inputs and outputs used in the re-
gression vector are fixed in advance [8]. Note that
if additionally s is fixed, we have a fixed struc-
ture of f. The problem of estimating f may be de-
composed in two subproblems: (i) estimation of s
and Θi and assignment of each data-point to a sub-
model that most-likely generated it and (ii) partiti-
on of the set Φ according to that assignment. Whi-
le the step (ii) is performed similarly for majority
of the existing PWARX model identification tech-
niques, the step (i) is substantially different for all.
The most relevant techniques are [6, 7]: clustering-
-based procedure [8], bounded-error procedure [11],
Bayesian procedure [12] and algebraic geometric
procedure [13]. In the rest of the paper we consider
only the clustering-based identification.

2.1 Clustering-based Data Classification and 
Parameter Identification

We assume that the number of outputs and in-
puts in the regression vector ϕ, na and nb, as well
as the number s of affine terms in f are fixed in
advance. In practice usually only lower and upper
bounds on na and nb can be introduced, based on
e.g. outputoutput and output-input correlation func-
tions. It is a common practice in ARX model iden-
tification to estimate the models with varying
na and nb and choose the one with the best valida-
tion performance. In the case of clustering-based
PWARX model identification this should be done
with caution since PWARX models with over-esti-
mated na and nb may have poor approximation pro-
perties [7].

In this section for the clustering-based PWARX
model identification procedure [8] we discuss how
parameter estimates Θ i, i = 1, . . . , s, are obtained
and how each data-point ϕk, k = 1, .. . , N is classi-
fied into one of s data-clusters Fi. The cluster Fi
collects all the data estimated to be processed
using i-th ARX model. The identification is per-
formed on the given data-set 

S = {(ϕk, yk+1)|1 ≤ k ≤ N}.

The procedure relies on the assumption that the
model is locally linear around each data-point.
Following this, a number c is fixed and around each
ϕk c − 1 nearest points ϕj are determined and corre-
sponding (ϕj , yj + 1) are gathered with (ϕk, yk + 1)
in a Local Data-set (LD) Ck such that:
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The indices of data-points in Ck are denoted with
jk,1, . . . , jk,c. Parameter c is the tuning knob of the
algorithm and must be properly chosen for good
identification results. A short discussion on its
choice is provided later in this subsection.

LD may be either such that it gathers points ge-
nerated by a single ARX model and is then called
pure LD or it can gather points generated by seve-
ral ARX models and is then called mixed LD. The
identification relies on the assumption that the
number of mixed LDs is small compared to the
number of pure LDs.

The next step of the procedure is to identify pa-
rameters of a local ARX model for each LD using
standard linear regression techniques like Least-
-Squares (LS):

(5)

Empirical parameter covariance matrix of Ck is
[14]

(6)

where SSR stands for »sum-squared residual«. The
mean regression vector mk in Ck together with its
covariance (scatter) matrix Qk are also computed:

(7)

We assume that the data sampling is fair, i.e.
that the data-points are not in majority placed on
the facets of Φi. Under proper choice of c, matrices
Vk and Qk are inverse proportional to confidence
that Ck is a pure LD which is of utmost importance
for the identification algorithm. If Ck is pure and
generated by the i-th submodel, the parameter vec-
tor is the Gaussian random variable with mean
close to some Θi and the covariance determined
dominantly by the characteristics of output measu-
rement noise. On the other hand, if LD is mixed, 

contains less confident or even useless infor-
mation about the model which in principle leads 
to bigger entries in the parameter covariance ma-
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in Ck are more likely to belong to the same region
of the PWARX model. However, note that if Qk
becomes smaller indicating higher points density,
the covariance Vk rises. In the limit, when the who-
le group Ck degenerates into a single point in the
regressor space, entries in Vk tend to infinity. 

For the low number of mixed LDs it is benefi-
cial to have c as small as possible, e.g. c = n + 1.
However, if the output measurement is noise-cor-
rupted, low number of data-points in Ck may re-
sult in poor parameter estimates that are not
accompanied with higher values in Vk and thus not
properly »marked« for further identification proce-
dure. The parameter c should be tuned to optimal-
ly weigh the two opposing phenomena. Also, it
should be noted that c should increase with the
number of data-points N since for higher N and
fixed c the sets Ck become denser. 

For the purpose of data classification based on
clustering, to each LD Ck a representative, so-cal-
led feature vector, is assigned:

(8)

(9)

Note that the connection between the point ϕk,
LD Ck and the feature vector ξk, k = 1, . . . , N, is
bijective. This means that once ξk are classified in
clusters the classification can be directly applied
also to ϕk in order to obtain Fi.

It remains thus to show how feature vectors are
classified. For that purpose in [8] authors propose
a variation of the K-means clustering algorithm
[15] in which feature vectors ξk are clustered into
s disjoint clusters Di. The clustering is performed
by attaining to minimize the cost

(10)

where µi represents the center of the cluster Di and
. Since the distance of ξk from the clu-

ster center is penalized with R−1
k , less confident fea-

ture vectors (stemming from mixed LDs) have
smaller influence to the result of clustering. Note
that J is non-convex — one of its variables is the
classification of ξk into clusters {Di} which is dis-
crete. For a fixed classification of ξk in {Di}, find-
ing the centers {µi} to minimize J is a sequence
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of s unconstrained convex optimization problems
and each µi is obtained by solving the linear equa-
tions system

(11)

On the other hand, when the centers {µi} are
fixed, the best possible classification is selected
such that each point ξk is classified to the Di with

(12)

The following algorithm is proposed in [8] to
locally minimize J.

Algorithm 1 [8] Clustering of feature vectors.
INPUT ξk, Rk
OUTPUT Di, µi

1. Initialize {Di
(0)} by randomly grouping ξk

in them such that each Di
(0) contains ap-

proximately N/s points
2. LET j ← 1
3. Compute {µi

( j)} from the fixed {Di
(j−1)} 

using (11)
4. IF j > 1 AND J({Di

(j−1)}, {µi
( j)}) =

= J({Di
(j−1)}, {µi

( j)})
(a) LET {Di} ← {Di

(j−1)}, {µi} ← {µi
( j)}

(b) RETURN
5. END
6. Compute the classification {Di

(j)} from
the fixed {µi

( j)} according to (12)
7. IF J({Di

(j)}, {µi
( j)}) = J({Di

(j−1)}, {µi
( j)})

(a) LET {Di} ← {Di
(j)}, {µi} ← {µi

( j)}
(b) RETURN

8. END
9. j ← j + 1 and go to step 3.

Theorem 1 [8] Consider Algorithm 1. The follow-
ing facts hold:

1. The sequence of the values of J through
iterations j is non-increasing.

2. The algorithm terminates in a finite num-
ber of iterations j.

Remark 1 The clustering in Algorithm 1 depends
also on the random initialization of the classifica-
tion of ξk in {Di

(0)}. Therefore it is advisable to re-
peat Algorithm 1 several times in order to obtain
the solution close to the global optimum of J.
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Now we are in position to mention also a way
how the number of clusters s could be estimated
along the clustering-based procedure. Note that
prior to clustering in Algorithm 1 the number s is
not needed. The authors in [8] reference to proce-
dures of neural gas growing given in [16]. The
idea is to start with a small number s and add a
new center-cluster pair whenever Algorithm 1 con-
verges. The new center is introduced into the clus-
ter with the highest variance of points.

Note that feature vectors ξk incorporate also the
information about the localization of the LD Ck.
This feature is useful when some affine submodel
is valid over a non-convex region such that in the
final PWARX model several convex regions share
the same parameters Θi. However, when the sub-
models are actually different in different regions,
discrimination over mk in ξk could spoil the para-
meter clustering.

Once the clusters of feature vectors Di are obtai-
ned, where Di collects Ni feature vectors, the clu-
sters Fi of regression vectors ϕk and Fi

y of pairs
(ϕk, yk+1) are simultaneously built (|Fi| = |Fi

y | =
= Ni). The final parameter estimates Θi in each
cluster Di are obtained by unconstrained minimiza-
tion of the following cost function (weighted LS):

(13)

with wk being the peak of the Gaussian function
associated with the covariance matrix Rk:

(14)

2.1.1 Identification data pre-processing

We assume to deal with a continuous-time nonli-
near process which can after time-discretization be
arbitrarily well modeled with an appropriately pa-
rameterized discrete-time PWARX model. More-
over, the sampling times used for digital control
of those processes are such that their output val-
ues change negligibly between the samples. Note
that this assumption holds for majority of the digi-
tal control systems since usually their sampling
time is chosen to be less than a tenth of the non-
linear process step response rise time from any op-
erating point [17].

Originally, regression vectors are formed of suc-
cessively sampled outputs and inputs. Since out-
puts do not change much within their neighboring
samples captured in the regression vector (1), those
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samples are of similar values. This implies that the
regressor space is filled with the data-points placed
only narrowly around the intersection of hyper-
planes yk = yk−1, yk−1 = yk−2, ...yk−na+2 = yk−na+1.
Thus, we expect all the borders in the regressor
space between different ARX models to be com-
pressed in that tiny space. Grouping of regression
vectors in different groups Ck based on their such
arrangement often results in many mixed LDs [18].
This can be mainly assigned to the fact that the
model partitioning usually depends on output and
its derivatives. Since the output derivatives are pro-
portional to the difference between neighboring out-
put samples, a general idea is to make the output
difference yk − yk−1 more influential in grouping.
This can be done by introducing a full-rank linear
transformation on the regression vectors which
changes the distances between them and thus af-
fects grouping in LDs. In [18] we derived this
transformation for a particular problem based on
the a-priori process knowledge with many hard-to-
-tune parameters in it. We automated that transfor-
mation in [10] as follows. We compute an ellipse
E with the smallest volume that contains all the
regression vectors, see Figure 1(a). A single semi-
-definite program can be used to find its descrip-
tion [19]

(ϕ − ϕ0)T E(ϕ − ϕ0) ≤ 1,         (15)

where ϕ0 ∈ Rn is the ellipse center and a symmet-
ric matrix E ∈ Rn×n is of full rank if all of the re-
gression vectors do not lie on a single hyperplane
which is practically always the case. If E is of full
rank, we can also find a full-rank matrix L ∈ Rn×n

as its Cholesky factorization:

E = LTL.                  (16)

Now we can rewrite (15) in the following way:
(ϕ − ϕ0)TLTL(ϕ − ϕ0) ≤ 1,        (17)

and if we note
ϕ∼ = L(ϕ − ϕ0)              (18)
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Fig. 1 Regression vectors in Φ encircled with the ellipse E (a)
and the transformed ones in Φ̃ in a unit ball (b)
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we see that according to (17) the points ϕ∼ ∈ Φ∼ are
all placed in a unit ball, see Figure 1(b). We now
identify the model in Φ∼, where the grouping is
much more sensitive to output derivatives and thus
results in more pure LDs. Once the model is found
over Φ∼, it can trivially be transformed into the cor-
responding model over Φ.

2.2 Model Partition Estimation

Once ϕk are classified in Fi, the regions Φ i can
be obtained using linear classification techniques.
Their aim is to find the separating hyperplanes in
the regressor space

(19)

Mij ∈ Rn, mij ∈ R, between each two clusters Fi
and Fj, i < j, such that ϕ may be in Φi only if  

and may be in Φj only if 
After all the separating hyperplanes are characteri-
zed, regions Φ i are computed as

(20)

Basically, the linear classification techniques can
be divided into two groups. Ones are that process
each pair of clusters (i, j) separately to find the se-
parating hyperplane between them, like Robust
Linear Programming (RLP) [20] or Support Vector
Machines (SVM) [21]. The others simultaneously
determine all the separating hyperplanes, like Mul-
ticategory RLP (M-RLP) [22] and Multicategory
SVM (M-SVM) [23]. The basic disadvantage
of RLP and SVM techniques compared to their
M-RLP and M-SVM counterparts is that the re-
sulting regions Φ i may not form the partition of
Φ since there may exist parts of Φ that do not be-
long to any Φ i.

The most widely used technique in PWARX
model identification is M-RLP, which is formula-
ted as the following Linear Program (LP):
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where zij ∈ RNi are introduced slack variables,      
Fi ∈ RNi×m are row-wise formed of ϕk

T, ϕk ∈ Fi. The 
optimal values of wi ∈ Rn and γi ∈ R we denote
with wi* i and γi*, and they are used to construct
the separating hyperplanes between the clusters:

(22)

2.2.1 Modification in model partition estimation

The number of constraints and variables in the
M-RLP problem (21) may be immense. It involves
(s−1)N + sn + s optimization variables and 2N(s−1)
constraints such that the size of the matrix A of
constraints Az ≤ b in the corresponding LP is
O(N2s2). The arising problem of matrix A storage
in the computer memory can be partially allevia-
ted by exploiting the sparse structure of A. In non-
linear model identification it is a known fact that
the number of data-samples should always be large
as long as the data are fairly distributed across the
model domain [14]. This is problematic to achieve
in PWARX identification if M-RLP is used for da-
ta classification. Namely, complex nonlinear pro-
cesses often demand higher s for valuable identifi-
cation results. This however imposes also N to be
large such that each affine model may be satisfac-
torily identified.

If s is chosen suitably, it is expected that the
clustering-based parameter identification and data
classification produce nicely shaped clusters, i.e.
almost piecewise linearly separable ones. In that
case we propose a way-around to decrease the size
of M-RLP: to identify the separating hyperplanes
such that in each matrix Fi only extreme points of
the cluster are left. The procedure is illustrated in
Figure 2 with the toy-example of three piecewise
linearly inseparable clusters. The main gain is that
the number of data points may now grow very
large, since the number of vertices of clusters in
the same time statistically grows much slower [24].
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3 CONSTRAINED TIME OPTIMAL CONTROL 
OF PIECEWISE AFFINE PROCESSES

Discrete-time Piecewise Affine (DTPWA) pro-
cess model is given by

(23a)

(23b)

(23c)

(23d)

where x ∈ Rn is the model state, u ∈ Rm is the in-
put and y ∈ Rp the output, Ai, Bi, ai, Ci, ci, Hi, Li,
Ki are properly dimensioned matrices. The set

is called the model domain and Di form its poly-
hedral partition. The polyhedra intersection Di ∩ Dj
may be lower-dimensional and thus the state-up-
date and output equations may be multiplevalued
on those intersections. The affine state-update in
(23a) is shortly referred to as the i-th PWA model
dynamics and switching between different dyna-
mics in the neighboring sampling instants is called
the dynamics switching. For the purpose of the re-
ference tracking controller design we introduce the
change of the control input

u−k = uk − uk−1

and extend the state xk with the past control input
uk−1 and reference rk, i.e.

where x− ∈ Rn+m+ p and rk+1 = rk, i.e. reference is
assumed constant during model predictions. The
input to the extended system now becomes u−k,
while the output is the tracking error y− = r − y.
The extended model is

(24a)

(24b)

(24c)

(24d)Di i i i
x
u
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where straightforwardly
follow from the non-extended model. Model (24)
is shortly denoted with

(25a)

(25b)

During operation the control system should re-
spect the constraints on the states and inputs given
with the polyhedral set C−xu:

(26)

Without loss of generality, we assume that those
constraints are included in the description of re-
gions D−i.

Computation of the time optimal controller for
a DTPWA system [3] consists of two distinct steps:
(i) invariant set computation with the correspon-
ding control law and (ii) computation of the time
optimal control law outside the invariant set.

3.1 Invariant set computation

Controlled invariant set

(27)

is computed as the maximum controlled invariant
set [25] contained in the so-called tracking origin
T 0 — a small polytopic subset of the set of feasi-
ble augmented states where ||y−|| l ≤ ε:

(28)

where ε should reflect the desired control system
tracking accuracy. To keep the consecutive com-
putations in the polytopic set class, the norm in
(28) should be linear, i.e. l ∈ {1,∞}. The invariant
set X I is computed in an iterative manner. At the
iteration step q (starting with q = 0) the set 

, 

is computed for which x− can enter T q in one time
instant using dynamics i while respecting all con-
straints defined by the polyhedron D−i

(29)

The target set for the next iteration step is then
computed as

H D Ti
q T T T

i i i i
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A B a C c H L Ki i i i i i i i, , , , , , ,

x f x uk k k+ =1 PWA ( , ),

y g xk k= PWA ( ).
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lproj  PWA ( ) ,ε
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(30)

where 

Remark 2. A special attention deserves the case
when u− ∈ R. Assume that T q is a polytope. Let
Hi ⊂ D− be a full-dimensional polyhedron defined
by (29) and let Ri be its projection on x−-space.
Then for a given x− ∈ Ri there exists a unique oned-
imensional interval Ii(x−) := [a(x−), b(x−)] ⊂ R, with
a(x−) ≤ b(x−), such that for any u− ∈ Ii the state x−
moves in T q at the next time-step, by using the i-th
dynamics, while respecting the constraints. For a
given x− the interval Ii can be easily computed
from the matrix description of Hi, see Figure 3 for
illustration. If T q is given as a non-convex union
of polytopes, then, in general, Hi also has the form
of a non-convex union of polyhedra. In such a case
feasible control actions u− might comprise several
nonconnected one-dimensional intervals.

R Hi
q
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T T Rq q
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=
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1 0

1

, ,U
The invariant set X I is thus

(33)

Remark 3. The control law extracted from H0
i in

general guarantees only the invariance property of
the set X I, i.e. the tracking error y− will be bound-
ed in a small set for constant references. The de-
scribed procedure does not guarantee that y− con-
verges to zero. Therefore, in general, limit cycles
and/or non-zero equilibrium points might occur. In
the special case of a single-output system with the
same output matrix for all dynamics (C−i ≡ C−, ∀i),
one can achieve asymptotic convergence of y− to
zero by replacing (29) with

(34)

where 0 < δ < 1 is an upper bound on the asympto-
tic convergence rate.

~
For the control law computation only the poly-

hedra that define H0
i, i = 1, . . . , s, are needed. On

the other hand, for the further off-line construction
of the timeoptimal control law outside the invariant
set only the polyhedra that define R0

i, i = 1, . . . , s,
are needed.

For simplicity of the maximum controlled in-
variant set computation and of the consecutive
computations it is very important to allow the re-
gions R0

i to have a full-dimensional intersection.

3.2 Time-Optimal Control Law Outside 
the Invariant Set

The time-optimal control problem for all x−0 ∉ X I

is posed as follows

(35)

where Uk = {u−0, . . . , u−k−1}. The optimal cost corre-
sponds to the minimal number of time steps in
which the state x−0 can be moved in the invariant
set while respecting all constraints. The z-th cost-
-to-go set, denoted with X z, z ∈ {1, 2, . . . }, is the
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Fig. 3 Determining the interval Ii(x−)

If T q+1 = T q the algorithm terminates and the
controlled invariant set is found, with X I = T q.
Otherwise the whole procedure is repeated for the
iteration step q + 1.

Suppose that the algorithm terminates at itera-
tion q0, i.e. T q0 = T q0+1 = X I. For simplicity, in
the rest of the paper the part of the set H i

0,q0 over
T q0 is denoted with H0

i . Note that this set, as well
as its projection R0

i, may be non-convex for q0 ≥ 1,
and therefore they are in general represented as
unions of polyhedra

(31)

(32)R Ri i j
j

ri
0 0

1
=

=
, .U

H Hi i j
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0 0

1
=

=
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~
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set of all x− for which the invariant set X I is attain-
able within z time-steps. By definition, X 0 := X I.

In [3] the solution to (35) is constructed by sol-
ving multi-parametric programs in a dynamic pro-
gramming procedure. We also employ the dynamic
programming approach when solving (35), but use
the multi-parametric programming only in the case
when u− is more than one-dimensional [9]. The pro-
cedure starts with z = 1 and, similarly to the idea
in Subsection 3.1, computes the set X z from X z−1

(recall that X0 := X I, where X I is given by (33))
as follows

(36)

where Rz
i is the projection of the set 

(37)

on the x−-space.
Note that Hz

i and Rz
i are unions of a finite num-

ber of polyhedra. The algorithm implementation
also utilizes the idea from [26, 9] to reduce the
switchings between different DTPWA model dyna-
mics while preserving the time-optimality. The
switching reduction is important for three practical
reasons: (i) the model is usually the most inaccu-
rate on dynamics switchings, (ii) the computed
controller is simpler, and (iii) the switching bet-
ween dynamics is usually connected with a more
active control input.

The off-line computation stops at iteration zm + 1
if X zm+1 ⊆ X zm. The maximal controllable set (for
more details see [27]) is then

(38)

The design procedure outlined in this section re-
quires practically no tuning once the DTPWA

K XPWA
∞ = zm .

X Rz
i
z

i

s
=

=1
U ,

H D Xi
z T T T

i i i i
zx u A x B u f= ⎡⎣ ⎤⎦ ∈ + + ∈{ }−1

model is fixed. The only parameter that must be
given is the desired tracking accuracy ε in the in-
variant set.

The controller is on-line implemented in the re-
ceding horizon fashion [28], i.e. at each sampling
instant the control input u−0 from the time optimal
control sequence U*k is applied to the process.
Since the function u−0(x−0) is PWA, on-line compu-
tation is reduced to lookup table evaluation [5].

4 HYBRID APPROACH TO ELECTRONIC 
THROTTLE CONTROL — A CASE-STUDY

Electronic throttle is a controllable valve used
in cars with internal combustion engines to regu-
late the air inflow into the combustion process.
The electronic throttle control (ETC) system
(Figure 4(a)) comprises a controller typically im-
plemented in a microcontroller, a bipolar chopper
and an electronic throttle. The electronic throttle
consists of a DC drive powered by the chopper, a
gearbox, a valve plate, a dual return spring and a
position sensor. All throttle components are assem-
bled in a compact electronic throttle body (ETB),
shown in Figure 4(b), which is mounted on the en-
gine air tube. As depicted in Figure 4(a) the con-
trol signal is fed to the bipolar chopper, which sup-
plies the DC drive with the appropriate armature
voltage. The armature current produces the motor
torque that is transmitted through the gearbox to
the throttle plate. The valve plate movement stops
as the motor torque is counterbalanced by the tor-
que of the dual return spring, the gearbox friction
torque and the load torque caused by the air in-
flow. The opening angle of the valve corresponds
to the angle between the valve plate and the air
tube cross section and it spans from 13° (closed
valve — no air inflow) to 103° (totally open valve).
At the extreme valve positions mechanical safety
stops prevent further valve plate shaft movement.
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Fig. 4 Electronic throttle
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The opening angle is measured by the potentiome-
ter sensor and this is the only feedback signal
available in the standard ETC system.

Fast and accurate following of the reference
opening angle in ETC has many benefits on the
overall car performance, like faster torque control,
reduction of fuel consumption and pollutants emis-
sion. However, this is hard to accomplish since the
ETB exhibits two strong nonlinear effects: gear-
box friction and the nonlinear return spring char-
acteristics.

4.1 Clustering-based Identification of the PWARX
Electronic Throttle Model

In this subsection we use the clustering-based
procedure to identify the PWARX electronic throt-
tle model (4) where the output y is the valve open-
ing angle θ, while the control input u is the chop-
per control signal. The number of past outputs na
is chosen to be 3 since three states may be obser-
ved on the throttle — the valve angle, its velocity
and the presliding displacement connected with the
dynamic friction torque [5]. The numbers nb and s
are selected based on validation of identification
results obtained by varying them. Finally: nb = 1,
s = 12. Note that the number of submodels is more
than halved compared to the first-principles model
in [5] where s = 30. The identification data S =
= {(xk, yk+1)}N

k=1 were collected in closed-loop
using PID controller from [29] with N = 4300. The
data is fairly distributed over the whole throttle
operating range which was achieved using two pe-
riods of reference ramp signals (see Figure 5): in
the first one the ramp was burdened with high le-
vel of noise to catch the process dynamic behavior
and in the second one the noise level was signifi-
cantly lowered in order to properly identify the
static behavior.

Since significant influence of measurement quan-
tization noise (0.11°) is present in output samples,
the number c of data in the group should be rela-
tively large and proportional to N to reliably iden-
tify the local parameters. In our identification
setup, c is 70. Large c, however, gives rise to the
number of mixed LDs. The friction nonlinearity
present in the throttle is mostly the function of the
plate angular velocity, i.e. of the output difference
yk − yk−1 and this causes most of the LDs to be
mixed if the original data are grouped in LDs. Na-
mely, the identification data are densely sampled
(T = 5 ms) and this makes the regression vectors
with different sign of the difference close in the
regressor space. According to the discussion in
subsection 2.1.1, the regression vectors should be
pre-processed by a linear transformation defined
by the minimum-volume ellipse encircling all the
regression vectors (15).

Under assumption that the regression vectors are
not all placed on a single hyperplane, which is
practically always the case, the symmetric matrix
E ∈ Rn×n is of full rank. This means that its square-
-root matrix L exists (E = LTL) and the linear trans-
formation on regression vectors is defined with

(39)

Note that this transformation does not require any
tuning, unlike our earlier solutions for clustering-
-based throttle identification given in [18]. The
whole identification algorithm is then actually per-
formed on the data which fi-
nally yields the PWARX model

(40)
with

(41)

After the clustering, multicategory linear classi-
fication using M-RLP is performed on all the data
points which makes the linear program (21) extre-
mely large and impossible to handle on a standard
desktop computer. The classification is thus per-
formed over vertices of clusters as described in
subsection 2.2.1 which results in a tractable LP.
Once f ′ is estimated, it is straightforward to ob-
tain f from it using (39):
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Fig. 5 Identification data for the electronic throttle PWARX
model
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(43)

In Figure 6 we show the model behavior on the
validation data in the off-line validation for a noisy
control input. »Off-line« here means that the re-
gression vector of the model is initialized at time
0 from the process and later on they evolve inde-
pendently — they are just supplied by the same
input. The model exhibits offsets at some time in-
stants which is mainly assigned to the stochastic
behavior of friction and the high process dynamic
gain. However, more important is that the response
shape is precisely followed since in the control ap-
plication the model is used for predictions from
the current measured state and is thus practically
re-initialized at each sampling instant. The lower
subfigure in Figure 6 reveals that all the affine
submodels are activated during the process opera-
tion. In Figure 7 we show a detail of the off-line
model validation for low-noised control input (qua-
si-steadystate model validation).
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4.2 Off-line Synthesis Based on PWARX 
Electronic Throttle Model

4.2.1 DTPWA model

We define the reference tracking problem for the
electronic throttle using model x−k+1 = f−PWA(x−k, u−k)
with the state x−:

(44)

Matrices of the model for i = 1, . . . , s are:
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Fig. 6 Detail of the off-line model validation for a noisy control input
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4.2.2 Constraints

All the constraints we want to impose on the
throttle variables must be expressed by the state x−
and the input u− to form the set C−xu. This is straight-
forward for the constraints on the angle θ, on the
control input u and on the control input change u−.
However, to express the constraint on the motor
angular velocity ωm and the armature current ia we
have three choices. One is to estimate both using,
e.g. continuous nonlinear model and Kalman fil-
tering technique while collecting identification data
and then to find the best linear fit between x−k and
ω̂k and x−k and îa,k:

The second way is to approximately derive h1 and
h2 based on the known physical process parame-
ters Ka, Kch, Kl, Kv [5]:
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The only way to avoid the necessity for an auxil-
iary process model or for some physical process
parameters is to collect the data of ωm and ia using
additional sensors in the identification phase and
then to use the first approach of their best fitting
with some affine function of x. We use here the
second approach with known physical parameters
to derive constraints on ωm and ia. The maximum
allowed value for |ωm| is ωm,lim = 180 rad/s. The
maximum allowed value for |ia| is ia,lim = 2 A.

4.2.3 Off-line controller design

We compute the maximum controlled invariant
set inside the set

(45)

which ensures the desired tracking accuracy of the
ETC system [5]. The invariant set X I ≡ X0 is com-
puted within 5 iterations and consists of 91 poly-
topes.

Two cost-to-go sets around the invariant set are
computed which are enough to test the obtained
time-optimal control system for small reference
steps. Computations were performed with the aid
of Multi-Parametric Toolbox [19]. The controller
consists of about 2800 polytopes in the state-input
space.

T 0 0 05= ≤{ }x y .
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Fig. 7 Detail of the off-line model validation in quasi-steady-state
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Fig. 8 Response of the control system based on the identified model to the ramp reference

Fig. 9 Response of the control system based on the identified model to the 0.2° square reference
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4.3 Experimental Results

We experimentally verify the computed time op-
timal controller that demands approximately 1 MB
of memory for its storage. In Figure 8 we show
the control system response to the ramp reference,
while Figure 9 and Figure 10 show the responses
to the 0.2° and 0.5° reference steps, respectively.

Very fast transients may be observed. To the au-
thor’s knowledge, this is the first time that the
identified DTPWA process model is used for the
synthesis and that the obtained controller is expe-
rimentally verified on the process. Obtained re-
sponses are comparable with the results obtained
in [5]; in both cases the transients are approximate-
ly twice shorter than the ones obtained using PID
control with model-based pre-compensations of
nonlinearities [29].

5 CONCLUSION

In this paper we focus on identification and time
optimal control of nonlinear processes modeled
using piecewise affine class of hybrid systems.
Piecewise affine models may approximate nonli-
near systems arbitrarily well. We bind the piece-
wise ARX process model identification based on

clustering and the constrained time optimal con-
troller design for discretetime piecewise affine sys-
tems into a systematic procedure for the design of
high-performance nonlinear control systems. The
procedure starts from the collection of the identifi-
cation data and results in a closedform time opti-
mal controller. We experimentally verify the pro-
cedure on the electronic throttle control system
case-study. Comparison of the obtained electronic
throttle control system with the control system ob-
tained by combining a PID control algorithm with
nonlinearities compensations issues three major
achievements: (i) the outlined design is systema-
tic, (ii) constraints on control system variables are
explicitly addressed and (iii) obtained responses
are twice faster and yet without an overshoot.
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Fig. 10 Response of the control system based on the identified model to the 0.5° stairs reference

vasak:clanak master.qxd  7.12.2007  8:02  Page 158



AUTOMATIKA 48(2007) 3—4, 145—160 159

M. Vašak, N. Perić Combining Identification and Constrained Optimal Control....

REFERENCES

[1] A. Bemporad, M. Morari, Control of Systems Inte-
grating Logic, Dynamics, and Constraints. Automa-
tica, 35(3):407—427, 1999.

[2] W. P. M. H. Heemels, B. De Schutter, A. Bemporad,
Equivalence of Hybrid Dynamical Models. Auto-
matica, 37(7):1085—1091, 2001.

[3] P. Grieder, M. Kvasnica, M. Baotić, M. Morari, Stabi-
lizing Low Complexity Feedback Control of Con-
strained Piecewise Affine Systems. Automatica,
41(10):1683—1694, 2005.

[4] M. Morari, J. H. Lee, Model Predictive Control:
Past, Present and Future. Computers & Chemical
Engineering, 23:667—682, 1999.

[5] M. Vašak, M. Baotić, I. Petrović, N. Perić, Hybrid
Theory Based Time-Optimal Control of an Elec-
tronic Throttle. IEEE Transactions on Industrial
Electronics, 54(3):1483—1494, 2007.

[6] S. Paoletti, A. Lj. Juloski, G. Ferrari-Trecate, R. Vidal,
Identification of Hybrid Systems: A Tutorial. Euro-
pean Journal of Control, 13(2—3):242—260, 2007.

[7] A. Lj. Juloski, W. P. M. H. Heemels, G. Ferrari-Trecate,
R. Vidal, S. Paoletti, J. H. G. Niessen, Comparison of
Four Procedures for the Identification of Hybrid
Systems. In Hybrid Systems: Computation and Con-
trol, volume 3414/2005 of Lecture notes in computer
science, pages 354—369. Springer Berlin/Heidelberg,
March 2005.

[8] G. Ferrari-Trecate, M. Muselli, D. Liberati, M. Morari,
A Clustering Technique for the Identification of
Piecewise Affine Systems. Automatica, 39(2):205—
217, 2003.

[9] M. Vašak, Time Optimal Control of Piecewise Affine
Systems. PhD thesis, Faculty of Electrical Engine-
ering and Computing, University of Zagreb, July
2007.

[10] M. Vašak, D. Klanjčić, N. Perić, Piecewise Affine
Identification of MIMO Processes. In Proceedings
of the Joint Conference on Control Applications,
Symposium on Intelligent Control and Computer-
-Aided Control Systems Design, pages 1493—1498,
Munich, Germany, 2006.

[11] A. Bemporad, A. Garulli, S. Paoletti, A. Vicino, A
Bounded-Error Approach to Piecewise Affine Sy-
stem Identification. IEEE Transactions on Automatic
Control, 50(10):1567—1580, 2005.

[12] A. Lj. Juloski, Observer Design and Identification
Methods for Hybrid Systems — Theory and Experi-
ments. PhD thesis, Technical University Eindhoven,
October 2004.

[13] R. Vidal, S. Soatto, Y. Ma, S. Sastry. An Algebraic
Geometric Approach to the Identification of a
Class of Linear Hybrid Systems. In Proceedings of
the 42nd IEEE Conference on Decision and Control,
pages 167—172, Maui, Hawaii, USA, December 2003.

[14] L. Ljung, System Identification — Theory For the
User. PTR Prentice Hall, New Jersey, 1999.

[15] R. O. Duda, P. E. Hart, Pattern Classification and
Scene Analysis. Wiley, New York, 1973.

[16] B. Fritzke, Some Competitive Learning Methods.
Technical report, Institute for Neural Computation,
Ruhr-Universität Bochum, 1997.

[17] K. J. Åström, B. Wittenmark, Computer Controlled
Systems: Theory and Design. Prentice Hall, New
Jersey, 1989.

[18] M. Vašak, L. Mladenović, N. Perić, Clustering-based
Identification of a Piecewise Affine Electronic
Throttle Model. In Proceedings of the 31st Annual
Conference of the IEEE Industrial Electronics Society,
pages 177—182, Rayleigh, North Carolina, USA,
November 2005.

[19] M. Kvasnica, P. Grieder, M. Baotic, M. Morari, Multi-
Parametric Toolbox (MPT). 2003. 
http://control.ee.ethz.ch/∼hybrid/mpt/.

[20] K. P. Bennet, O. L. Mangasarian, Neural Network
Training via Linear Programming. In P. M. Parda-
los, editor, Advances in Optimization and Parallel
Computing, pages 56—67. North-Holland, Amsterdam,
1992.

[21] V. N. Vapnik, The Nature of Statistical Learning
Theory. John Wiley & Sons, New York, 1996.

[22] K. P. Bennet, O. L. Mangasarian, Multicategory Dis-
crimination via Linear Programming. Optimization
Methods and Software, 3:27— 39, 1994.

[23] E. J. Bredensteiner, K. P. Bennett, Multicategory
Classification by Support Vector Machines. Com-
putational Optimization and Applications, 12(1—3):
53—79, 1999.

[24] P. M. Pardalos, Y. Li, W. W. Hager, Linear Program-
ming Approaches to the Convex Hull Problem in
úm. Computers and Mathematics with Applications,
29(7):23—29, 1995.

[25] F. Blanchini, Set Invarinace in Control — A Survey.
Automatica, 35(11):1747—1767, 1999.

[26] M. Vašak, M. Baotić, M. Morari, I. Petrović, N. Perić,
Constrained Optimal Control of an Electronic
Throttle. International Journal of Control, 79(5):465—
478, 2006.

[27] S. Raković, P. Grieder, M. Kvasnica, D. Q. Mayne, M.
Morari. Computation of Invariant Sets for Piece-
wise Affine Discrete Time Systems Subject to
Bounded Disturbances. In Proceedings of the 43rd

IEEE Conference on Decision and Control, pages
1418—1423, Atlantis, Bahamas, December 2004.

[28] D. Q. Mayne, J. B. Rawlings, C. V. Rao, P. O. M. Sco-
kaert, Constrained Model Predictive Control: Sta-
bility and Optimality. Automatica, 36(6):789—814,
2000.

[29] J. Deur, D. Pavković, N. Perić, M. Jansz, D. Hrovat,
An Electronic Throttle Control Strategy Including
Compensation of Friction and Limp-Home Effects.
IEEE Transactions on Industry Applications, 40(3):
821—834, 2004.

vasak:clanak master.qxd  7.12.2007  8:02  Page 159



160 AUTOMATIKA 48(2007) 3—4, 145—160

Combining Identification and Constrained Optimal Control.... M. Vašak, N. Perić

Povezivanje identifikacije i optimalnog upravljanja s ograničenjima za po dijelovima afine sustave.
U radu se razmatra identifikacija i upravljanje nelinearnih procesa modeliranih po dijelovima afinim mode-
lom. Povezuju se postupak identifikacije po dijelovima ARX modela procesa temeljen na uskupljavanju i
postupak sinteze eksplicitnog vremenski optimalnog regulatora uz prisutna ograničenja za vremenski diskretne
po dijelovima afine sustave. Ovaj je pristup pogodan za sintezu nelinearnog sustava upravljanja visokih zah-
tjeva, te je u ovom radu eksperimentalno provjeren na primjeru sustava upravljanja elektroničkom zaklopkom
automobila.

Klju~ne rije~i: po dijelovima afini model, identifikacija modela, uskupljavanje, vremenski optimalno uprav-
ljanje uz prisutna ograničenja, elektronička zaklopka
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