Six concyclic points

R. Kolar-Šuper* and Z. Kolar-Begović^{\dagger}

Abstract. The theorem about six concyclic points, some of them obtained by means of the symmedians and a median of a triangle, is proved in [1] applying two auxiliary theorems and some complex studies. In this paper the statement of that theorem is a result of some simple considerations.

Key words: median, symmedian, triangle

AMS subject classifications: 51M04

Received December 12, 2006

Accepted October 2, 2007

Let \overline{AM} be a median and \overline{AN} a symmedian through the vertex A of a triangle ABC. The circle AMN meets \overline{AB} and \overline{AC} at the points E, F again and the line through A parallel to \overline{BC} meets this circle at the point P again. Let L be the intersection of \overline{AM} and \overline{EF} (Figure 1).

Since $\angle EAN = \angle MAF$, it follows that |EN| = |MF| which implies EF||MN and since M is the midpoint of \overline{BC} , we conclude that L is the midpoint of \overline{EF} .

Since the parallel chords \overline{AP} , \overline{EF} , \overline{NM} have common bisector through the point L and because the points A, L, M are collinear points, it follows that P, L, N are collinear points too.

^{*}Faculty of Teacher Education, University of Osijek, L. Jägera 9, HR-31000 Osijek, Croatia, e-mail: rkolar@ufos.hr

[†]Department of Mathematics, University of Osijek, Trg Lj. Gaja 6, HR-31 000 Osijek, Croatia, e-mail: zkolar@mathos.hr

The fact that D is the midpoint of \overline{AC} results in DM||AB. Since the angles $\angle AMF$ and $\angle AEF$ are inscribed in the same arc of the circle and owing to the previously obtained parallelism, we get $\angle AMF = \angle AEF = \angle ABC = \angle DMC$ wherefrom \overline{MF} is a symmedian of the triangle ACM through the vertex M. Similarly, it can be proved that \overline{ME} is a symmedian through the point M of the triangle ABM.

Since the considered circle is uniquely determined by its points A, M, N and because of the unique determination of the intersections of this circle with the sides \overline{AC} and \overline{AB} of the triangle ABC, we have proved the following theorem which is stated in [1] in the following form.

Theorem 1. Let \overline{AM} be a median and \overline{AN} a symmedian, through the vertex A, of the triangle ABC, and \overline{ME} and \overline{MF} symmedians through the vertex M of the triangles ABM and ACM. Let P be the intersection of the line parallel to the line BC through the point A and line NL, where the point L is the intersection of \overline{AM} and \overline{EF} . Then the points A, E, F, M, N, P lie on one circle.

Since EF||BC, the circles AEF and ABC are homothetic with respect to the center A, so they touch each other at the point A it means the following statement is valid.

Corollary 1. Oprea's circle from Theorem 1 touches the circumscribed circle of the triangle ABC at the point A.

References

 N. OPREA, Sase puncte conciclice, Lucrările Sem. Creat. Mat. 7(1997–1998), 77–82.