Six concyclic points

R. Kolar-Šuper* and Z. Kolar-Begović ${ }^{\dagger}$

Abstract

The theorem about six concyclic points, some of them obtained by means of the symmedians and a median of a triangle, is proved in [1] applying two auxiliary theorems and some complex studies. In this paper the statement of that theorem is a result of some simple considerations.

Key words: median, symmedian, triangle
AMS subject classifications: 51M04
Received December 12, 2006 Accepted October 2, 2007

Let $\overline{A M}$ be a median and $\overline{A N}$ a symmedian through the vertex A of a triangle $A B C$. The circle $A M N$ meets $\overline{A B}$ and $\overline{A C}$ at the points E, F again and the line through A parallel to $\overline{B C}$ meets this circle at the point P again. Let L be the intersection of $\overline{A M}$ and $\overline{E F}$ (Figure 1).

Figure 1.
Since $\measuredangle E A N=\measuredangle M A F$, it follows that $|E N|=|M F|$ which implies $E F|\mid M N$ and since M is the midpoint of $\overline{B C}$, we conclude that L is the midpoint of $\overline{E F}$.

Since the parallel chords $\overline{A P}, \overline{E F}, \overline{N M}$ have common bisector through the point L and because the points A, L, M are collinear points, it follows that P, L, N are collinear points too.

[^0]The fact that D is the midpoint of $\overline{A C}$ results in $D M \| A B$. Since the angles $\measuredangle A M F$ and $\measuredangle A E F$ are inscribed in the same arc of the circle and owing to the previously obtained parallelism, we get $\measuredangle A M F=\measuredangle A E F=\measuredangle A B C=\measuredangle D M C$ wherefrom $\overline{M F}$ is a symmedian of the triangle $A C M$ through the vertex M. Similarly, it can be proved that $\overline{M E}$ is a symmedian through the point M of the triangle $A B M$.

Since the considered circle is uniquely determined by its points A, M, N and because of the unique determination of the intersections of this circle with the sides $\overline{A C}$ and $\overline{A B}$ of the triangle $A B C$, we have proved the following theorem which is stated in [1] in the following form.

Theorem 1. Let $\overline{A M}$ be a median and $\overline{A N}$ a symmedian, through the vertex A, of the triangle $A B C$, and $\overline{M E}$ and $\overline{M F}$ symmedians through the vertex M of the triangles $A B M$ and $A C M$. Let P be the intersection of the line parallel to the line $B C$ through the point A and line $N L$, where the point L is the intersection of $\overline{A M}$ and $\overline{E F}$. Then the points A, E, F, M, N, P lie on one circle.

Since $E F \| B C$, the circles $A E F$ and $A B C$ are homothetic with respect to the center A, so they touch each other at the point A it means the following statement is valid.

Corollary 1. Oprea's circle from Theorem 1 touches the circumscribed circle of the triangle $A B C$ at the point A.

References

[1] N. Oprea, Sase puncte conciclice, Lucrările Sem. Creat. Mat. 7(1997-1998), 77-82.

[^0]: *Faculty of Teacher Education, University of Osijek, L. Jägera 9, HR-31 000 Osijek, Croatia, e-mail: rkolar@ufos.hr
 ${ }^{\dagger}$ Department of Mathematics, University of Osijek, Trg Lj. Gaja 6, HR-31 000 Osijek, Croatia, e-mail: zkolar@mathos.hr

