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Further results on a filtered multiplicative basis of

group algebras∗

Zsolt Balogh†

Abstract. Let FG be a group algebra of a finite non-abelian p-
group G and F a field of characteristic p. In this paper we give all min-
imal non-abelian p-groups and minimal non-metacyclic p-groups whose
group algebras FG possess a filtered multiplicative F -basis.
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1. Introduction

Let Λ be a finite-dimensional algebra over a field F . The following concept was
introduced by H. Kupisch [11]. An F -basis B of the algebra Λ is called a filtered
multiplicative F -basis if B has the following properties:

(i) if b1, b2 ∈ B, then either b1b2 = 0 or b1b2 ∈ B;

(ii) B ∩ rad (Λ) is an F -basis for rad (Λ), where rad (Λ) denotes the Jacobson
radical of Λ.

Denote by mod Λ the category of finite dimensional right Λ-modules. Λ has a finite
representation type (is representation-finite) if there are only finitely many isomor-
phism classes of indecomposable modules M ∈ mod Λ. Let F be an algebraically
closed field. R. Bautista, P. Gabriel, A. Roiter, and L. Salmeron [3] proved that if
Λ has a finite representation type, then Λ has a filtered multiplicative F -basis. The
question when a filtered multiplicative F -basis exists in a group algebra FG, where
G is a finite p-group and F a field of characteristic p also derives from [3]. Let
Cpn = 〈 a | apn

= 1 〉 be the cyclic group of order pn and F a field of characteristic
p. Then the set B =

{
(a− 1)i | 0 ≤ i < pn

}
is a filtered multiplicative F -basis for

FCpn . Note that if FG1 and FG2 have a filtered multiplicative F -basis which we
∗This research was supported by the National Office for Research and Technology (NKTH,

Hungary).
†Institute of Mathematics and Informatics, College of Nýıregyháza, H-4410 Nýıregyháza, Sóstói
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denote by B1 and B2 respectively, then B1 ×B2 is a filtered multiplicative F -basis
for the group algebra F [G1 × G2]. Let G be a finite abelian p-group. Since G
is a direct product of finite cyclic p-groups from the above line reasoning, it fol-
lows that the group algebra FG over a field F of characteristic p admits a filtered
multiplicative F -basis.

Higman [9] proved that the group algebra FG over a field of characteristic p
is representation-finite if and only if all the Sylow p-subgroups of G are cyclic. In
this case FG admits a filtered multiplicative basis. We mention however that finite
type is not necessary for existence of filtered multiplicative F -basis. For example, if
G = Cp×Cp, then the group algebra FG over a field F of characteristic p possesses
a filtered multiplicative F -basis, but the representation type of FG is not finite.

L. Paris in [12] gave examples of non-abelian p-groups G such that the group
algebras FG have filtered multiplicative F -basis. In [5] these results were extended
to metacyclic p-groups by V. Bovdi. Further results can be found in [6] by V. Bovdi
and [2] by Z. Balogh. In [6] negative answer was given for this question when G is
either a powerful p-group or a two generated p-group ( p 
= 2 ) with central cyclic
commutator subgroup. In [2] all groups can be found with order less then p5 or
equal 25 whose group algebra possesses a filtered multiplicative F -basis.

In this paper we shall study the existence of filtered multiplicative F -basis of
group algebra FG, where G is either a minimal non-abelian p-group or a minimal
non-metacyclic p-group. We first remark that a non-abelian p-group G is called
minimal non-abelian if all of its proper subgroup are abelian. A finite p-group G is
called minimal non-metacyclic if all of whose proper subgroups are metacyclic.

Our main results are as follow.
Theorem 1. Let G be a finite minimal non-abelian p-group and F a field of

characteristic p. Then FG possesses a filtered multiplicative F -basis if and only if
p = 2 and one of the following conditions holds.

(i) G is the quaternion group Q8 of order 8 and F contains a primitive cube root
of the unity.

(ii) G = 〈 a, b | a4 = b2
m

= 1, ab = a3 〉, where m ≥ 1.

(iii) G = 〈 a, b, c | a2n

= b2
m

= c2 = 1, (a, b) = c, (a, c) = (b, c) = 1 〉, where
n,m ≥ 2.

As a consequence of Theorem 1 we have
Corollary 1. Let FG be a group algebra of finite p-group G over a field F

of characteristic p, such that all elements of the unit group of FG of order p are
commute. Then FG admits a filtered multiplicative F -basis if and only if p = 2 and
one of the following conditions holds.

(i) G is either Q8 or Q8×C2n and F contains a primitive cube root of the unity.

(ii) G = 〈 a, b | a4 = b2
m

= 1, ab = a3 〉, where m ≥ 2.

Denote by G � H the central product of G and H .
Theorem 2. Let G be a finite non-abelian minimal non-metacyclic p-group and

F a field of characteristic p. Then FG has a filtered multiplicative F -basis if and
only if p = 2 and one of the following conditions holds.
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(i) G is Q8 × C2 and F contains a primitive cube root of the unity.

(ii) G is the central product D8�C4 of the dihedral group of order 8 and the cyclic
group of order 4.

We remark that Theorems 1, 2 and Corollary 1 confirm the conjecture that if
G is a finite p-group and p is odd, then the group algebra FG does not possess any
filtered multiplicative F -basis.

2. Preliminaries and proof of the main results

Let FG be a group algebra of a finite p-group G over a field F of characteristic p.
Assume that B is a filtered multiplicative F -basis for FG. Since FG is a local ring
with maximal ideal rad (FG) and dimF

(
FG/rad (FG)

)
= 1, we can assume that

1 ∈ B and B ∩ rad (FG) is a basis for rad (FG).
In this paper we use freely the following simple properties of B (see [5]):

(i) B ∩ rad (A)n is an F -basis of rad(A)n for all n ≥ 1.

(ii) If u, v ∈ B \ rad(A)k and u ≡ v (mod rad(A)k) then u = v.

Denote the augmentation ideal of FG by ω(FG). It is well-known that if G is a
finite p-group and the characteristic of F is equal to p, then ω(FG) coincides with
rad (FG). By [8] the Frattini subalgebra of rad (FG) coincides with rad (FG)2.
Therefore B \ ({1} ∪ ω(FG)2

)
is a generating set of ω(FG) as an F -algebra.

The M -series Di of G is due to Brauer, Jennings and Zassenhaus. We define this
series by recursion as follows D1 = G and Di(Di−1, G)Dp

�i/p�, where �r� denotes
the upper integral part of the real number r. It is easy to see that D2 coincides
with the Frattini subgroup Φ(G) of G. Moreover, the nth dimension subgroup of
G over F coincides with the nth term of the Brauer-Jennings-Zassenhaus M-series
by [10]. Denote the set

{
j ∈ N | Dj(G) 
= Dj+1(G)

}
by I. Let pdj (j ∈ I) be the

order of the elementary Abelian p-group Dj(G)/Dj+1(G). Evidently,

Dj(G)/Dj+1(G) =
dj∏

k=1

〈 gjkDj+1 〉

for some gjk ∈ G.
According to Jennings [10], the elements

∏
j∈I

(∏dj

k=1(gjk − 1)ljk
) ∈ ω(FG),

where 0 ≤ ljk < p and the indices of the factors are in lexicographic order form
a basis for ω(FG). Moreover, the above mentioned elements with the property∑

j∈I

(∑dj

k=1 j ·ljk

) ≥ t form an F -basis called Jennings basis for ω(FG)t. Therefore
for any u ∈ B \ ({1} ∪ ω(FG)2

)
we have

u ≡
d1∑

i=1

α1i(g1i − 1) (mod ω(FG)2) (1)
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for some α1i ∈ F . Using the identity

(y − 1)(x− 1) = [(x− 1)(y − 1) + (x− 1) + (y − 1)](z − 1)
+ (x− 1)(y − 1) + (z − 1),

(2)

where x, y ∈ G and z = (y, x) = y−1x−1yx we have that

(g1j − 1)(g1i − 1) ≡ (g1i − 1)(g1j − 1) + (zji − 1) (mod ω(FG)3), (3)

where zji = (g1j , g1i).
We are now ready to prove the main results.
Proof. [Proof of Theorem 1] By Rédei [13] a group G is minimal non-abelian if

and only if it is one of the following groups:

(i) quaternion group Q8 of order 8.

(ii) 〈 a, b | apn

= bpm

= 1, ab = a1+pn−1 〉, where n ≥ 2, m ≥ 1.

(iii) 〈 a, b, c | apn

= bpm

= cp = 1, (a, b) = c, (a, c) = (b, c) = 1 〉, where n,m ≥ 2 if
p = 2.

Paris [12, Proposition 2] proved that FQ8 has a filtered multiplicative F -basis if
and only if F contains a primitive cube root of the unity.

Let G = 〈 a, b | apn

= bpm

= 1, ab = a1+pn−1 〉, where n ≥ 2, m ≥ 1. If either
p is odd or p = 2 and n ≥ 3, then G is powerful and FG does not possess any
filtered multiplicative F -basis by [6, Theorem 1]. Thus we got that n = 2 and F is
a field of characteristic 2. It is easy to see that if m = 1, then G is isomorphic to
the dihedral group of order 8 and FG has a filtered multiplicative F -basis by [12].
The M -series of G in the case of m > 1 is as follows

D1 = G, D2 = G2, D3 = G4, · · · ,Dm = G2m−1
, Dm+1 = 〈 1 〉.

Choose u, v ∈ ω(FG) such that

u ≡ (1 + a) + (1 + b) (mod ω(FG)2),

v ≡ (1 + b) (mod ω(FG)2).

Evidently, u and v modulo ω(FG)2 form a basis for ω(FG)/ω(FG)2. From the
congruence equation (3) we have that

(1 + b)(1 + a) ≡ (1 + a)(1 + b) + (1 + a)2 (mod ω(FG)3), (4)

and a simple calculation shows that

uv ≡ (1 + a)(1 + b) + (1 + b)2 (mod ω(FG)3),

vu ≡ (a+ 1)(1 + b) + (1 + a)2 + (1 + b)2 (mod ω(FG)3),

u2 = v2 ≡ (1 + b)2 (mod ω(FG)3)

(5)

and they are linearly independent elements. The F -dimension of ω(FG)2/ω(FG)3

is equal to 3, so {uv, vu, u2} modulo ω(FG)3 forms an F -basis for ω(FG)2/ω(FG)3.
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Now, we shall prove by induction on i that the elements uvuvi, vuvi+1, u2vi+1, u3vi

modulo ω(FG)i+4 form an F -basis for ω(FG)i+3/ω(FG)i+4. Using (4) and (5) we
have that

uv · u ≡ (1 + a)2(1 + b) + (1 + a)3 + (1 + b)3 (mod ω(FG)4),

vu · v ≡ (1 + a)(1 + b)2 + (1 + a)2(1 + b) + (1 + b)3 (mod ω(FG)4),

u2 · v ≡ (1 + b)3 (mod ω(FG)4),

u2 · u ≡ (1 + a)(1 + b)2 + (1 + b)3 (mod ω(FG)4).

Since uvu, vuv, u2v, u3 are linearly independent elements and the F -dimension of
ω(FG)3/ω(FG)4 also equals 4, the statement is true for i = 0. Using v ≡ (1 + b)
(mod ω(FG)2) we get that

uvuvi ≡ (1 + a)2(1 + b)i+1 + (1 + a)3(1 + b)i + (1 + b)i+3 (mod ω(FG)i+4),

vuvi+1 ≡ (1 + a)(1 + b)i+2 + (1 + a)2(1 + b)i+1 + (1 + b)i+3 (mod ω(FG)i+4),

u2vi+1 ≡ (1 + b)i+3 (mod ω(FG)i+4),

u3vi ≡ (1 + a)(1 + b)i+2 + (1 + b)i+3 (mod ω(FG)i+4),

for any i ≥ 0. Since the above mentioned elements are linearly independent
and the F -dimension of ω(FG)i+3/ω(FG)i+4 is the same than the number of the
non-zero elements of the set {uvuvi, vuvi+1, u2vi+1, u3vi}, so we have proved that{
1, u, v, uv, vu, u2, uvuvi, vuvi+1, u2vi+1, u3vi | i ≥ 0

}
is a filtered multiplicative

F -basis for FG.
Let G = 〈 a, b, c | apn

= bpm

= cp = 1, (a, b) = c, (a, c) = (b, c) = 1 〉 and p > 2.
The first three term of the M -series of G is the following:

D1 = G, D2 = Φ(G), D3 = Gp.

Evidently, D1/D2 is generated by aD2 and bD2. Therefore the F dimension of
ω(FG)/ω(FG)2 is equal to 2. Assume that B \ {1} is a filtered multiplicative
F -basis of ω(FG). Let u, v ∈ B \ (1 ∪ ω(FG)2) be. According to (1) we have

u ≡ α1(a− 1) + α2(b− 1) (mod ω(FG)2),

v ≡ β1(a− 1) + β2(b − 1) (mod ω(FG)2)

for some αi, βj ∈ F . Being u and v linearly independent over F we have that
∆ = α1β2 − α2β1 
= 0.

We shall compute the all bibjbk modulo ω(FG)4, where bi, bj , bk ∈ {u, v}. For
the sake of convenience our result will be summarized in a table, consisting of
the coefficients of the decomposition bibjbk with respect to the Jennings basis of
ω(FG)3/ω(FG)4.

(a − 1)3 (a − 1)2(b − 1) (a − 1)(c − 1) (a − 1)(b − 1)2 (b − 1)(c − 1) (b − 1)3

uvu α2
1β1 α2

1β2 + 2α1α2β1 −α2
1β2 2α1α2β2 + α2

2β1 −2α1α2β2 + α2
2β1 α2

2β2
vu2 α2

1β1 α2
1β2 + 2α1α2β1 −α1α2β1 2α1α2β2 + α2

2β1 −α1α2β2 α2
2β2

u3 α3
1 3α2

1α2 −α2
1α2 3α1α2

2 −α1α2
2 α3

2
u2u α1β2

1 2α1β1β2 + α2β2
1 −α1β1β2 2α2β1β2 + α1β2

2 α2β1β2 − 2α1β2
2 α2β2

2
uv2 α1β2

1 2α1β1β2 + α2β2
1 −α1β1β2 2α2β1β2 + α1β2

2 α2β1β2 α2β2
2

vuv α1β2
1 2α1β1β2 + α2β2

1 −α2β2
1 2α2β1β2 + α1β2

2 −2α2β1β2 + α1β2
2 α2β2

2
u2v α2

1β1 2α1α2β1 + α2
1β2 −α1α2β1 2α1α2β2 + α2

2β1 α1α2β2 − 2α2
2β1 α2

2β2
v3 β3

1 3β2
1β2 −β2

1β2 3β1β2
2 −β1β2

2 β3
2
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Assume that uvu ≡ 0 (mod ω(FG)4). Since the coefficients of (a−1)3, (b−1)3, (a−
1)2(b− 1), (a− 1)(b− 1)2 are equal to zero, we have either u ≡ 0 (mod ω(FG)2) or
v ≡ 0 (mod ω(FG)2) which is impossible. By similar arguments we can see that
the above mentioned eight elements are not congruent to zero modulo ω(FG)4.

Since the F -dimension of ω(FG)3/ω(FG)4 equals six, and we have obtained
eight non-zero elements modulo ω(FG)4, we conclude that some of them coincide
(see property (ii)). For example, suppose that uvu = vu2. If it occurs, then the
coefficients of (a−1)(c−1) equal each other and so do the coefficients of (b−1)(c−1).
Thus α1∆ = −α2∆ = 0. Since ∆ 
= 0 we have u ≡ 0 (mod ω(FG)2) which is a
contradiction. In a similar manner we can verify that the above mentioned eight
elements are different. The F -dimension of ω(FG)3/ω(FG)4 is equal to six, but we
have eight different non-zero elements modulo ω(FG)4 which is impossible.

Let G = 〈 a, b, c | a2n

= b2
m

= c2 = 1, (a, b) = c, (a, c) = (b, c) = 1 〉 and
n,m ≥ 2. Then FG has a filtered multiplicative F -basis by [2, Theorem 2]. ✷

Proof. [Proof of Corollary 1] Let FG be a group algebra of a finite p-group G
over a field F of characteristic p, such that all elements of the unit group of FG of
order p commute. According to [1, Theorem 2] and [7, Theorem 1.1] G is one of
the following groups.

(i) Q8 or Q8 × C2n .

(ii) 〈 a, b | apn

= bpm

= 1, ab = a1+pn−1 〉, where n ≥ 2, m ≥ 1, if p = 2, then
m 
= 1.

(iii) 〈 a, b, c | a4 = 1, a2 = b2 = (a, b), c2
n

= 1, (a, c) = c2
n−1 〉, where n ≥ 2.

(iv) 〈 a, b, c | a4 = b4 = 1, a2 = (b, a), b2 = c2 = (c, a), x2y2 = (c, b) 〉.
Let G be either Q8 or Q8 × C2n . By [12, Proposition 2] FG has a filtered

multiplicative F -basis if and only if F contains a primitive cube root of the unity.
Let G = 〈 a, b | apn

= bpm

= 1, ab = a1+pn−1 〉 and n,m, p such as in (ii). From the
proof of Theorem 1 we can see that FG has a filtered multiplicative F -basis if and
only if G = 〈 a, b | a4 = b2

m

= 1, ab = a3 〉, where m ≥ 2.
Let G = 〈 a, b, c | a4 = 1, a2 = b2 = (a, b), c2

n

= 1, (a, c) = c2
n−1 〉, where n ≥ 2.

If n = 2, then G is isomorphic to the group G35 of order 25, where 35 is the index of
this group in GAP. According to [2, Theorem 4], FG has no filtered multiplicative
F -basis. Assume that n > 2 and FG has a filtered multiplicative F -basis. Since
G/D2 = 〈 aD2, bD2, cD2 〉 we can write that

b1 ≡ α1(1 + a) + α2(1 + b) + α3(1 + c) (mod ω(FG)2),

b2 ≡ β1(1 + a) + β2(1 + b) + β3(1 + c) (mod ω(FG)2),

b3 ≡ γ1(1 + a) + γ2(1 + b) + γ3(1 + c) (mod ω(FG)2),

for some αi, βi, γi ∈ F by (1). Denote by ∆ the determinant of the matrix(
α1 α2 α3
β1 β2 β3
γ1 γ2 γ3

)
. Evidently, ∆ 
= 0 because b1, b2, b3 are linearly independent in ω(FG) \

ω(FG)2. It is easy to check that (1 + g−1) =
∑|g|−1

i=1 (1 + g)i holds for any g ∈ G,
where |g| denotes the order of g. Using the well known identity

(1 + gh) = (1 + g) + (1 + h) + (1 + g)(1 + h),
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where g, h ∈ G and the identity above an easy calculation shows that

(1 + b)(1 + a) =
3∑

i=1

(1 + a)i(1 + b) + (1 + a)2 + (1 + a)3,

(1 + c)(1 + a) = (1 + a)(1 + c) +
2n−1+1∑
i=2n−1

[
(1 + c)i + (1 + a)(1 + c)i

]
.

(6)

We shall compute bibj modulo ω(FG)3, where i, j ∈ {1, 2, 3}. The result of our
computation will be written in a table as in the proof of Theorem 1. The following
table consists of the coefficients of the decompositions with respect to the Jennings
basis of ω(FG)2/ω(FG)3.

(1 + a)2 (1 + a)(1 + b) (1 + a)(1 + c) (1 + b)(1 + c) (1 + c)2

b1b2 α1β1 + α2β1 + α2β2 α1β2 + α2β1 α1β3 + α3β1 α2β3 + α3β2 α3β3
b2b1 α1β1 + α1β2 + α2β2 α1β2 + α2β1 α1β3 + α3β1 α2β3 + α3β2 α3β3
b1b3 α1γ1 + α2γ1 + α2γ2 α1γ2 + α2γ1 α1γ3 + α3γ1 α2γ3 + α3γ2 α3γ3
b3b1 α1γ1 + α1γ2 + α2γ2 α1γ2 + α2γ1 α1γ3 + α3γ1 α2γ3 + α3γ2 α3γ3
b2b3 β1γ1 + β2γ1 + β2γ2 β1γ2 + β2γ1 β1γ3 + β3γ1 β2γ3 + β3γ2 β3γ3
b3b2 β1γ1 + β1γ2 + β2γ2 β1γ2 + β2γ1 β1γ3 + β3γ1 β2γ3 + β3γ2 β3γ3

b21 α2
1 + α1α2 + α2

2 0 0 0 α2
3

b22 β2
1 + β1β2 + β2

2 0 0 0 β2
3

b23 γ2
1 + γ1γ2 + γ2

2 0 0 0 γ2
3

If i 
= j, then bibj 
≡ 0 (mod ω(FG)3) because ∆ 
= 0. It is easy to see that
bibj 
≡ bkbl (mod ω(FG)3) if either k 
∈ {i, j} or l 
∈ {i, j}. Indeed, for example,
if b1b2 ≡ b1b3 (mod ω(FG)3), then the coefficients of (1 + a)(1 + b) are equal to
each other and so are the coefficients of (1 + a)(1 + c) or (1 + b)(1 + c). Thus
∆ = det

(
α1 α2 α3
γ1 γ2 γ3
γ1 γ2 γ3

)
= 0 which is a contradiction.

Since the F -dimension of ω(FG)2/ω(FG)3 is equal to five but we get nine ele-
ments we conclude that there exist two indices i, j such that bibj = bjbi for example
b1b3 = b3b1. Evidently, If b2i ≡ 0 (mod ω(FG)3) for any i ∈ {1, 2, 3}, then ∆ = 0
which is impossible. Thus we have

b1 ≡ ω(1 + a) + (1 + b) + α3(1 + c) (mod ω(FG)2),
b2 ≡ (1 + a) + ω(1 + b) + β3(1 + c) (mod ω(FG)2),
b3 ≡ (1 + c) (mod ω(FG)2),

where ω is a primitive cube root of the unity. The other cases are symmetric to this
one.

Clearly, every element of the Jennings basis of FG can be written in the form
(1 + a)t1(1 + b)t2(1 + c)t3 for some t1, t2, t3 ∈ N. Thus we can write that

b1 = ω(1 + a) + (1 + b) + α3(1 + c) + (1 + a)A1 + (1 + b)A2 +
2n−1∑
s=2

δs(1 + c)s,

where δs ∈ F , A1, A2 ∈ ω(FG) and (1 + a)A1, (1 + b)A2 are linear combinations of
the elements of Jennings basis over F . Similarly,

b3 = (1 + c) + (1 + a)B1 + (1 + b)B2 +
2n−1∑
t=2

εt(1 + c)t,
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where εt ∈ F , B1, B2 ∈ ω(FG) and (1 + a)B1, (1 + b)B2 are linear combinations of
the Jennings basis over F .

By the help of (6) let us calculate b1b3 + b3b1 modulo ω(FG)2
n−1+1.

b1b3 + b3b1 ≡ ω(1 + c)2
n−1

+ (1 + a)C1 + (1 + b)C2 (mod ω(FG)2
n−1+1),

for some C1, C2 ∈ ω(FG)2. Therefore b1b3 
= b3b1 which is a contradiction. Thus
FG does not possess any filtered multiplicative F -basis.

If G = 〈 a, b, c | a4 = b4 = 1, a2 = (b, a), b2 = c2 = (c, a), x2y2 = (c, b) 〉, then
G ∼= G32, where G32 is the group of order 32 with index 32 in GAP. Then, FG has
no filtered multiplicative F -basis by [2, Theorem 4].

✷

Proof. [proof of Theorem 2] The finite non-metacyclic p-groups all of whose
proper subgroup are metacyclic was classified by Blackburn [4, Theorem 3.2].

If p = 2, then G = Q8 × C2 or G = Q8 � C4 or G = G32. If G = Q8 ×
C2 and F contains a primitive cube root of the unity, then FG admits a filtered
multiplicative F -basis by [12, Proposition 2]. According to [2, Theorem 1] FG has
a filtered multiplicative F -basis for G = Q8 � C4. The group algebra FG32 has no
multiplicative filtered F -basis by [2, Theorem 4].

If p is odd and G is the group of order p3 with exponent p, then G is a powerful
group and FG has no filtered multiplicative F -basis by [6, Theorem 1].

We have remained only the following group G = 〈 a, b, c | b9 = c3 = 1, a3 =
b−3, (c, b) = 1, (b, a) = c, (c, a) = b−3 〉. The M-series of G is the following:

D1 = G, D2 = 〈 c, b3 〉, D3 = 〈 b3 〉, D4 = 〈 1 〉.

Since G/D2 = 〈 aD2, bD2 〉 we have only to apply (1) to see that the elements of
an F -basis of ω(FG)/ω(FG)2 can be written in the form

u ≡ α1(a− 1) + α2(b− 1) (mod ω(FG)2),
v ≡ β1(a− 1) + β2(b − 1) (mod ω(FG)2),

for some αi, βj ∈ F . Evidently, ∆ = α1β2 − α2β1 
= 0 because u and v are linearly
independent over F . Using the identities (2) and (3) we have

(b − 1)(a− 1) ≡ (a− 1)(b− 1) + (c− 1) (mod ω(FG)3),
(c− 1)(a− 1) ≡ (a− 1)(c− 1)− (b− 1)3 (mod ω(FG)4).

(7)

By the help of congruence equations (7) let us compute bibjbk modulo ω(FG)4,
where bi, bj , bk ∈ {u, v}. The result of our computation will be written in a table
as before. We shall divide our table into two parts. The coefficients corresponding
to the first three elements of the Jennings basis of ω(FG)3/ω(FG)4 will be in the
first part of the table, while the next three will be in the second one.
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(a− 1)3 (a− 1)2(b− 1) (a− 1)(c− 1)
uvu α2

1β1 2α1α2β1 + α2
1β2 α2

1β2 + 2α1α2β1

vu2 α2
1β1 2α1α2β1 + α2

1β2 2α2
1β2 + α1α2β1

u3 α3
1 0 0

v2u α1β
2
1 α2β

2
1 + 2α1β1β2 0

uv2 α1β
2
1 2α1β1β2 + α2β

2
1 α1β1β2 + 2α2β

2
1

vuv α1β
2
1 2α1β1β2 + α2β

2
1 2α1β1β2 + α2β

2
1

u2v α2
1β1 2α1α2β1 + α2

1β2 0
v3 β3

1 0 0

(a− 1)(b − 1)2 (b− 1)(c− 1) (b − 1)3

uvu 2α1α2β2 + α2
2β1 α2

2β1 + 2α1α2β2 α2
2β2 − α1α2β1

vu2 2α1α2β2 + α2
2β1 0 α2

2β2 − α2
1β2

u3 0 0 α3
2 − α2

1α2

v2u 2α2β1β2 + α1β
2
2 α2β1β2 + 2α1β

2
2 α2β

2
2 − α1β1β2

uv2 α1β
2
2 + 2α2β1β2 0 α2β

2
2 − α2β

2
1

vuv α1β
2
2 + 2α2β1β2 α1β

2
2 + 2α2β1β2 α2β

2
2 − α1β1β2

u2v 2α1α2β2 + α2
2β1 2α2

2β1 + α1α2β2 α2
2β2 − α1α2β1

v3 0 0 β3
2 − β2

1β2

We have obtained eight elements. It is easy to prove that each of them is
in ω(FG)3. Indeed, for example, if uvu 
∈ ω(FG)3, then we have uvu ≡ 0
(mod ω(FG)4). Thus the coefficient of (b − 1)(c − 1) are equal to 0, that is
α2

2β1 + 2α1α2β2 = 0. Assume that α1 = 0. Then α2
2β1 + 2α1α2β2 = α2

2β1 = 0
so ∆ = 0 which is impossible. Since α1 
= 0 and 2α1α2β1 + α2

1β2 = 0 because the
coefficient of (a−1)2(b−1) also equals 0 we have that ∆ = 2α2β1+α1β2 = 0 which
is also impossible. In a similar manner the other cases can be verified.

Since the F -dimension of ω(FG)3/ω(FG)4 is six but we have eight elements
we conclude that some of the above mentioned elements are equal to some other
elements. For example if uvu = vu2, then we have that α2

2β1+2α1α2β2 = 0 because
the coefficients of (b − 1)(c − 1) are equal to each other. Clearly, α1 
= 0. Indeed,
if α1 = 0, then α2

2β1 = 0 and ∆ = 0 which is impossible. From the coefficients of
(a− 1)(c− 1) we get that α1β2 = α2β1 and ∆ = 0 which is also a contradiction. A
similar method can be used to prove that the only possible case is u3 = v3. Thus
only seven elements are left. However, the F -dimension of ω(FG)3/ω(FG)4 is six
which is impossible. We have proved that FG has no filtered multiplicative F -basis.

✷
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[13] L. Rédei, Das ”schiefe Produkt” in der Gruppentheorie mit Anwendung auf die
endlichen nichtkommutativen Gruppen mit lauter kommutativen echten Unter-
gruppen und die Ordnungszahlen, zu denen nur kommutative Gruppen gehören,
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