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On the generalized vector F-implicit
complementarity problems and vector F-implicit
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Abstract. In this paper, we introduce and analyze some new
classes of generalized vector-F implicit complementarity problems and
the general mixed vector-F variational inequalities. Under suitable con-
ditions, we prove the equivalences between these new problems. We es-
tablish several existence theorems for these classes of vector-F comple-
mentarity and general mixed vector-F variational inequalities using a
new version of the Fan-KKM theorem in Hausdorff topological vector
spaces, and without even using the classical assumptions in this context,
like monotonicity or continuity. Results obtained in this paper represent
significant improvement and refinement of the previously known results.
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1. Introduction

Complementarity problems theory, which was introduced by Lemke [7], has emerged
as a powerful tool to investigate and study a wide class of unrelated problems aris-
ing in industry, finance, management, economics, regional, ecology, pure and ap-
plied sciences in a unified and flexible framework. Complementarity problems have
been generalized and extended in several directions using novel and innovative tech-
niques. Closely related to the complementarity problems is the theory of variational
inequalities. It is well known that the variational inequalities and complementarity
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problems are equivalent if the underlying set is a convex cone. This equivalence
has played a crucial part in the existence results and numerical methods for solving
these problems.

Itoh, Takahashi and Yanagi [9] considered the F -complementarity problems and
proved that the F -complementarity problems are equivalent to the mixed variational
inequalities. This class of F -complementarity problems has bee considered and
investigated in [9]. Giannessi (see [1]) considered the vector variational inequalities
and discussed its applications. For the recent developments and applications of
the vector variational inequalities and vector complementarity problems, see [1-18]
and the references therein. Li and Huang [10] considered the vector F -implicit
complementarity problems and proved the equivalence between vector F -implicit
complementarity problems and vector F -implicit variational inequalities along with
some existence results for the their solution.

It is worth mentioning that the variational inequality theory developed so far
is applicable for studying even order and symmetric problems. In 1988, Noor [8]
introduced and studied a new class of variational inequalities involving two opera-
tors, now known as general(Noor) variational inequalities. It has been shown that
a large class of odd-order and nonsymmetric problems arising in various branches
of pure and applied science can be studied in the unified and general framework of
the general variational inequalities, see [11,12,14] and the references therein. It has
been shown that the general variational inequalities are equivalent to the general
complementarity problems and the Wiener-Hopf equations, see Noor [14].

Motivated and inspired by the research work going in these fascinating and inter-
esting fields, we introduce some new classes of general vector F -implicit complemen-
tarity problems and general vector F -implicit variational inequalities in Hausdorff
topological vector spaces. We establish the equivalence between these new problems
under certain suitable assumptions. Furthermore, we also obtain some new exis-
tence theorems for solutions of generalized vector F-implicit complementarity prob-
lems and the generalized vector F-implicit variational inequality problems by using
a new version of the Fan-KKM Theorem [3] in Hausdorff topological vector spaces
without monotonicity and even without continuity assumption. Since the general
vector F -implicit complementarity problems and general vector F -implicit (quasi)
variational inequalities include complementarity problems, variational inequalities
and other related optimization problems as special cases, our results continue to
hold for these problems. In this respect, our new results generalize and improve the
recent results in several direction.

In the rest of this section we recall some definitions and preliminaries results
which are used in the next section.

We shall denote by 2A the family of all subsets of A and by F(A) the family of
all nonempty finite subsets of A. Let X be a real Hausdorff topological vector space
(in short, t.v.s.). A nonempty subset P of X is called convex cone if (i) P +P = P,
(ii) λP ⊂ P, for all λ ≥ 0. Cone P is said to be pointed whenever P ∩ −P = {0}.
Let Y be a t.v.s. and P ⊂ Y be a cone. The cone P induces an ordering on Y (in
this case the pair (Y,P) is called an ordered t.v.s.) which is defined as follows:

x ≤ y ⇔ y − x ∈ P. (1)
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This ordering is anti-symmetric if P is pointed. Let K be a nonempty convex subset
of a t.v.s. X and let K0 be a subset of K. A multi-valued map Γ : K0 → 2K is said
to be a KKM map if

coA ⊆ ∪x∈AΓ(x), ∀A ∈ F(K0),

where co denotes the convex hull.
Let X be a nonempty set, Y a topological space, and Γ : X → 2Y a multivalued

map. Then, Γ is called transfer closed-valued if, y �∈ Γ(x) there exists x′ ∈ X such
that y �∈ clΓ(x′), where clΓ(x′) denotes the topological closure of Γ(x′). It is clear
that, Γ : X → 2Y is transfer closed-valued if and only if⋂

x∈X

Γ(x) =
⋂

x∈X

clΓ(x). (2)

If A ⊆ X and B ⊆ Y , then Γ : A → 2B is called transfer closed-valued if the
multivalued mapping x → Γ(x) ∩ B is transfer closed-valued. In this case where
X = Y and A = B, Γ is called transfer closed-valued on A.

We need the following lemma in the next section (see [3]).
Lemma 1.1. Let K be a nonempty convex subset of X. Suppose that Γ, Γ̂ :

K → 2K are two multivalued mappings such that:

(a) Γ̂(x) ⊆ Γ(x), ∀ x ∈ K;

(b) Γ̂ is a KKM map;

(c) for each A ∈ F(K), Γ is transfer closed-valued on coA;

(d) for each A ∈ F(K), clK(
⋂

x∈coA Γ(x))
⋂

coA = (
⋂

x∈coA Γ(x))
⋂

coA;

(e) there is a nonempty compact convex set B ⊆ K such that clK(
⋂

x∈B Γ(x)) is
compact.

Then,
⋂

x∈K Γ(x) �= ∅.

2. Main results

Throughout this section, suppose X and Y are real Hausdorff t.v.s. and K a
nonempty convex subset of X . Denote by L(X,Y ) the space of all continuous
linear mappings fromX into Y, and 〈t, x〉 the value of the linear continuous mapping
t ∈ L(X,Y ) at x. Let A, T, g : K → K,F : K → Y, N : K ×K → L(X,Y ), and
C : K → 2Y , with nonempty convex pointed cone values, that is C(x) is nonempty
and convex cone for each x ∈ K. We consider the following generalized vector
F -implicit complementarity problem (GVF-ICP)in t.v.s. Find x ∈ K such that

〈N(Ax, Tx), g(x)〉+ F (g(x)) = 0

and

〈N(Ax, Tx), g(y)〉+F (g(y)) ∈ C(x), ∀y ∈ K. (2.1)
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Special cases

(1) The following vector F-implicit complementarity problem (VF-ICP) which con-
sists of finding x ∈ K such that

〈f(x), g(x)〉 + F (x) = 0 and 〈f(x), y〉+ F (y) ∈ C(x), ∀y ∈ K.

is a particular form of (GVF-ICP) for the identities A and T and a mapping f :
K → L(X,Y ) defined by N(x, y) = f(x) for all x, y ∈ K, where f : K → L(X,Y ),
which was considered and studied in [10] for a constant cone P, that is, C(x) = P,
for all x ∈ K.

(2) If g is an identity mapping on K, then (VF-ICP) reduces to the vector F-
complementary problem (in short VF-CP) which consists of finding x ∈ K such
that

〈f(x), x〉 + F (x) = 0 and 〈f(x), y〉+ F (y) ∈ C(x), ∀y ∈ K.

(3) If F = 0, then (VF-CP) reduces to the vector complementary problem (in short
VCP) which consists of finding x ∈ K such that

〈f(x), x〉 = 0 and 〈f(x), y〉 ∈ C(x), ∀y ∈ K,

which has been studied by Chen and Yang [2] in particular case C(x) = P, ∀x ∈ K.

(4) If L(X,Y ) = X∗ and F : K → R, then (VF-ICP) reduces to the F− implicit
complementary problems (in short F-ICP) which consists of finding x ∈ K such
that

〈f(x), x〉 + F (x) = 0 and 〈f(x), y〉+ F (y) ∈ C(x), ∀y ∈ K.

which were considered by Huang and Li [6], in particular case C(x) = P, ∀x.
(5) If g is an identity mapping onK, then (F-ICP) reduces to the F-complementary
problem (in short F-CP) which consists of finding x ∈ K such that

〈f(x), x〉 + F (x) = 0 and 〈f(x), y〉+ F (y) ∈ C(x), ∀y ∈ K,

which has been studied by Yin et al. [17], in particular case C(x) = P, ∀x.
(6) If F = 0, then (F− ICP) reduces to the implicit complementary problem (in
short ICP)which consists of finding x ∈ K such that

〈f(x), g(x)〉 = 0 and 〈f(x), y〉 ∈ C(x), ∀y ∈ K,

which has been studied by Noor [8]. See also [17,18] .
We also consider the following generalized vector F-implicit variational inequal-

ity problem (GVF-IVIP): find x ∈ K such that

〈N(Ax, Tx), g(y)− g(x)〉+ F (g(y))− F (g(x)) ∈ C(x), ∀y ∈ K.

The above problem reduces to the vector F-implicit variational inequality problem
considered in [10] if, we set A, T the identities mapping and define N(x, y) = f(x)
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for all x, y ∈ K, where f : K → L(x, y), C(x) = P , where (Y, P ) is an ordered
Banach space.

The following theorem establishes the equivalence between (GVF-ICP) and
(GVF-IVIP).

Theorem 2.1.

(i) If x solves (GVF-ICP), then x solves (GVF-IVIP).

(ii) Let 0 ∈ K, 2K ⊂ K (K is not necessarily a cone) and F : K → Y satisfy
F (2x) = 2F (x), for all x ∈ K. If g is onto and x solves (GVF-IVIP), then x
solves (GVF-ICP).

Proof. By the definitions of (GVF-ICP) and (GVF-IVIP), (i) trivially holds.
Now let x ∈ K solves (GVF-IVIP). Hence

〈N(Ax, Tx), g(y)− g(x)〉+ F (g(y))− F (g(x)) ∈ C(x), ∀y ∈ K. (I)

Since g is onto, there exist y, y′ ∈ K such that g(y) = 0, g(y′) = 2g(x). By letting
g(y), g(y′) in (I) we obtain that

〈N(Ax, Tx), g(x)〉 + F (g(x)) ∈ −C(x)

and

〈N(Ax, Tx), g(x)〉 + F (g(x)) ∈ C(x),

and hence 〈N(Ax, Tx), g(x)〉 + F (g(x)) ∈ C(x) ∩ −C(x).

Since C(x) is a pointed cone

〈N(Ax, Tx), g(x)〉 + F (g(x)) = 0. (II)

By adding (I) and (II) the result follows, i.e.,

〈N(Ax, Tx), g(y)〉+ F (g(y)) ∈ C(x) + C(x) ⊂ C(x), ∀y ∈ K. ✷

Corollary 2.1 ([10])

(i) If x solves (VF-ICP), then x solves (VF-IVIP).

(ii) Let K be a closed convex cone. If F : K → Y is positively homogeneous and
x solves (VF-IVIP), then x solves (VF-ICP).

The following example shows that the assumption g is onto cannot be omitted
from Theorem 2.1.

Example 2.1. Let X = Y = K = R and Ax = Tx = F (x) = x, g(x) =
1, N(x, y) = xy for all x, y ∈ K. The (GVF-ICP) does not have any solution,
because of 〈N(Ax, Tx), g(x)〉+ F (g(x)) = x2 + 1 = 0, does not have solution, while
every member of K is a solution of the (GVF-IVIP).

Remark 2.1. It is obvious that if K is a closed convex cone, then 0 ∈ K and
2K ⊂ K, while K = Q, rational numbers, as a subset of X = R is not a cone and
0 ∈ K and 2K ⊂ K. If F : K → Y is positively homogeneous, then F (2x) = 2F (x).
The following example shows that the converse does not hold in general. These facts
show that Theorem 2.1 improves Theorem 3.1 (Corollary 2.1) in [10].
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Example 2.2. Let X = Y = R, K = R, A(x) = T (x) = 0, g(x) = x, N(x, y) =
0, for all x, y ∈ K and F : K → Y defined by

F (x) =

{
x if x ∈ Q

0 if x �∈ Q.
(3)

The following theorem improves and extends Theorem 3.2 in [10].
Theorem 2.2. Assume that

(a) for all A ∈ F(K) the multivalued map ΓA : coA → 2K defined by ΓA(x) =
{y ∈ K : 〈N(Ay, Ty), g(x) − g(y)〉 + F (g(x)) − F (g(y)) ∈ C(y)} is transfer-
closed valued mapping;

(b) there exist a nonempty compact subset B and a nonempty convex compact
subset D of K such that, for each x ∈ K\B, there exists y ∈ D such that
〈N(Ax, Tx), g(y)− g(x)〉 + F (g(y))− F (g(x)) �∈ C(x).

(c) there exists a mapping h : K ×K → Y such that

(i) h(x, x) ∈ C(x), for all x ∈ K;

(ii) 〈N(Ay, Ty), g((x)−g(y)〉+F (g(x))−F (g(y))−h(y, x) ∈ C(y), ∀x, y ∈ K;

(iii) the set {y ∈ K : h(x, y) �∈ C(x)} is convex, for all x ∈ K.

Then, the solution set of (GVF-IVIP) is nonempty and compact.
Proof. Define Γ, Γ̂ : K → 2K as follows
Γ̂(x) = {y ∈ K : h(y, x) ∈ C(y)},
Γ(x) = {y ∈ K : 〈N(Ay, Ty), g((x)− g(y)〉+ F (g(x)) − F (g(y)) ∈ C(y)}.

We show that Γ, Γ̂ satisfy conditions of Lemma 1.1. By (c)(ii), Γ̂(y) ⊆ Γ(y), for all
y ∈ K. If A = {x1, x2, ..., xn} ⊆ K, z ∈ coA and z �∈ ⋃

i∈{1,2,...,n} Γ̂(xi), then
h(z, xi) �∈ C(z) for i = 1, 2, 3, ..., n. It follows by (c) and (iii) that h(z, z) �∈ C(z)
which contradicts (i)of (c). By (a),Γ satisfies the assumptions of (b) and (c) of
Lemma (1). Hence, by Lemma 1.1, we have,⋂

x∈K

Γ(x) �= ∅, (4)

which shows that the problem (GVF-IVIP) has a solution. ✷

Remark 2.2. In the previous theorem, if we let the mappings N,A, T, g and F
be continuous and let C : K → 2K have closed graph, then condition (a) trivially
holds. Moreover, if for all x ∈ K the set {y ∈ K : 〈N(Ay, Ty), g((x) − g(y)〉 +
F (g(x)) − F (g(y)) ∈ C(y)} is closed in K, for all x ∈ K, then condition (a) holds
and in this case the solution set of (GVF-IVIP) is a compact subset of K.

In view of the proof of Theorem 2.2 and Remark 2.2, we can obtain the following
existence result of the solution set of (GVF-IVIP) .

Theorem 2.3. Suppose that

(i) h(x, x) ∈ C(x), ∀x ∈ K;

(ii) the set {y ∈ K : h(y, x) ∈ C(y)} is closed in K, for all x ∈ K;



Implicit variational inequalities 209

(iii) the set {y ∈ K : h(x, y) �∈ C(x)} is convex, ∀x ∈ K;

(v) there exist a nonempty compact subset B and a nonempty convex compact
subset D of K such that, for each x ∈ K\B, there exists y ∈ D such that
h(x, y) �∈ C(x).

If, for every x, y ∈ K, the following implication holds

〈N(Ax, Tx), g(y)− g(x)〉 + F (g(y))− F (g(x)) − h(x, y) ∈ C(x).

then the solution set of (GVF−IVIP) is nonempty.
The following Theorem improves Theorem 3.3. in [10].
Theorem 2.4. If all of the assumptions of Theorem 2.1 and Theorem 2.2 (resp,

Theorem 2.3) are satisfied, then the solution set of (GVF−ICP) is nonempty and
compact (resp, nonempty).

Proof. The result follows directly from Theorems 2.1 and 2.2 (resp, 2.3). ✷

3. Applications

In this section, we show that the minimum of a class of differentiable nonconvex
functions on the g-convex set K in a real Hilbert space can be characterized by a
special case of general variational inequality (I) with F (.) = 0. For this purpose,
we recall the following well-know concepts, see Noor [18].

Definition 3.1. Let K be any set in H. The set K is said to be g-convex, if
there exists a function g : H −→ H such that

g(u) + t(g(v)− g(u)) ∈ K, for all u, v ∈ K, t ∈ [0, 1].

Note that every convex set is g-convex, but the converse is not true.
Definition 3.2. The function F : K −→ H is said to be g-convex, if

F (g(u) + t(g(v)− g(u))) ≤ (1− t)F (g(u)) + tF (g(v)), for all u, v ∈ K, t ∈ [0, 1].

Clearly every convex function is g-convex, but the converse is not true.
We now show that the minimum of a differentiable g-convex function on K in H
can be characterized by the general variational inequality (2.1) and this is the main
motivation of our next result.

Lemma 3.3. Let F : K −→ H be a differentiable g-convex function. Then
u ∈ K is the minimum of g-convex function F on K if and only if u ∈ K satisfies
the inequality

〈F ′(g(u)), g(v)− g(u)〉 ≥ 0, for all g(v) ∈ K, (5)

where F ′ is the differential of F at g(u).
Proof. Let u ∈ K be a minimum of g-convex function F on K. Then

F (g(u)) ≤ F (g(v)), for all g(v) ∈ K. (6)
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SinceK is a g-convex set, so for all u, v ∈ K, t ∈ [0, 1], g(vt) = g(u)+t(g(v)−g(u)) ∈
K. Setting g(v) = g(vt) in (2), we have

F (g(u)) ≤ F (g(u) + t(g(v)− g(u)) ≤ F (g(u)) + t(F (g(v)− g(u)).

Dividing the above inequality by t and taking t −→ 0, we have

〈F ′(g(u)), g(v)− g(u)〉 ≥ 0,

which is the required result(1).
Conversely, let u ∈ K, g(u) ∈ K satisfy inequality (1). Since F is a g-convex

function, for all u, v ∈ K, t ∈ [0, 1], g(u) + t(g(v)− g(u)) ∈ K and

F (g(u) + t(g(v)− g(u))) ≤ (1− t)F (g(u)) + tF (g(v)),

which implies that

F (g(v))− F (g(u)) ≥ F (g(u) + t(g(v)− g(u)))− F (g(u))
t

.

Letting t −→ 0, we have

F (g(v)) − F (g(u)) ≥ 〈F ′(g(u)), g(v)− g(u)〉 ≥ 0, using (1),

which implies that

F (g(u)) ≤ F (g(v)), for all g(v) ∈ K,

showing that u ∈ K is the minimum of F on K in H. ✷

Lemma 3.3 implies that g-convex programming problem can be studied via the
general (Noor) variational inequality with Tu = F ′(g(u)), see Noor [8,13,14]. In a
similar way, one can show that the general variational inequality is the Fritz-John
condition of the inequality constrained optimization problem.
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