A fixed point theorem on asymptotic contractions

K. P. R. Sastry*, G. V. R. Babu[†], S. Ismail[‡] and M. Balaiah[§]

Abstract. The aim of this paper is to prove a fixed point theorem on asymptotic contractions with hypotheses slightly different from that of Chen [1], Theorem 2.2.

Key words: asymptotic contractions, complete metric space, fixed point

AMS subject classifications: 54H25, 47H10

Received March 8, 2007 Accepted July 17, 2007

1. Introduction

Throughout this paper, (M, d) denotes a complete metric space, R^+ the set of all nonnegative reals, and Φ the class of all mappings $\varphi : R^+ \to R^+$ satisfying (i) φ is continuous, and (ii) $\varphi(t) < t$ for t > 0. For $x \in M$, the orbit of x is $\{x, Tx, T^2x, \cdots\}$ and is denoted by O(x).

In 2003, Kirk [2] introduced a new class of mappings namely asymptotic contractions and established the existence of fixed points for such mappings by using ultra filter methods.

Definition 1.1 (Kirk [2]). A mapping $T: M \to M$ is said to be an asymptotic contraction, if there exists a sequence $\{\varphi_n\}_{n=1}^{\infty}$, $\varphi_n: R^+ \to R^+$ and $\varphi \in \Phi$ such that for all $n \in N$

$$d(T^n x, T^n y) \le \varphi_n(d(x, y)) \tag{1}$$

for all $x, y \in M$, where $\varphi_n \to \varphi$ uniformly on the range of d.

Theorem 1.2 (Kirk [2]). Suppose $T: M \to M$ is an asymptotic contraction for which the mappings φ_n in (1) are also continuous. Assume that some orbit of T is bounded. Then T has a unique fixed point $x_* \in M$, and moreover the Picard sequence $\{T^n x\}_{n=1}^{\infty}$ converges to x_* for each $x \in M$.

^{*8-28-8/1,} Tamil street, Chinna Waltair, Visakhapatnam-530017, India, e-mail kprsastry@hotmail.com

 $^{^\}dagger Department$ of Mathematics, Andhra University, Visakhapatnam-530003, India, e-mail: gvr_babu@hotmail.com

[‡]Department of Mathematics, Andhra University, Visakhapatnam-530003, India, e-mail: shaik_1949@hotmail.com

 $[\]$ Department of Mathematics, Andhra University, Visakhapatnam-530003, India, e-mail: balaiah_m19@hotmail.com

In 2005, Chen [1] proved *Theorem 1.2*, under weaker assumptions without using ultra filter methods.

Theorem 1.3 (Chen [1], Theorem 2.2). Let $T: M \to M$ be a mapping satisfying

$$(1.3.1) d(T^n x, T^n y) \le \varphi_n(d(x, y))$$

for all $x, y \in M$, where $\varphi_n : R^+ \to R^+$ and $\lim_{n \to \infty} \varphi_n = \varphi$ uniformly on any bounded interval [0, b]. Suppose that φ is upper semicontinuous and $\varphi(t) < t$ for t > 0,

- (1.3.2) there exists a positive integer n_* such that φ_{n_*} is upper semicontinuous and $\varphi_{n_*}(0) = 0$, and
- (1.3.3) there exists $x_0 \in M$ such that $O(x_0)$ is bounded.

Then T has a unique fixed point $x_* \in M$ such that $\lim_{n \to \infty} T^n x = x_*$ for all $x \in M$.

The following example shows that T may not have a fixed point if condition (1.3.2) is dropped in *Theorem 1.3*.

Example 1.4. Let $M = \{0, 1, 2^{-1}, 2^{-2}, \dots\}$ with the usual metric. Define $T: M \to M$ by T0 = 1; $T(2^{-n}) = 2^{-(n+1)}$ for $n = 0, 1, 2, \dots$. Define φ_n on R^+ by $\varphi_n(t) = 2^{-1}t + n^{-1}$ and φ on R^+ by $\varphi(t) = 2^{-1}t$, $t \in R^+$. Then $\{\varphi_n\}$ and φ satisfy conditions (1.3.1) and (1.3.3). Here we observe that $\varphi_n(0) \neq 0$ for every n, so that condition (1.3.2) does not hold and T has no fixed points.

In this paper, we prove that *Theorem 1.3* holds well if (1.3.2) is replaced by (1.3.2)': There exists $x_0 \in M$ such that $O(x_0)$ is bounded and there exists $y \in \overline{O(x_0)}$ such that O(Ty) is closed.

2. Main result

Theorem 2.1. Let $T: M \to M$ be a mapping satisfying (1.3.1) and (1.3.2)'. Then T has a unique fixed point $x_* \in M$ and $\lim_{n \to \infty} T^n x_0 = x_*$. In fact $\lim_{n \to \infty} T^n x = x_*$ for all $x \in M$.

Proof. For $x_0 \in M$, the sequence $\{T^n x_0\}$ is Cauchy, which follows from the proof of *Theorem 1.3* (see [1], Theorem 2.2) and hence converges, say, to x_* . Thus

(2.1.1)
$$\overline{O(x_0)} = \{x_*\} \cup O(x_0).$$

Since $O(x_0)$ is bounded, there exists b > 0 such that $d(T^n x_0, T^m x_0) \le b$ for all n, m. Now, by using (1.3.1), we have

$$d(T^n x_0, T^n x_*) \le \varphi_n(d(x_0, x_*)).$$

Since $\varphi_n \to \varphi$ as $n \to \infty$, there exists a natural number N such that

$$\varphi_n(d(x_0, x_*)) < \varphi(d(x_0, x_*)) + 1$$
 for all $n \ge N$.

Take

$$a = \max_{1 \le k \le N-1} \{ d(T^k x_0, T^k x_*), \varphi(d(x_0, x_*)) + 1 \},$$

so that $d(T^n x_0, T^n x_*) \leq a$ for all n. Now

$$d(T^n x_*, T^m x_*) \le d(T^n x_*, T^n x_0) + d(T^n x_0, T^m x_0) + d(T^m x_0, T^m x_*)$$

\$\leq a + b + a = 2a + b \quad \text{for all } n, m.\$

Hence $O(x_*)$ is bounded. Thus $\{T^n x_*\}$ converges, say, to y_* .

We now show that $y_* = x_*$. If possible, suppose that $y_* \neq x_*$.

For a fixed positive integer N, we have

$$d(T^{n+N}x_0, T^{n+N}x_*) \le \varphi_n(d(T^Nx_0, T^Nx_*)).$$

By letting $n \to \infty$, we get

$$d(x_*, y_*) \le \varphi(d(T^N x_0, T^N x_*)).$$

Now, by letting $N \to \infty$, we have

$$d(x_*, y_*) \le \varphi(d(x_*, y_*)) < d(x_*, y_*),$$

a contradiction. Thus $T^n x_* \to x_*$ as $n \to \infty$.

By condition (1.3.2)' and (2.1.1) the following two cases arise.

Case (i): $y = x_*$

Since $T^n x_* \to x_*$, $x_* \in O(Tx_*)$. Therefore there exists a positive integer N such that $x_* = T^N x_*$. Hence $T^{nN+1} x_* = Tx_*$ for $n = 1, 2, \ldots$ Consequently, the subsequence $\{T^{nN+1} x_*\}$ of $\{T^n x_*\}$ converges to Tx_* . Thus $Tx_* = x_*$.

Case (ii): $y \neq x_*$

In this case $y \in O(x_0)$ by (2.1.1) and O(Ty) is closed by (1.3.2)'. Also observe that O(Ty) is bounded. Hence the conclusion follows by case (i).

Now, for $x \in M$ we have

$$d(T^nx,x_*)=d(T^nx,T^nx_*)\leq \varphi_n(d(x,x_*))<\varphi(d(x,x_*))+1 \qquad \text{ for a large } n.$$

Hence $\{T^n x\}$ is bounded. Thus $T^n x \to x_*$ as $n \to \infty$. This completes the proof of the theorem.

The following is an example which satisfies (1.3.2)' but not (1.3.2).

Example 2.2. Let $M = \{0, 1, 2^{-1}, 3^{-1}, \cdots\}$ with the usual metric. Define $T: M \to M$ by T0 = 0; $T(n^{-1}) = (n+1)^{-1}$ for $n = 1, 2, \ldots$ For $t \in R^+$, define $\varphi_n(t) = n^{-1}$ for all n, and $\varphi(t) = 0$ for all t. Clearly $\varphi(t) < t$ for t > 0 and φ_n converges to φ uniformly on M. It is easy to verify the condition (1.3.1). Put $x_0 = 1$. Then, $O(x_0) = \{1, 2^{-1}, 3^{-1}, \cdots\}$ is bounded. We have $0 \in \overline{O(x_0)}$ and $T^k x_0 \to 0$ as $k \to \infty$. Hence $0 \in O(Tx_0)$ so that $O(Tx_0)$ is closed. Consequently (1.3.2)' holds. Thus T satisfies all the conditions of Theorem 2.1 and 0 is the only fixed point of T.

However, we observe that $\varphi_n(0) \neq 0$ for every n, so that condition (1.3.2) fails to hold.

References

- [1] Y. Z. Chen, Asymptotic fixed points for nonlinear contractions, Fixed Point Theory and Applications **2005**(2005), 213-217.
- [2] W. A. Kirk, Fixed points of asymptotic contractions, J. Math. Anal.Appl. **277**(2003), 645-650.