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Multi-step iterations with errors for common fixed
points of a finite family of nonself asymptotically
nonexpansive mappings”

X1aower Jut AND FENG GuUHs

Abstract. In this paper we established strong and weak conver-
gence theorems for a multi-step iterative scheme with errors for nonself
asymptotically nonexpansive mappings in the real uniformly conver Ba-
nach space. Our results extend and improve the ones announced by Lin
Wang [Lin Wang, Strong and weak convergence theorems for common
fixed points of nonself asymptotically nonexpansive mappings, J. Math.
Anal. Appl.(2005)].
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1. Introduction

Let K be a nonempty closed convex subset of a real normed linear space E. A
self-mapping T : K — K is said to be nonexpansive if [|Tz — Ty| < ||z — y|| for
Ve,y € K. A self-mapping T : K — K is called asymptotically nonexpansive if
there exist sequences {k,} C [1,00),k, — 1 as n — oo such that

[T"z — T"y[| < knllz —yl| (1)

for Vz,y € K and each n > 1.

Being an important generalization of the class of nonexpansive self-mappings,
the class of asymptotically nonexpansive self-mappings was introduced by Geobel
and Kirk [3] in 1972, who proved that if K is a nonempty closed convex subset
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of a real uniformly convex Banach space and T is an asymptotically nonexpansive
self-mapping on K, then T has a fixed point.

Iterative techniques for approximating fixed points of nonexpansive self-mapp-
ings have been studied by various authors (see, e.g., [3,4]), using the Mann iteration
process or the Ishikawa iteration process. For nonself nonexpansive mappings, some
authors (see, e.g., [5,6]) have studied the strong and weak convergence theorems
in Hilbert space or uniformly convex Banach spaces, using one or two-step itera-
tion. The concept of nonself asymptotically nonexpansive mappings was introduced
by Chidume [1] in 2003 as the generalization of asymptotically nonexpansive self-
mappings. The nonself asymptotically nonexpansive mapping is defined as follows:

Definition 1.1[1]. Let K be a nonempty subset of real normed linear space E.
Let P : E — K be the nonexpansive retraction of E onto K. A nonself mapping
T : K — E is called asymptotically nonexpansive if there exist sequences{kn} C
[1,00),kn, — 1 as n — oo such that

IT(PT)"~ e = T(PT)" 'yl < knllz — y (2)

forVx,y € K and eachn > 1.
By studying the following iteration process:

x1 € K,2pt1 = P((1 — ap)z, + oznT(PT)”_lacn)7 (3)

Chidume [1] got the following strong and weak convergence theorems for nonself
asymptotically nonexpansive mappings.

Theorem 1[1]. Let E be a real uniformly convex Banach space and K a nonempty
closed convex subset of E. Let T : K — E be a completely continuous and asymptot-
ically nonexpansive map with sequence {k,} C [1,00) such that > >- (k2 —1) < oo
and F(T) # 0. Let {an} C (0,1) be such that e < 1—ca, <1—¢VYn > 1 and
some € > 0. From arbitrary 1 € K, define the sequence {x,} by (3). Then {x,}
converges strongly to some fived point of T

Theorem 2[1]. Let E be a real uniformly convex Banach space which has a Fréchet
differentiable norm and K a monempty closed convex subset of E. Let T : K —
E be an asymptotically nonexpansive map with sequence {kn} C [1,00) such that
Yoo (k2 —1) < 0 and F(T) # 0. Let {a,} C (0,1) be such that e < 1 — o, <
1—¢€,Yn > 1 and some € > 0. From arbitrary x1 € K, define the sequence {x,} by
(3). Then {x,} converges weakly to some fixed point of T

Remark 1.1. If T is a self-mapping, then P becomes the identity mapping so that
(2) reduces to (1).

By studying the following iterative process:

r1 € K,
i1 = P((1 — an)zn + O‘nTl(PTl)n_lyn)7 (4)
Yn = P((1 = Bn)zn + ﬂnT2(PT2)n_1xn)an > 1,

Lin Wang [2] constructed an iteration scheme for approximating common fixed
points of two nonself asymptotically nonexpansive mappings and got the follow-
ing strong and weak convergence theorems for such mappings in uniformly convex
Banach spaces.
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Theorem 3[2]. Let K be a nonempty closed convex subset of a real uniformly
convex Banach space E. Suppose Th,Ts : K — E are two nonself asymptotically
nonezpansive mappings with sequences {kn},{l,} C [1,00) such that > >~ (k, —
1) < oo, >0 (ln— 1) < 0o and ky, — 1,1, — 1, as n — oo, respectively. Let {x,}
be defined by (4), where {an},{Bn} are two sequences in [e,1 —€) for some € > 0.
If one of Th and Ty is completely continuous, and F(T1)(F(T2) # 0, then {z,}
converges strongly to a common fixed point of T1 and Ts.

Theorem 4[2]. Let K be a nonempty closed convex subset of a real uniformly
convex Banach space E satisfying Opial’s condition. Suppose T1,T5 : K — E
are two nonself asymptotically nonexpansive mappings with sequences {kn}, {ln} C
[1,00) such that > .~ (k, —1) < o0, Y07 1 (ln — 1) < 00 and k, — 1,1, — 1,
as n — oo, respectively. Let {x,} be defined by (4), where {an},{Bn} are two
sequences in [e,1 — €) for some € > 0. If F(Th)(F(T2) # 0, then {x,} converges
weakly to a common fized point of Ty and Ts.

Remark 1.2. As Ty = T3 and 3, = 0 for all n > 1, the iteration scheme (4)
reduces to (3).

The purpose of this paper is to construct an iteration scheme for approximating
common fixed points of m nonself asymptotically nonexpansive mappings and to
prove some strong and weak convergence theorems for such mappings in uniformly
convex Banach spaces.

2. Preliminaries

Let E be a real uniformly convex Banach space and K a nonempty closed convex
subset of E, which is also a nonexpansive retract of F with retraction P. Let
T; : K — E be nonself asymptotically nonexpansive mappings. For approximating
the common fixed points of m nonself asymptotically nonexpansive mappings, we
generalize the iteration scheme as follows:

J?SL]-) = P(O/S)Tl (PTl)n_lxn + ﬂr(Ll)xn + ’YT(Ll):ung))
2P = P(a@Ty(PTy)" 2 + Pz, + 1P u®)
2B = PO T (PTy)" 2@ 1 B3z, + 4B )

2" = Plaf" D T (P L) a2 4 50 D " D)
Tnpr =2 = P(a™ T (PT,)" 2™ 4 gl g 4 ~lm) ), (m)) (5)

where {ul}, {u2}, ..., {u} are bounded sequences in K, and {o\'}, {87}, {v{"}
are appropriate real sequences in [0, 1] such that aﬁf) + ﬂ,(f) + %(f) = 1 for each
i€{1,2,...,m}.

For the sake of convenience, we restate the following concepts results:
Let E be a Banach space with dimension E > 2. The modulus of F is the function

0 : (0,2] — [0,1] defined by

, 1
dp(e) = nf{l — |5z +y)l : llzll = 1, llyll = 1,e = [lz — y[[}-
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Banach space E is uniformly convex if and only if dg(e) > 0 for all € € (0, 2].

A subset K of F is said to be retract if there exists continuous mapping P :
E — K such that Px = « for all x € K. Every closed convex subset of a uniformly
convex Banach space is a retract. A mapping P : E — F is said to be a retraction
if P2 = P.
Remark 2.1. If a mapping P is a retraction, then Pz = z for every z € R(P),
range of P.

A Banach space F is said to satisfy Opial’s condition if for any sequence {x,,} C
E,x, — x implies that limsup,, ., ||z, — 2| < limsup,, ., ||z, — y| for all y € E
with y # z, where x,, = = denotes that {z,,} converges weakly to .

A mapping T : K — F is said to be semi-compact if for any sequence {z,} in
K such that ||z, — Tx,| — 0(n — o0), there exists subsequence {z,, } of {z,} such
that {x,;} converges strongly to z* € K.

A mapping T with domain D(T) and R(T) in F is said to be demiclosed at p if
whenever {z,,} is a sequence in D(T') such that {x,,} converges weakly to z* € D(T)
and {Tz,} converges strongly to p, then Tz* = p.

Lemma 2.1[7]. Let{a,} and {t,} be two nonnegative sequences satisfying
nt1 < ap +t, foralln>1.

If Zzozl tp < 00, then lim, .. oy, exists.

Lemma 2.2[8]. Let E be a real uniformly conver Banach space and 0 < p <
tn, < q < 1 for all positive integers n > 1. Also suppose that {x,} and {y,}
are two sequences of E such that limsup,, . ||zs| < r,limsup,_, . ||ys]| < r and
limsup,,_ o [[tn®n + (1 = tn)ynll = 7 hold for some r > 0, then limsup,,_, ., ||zn —
Lemma 2.3[1]. Let E be a real uniformly convexr Banach space, K a nonempty
closed subset of E, and let T : K — FE be nonself asymptotically nonexpansive
mapping with a sequence {k,} C [1,00) and ky,, — 1 asn — oco. Then I —T is
demiclosed at zero.

3. Main results

Lemma 3.1. Let K be a nonempty closed conver and bounded subset of a real

normed linear space E. Let T; : K — E be m nonself asymptotically nonexpansive

mappings with sequences B ¢ [1,00) such that E;’f:l(kg) -1) < 00, k&) = 1 as

n — 00,4 € {1,2,---,m}. Suppose that {ag)}, {6@} and {%(Li)} are three real
sequences in [0,1), {xn} is defined by (5) with the following restrictions:

(i) o + 89 + 4 =1 for alli € {1,2,--- ,m},n > 1.
(i) Eff:l'y,(f) < oo forallie{1,2,---,m},n>1.

If N2, F(T;) # 0, then lim,,—.oo ||, — q|| exists for each q € (.-, F(T;).
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Proof. Setting ED =1+1$. Since Eff:l(ky(f) —1) < o0, s0 Eff:llgf) < 00. For
any g € (i~, F(T;), by (5), we have

Iz — q|| = [|P(@ VT (PT)" 2y + BV 2, + 7 ) — 4l
HaS)Tl(PTl)” Y2, 4+ BNz, + 40 — g
aD|| Ty (PTy)" 2, — gl + B IIwn—qll+v ||N(1) — 4|
all (1 +1 1))\\%—61\\ + BV |z — all + 4P e = qf
= (af) + BW)|zn — gl + VIV |2, — g +7(1)Hﬂn il
< lzn — gl + dtV (6)

where d a1z — g +7 D1pi — g|, since 221V < 00, T2 4V < oo,

and {a } {Hxn qll}, {H,un — ¢||} are bounded, we see that Eff:ldgll) <oo. It
follows from (6) that

\/\ \/\ IN

2 —q| < a1+ 1))z — gl + B2 |lzn — all + 21D — qf
< a1 +1P)(|lzn — gl +dP) + B |z — CIH +W(2)||/~L(2) qll
= (a? + Bz — gl + DU |20 — gl + 121 — g
+aP (1 +12)aV)
< lzn — all + @1 |20 — qll + 2112 — qll + P (1 +1P)dV
= ||z — gl + dgf)
where d'? = {219z, qH + 2N p? = qll + P +1 2))d(1 since 220, 112 <

00, 252 m(?) < 00, 052, d < 00, and {ai?}, {|lzn —qll}, {]l” —ql} are bounded,

we see that 352 1d(2) < oo0.
By continuing the above method, there are nonnegative real sequences {dgf)}
such that Ej’f:ldgf) < oo and

2 = all < llz — all + d37, (7)
for alli € {1,2,--- ,m}. This together with Lemma 2.1 gives that lim, . ||, —q||

exists. This completes the proof. O

Lemma 3.2. Let K be a nonempty closed convex subset of a real uniformly con-
vexr Banach space E. Let T; : K — E be m nonself asymptotically nonexpansive

mappings with sequences Y C [1,00) such that DIl (k:gf) -1) < oo,kﬁf) — 1, as
n — oo0,i € {1,2,---,m}. Suppose that {oz } {ﬁ } and {’y,(f)} are three real
sequences in [0,1), {x,} is defined by (5) with the following restrictions:

(i) o +ﬂ£f) 9 =1 forallie {1,2,-- ,m},n>1.

(i) 52 17n < oo forallie{l,2,--- ,m},n>1.

If N2, F(T;) # 0, then limy, oo |@n, — Tixy|| = 0 for alli € {1,2,--- ,m}.

Proof. Setting k%) = 1+ 1. Taking ¢ € Nz, F(Ty),i € {1, 2 -,m}, by
Lemma 3.1, we see that lim,,_, o ||z, — q|| exists. Assume lim,, . ||zn — QH =a,a>
0. From (7), we note that

"~ = gl < [l — gl +d" D, ¥ > 1
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where {d% } is a nonnegative real sequence such that X952 1d(m V< ooo Tt
follows that
limsup [|z(™~Y — ¢ < hmsup lzn — q|| = hm lzn — ¢l = a, (8)

from where we have

lim sup | T (PTon)" 20 — ]| < limsup(1 + 1)]|2$"~D — ]| < a.

n—oo n—oo

Next, we deserve that

T (PT)" 2" = g+ 7™ (™ = @) < (1T (PT)" 2" = g
A (™ — @)

Thus we have

limsup || Ton (PT)" 2" — g+ 40 (0 — 20)| < a. 9)
Also,
" = g + A (G = x|l < e = gl + [ (e = )l
gives that
limsup || — g + 7™ (™) = 2,)|| < a (10)

and note that
a= lim [z{™ — g
n—0oo

= lim_ {0 T (PT)" a4 (1= ) 70 470 ™

—(1—a%m))q—a(m)QIl

+(1—a%m’)xn—(1—a%m))q W, +7(m) e
—almAm) ym) g g lm)m)

= lim (| (T (PT)™ 2" ) = g7 () — )

(1 =al™) (@0 =g+ (1 =) |l

This together with (9), (10) and Lemma 2.2, gives
lim || Ty (PT,,)" (™ — 2, =0 (11)
In addition,

lzn = all < llzn = T (PTon)" " 2"V + | T (PT)" el — g
< llzn = T (PTm)" '™ D+ (14 107) 2" — g
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Taking liminf on both sides in the inequality above, by(11) we have
lim inf ||z~ — g > a. (12)
Thus, it follows from (8) and (12) that
Jim oY — g = a
Since

(B qll

= | P VT (PTrp1)" 2l 4 Vg, 4 m= D pm=1) — g

< "D (Tt (PTr)" 2™ = g 4 9D (0 — )
1= 0 ) — 4 A )

< el D@ + 15 D) 2D — g + (1 — o™ ) |2n — q||
DY = |

<am DA+ 1) (|2n — g +dm2) + (1= o™ )|z, — gl

D = |

(sl DUl D1 Ot
# I = | (13)

where 3% 1d(m 2 < 00, taking lim on both sides in the inequality above, we have
hm Ha(m 2 (Trn—1 (PTmfl)n_lxgzm_Q) q+ 'Y(m D(Ngn R Tn)

(1=l D) (@ — g+ 2D Y = ) = 6

Then by Lemma 2.2, we obtain,

lim || Ty 1 (PTp )" 2™ — g, || = 0. (14)
We now prove that lim, e ||Tni1 — x%m 1)H =0
l2ng1 — 2"V

P TP b 7 ) )
< ™ Ton(PT)™ 2 (1= 0l — )z + A — 2 )|
< o\ | T (PT)" ! (m D=zl + ANl = 2l + llen — 2770
< ol [T, (PT,, )" a1 —anll 2 )

+O‘£Lm 1)HTm71(PTmfl)n ! ’EL _an""V H:u(m b Ty |-

Taking lim on both sides in the inequality above, by (11) and (14) we have

lim (|1 — 2" D) =0,
n—oo
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and therefore

m |z, — 27| = (15)

n—oo

Further by(11), we still have

lim [|2ny1 — T (PT)" talm=D| =0 (16)

n—oo

and

Hxn - men”
= ||p — Ton(PTy)" 2D + T, (PT,)" ™= — T ||

< len = Ta(PTa)" @D + | T (PTo)" 2" ™Y = T (PTo)" a7 |
T (PT)" 12" Y — Tl
n— m— m m— m—1
< |@n = Tn(PT) 2™+ (1 + 10 20 — 2009
(1 + )T (PTn)" 22T — 4 (17)

It follows from (16) that

W || T (PT)" 22" 7Y — 2, || = 0. (18)

n—1

In addition,

Y el

= ||x§;"*1> — Tt (PTr1)" '
< ||x£zm71) - Tm—l(PTm—l)nilx 2 H + | Ton -1 (PTin—1)"" 1x£1m 2 - Zn |

n

(m— 2)+Tm 1(PT 71)n 1 (m 2) (m 1)H

n

- 20
< (@l 4 2)| Tt (PTon—1)" 2™ — 2 || 4+ 4D —
=Y

Taking lim on both sides in the inequality above, by (14) and (15) we have

lim [z — 2" 7Y =o. (19)
By (11), (18) and (19), it follows from (17) that lim, o ||2n — Trn@ys|| = 0. Simi-
larly, we may show that lim, e ||2n — Tixs|| = 0,i € {1,2,--- ,m}. The proof is
completed. O

Theorem 3.3. Let K be a nonempty closed conver and bounded subset of a real
uniformly convex Banach space E. Let T; : K — E be m nonself asymptotically
nonexpansive mappings with sequences k(') C [1,00) such that EOO (k(i) 1) <
00, k) =1 asn — 00,i € {1,2,--- ,m}. Suppose that {a } {6 } and {W )} are
three real sequences in [0,1), {z,} is defined by (5) with the following restrictions:
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(z)al)—kﬁ —|—'yn =1 foralie{l,2,--- ,m},n>1.
(i) 32 1'yn <oof0rallz€{12 co,mb,n > 1.

If one of T; is completely continuous, and (i, F(T;) # 0, then {z,} converges
strongly to a common fized point of {T;}7 4.

Proof. By Lemma 3.1, the sequence {x,,} is bounded. In addition, by Lemma 3.2,
limy, oo ||@n, — Tizy|| = 0, then {T;x,}1*, are also bounded. If T3 is completely
continuous, there exists subsequence {Tz,,} of {Tiz,} such that Tiz,, — ¢
as j — oo. It follows from Lemma 3.2 that lim; . ||zn, — Tizy,|| = 0. Then
lim;j oo |5, — ¢ = 0. So by Lemma 2.3 we have g € (;"; F(T;). Furthermore, by
Lemma 3.1 we get that lim;_. ||z, — ¢ exists. Thus lim; . ||z, — ¢|| = 0. The
proof is completed. O
Theorem 3.4. Let K be a nonempty closed conver and bounded subset of a real
uniformly convexr Banach space E satisfying Opial’s condition. Let T; : K — E be
m nonself asymptotically nonempansive mappings with sequences k:(l C [1,00) such
thatZ (k:( )<ook —1lasn —o0,i€{1,2,---,m}. Supposethat{an}
{6 } and {'y } are three real sequences in [0,1), {z,} is defined by (5) with the
following restrictions:

(i) ol + 89 + 49 =1 forallie {1,2,-- ,m},n> 1.
(i) 322 1'yn <oof0rallz€{12 co,ml,n > 1.

If N2, F(T;) # 0, then {x,} converges weakly to a common fized point of {T;}™ .
Proof. For any ¢ € "/, F(T;), it follows from Lemma 5.1 that lim;_,« ||z, —¢|
exists. We now prove that {x,, } has a unique weak subsequential limit in (-, F(T}).
Firstly, let ¢; and g2 be weak limits of subsequence {z,,} and {z,,} of {z,},
repectively. By Lemma 3.2 and 2.8 we know that ¢1,q2 € (;~, F(T;). Secondly,
assume g1 7 qo, then by Opial’s condition we obtain

m [z, —q = lim |z, — @l < ln (2, - gl = lin [z, — gl
n—0o0 k—oo k—oo j—o0
< lm |lon, —qif| = lim [z, — q], (20)
k—oo n—oo

which is a contradiction, hence ¢; = ¢2. Then {z,} converges weakly to a common
fixed point of {T;}7,. The proof is completed. O

References

[1] C.E. CHIDUME, E.U. OFOEDU, H.ZEGEYE, Strong and weak convergence
theorems for asymptotically nonerpansive mapping, J. Math. Anal. Appl.
280(2003), 364-374.

[2] LIN WANG, Strong and weak convergence theorems for common fized points
of monself asymptotically nonexpansive mappings, J. Math. Anal. Appl
323(2006), 550-557.



146

[3]

X.Ju anD F. Gu

S.S. CHANG, Y.J, CHO, H.ZHou, Demiclosed principle and weak conver-
gence problems for asymptotically nonerpansive mappings, J. Korean Math.
Soc. 38(2001), 1245-1260.

S. ISHIKAWA, Fized points and iteration of monexpansive mappings of in a
Banach spaces, Proc. Amer. Math. Soc. 73(1967), 61-71.

J.S. Jung, S.S. KM, Strong convergence theorems for nonexpansive nonself
mappings in Banach spaces, Nonlinear Anal. Appl. 3(33)(1998), 321-329.

S.Y. MarsusHITA, D. KUROIWA, Strong convergence of averaging iteration
of nonexpansive nonself-mappings, J. Math. Anal. Appl. 294(2004), 206-214.

K. K. Tan, H. K. Xu, Approxzimating fixed points of nonexpansive mappings
by Ishikawa iteration process, J. Math. Anal. Appl. 178(1993), 301-308.

J. ScHu, Weak and strong convergence of fixed points of aymptotically non-
expansive mappings by Ishikawa iteration process, Bull. Austral. Math. Soc.
43(1991), 153-1509.



