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VECTORS AND TRANSFERS IN HEXAGONAL

QUASIGROUP

Mea Bombardelli and Vladimir Volenec

University of Zagreb, Croatia

Abstract. Hexagonal quasigroup is idempotent, medial and semisym-
metric quasigroup. In this article we define and study vectors, sum of vec-
tors and transfers. The main result is the theorem on isomorphism between
the group of vectors, group of transfers and the Abelian group from the
characterization theorem of the hexagonal quasigroups.

1. Hexagonal quasigroup

Hexagonal quasigroups are defined in article [3].

Definition 1.1. A quasigroup (Q, ·) is called hexagonal if it is idempo-

tent, medial and semisymmetric; i.e. if its elements a, b, c, d satisfy

a · a = a

(a · b) · (c · d) = (a · c) · (b · d)

a · (b · a) = (a · b) · a = b.

When it doesn’t cause confusion, we can omit the sign ”·”, e.g. instead of
(a · b) · (c · d) we shall write ab · cd.

Theorem 1.2. In any hexagonal quasigroup (Q, ·) the identities

a · bc = ab · ac and ab · c = ac · bc
hold for all a, b, c ∈ Q. The equalities ab = c, bc = a and ca = b are equivalent.

The basic example of a hexagonal quasigroup studied in [3] is the follow-
ing.
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Example 1.3. The set C of complex numbers, with the operation ∗ :

a ∗ b =
1 − i

√
3

2
· a +

1 + i
√

3

2
· b

is a hexagonal quasigroup.

If we identify complex numbers with the points of the Euclidean plane,
the points a, b and a ∗ b turn out to be vertices of positively oriented regular
(equilateral) triangle.

Finite hexagonal quasigroups are interesting as well.

Example 1.4. Two quasigroups defined by table 1 are hexagonal. We
shall call them Q3 and Q4.

Table 1. Finite quasigroups Q3 and Q4

· A B C

A A C B

B C B A

C B A C

· 1 2 3 4
1 1 3 4 2
2 4 2 1 3
3 2 4 3 1
4 3 1 2 4

The direct product of hexagonal quasigroups is also a hexagonal quasi-
group.

Example 1.5. The product of quasigroups Q3 and Q4.
We shall denote the element (B, 3) ∈ Q3 ×Q4 by B3, and similarly. Multipli-
cation table in Q3 × Q4 is then:

· A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4

A1 A1 A3 A4 A2 C1 C3 C4 C2 B1 B3 B4 B2

A2 A4 A2 A1 A3 C4 C2 C1 C3 B4 B2 B1 B3

A3 A2 A4 A3 A1 C2 C4 C3 C1 B2 B4 B3 B1

A4 A3 A1 A2 A4 C3 C1 C2 C4 B3 B1 B2 B4

B1 C1 C3 C4 C2 B1 B3 B4 B2 A1 A3 A4 A2

B2 C4 C2 C1 C3 B4 B2 B1 B3 A4 A2 A1 A3

B3 C2 C4 C3 C1 B2 B4 B3 B1 A2 A4 A3 A1

B4 C3 C1 C2 C4 B3 B1 B2 B4 A3 A1 A2 A4

C1 B1 B3 B4 B2 A1 A3 A4 A2 C1 C3 C4 C2

C2 B4 B2 B1 B3 A4 A2 A1 A3 C4 C2 C1 C3

C3 B2 B4 B3 B1 A2 A4 A3 A1 C2 C4 C3 C1

C4 B3 B1 B2 B4 A3 A1 A2 A4 C3 C1 C2 C4

The characterisation theorem of hexagonal quasigroups was proven in [3].
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Theorem 1.6. A hexagonal quasigroup (Q, ·) exists if and only if an

Abelian group (Q, +) and an automorphism ϕ satisfying

(1.1) (ϕ ◦ ϕ)(a) − ϕ(a) + a = 0, ∀a ∈ Q

exist. Each of the two binary operations + and · is defined by means of the

other by the equalities

(1.2) a · b = a + ϕ(b − a)

(1.3) a + b = 0a · b0,

where 0 is the neutral element of the group (Q, +).

In the rest of this article, Q will always be a hexagonal quasigroup.

2. Geometry of hexagonal quasigroup

In [3] and [4] some geometric terms are defined and studied in hexagonal
quasigroups, motivated by the quasigroup (C, ∗).

The elements of a hexagonal quasigroup are called points. A pair of points
is called a segment, and a cyclic triple of points is called a triangle.

d=bc·ab

ab

bc

c

ba

Figure 1. Par(a, b, c, d)

Definition 2.1. It is said that the points a, b, c, d form a parallelogram,

if bc · ab = d. This is denoted by Par(a, b, c, d).

Remark 2.2. The relation Par is defined in any medial quasigroup ([2]).
According to that definition, in a hexagonal quasigroup Par(a, b, c, d) holds if
ax · b = dx · c. It follows

c = (ax · b) · dx = (ab · xb)(dx) = (ab · d)(xb · x) = (ab · d)b

which is equivalent to bc = ab · d or d = bc · ab, and is therefore equivalent
with our definition. Hence, we may use all the results from [2].
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According to [2], (Q, Par) is a parallelogram space, i.e. the following prop-
erties hold:

Par1. Any three of the four points a, b, c, d uniquely determine the
fourth, such that Par(a, b, c, d) holds.

Par2. The statements Par(a, b, c, d), Par(b, c, d, a), Par(c, d, a, b),
Par(d, a, b, c), Par(c, b, a, d), Par(b, a, d, c), Par(a, d, c, b) and
Par(d, c, b, a) are equivalent.

Par3. From Par(a, b, c, d) and Par(c, d, e, f) it follows Par(a, b, f, e).

Definition 2.3. A point m is called a midpoint of the segment {a, b}, if

Par(a, m, b, m) holds. If this is the case, we write M(a, m, b).

Remark 2.4. A midpoint of a segment may not exist, and even when
it exists, it may not be unique. E.g. in the hexagonal quasigroup Q3 × Q4

from example 1.5 the segment {A1, B2} has no midpoint, while the segment
{A1, B1} has four midpoints: C1, C2, C3 and C4.

However, for any two points a and m there exists unique point b = am·ma

such that M(a, m, b).
Here we give some more results from [2] we shall need.

Theorem 2.5. From Par(a1, b1, c1, d1) and Par(a2, b2, c2, d2), it follows

Par(a1a2, b1b2, c1c2, d1d2).

Theorem 2.6. If M(a, m, c) holds, the statements M(b, m, d) and

Par(a, b, c, d) are equivalent.

Definition 2.7. The point m is called a center of the parallelogram
Par(a, b, c, d) if M(a, m, c) and M(b, m, d) hold.

Remark 2.8. Similarly the midpoint of a segment, a parallelogram may
have no center, or have more than one center.

Theorem 2.9. From Par(a, b, d, e) and Par(b, c, e, f) it follows

Par(c, d, f, a).

3. Vectors

Accordingly to [4], the relation ∼ defined on Q × Q by means of

(a, b) ∼ (c, d) ⇔ Par(a, b, d, c)

is the equivalence relation on Q × Q. The equivalence class containing the
pair (a, b) is denoted by [a, b] and is called a vector. The set of all vectors is
denoted by V .

It follows immediately

Corollary 3.1. The two vectors [a, b] and [c, d] are equal if and only if

Par(a, b, d, c). For any given o ∈ Q, and any vector [a, b] there exists exactly

one x ∈ Q such that [o, x] = [a, b].
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Corollary 3.2. The statement M(a, m, b) is equivalent with the equation

[a, m] = [m, b].

Lemma 3.3. If (x, y), (x′, y′) ∈ [a, b], (y, z), (y′, z′) ∈ [c, d] and (x, z) ∈
[u, v], then (x′, z′) ∈ [u, v].

Proof. From the assumptions, it follows Par(x, y, b, a), Par(b, a, x′, y′),
Par(y, z, d, c), Par(d, c, y′, z′) and Par(x, z, v, u). The first two statements,
because of the property Par3, imply Par(x, y, y′, x′), and the other two
Par(y, z, z′, y′). Therefore Par(x′, x, z, z′) also holds, and now from the last
assumption it follows Par(x′, z′, v, u); i.e. (x′, z′) ∈ [u, v].

Definition 3.4. The vector [u, v] is said to be the sum of the vectors
[a, b] and [c, d] if (x, y) ∈ [a, b] and (y, z) ∈ [c, d] imply (x, z) ∈ [u, v]. If this

is the case, we write [a, b] + [c, d] = [u, v].

Theorem 3.5. The set of all vectors V with the binary operation + is a

commutative group.

Proof. First note that [x, y] + [y, z] = [x, z].
We have

([x, y] + [y, z]) + [z, w] = [x, z] + [z, w] = [x, w],

[x, y] + ([y, z] + [z, w]) = [x, y] + [y, w] = [x, w],

hence ([x, y] + [y, z]) + [z, w] = [x, y] + ([y, z] + [z, w]), which proves the asso-
ciativity.

Since Par(x, x, y, y), [x, x] = [y, y], ∀x, y. The vector [a, a] will be denoted
0. Obviously, [x, y] + 0 = [x, y] + [y, y] = [x, y] and 0 + [x, y] = [x, x] + [x, y] =
[x, y], i.e. 0 is the neutral element for the operation +.

Since [x, y] + [y, x] = [x, x] = 0, the inverse of the vector [x, y] is [y, x].
We still need to prove the commutativity; i.e. that: [a, b]+ [c, d] = [c, d]+

[a, b].
Let a, b, c and d be any points, and let p and q be points such that

[a, b] = [d, p] and [c, d] = [b, q]; i.e. Par(a, b, p, d) and Par(c, d, q, b). From
Theorem 2.9 it follows Par(q, p, c, a); i.e. [a, q] = [c, p].

Finally,
[a, b] + [c, d] = [a, b] + [b, q] = [a, q]

[c, d] + [a, b] = [c, d] + [d, p] = [c, p]

concludes the proof.

Definition 3.6. We say that the vectors [a, b], [c, d] and [e, f ] form a
triangle if there exist points p, q and r such that [p, q] = [a, b], [q, r] = [c, d],
and [r, p] = [e, f ].

Lemma 3.7. Vectors [a, b], [c, d] and [e, f ] form a triangle if and only if

[a, b] + [c, d] + [e, f ] = 0.
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Proof. If the vectors [a, b], [c, d] and [e, f ] form a triangle, then there
exist p, q and r such that [p, q] = [a, b], [q, r] = [c, d] and [r, p] = [e, f ]. Then
[a, b] + [c, d] + [e, f ] = [p, q] + [q, r] + [r, q] = [p, p] = 0.

Let [a, b] + [c, d] + [e, f ] = 0. Let p be any point, and q and r such that
[p, q] = [a, b] and [q, r] = [c, d]. Then [e, f ] = −([a, b] + [c, d]) = −([p, q] +
[q, r]) = −[p, r] = [r, p].

Theorem 3.8. Vectors [a, b], [c, d] and [e, f ] form a triangle if and only

if de · ad = cf · bc.

Proof. Let x be any point, and y, z, x′ points such that [a, b] = [x, y],
[c, d] = [y, z] and [e, f ] = [z, x′]. From Par(a, b, y, x) and Par(d, c, y, z)
and Theorem 2.5 it follows Par(ad, bc, y, xz), and from Par(c, d, z, y) and
Par(f, e, z, x′) it follows Par(cf, de, z, yx′). Finally, from Par(de, cf, yx′, z)
and Par(ad, bc, y, xz) we obtain Par(de · ad, cf · bc, x′, x).

Accordingly to Lemma 3.7 the vectors [a, b], [c, d] and [e, f ] form a triangle
if and only if [x, y] + [y, z] + [z, x′] = 0, i.e. if and only if x = x′, which is
equivalent to de · ad = cf · bc.

From this proof (from Par(de · ad, cf · bc, x′, x)) we obtain:

Corollary 3.9. The sum of the vectors [a, b], [c, d] and [e, f ] is a vector

[x, x′], where

x′ = (de · ad)(cf · bc) · x(de · ad).

Theorem 3.10. Let a, b, c be any points, a1 and c1 points such that

M(b, a1, c) and M(a, c1, b) hold, and b1 the point for which Par(a1, b, c1, b1)
hold. Then M(a, b1, c) and the vectors [a, a1], [b, b1] and [c, c1] form a triangle.

Proof. From Par(a, c1, b, c1) and Par(b, c1, b1, a1) it follows that
Par(a, c1, a1, b1), i.e. one has [a, b1] = [c1, a1]. From Par(c, a1, b, a1) and
Par(b, a1, b1, c1) it follows Par(c, a1, c1, b1), i.e. [c1, a1] = [b1, c]. Hence
[a, b1] = [b1, c], i.e. M(a, b1, c).

To prove the other part of the statement we need to check that b1c ·ab1 =
bc1 · a1b.

From Par(a1, b, c1, b1) we have bc1 · a1b = b1, so the righthand side of the
upper equation equals b1.

From M(a, b1, c) it follows

c = ab1 · b1a, ab1 = b1a · c

a = cb1 · b1c, b1c = a · cb1

b1c · ab1 = (a · cb1)(b1a · c) = (a · b1a)(cb1 · c) = b1b1 = b1,

so, the left hand side also equals b1.
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Figure 2. Theorem 3.10

Remark 3.11. In the quasigroup (C, ∗) this theorem proves the known
fact that medians of any triangle (as vectors) form a triangle. However the
statement: ”If M(b, a1, c), M(c, b1, a) and M(a, c1, b), then the vectors [a, a1],
[b, b1] and [c, c1] form a triangle” is not valid in every hexagonal quasigroup.
E.g., in the quasigroup Q3 × Q4, for a = A1, b = B1, c = C1, a1 = A2,
b1 = B2 and c1 = C2 the assumptions are satisfied, but the sum of the vectors
[A1, A2], [B1, B2] and [C1, C2] equals [A1, A2] 6= 0.

Let us prove one more theorem about parallelograms:

Theorem 3.12. From Par(a1, b1, a2, c1), Par(a2, b2, a3, c2), Par(a3, b3, a4,

c3), Par(a4, b4, a1, c4) and Par(b1, b2, b3, b4) it follows Par(c1, c2, c3, c4).

Proof. From the definition of the vectors, Par(a, b, c, d) is equivalent to
[a, b] = [d, c]. Using the properties of vectors from the assumptions we obtain:

[c1, c2] = [c1, a2] + [a2, c2] = [a1, b1] + [b2, a3]

= [a1, b4] + [b4, b1] + [b2, b3] + [b3, a3] = [a1, b4] + [b3, a3]

= [c4, a4] + [a4, c3] = [c4, c3],

and finally Par(c1, c2, c3, c4).
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Figure 3. Theorem 3.12

4. Transfers

In the article [1] Lettrich and Perenčaj studied functions La(x) = ax,
Ra(x) = xa and Ta,b(x) = Lab ◦ Ra(x) = ab · xa in a structure called R–
structure. In our terminology, the R–structure is a hexagonal quasigroup in
which no two different elements commute. The geometric meaning of Ta,b in
the quasigroup (C, ∗) is the transfer by vector [a, b]. We shall repeat some
results from [1], and prove some new for any hexagonal quasigroup.

Definition 4.1. The function Ta,b : Q → Q,

Ta,b(x) = ab · xa

is called transfer by the vector [a, b].

We have immediately

Lemma 4.2. For any a, b, x ∈ Q the statement Par(x, a, b, Ta,b(x)), and

the equation [x, Ta,b(x)] = [a, b] are valid.

Theorem 4.3. The following statements are equivalent

1◦ Ta,b(x) = Tc,d(x), for some x ∈ Q

2◦ Ta,b = Tc,d

3◦ Par(a, b, d, c)
4◦ [a, b] = [c, d].

Proof. From the definition of vector, 3◦ ⇔ 4◦. Obviously, from 2◦

follows 1◦. Let us prove 1◦ ⇒ 3◦ and 3◦ ⇒ 2◦.
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ab·xa

ab

xa

x
a

b

Figure 4. Transfer by the vector [a, b]

Let 1◦ hold. Let y = Ta,b(x) = Tc,d(x). Then Par(a, b, y, x) and
Par(c, d, y, x) (i.e. Par(y, x, c, d)) and because of the property Par3 it follows
Par(a, b, c, d); i.e. 3◦.

Let 3◦ hold, i.e. let Par(a, b, d, c) and let Ta,b(x) = y. Then Par(x, a, b, y),
i.e. Par(y, x, a, b). It follows Par(y, x, c, d) and Tc,d(x) = y. Hence, 2◦ holds.

Corollary 4.4. Let T be a transfer such that T (a) = b. Then T = Ta,b.

Proof. Ta,b(a) = ab · aa = ab · a = b = T (a). Because of the implication
1◦ ⇒ 2◦ from Theorem 4.3 Ta,b = T .

Corollary 4.5. Transfer with a fixed point is the identity.

Proof. Let T be a transfer, and x point such that T (x) = x. From the
corollary 4.4 it follows T = Tx,x = identity.

Theorem 4.6. For any points a, b, c, the equation Tb,c◦Ta,b = Ta,c holds.

Proof. Let x ∈ Q, y = Ta,b(x), z = Tb,c(y). We need to prove
Ta,c(x) = z. Since Par(a, b, y, x) and Par(b, c, z, y), it follows Par(a, c, z, x), i.e.
Par(x, a, c, z), which is, because of Lemma 4.2, equivalent with z = Ta,c(x).

Corollary 4.7. (Ta,b)
−1 is Tb,a.

Proof. From Theorem 4.6 we have Ta,b ◦ Tb,a = Ta,a, which proves the
statement because Ta,a is the identity.

Theorem 4.8. The set of all transfers T with composition ◦ as binary

operation is a commutative group which acts strictly transitively on the set Q.
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Proof. Strict transitivity follows from Corollary 4.4.
Accordingly to the above results, (T , ◦) is a group, so we need only to

prove the commutativity.
Let T1 and T2 be transfers. Let o be any point, and let a = T1(o),

b = T2(a) and c = T2(o). From the corollary 4.4 we obtain T1 = To,a and
T2 = To,c, and also T2 = Ta,b. Now from Ta,b = To,c it follows Par(a, b, c, o)
and To,a = Tc,b. Finally,

T2 ◦ T1 = Ta,b ◦ To,a = To,b

T1 ◦ T2 = To,a ◦ To,c = Tc,b ◦ To,c = To,b.

Theorem 4.9. The groups (T , ◦) and (V , +) are isomorphic.

Proof. Let F : V → T be a function defined by F([a, b]) = Ta,b. Since

F([a, b]) = F([c, d]) ⇔ Ta,b = Tc,d ⇔ Par(a, b, d, c) ⇔ [a, b] = [c, d],

we conclude that the function F is well-defined and injective. It is obviously
surjective.

Let o, a, b and c be points such that [o, a] + [o, b] = [o, c]. Then [o, a] =
[b, c], and therefore:

F([o, a] + [o, b]) = F([o, c]) = To,c = Tb,c ◦ To,b

= F([b, c]) ◦ F([o, b]) = F([o, a]) ◦ F([o, b]).

Hence, F is an isomorphism.

Accordingly to Theorem 1.6, for any hexagonal quasigroup (Q, ·), and any
point o ∈ Q, with a + b = oa · bo the structure (Q, +) is a Abelian group,
and its automorphism ϕ(a) = oa satisfies (1.1).

Note that f(a) = [o, a] is an isomorphism between groups (Q, +) and
(V , +). Indeed, f is bijection because of the property Par1, and

f(a) + f(b) = [o, a] + [o, b] = [o, a + b] = f(a + b),

since the addition in Q is defined so that Par(o, a, a + b, b).
We have proved:

Theorem 4.10. Let (Q, ·) be a hexagonal quasigroup, and (Q, +) the

Abelian group defined as in theorem 1.6, let (V , +) be the group of vectors,

and (T , ◦) the group of transfers in the quasigroup (Q, ·). Then the groups

(V , +), (T , ◦) and (Q, +) are isomorphic.



VECTORS AND TRANSFERS IN HEXAGONAL QUASIGROUP 373

References
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