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Vol. 42(62)(2007), 273 – 279

ON POWERS IN SHIFTED PRODUCTS
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Abstract. In this note we give an estimate for the size of a subset A

of {1, . . . , N} which has the property that the product of any two distinct
elements of A plus 1 is a perfect power.

1. Introduction

Let V denote the set of all positive integers which are of the form xk with
x and k integers and k at least 2. Thus V is the set of positive integers which
are perfect powers. In [6] Gyarmati, Sárközy and Stewart showed that if N
is a positive integer and A is a subset of {1, . . . , N} with the property that
aa′ + 1 is in V whenever a and a′ are distinct elements of A then |A|, the
cardinality of A, is not large. In particular, they showed that for N sufficiently
large

(1.1) |A| ≤ 340(logN)2/ log log N.

In addition they conjectured that |A| is bounded by an absolute constant.
In [8] Luca showed that this follows as a consequence of the abc conjecture.
Further he improved on (1.1) by showing that there is a positive number c0

such that for N sufficiently large

(1.2) |A| < c0(log N/ log log N)3/2.

Estimate (1.1) was proved by combining results from extremal graph the-
ory with a gap principle due to Gyarmati [5] which allows one to push apart
integers whose shifted product is a fixed power. The improvement (1.2) of
Luca was due to his more efficient treatment of the large powers which might

2000 Mathematics Subject Classification. 11B75, 11D99.
Key words and phrases. Perfect powers, extremal graph theory.
Research partially supported by Hungarian National Foundation for Scientific Re-

search, Grants K49693 and K67676.

273

CORE Metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/14391193?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


274 K. GYARMATI AND C. L. STEWART

occur. He introduced estimates for linear forms in the logarithms of algebraic
numbers into his argument to this end. The linear forms Luca considers con-
sist of 4 terms. The purpose of this note is to show that a further improvement
of (1.2) is possible by a modification of Luca’s argument which allows one to
deal with linear forms in only 2 terms. We shall prove the following result.

Theorem 1.1. There exists an effectively computable positive number c1

such that if N is a positive integer with N ≥ 2 and A is a subset of {1, . . . , N}
with the property that aa′+1 is a perfect power whenever a and a′ are distinct

integers from A then

|A| < c1 log N.

2. Preliminary lemmas

Lemma 2.1. There is no set of six positive integers {a1, . . . , a6} with the

property that aiaj + 1 is a square for 1 ≤ i < j ≤ 6.

Proof. This is [4, Theorem 2].

Lemma 2.2. Let n and r be integers with 3 ≤ r ≤ n. Let G be a graph on

n vertices with at least
r − 2

2(r − 1)
n2

edges. Then G contains a complete subgraph on r edges.

Proof. This follows from Turán’s graph theorem, see [9] or [3, Lemma
3].

Lemma 2.3. Let G be a graph with n (> 1) vertices and e edges and

suppose that

e >
1

2
(n3/2 + n − n1/2).

Then G contains a cycle of length 4.

Proof. This is a special case of [2, Theorem 2.3, Chapter VI] and is due
to Kövári, Sós and Turán [7].

We shall need an extension of Lemma 2.3 to the case when G is a graph
of k colours and the cycle of length 4 is coloured in a certain way.

Lemma 2.4. Let G be a graph with n vertices and e edges with the edges

coloured by k colours. Suppose that G does not contain a cycle through vertices

a1, a2, a3, a4 where the edges from a1 to a2 and from a1 to a4 have the same

colour and where the edges from a2 to a3 and from a3 to a4 have the same

colour. Then

e ≤ k1/2n3/2 + kn.
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Proof. We will count the number of subgraphs G0 of G of the form

G0 =

�
�

�

@
@

@

a1

a2 a4

where the edges (a1, a2) and (a1, a4) are coloured by the same colour. Let the
degree of ai coloured by the j-th colour be di,j . Then the number of subgraphs
G0 is exactly

n
∑

i=1

k
∑

j=1

(

di,j

2

)

.

On the other hand this number is less or equal to
(

n
2

)

since for every pair
(a2, a4) there exists at most one a1 such that the edges (a1, a2) and (a1, a4)
have the same colour. Thus

n
∑

i=1

k
∑

j=1

(

di,j

2

)

≤

(

n

2

)

.

Since
∑n

i=1

∑k
j=1

di,j = 2e we get

1

2

n
∑

i=1

k
∑

j=1

d2

i,j − e ≤
n(n − 1)

2
.

By the Cauchy-Schwarz inequality
(

∑n
i=1

∑k
j=1

di,j

)2

2kn
− e ≤

n(n − 1)

2

and so
2e2

kn
− e ≤

n(n − 1)

2
.

Thus

e ≤ ((4kn2(n − 1) + k2n2)1/2 + kn)/4

and the result now follows.

Lemma 2.5. Let k be an integer with k ≥ 2 and let a1, a2, a3 and a4 be

positive integers with a1 < a3 and a2 < a4. If a1a2 + 1, a1a4 + 1, a2a3 + 1
and a3a4 + 1 are k-th powers, then

a3a4 > (a1a2)
k−1.

Proof. This follows from the proof of [5, Theorem 1].
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For any non-zero rational number α, where α = a/b with a and b coprime
integers, we put H(α) = max{|a|, |b|}.

Lemma 2.6. Let b1 and b2 be non-zero integers and let α1 and α2 be

non-zero rational numbers. Put Ai = max{2, H(αi)} for i = 1, 2, B =
max{|b1|, |b2|, 2} and Λ = b1 log α1 + b2 log α2 where the logarithms take their

principal values. There exists an effectively computable positive constant C
such that if Λ 6= 0 then

|Λ| > exp(−C log A1 log A2 log B).

Proof. This follows from the Main Theorem of [1].

3. Proof of Theorem 1.1

Let A be a subset of {1, . . . , N} with the property that aa′ + 1 is in V
whenever a and a′ are distinct integers from A. We may suppose that

(3.1) |A| > log N,

since otherwise our result holds. Let c1, c2, . . . denote effectively computable
positive numbers. We shall suppose that N is sufficiently large that

(3.2) (log N)/2 log log N > 16.

Notice that there is an integer m with

1 ≤ m ≤
log((log N)/ log 2)

log 2
,

such that A has more than (|A| − 3)/((log((log N)/ log 2))/ log 2) elements

from {22
m

, 22
m

+ 1, . . . , 22
m+1

− 1}. We shall denote these elements by Am

and put n = |Am| and M = 22
m+1

. Then, for N > c1,

(3.3) n >
|A|

2 log log N
.

Further, by (3.1), (3.2) and (3.3),

(3.4) M > 16.

Form the complete graph G whose vertices are the elements of Am. G has
(

n
2

)

edges and for each pair (a, a′) of vertices of G we colour the edge between
a and a′ with the smallest prime p for which aa′ + 1 is a perfect p-th power.

By Lemma 2.2, if the number of edges of G with the colour 2 exceeds
(2/5)n2 then there is a complete subgraph of G on 6 vertices coloured with
2 and this is impossible by Lemma 2.1. Therefore the number of edges of G
with a colour different from 2 is at least

(

n
2

)

− (2/5)n2 = (n2/10)− (n/2).
Put

(3.5) t = (9C log M log log M)1/2,
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where C is the positive number which occurs in Lemma 2.6. Let G1 be the
subgraph of G consisting of the vertices of G together with the edges of G
which are coloured with a prime p for which

(3.6) 3 ≤ p ≤ t

and let G2 be the subgraph of G consisting of the vertices of G together with
the edges of G which are coloured with a prime p for which

(3.7) t < p < (2 log M)/ log 2.

Suppose that G1 contains at least (n2/20)− (n/2) edges. The number of
colours of G1 is π(t)− 1 and, by the prime number theorem and (3.5), this is
at most c2((log M)/ log log M)1/2. Thus there is a colour of G1 which occurs
on at least ((n2/20)− (n/2))/c2((log M)/ log log M)1/2 different edges. Since
M ≤ N2 we see from (3.3) that if

(3.8) |A| > c3 log N,

then there is a colour associated with more than (n3/2 + n − n1/2)/2 edges.
Therefore, by Lemma 2.3, G1 contains a monochromatic cycle of length 4.
In particular, there exist integers a1, a2, a3 and a4 from Am and a prime p
satisfying (3.6) for which a1a2 + 1, a2a3 + 1, a3a4 + 1 and a1a4 + 1 are p-th
powers. Without loss of generality one may suppose that a1 < a3 and a2 < a4.
Thus, by Lemma 2.5,

(3.9) a3a4 > (a1a2)
2.

But a1, a2, a3 and a4 are in {22
m

, . . . , 22
m+1

− 1} and so

a3a4 < 22
m+2

≤ (a1a2)
2,

which contradicts (3.9). Accordingly either (3.8) is false, in which case our
result follows, or G1 has fewer than (n2/20) − (n/2) edges. We may assume
the latter possibility and so G2 has at least n2/20 edges.

It follows from (3.4), (3.7) and the prime number theorem that the number
of colours of G2 is at most c4(log M)/ log log M. Therefore since N2 ≥ M and
(3.3) holds, if |A| exceeds c5 log N then by Lemma 2.4, G2 contains a cycle
through vertices a1, a2, a3 and a4 for which the edge between a1 and a2 and
the edge between a1 and a4 have the same colour and the edge between a2 and
a3 and the edge between a3 and a4 have the same colour. In particular, there
exist primes p1 and p2 in the range given by (3.7) and integers x1, x2, x3 and
x4 for which

a1a2 + 1 = xp1

1
, a2a3 + 1 = xp2

2
,

a3a4 + 1 = xp2

3
, a4a1 + 1 = xp1

4
.

We observe, as in [8, Lemma 3.1], that

(xp1

1
− 1)(xp2

3
− 1) = (xp2

2
− 1)(xp1

4
− 1),
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hence

(3.10) xp1

1
xp2

3
− xp2

2
xp1

4
= xp1

1
+ xp2

3
− xp2

2
− xp1

4
.

Since xp1

1
+xp2

3
−xp2

2
−xp1

4
= (a1 − a3)(a2 − a4) and since the ai’s are distinct

we see that

x−p1

1
x−p2

3
xp2

2
xp1

4
6= 1.

Thus, if we put

(3.11) Λ = p1 log(x4/x1) + p2 log(x2/x3)

we see that Λ 6= 0. We may assume, without loss of generality, that

xp1

1
= max{xp1

1
, xp2

2
, xp2

3
, xp1

4
}.

Therefore, by (3.10),

(3.12)

∣

∣

∣

∣

xp2

2
xp1

4

xp1

1
xp2

3

− 1

∣

∣

∣

∣

≤
2

xp2

3

.

Since a3 and a4 are at least M1/2 in size

xp2

3
> M,

and so, by (3.11) and (3.12),

∣

∣eΛ − 1
∣

∣ <
2

M
.

Observe that if y is a real number and |ey − 1| < 1/8 then |y| < 1/2. Further
|ey − 1| ≥ |y|/2 for |y| < 1/2 and so, since M ≥ 16,

|Λ| <
4

M
,

whence

(3.13) log |Λ| < −
1

2
log M.

We now apply Lemma 2.6 with α1 = x1/x4, α2 = x2/x3 and B =
max(p1, p2, 2). Note that, for i = 1, 2,

log H(αi) ≤ (2 logM)/t.

By Lemma 2.6,

log |Λ| > −4C((log M)/t)2 log log M,

and so, by (3.13),

t2 < 8C log M log log M.

However, this contradicts our choice of t in (3.5). Accordingly |A| is less than
c5 log N and the result follows.
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