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In atmospheric numerical weather prediction (NWP) models, the use of
long time-steps as allowed by efficient numerical/dynamical schemes can
lead to spurious oscillations due to the parameterized physical part. Typical
examples of this are the oscillations associated with simplified parameteri-
zation schemes for vertical diffusion or shallow-convection, such as usually
used for NWP.

The oscillations generated by K-type vertical-diffusion schemes are well
documented, and being called fibrillations; they are characterized by high
temporal and vertical frequencies. Since they are linked to high vertical
resolution, these spurious oscillations are generally found in the low-levels
of model’s domain.

In ARPÈGE, the MÉTÉO-FRANCE NWP global model, and in ALA-
DIN, its limited-area model (LAM) version developed in cooperation with
Eastern European countries, and also used for operational NWP purpose,
some oscillations still remained in the evolution of the forecast fields, de-
spite the fact that a first anti-fibrillation scheme (AFS) had been included.
This study was made to examine the possible sources of these oscillations,
through the 1-D (vertical) version of these models.

First, the parameterization of shallow-convection (which is in fact part
of the vertical diffusion scheme) was found to be an important source of os-
cillations, and some solutions for eliminating this problem are proposed.
Second, the original AFS is shown not to completely prevent the generation
of fibrillations, and a more efficient formulation is derived.

All AFSs basically consist in a temporal first-order decentering of the
diffusion equation, keeping an explicit form for the exchange coefficient it-
self. The AFS correction thus always improves the stability at the expense of
the accuracy in some way. In the new AFS proposed here, the number of
grid-points which need a correction is lessen from almost 90% to some 5%,
resulting in a more accurate scheme. Unlike AFSs proposed in the litera-
ture, the correction has now to be applied not only for grid points of atmos-
pheric stable conditions (i.e. Richardson number, Ri > 0) but also for atmos-
pheric slightly unstable conditions (Ri < 0).

Keywords: NWP model, ARPÈGE/ALADIN model, shallow-convection, Rich-
ardson number, fibrillation, anti-fibrillation scheme.
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1. Introduction

Numerical Weather Prediction (NWP) models are now using numeri-
cal/dynamical schemes far more efficient than in the past. For instance, the
use of a two-time-level semi-Lagrangian scheme commonly allows an in-
crease of the time-step by a factor 6 for typical NWP applications, compared
to a classical Eulerian leap-frog semi-implicit scheme. Part of this time-step
increase is however not transparent from the physical parameterizations
point of view, and schemes which were satisfactorily behaving for moderate
time-steps now exhibit undesired instabilities in some cases.

A well documented example (Kalnay and Kanamitsu, 1988; Girard and
Delage, 1990) of this kind of instability appears when using non-linear verti-
cal diffusion schemes based on an exchange coefficient formulation (tradi-
tionally called K-type vertical diffusion schemes). In these schemes, the non-
linear vertical diffusion for any prognostic variable � is represented by:
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where K�, the turbulent exchange coefficient of the variable �, is somehow a
function of the Richardson number Ri, thus computed diagnostically from the
flow.

For insuring the stability of the parameterization, an implicit backward
scheme for the variable � is used, but the coefficient K� has to be kept ex-
plicit for the feasibility of the computations. Kalnay and Kanamitsu (1988)
analyzed general characteristics of various numerical schemes on strong
non-linear damping equations. They showed that this system has a much
wider range of non-linear stability than a fully explicit scheme but that it can
also become linearly unstable. The non-linear solution is then oscillating
around the correct value, the magnitude of the oscillations remaining
bounded, due to non-linear effects. This kind of spurious oscillations is here-
after called fibrillations. To prevent linear instability of this kind, Girard and
Delage (1990) (hereafter GD90) developed an anti-fibrillation scheme (AFS)
for the NWP model of the Canadian Meteorological Center. The principle of
GD90’s AFS is to apply a temporal decentering factor 
 to the time-
discretized diffusion equation:
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where �+ denotes � at the future physics time-step. Note that the decenter-
ing factor is applied not to the physical tendencies, but to the fluxes them-
selves, thus allowing a conservative form of the scheme even in the case of a
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vertical variation of 
. The value 
 = 1 gives the normal implicit diffusion
scheme (without AFS), while specifying 
 >1 large enough leads to a stable
scheme. However, the above decentering is only first-order accurate in time,
and cannot be used without distorting the solution. The key idea of GD90 is
thus to make 
 flow-dependent to achieve a minimal correction, sufficient to
insure stability, but weak enough not to lead to significant distortion. They
consider the variations of K during the time step by calculating its derivative
with respect to the basic variables. Numerical analysis of the set of two cou-
pled diffusion equations for zonal (u) wind component and potential tempera-
ture (�) is made to illustrate the main features of the nonlinear instability
problem. They find that stability of numerical solutions requires
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In Eq. (1), �max is a discretization factor dependent on vertical increment
(�z) and time-step (�t), n and b are parameters used to define the dependency
of K with respect to Ri. The crucial point is that in GD90, this dependency is
assumed to be the same for dynamical and thermal exchange coefficients, to
simplify the computations. The above stability condition implies that for 
 =
1, linear numerical instability will occur only if � < 0, a condition which is
equivalent to atmospheric stable conditions (Ri > 0) since n and Ri have op-
posite signs. They proposed that oscillatory solutions could be prevented with
the following condition:
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Slightly modified AFS scheme based on the same analysis has been im-
plemented in ARPÈGE, the global NWP model (Courtier et al., 1991), and its
LAM version ALADIN (e.g.: Bubnová et al., 1993; ALADIN International
Team, 1997), and will be studied later.

Another oscillation problem may arise with long time-steps when using
simple parameterizations of the shallow convection. For the computation of
vertical exchange coefficients K, existence of shallow convective clouds at the
top of the Atmospheric Boundary Layer (ABL) is very important. In that
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case, standard »dry-computed« K-approach for expressing the turbulence in
the ABL does not give satisfactory results: the moisture turbulent fluxes re-
main confined to the ABL and the moisture flux toward the free atmosphere
is not sufficient, resulting in an insulated moist ABL. To solve this problem,
a parameterization of the vertical exchange in the ABL in the presence of
shallow convection has been developed in ARPÈGE and ALADIN, following
Geleyn (1987), by computing vertical exchange coefficients K with a modified
Richardson number which takes into account the moisture profile in the
ABL. The shallow-convection is thus parameterized as a correction of the
vertical diffusion scheme, acting in the sense to allow an upward diffusion of
moisture in case of a saturated ABL.

When increasing the time-step as allowed by the switch to a semi-
Lagrangian transport scheme in ARPÈGE/ALADIN, it was found that tem-
poral oscillations appeared in the predicted meteorological variables, due to
the original physical parameterization package. This study analyses the
weaknesses of this original package regarding to long time-steps, and pro-
poses some solutions for stabilizing the involved schemes. In the section 2,
the relevant features for the present state of ARPÈGE/ALADIN are de-
scribed. This description includes the two involved parameterizations
schemes (AFS and shallow convection correction) as well as the settings used
for the numerical experiments discussed hereafter. The remaining of the pa-
per is divided into two parts: in the first part, the role of the shallow-
convection correction is examined. It is shown that oscillations that are
caused by this correction are not fibrillations in the above-mentioned sense,
and appropriate treatments are proposed to eliminate the oscillatory behav-
ior (Section 3). In the second part, the existence of residual fibrillations in
spite of the original AFS application is demonstrated, and a new solution for
eliminating these fibrillations is presented (Section 4). Section 5 contains a
summary.

2. The ARPÈGE/ALADIN model

2.1. Vertical coordinate

In ARPÈGE/ALADIN, the vertical spacing of the hybrid terrain-following
pressure-type coordinate (�) levels is variable as done classically to allow a
finer description of the surface processes. However, the finer vertical resolu-
tion near the surface can become a potential source of numerical problems:
temporal oscillations in the forecast fields can be occasionally observed in the
lowest levels of the domain though the time-step was chosen in order to avoid
most of these oscillations. We were able to reproduce these oscillations in the
1-D single column version of ARPÈGE/ALADIN model and thus they will be
studied here in the framework of this 1-D model to allow a better identifica-
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tion of the process. In this 1-D model, the physics package, and the vertical
discretization are exactly identical as in the 3-D model (Simmons and Bur-
ridge, 1981). The atmosphere depth is divided into l layers (and l + 1 inter-
faces between these layers). The vertical discretisation only defines the posi-
tion of the interfaces, where fluxes and advective vertical velocities are
defined. The other (prognostic) variables of the model are defined in a stag-
gered manner, at a level representative of the layer (usually half-way of in-
terfaces in terms of �, but other options are possible). The vertical discretisa-
tion scheme is based on a vertically staggered grid. Fluxes and advecting
vertical velocities are defined at layer interfaces, while model variables are
defined at model levels representative of each layer. The first layer interface
is at zero pressure and the last one is at the surface. The main notations and
grid organization are shown in Figure 1. A variable at level is denoted as Ql.
A variable at the interface between level l above and level l + 1 below is de-
noted as Q

l
.

2. 2. Modified Richardson number for shallow convection

representation (Ri*)

When the vertical gradient of dry static energy increases, the definition
of Ri implies an inhibition of vertical exchanges. This can lead to a large
under-estimation of moisture fluxes arising in case of shallow convection at
the top of the ABL (an important feature in tropical areas for the moisture
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Figure 1. Vertical discretisation
of ARPÈGE/ALADIN model.



budget). To take into account the impact of shallow convection on the budget
of the atmosphere, a modified Richardson number Ri* is included in
ARPÈGE/ALADIN and used for the computation of the exchange coefficients,
instead of the classical form of the Richardson number. Ri* is defined as fol-
lows (Geleyn, 1987):
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where:
g – acceleration of gravity (m/s2);
T – temperature (K);
Cp – specific heat at constant pressure (J/kgK);
z – vertical coordinate (m);
s = CpT + gz – dry static energy (J/kg);
L – latent heat (J/kg);
q – specific humidity (g/kg);
V – wind velocity (m/s);
�h – Kronecker symbol for limiting the scheme to conditionally unstable lay-
ers when leaving the ABL;
qs – saturation specific humidity (g/kg).

Since this shallow convection instability triggers when the humidity pro-
file reaches the saturated one, the corrective term in Ri* then allows an in-
crease of vertical exchanges in this case. This modified Richardson number is
then used to compute the exchange coefficients in place of the normal one Ri.
The second term in the numerator of Eq. (2) will be referred to as correction
for shallow convection (CSC) hereafter. Since it is always negative, it always
reduces the stability of the flow thus increasing vertical exchanges when the
humidity profile reaches the saturated one. The �h multiplier is added to pre-
vent activation of the correction in undesired layers of the domain (e.g. in the
stratosphere).

2.3. Anti-fibrillation scheme

Unlike in GD90, the exchange dynamical and thermal exchange coeffi-
cients Ku and K� have a distinct expression in ARPÈGE/ALADIN and in
most NWP models defined as follows (Courtier et al., 1991):
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where l is mixing length (kept constant here) and fu(Ri) and f� (Ri) are func-
tions of the Richardson number (Ri), defined by:
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The coupled system of equations for perturbations of zonal wind u and sensi-
ble heat flux represented by potential temperature � is taken. The original
ARPÈGE/ALADIN diffusion equations are (Courtier et al., 1991):
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If one performs the stability analysis of this system for a small perturba-
tion (cf. Appendix A), the numerical growth rate x � ( – )1 � will be linked to the
decentering factor 
 through the following stability equation:
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In the original version of ARPÈGE/ALADIN’s AFS, it has been assumed
that the terms 
� K were dominant in (8) (according to large time-steps used)
and a simpler equation was then obtained, which was solved by the new vari-
able y = �
�

y 2 – Sy + P = 0 (11)

where:

S = – (3 – 2�u + ��)

P = 2 – 3�u + 2��
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Two negative roots are obtained (y1 and y2) and the one with maximum
absolute value should be chosen (�ymax�). Numerical stability is achieved if
x1,2 � –1 and oscillations are completely damped for x1,2 � 0, i.e.:

stability: 
 � –ymax/2

no oscillation: 
 � –ymax.

In the resulting scheme, 
 is thus locally chosen as:


 = max �1, 0.5  �ymax��

where  is a free parameter for tuning the magnitude of the correction, with
the default value of 1 (which corresponds to stability only). In the following,
the complete stability equation (8) is written in a more concise way as:

F(
,�) = �2 A(
) + � B(
) + C(
) = 0 (12)

2.4. Numerical experiments settings

For the numerical experiments, the initial profiles were taken from 3-D
ARPÈGE integrations with evidence of oscillations. For the study of shallow
convection instabilities (Section 3), a point located at (41.53 °N, 0.0 °W) was
chosen for the 1995/07/02 at 00UTC, the model had 15 levels, and advective
terms of prognostic variables were specified from an integration of the 3D
version of the model on the same case. For the study of vertical diffusion in-
stabilities (Section 4), the chosen point was (15.53 °N, 140.05 °W) on
1996/09/30 at 00UTC (approximately 15:00 local time). The model had 27 lev-
els and was used in free mode (i.e. no dynamical forcing was applied from the
3D model). Of course in every cases the radiative forcing is applied in order to
correctly describe the diurnal cycle.

A leap-frog temporal scheme was used for discretising time-differential
terms. Integrations were made with different time-steps (in the case of shal-
low convection �t was 576 seconds and in the case of AFS, �t was 200, 400,
600, 981.82 and 1200 seconds). The integration time span was always 24
hours.

All the analytical developments below have been made using a two-time
levels marching scheme. However, for leap-frog schemes, all the analyses re-
main formally unchanged, except that the prognostic variables � (resp. �t)
becomes � (resp. 2�t) everywhere, and all the results found for the two-time
level schemes apply to each time-decoupled solution of the leap-frog scheme.
As a consequence, an instability giving rise to 2�t oscillations in a two-time
level scheme, will produce a 4�t oscillation with the leap-frog scheme.
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3. New parameterization for shallow convection

The temperature and wind components have been found to be the most
sensitive variables for the oscillations occurring due to the shallow convec-
tion parameterization. But oscillations are not present at all model levels.
For instance, temperature time integration at all levels during 24 hours,
showed that the highest 8 levels were completely free of oscillations. This is
not surprising since the discretisation and all physical schemes are less
stringent near the top of the domain.

Our attention was thus focused on level 11, which is located near the top
of the ABL. First we made some tests with and without activation of shallow
convection calculations: Figure 2a shows the evolution of the temperature
with correction for shallow convection (CSC) activated (line 1), and not acti-
vated (line 2). Oscillations on the Figure 2a in case of CSC activated were a
first warning on the possible disadvantage of Eq. (2) in the framework of
used anti-fibrillation scheme. In this section, the CSC is thus activated all
the time.

Temporal oscillations were also found to appear when Ri* was replaced
with »dry-computed« Ri for the numerical stability analysis part of the AFS,
in such a way that shallow convection then could not influence on possible
fibrillations. On Figure 2b are plotted both temperature and CSC at the
same level. Comparison of these two curves shows that every time-step when
CSC is non-zero (i.e. shallow convection acting); the model produces oscilla-
tions except when two successive CSC are acting. When CSC is acting only
once, the solution oscillates, but with a damped magnitude in time. This be-
havior is indicative of the fact that the real source of oscillations is not the ac-
tivation of CSC by itself but rather the triggering of the computational mode
in the temporal scheme (2�t oscillations) by the intermittence of the CSC

term. The computational mode is not completely filtered when using a leap-
frog scheme, and any intermittent process is able to generate computational
oscillatory response. When the CSC is acting with a similar magnitude for
two successive time-steps, the computational mode is not triggered. The
damped magnitude of the oscillations is due to the Asselin time filter
(Haltiner and Williams, 1980) which is activated for all leap-frog versions of
the ARPÈGE model. Asselin time filter is defined as following:

� � � � �t t t t t t ta� � � �� �( )� �2

where the overlined values correspond to the filtered and the plain values
are the yet unfiltered raw results.

This statement can be checked by changing the value of the Asselin filter
coefficient a from the normal value of 0.05 to 0.49. Doing this, the computa-
tional mode of the leap-frog scheme is almost completely filtered, at the ex-
pense, of course, of the accuracy of the scheme. The expected behavior should
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then be the disappearance of computational mode oscillations. This is con-
firmed on Figure 2c, where a significant deviation from the reference experi-
ment can also be observed, due to the loss of accuracy of the scheme.

In order to prevent the intermittent behavior of the CSC, a new formula-
tion was defined, for which the CSC is computed as a geometrical series in
time:
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Figure 2. Evaluation of temperature during 24
hours time integration on level 11 in 1-D version
of ARPÈGE model. a) with (line 1) and without
(line 2) activation shallow convection calcula-
tions, b) with activation shallow convection cal-
culations and »dry-computed« Ri for numerical
stability analysis purpose and CSC (correction
for shallow convection) (line 2), c) with activation
shallow convection calculations, »dry-computed«
Ri and with Asselin filter coefficient a = 0.49,
d)with activation shallow convection calcula-
tions, »dry-computed« Ri, and (6), e) both with
activation shallow convection calculations (solid
line) and reduction factor of 1.5 applied on the
CSC (dotted line).



CSC*(t, z) =
1
2
�CSC(t, z) + CSC*(t – �t, z)� (13)

where CSC* represents the »time-filtered« value and CSC the instantaneous
value of the shallow convection correction.

Such an approach protects the CSC against intermittence, and decreases
the oscillatory response of the model, while attempting to keep the net mag-
nitude of the correction in time. The effect of this modification is shown on
Figure 2d: the obtained solution is effectively oscillation-free. The evolution
is significantly affected, especially during the first half of the integration, be-
cause of the cumulative effect of the different evolution for each neighboring
layers (the negative and positive pulses near 60000s can be interpreted as a
transient perturbation vertically propagating through the modified vertical
diffusion process).

Another way to prevent oscillations due to the CSC is to decrease its am-
plitude. This approach implicitly makes the assumption that the adjustment
will finally be equivalent, but after a longer time if the correction is smaller.
This is of course true only in a small domain around the magnitude of the
normal correction, since the process is highly non-linear. For example, a de-
crease of the CSC by a factor 5 is very efficient for eliminating oscillations in
the prognostic variables, but can be shown to lead to an erroneous vertical
structure of the ABL, similarly to the case where CSC is not activated.
Smaller values can however give satisfactory result. Figure 2e shows the evo-
lution of the temperature with a reduction factor of 1.5 applied on the CSC:
the oscillations are removed, and the evolution is globally similar to the nor-
mal CSC case.

Various methods can thus be applied to remove the intermittence of the
CSC in leap-frog and the choice will have to be made on the basis of the vali-
dation scores and of the maintenance of a realistic vertical structure for the
ABL, also considering the possibility to apply new ideas for this well identi-
fied problem.

4. Proposals for the new anti-fibrillation scheme

Once understood the source of oscillations due to the CSC and some pos-
sible solution proposed, the focus was then put on the main other source of
oscillations due to the instability of the vertical diffusion scheme in some
situations. In this section, the CSC is not activated, in order to avoid mixing
the two possible causes of oscillations in the integrations. According to the
past experience, fibrillations in the vertical diffusion scheme are expected for
small vertical mesh and long time-steps. The behavior of the operational AFS
in 1-D integrations for the studied column of the 3-D domain is shown on Fig-
ures 3a, 3b for different time-steps (200, 600, and 1200 s). The obtained evo-
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lutions for surface temperature and zonal component of the surface wind ve-
locity clearly show an increasing level of noise for time-steps 600s to 1200s as
expected from the stability analysis of the fibrillation process. The fibrilla-
tions are the oscillations, which exhibit a spurious regular pattern in the sec-
ond half of the integration. The irregular oscillations near the minimum in
Figure 3a for instance should be viewed as the normal response of the flow to
the physical parameterizations, which damping is of course not the object of
the AFS.

The appearance of fibrillations, although the original (i.e. operational)
AFS was turned to act, was a sign that this formulation of the AFS was not
fully efficient, and that some changes would have to be done through the
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Figure 3. Evaluations of a)
potential temperature and
b) zonal wind component, u

during 24 hours time inte-
gration on level 26 in 1-D
version of ARPÈGE model
(without activation shallow
convection calculations and
 = 1); operational AFS is
used for time steps: 200, 600
and 1200s.



specification of the 
 parameter. Figure 4 shows the dependence of the local
correction (decentering) factor 
 with the Richardson number for all grid
points during all the integration, obtained with the operational AFS. One can
notice that every point in the stable (Ri > 0) region of the atmosphere is cor-
rected (i.e. 
 > 1), by a factor which can reach 14%. Even for the very stable
cases (80% of all the points) the correction was acting. This is not consistent

with the expected behavior since these atmospheric stable points are not
likely to generate oscillations. This comes from the fact that for very stable
conditions, �
K becomes very small and the corresponding terms can no
longer be considered as dominant. On the contrary, only grid points with Ri

close to neutral should be corrected. A more correct behavior of the AFS
should then be to act similarly as the original one for points close to neutral-
ity, and that the grid points with Ri > 1 should be just slightly corrected or
even not.

4.1. Proposed schemes

The key idea for the new AFS in ARPÈGE/ALADIN is still to constrain
the numerical growth rate for each point, in the same spirit as in GD90. Un-
fortunately, this can no longer be done by directly inverting the numerical
stability equation for 
, in our practical case, because the expressions for dy-
namical and thermal exchange coefficients are no longer identical (as they
where in GD90), and this leads to a more complex stability equation. Consid-
ering the unsuccessfulness of neglecting some terms as done in the original
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Figure 4. 
 values used by
operational AFS (with �t =
1200s,  = 1, without activa-
tion shallow convection cal-
culations and correction for
reduction of Ri >> 1 included)
versus Ri. Few grid points
with Ri < –2 are omitted.



AFS in ARPÈGE/ALADIN, an indirect method for insuring stability from
this equation must be found.

For a given 
 or �, the function F(
,�) in (12) is a parabola. For 
 = 1 the
function F(1,�) has a minimum. The roots are the following:

�1,2(1) = 0.5!–B(1) " �B(1)2 – 4A(1)C(1)�0.5#/A(1) (14)

Both �1(1) and �2(1) are generally real, and then negative. It can happen
(but very rarely, in about 1% of all grid points in our experiments) that �1(1)
and �2(1) are complex-conjugate with negative real part, and a very small
imaginary part. In this case the stability condition for the module of the nu-
merical amplification factor x is:

�x� = �(1 + �real(1))2 + (�imag(1))2�0.5 < $ – 1 (15)

where:

�real(1) = –0.5 B(1)/A(1) (16a)

�imag(1) = "0.5 �4 A(1) C(1) – B(1)2�0.5/A(1) (16b)

represent the real and the imaginary parts of the roots. It can be shown that
these few points with complex roots are not a source of fibrillations in
ARPÈGE/ALADIN, and can conveniently be ignored for designing the AFS:
according to our experience, this happens for grid-points with Richardson
number near to neutral (0 < Ri < 0.5) and atypically low values of turbulent
exchange coefficients. The analysis shows than under these special condi-
tions required for complex roots, the stability criterion is necessarily fulfilled,
justifying the legitimacy of ignoring any AFS correction in these cases (Ap-
pendix B).

If �1(1) and �2(1) are real negative, the growth rate x associated with the
smaller one (i.e. which has the largest magnitude, e.g. �1(1)) is given by:
x = 1 – �1(1). The new scheme then consists in locally imposing 
 in such a way
that the numerical growth rate x remains under a threshold value ($ – 1) with
$ ��1,2�. This new parameter specifying the maximum tolerated numerical
growth-rate is basically the degree of freedom, which will allow the tuning of
the scheme. If �1(1) > –$, fibrillations will be spontaneously damped by the fac-
tor ($–1) and thus no correction is necessary. The grid point is then said to be
»stable«. Otherwise, a new bigger 
 has to be found which will satisfy the re-
quested condition �(
) > –$ and this grid point will then said to be »unstable«.
One has to rewrite the equation (8) in 
, where � which is now fixed to –$:

F(
,$) = 
2A'($) + 
B'($) + C'($) = 0 (17)

The new $-dependent coefficients are defined by:
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C'($) = $ $ � � � � � � �2 21 2 1 2 3� � � � � � � � �K K K Ku u u u� � � �( ) ( ) ( )

The obtained equation is still a parabola for a given $. Since A’($) is posi-
tive and F(1,$) < 0, this equation has two real roots, one of them being larger
than 1. Choosing this root for 
 guarantees the stability of the scheme.

For our study of the impact of the corrections, three formulations are now
examined:

1) over-simplified formulation: 
 is set to some constant value for all grid
points and time-steps;

2) simplified formulation: 
 is set to some constant value for all grid
points that need to be corrected;

3) exact formulation: the exactly obtained value of 
 is set for grid points
that need to be corrected.

Using the third one, the integration will be more accurate, but more ex-
pensive because an exact computation of 
 has to be done for each unstable
point. The second one would be cheaper in CPU-time usage, but in counter-
part, less accurate. The first one is used for estimating the order of magni-
tude of the impact of the decentering factor in an absolute way.

4.2. Results with new anti-fibrillation schemes

4.2.1. 
 = const.

Preliminary testing with constant value 
 for every point and every time-
step during the integration was done to obtain the estimation of what order
should be the correction in the scheme to avoid fibrillations. According to the
results (not shown here) 
 taken between 1.2 and 1.5 should be enough to
damp the fibrillations. But this oversimplified version of the scheme is not
usable since it is not at all accurate enough.

4.2.2. Simplified formulation

It was a natural conclusion that there is no need to act on all grid points
but only where the scheme is unstable. The simplest way is to use 
= 1 where
scheme is stable and some constant value where it is not. The tests with 
 =
const. everywhere showed that reasonable value would be 1.2–1.5. But, the
choice of 
 for such step-function depends on damping factor x, i.e. $. It deter-
mines the maximum 
 value that would be obtained during one run. Figure 5
shows the integration curves for the low-level temperature for 
= 1.2 and 1.5
respectively, and for $ = 1.75. The results show the absence of fibrillations
from the latest period of integration, but also the appearance of some oscilla-
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tions in the middle part of the integration. Since 
 was chosen arbitrarily,
maybe over- maybe underestimating the necessary value for damping fibril-
lations, the evolution was less accurate.

4.2.3. Exact formulation

Figure 6 shows all (optimal) 
 values for »unstable« grid points obtained
by the new scheme for various $ between 1 and 2. It can be seen that maxi-
mum 
 for each given $ decreases hyperbolically by the increase of $. This
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Figure 5. Evaluations of
temperature during 24
hours time integration on
level 26 in 1-D version of
ARPÈGE model (new AFS,
�t = 1200s) with one con-
stant value of 
 (step correc-
tion function) used always
when � < –1.75; 
 = 1.2
(thin) and 
 = 1.5 (thick).

Figure 6. 
 values obtained
by the new AFS during 24 h
evaluation for »unstable«
grid points for different val-
ues of damping factor $ (�t =
1200s).



could be useful if one wants to act on »unstable« grid points by only one value
for 
 (step correction function). In that case one should put the maximal pos-
sible 
 for chosen $ to be sure that all »unstable« grid points will be corrected
to satisfy �x� < $ – 1.

Also, it is important to lessen the number of corrected grid points from al-
most 90% in the operational AFS to some more reasonable value (5% or so).
Figure 7 shows the relative number of corrected grid-points as a function of
the tuning parameter $ in three different cases (
= 1.2, 
= 1.5 as in the previ-
ous section, and optimal local value). First, the proportion of corrected points
is relatively insensitive to the exact value of 
 at least for $ close to 2. For
smaller values, simplified schemes tend to generate more »unstable« points
during the integration. Second, for the exact scheme, the proportion of cor-
rected points shows a regular decreasing variation with respect to $ and can
be fitted by a polynomial, which allows to tune the scheme in terms of this
proportion of corrected points. For instance, the arrow shows the value of $, to
be chosen to correct only 6% of all points during the integration.

Results obtained by the new scheme and by choosing the optimal value of

 everywhere show a significant improvement in comparison with the opera-
tional one. Figure 8a shows the resulting temperature and curves on the
26th layer for three different values of $ (2, 1.75, 1.5) for 1200 s and Figure 8b
for 600 s time-steps. Decreasing $ from 2 towards 1, the amplitude of fibrilla-
tions starts to decrease as well. For $ = 1.75 most of the oscillations due to fib-
rillations are successfully removed. In that case (according to Figure 7) the
scheme was acting only approximately 5% of all data. As mentioned above,
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Figure. 7. Relative number
of »unstable« grid points dur-
ing 24 h evaluation (�t =
1200s) when step correction
function (
 = 1.2 (squares)
and 
 = 1.5 (triangles)) and 

obtained by the new AFS
(circles) was used for differ-
ent values of damping factor,
$. Drawing the best-fit curve
one can determine the ap-
proximate relative number of
corrected grid points for the
damping factor of interest.



the irregular oscillations in the first half of the integration are not due to the
fibrillation process by itself and should not be expected to disappear by ap-
plying the AFS.

Figure 9 shows the optimal 
 values as a function of Ri plotted for differ-
ent values of damping parameter $. A major difference between the new AFS
and both the operational one and that one proposed by and GD90 is that the
new one implies a correction to grid points for which Ri < 0. When increasing
the tuning parameter $ from 1 toward 2, the number of atmospheric unstable
grid points to be corrected naturally decreases, and a smaller part of the at-
mospheric unstable domain is concerned, until finally for $ = 2 only very few
of this grid points should be corrected, and all in the atmospheric stable do-
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Figure 8. Evaluation of
temperature during 24
hours time integration on
level 26 in 1-D version of
ARPÈGE model, a) (�t =
1200s) with different values
of the damping factor: $ =
2.0 (dashed), $ = 1.75 (solid)
and $ = 1.5 (thick solid), and
b) (�t = 600s), damping fac-
tor: $ = 2.0 (thick solid), $ =
1.75 (dashed), $ = 1.5 (solid)
and $ = 1.25 (dotted).



main. The interval of Richardson numbers for which 
 = 1, is not always
enough to prevent fibrillation that decreases when $ increases. The last strik-
ing feature is that a great majority of points, even in the moderate Ri domain
do not need any correction, opposite to the operational AFS which corrected
all moderate Ri points, and thus led to a significant loss of accuracy.

Comparing Figures 4 and 9 one can ask what is the reason why the new
AFS is much more stable while much less correction is applied globally. This
could be seen as a paradox: in the new AFS the width of the Ri interval
where grid points are corrected is much narrower, and even in this interval,
there is a large majority of not corrected grid points, but the resulting
scheme is more stable. The clue is immediately suggested by comparing Fig-
ures 4 and 9 the small part of corrected points in the small Ri < 0 region
plays a very important role in the development of the instability in our case
(which, once more, is more general as GD90’s one). To prove this assertion, a
test was made with neglecting to correct »unstable« grid-points in the domain
Ri < 0 with the new scheme. Figures 10a, b show the curves of integration
(temperature and zonal wind component on the 26th layer) for 
always set to
1 (i.e. no AFS at all) and with the optimal 
 obtained by the new scheme but
applied only if Ri > 0 (
 = 1 else). The damping parameter $ was chosen to
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Figure 9. 
 values (obtained by the new AFS during 24 h evaluation, �t = 1200s) versus Ri for
different values of damping parameter: $ = 2.0 (circle), $ = 1.8 (solid triangle), $ = 1.6 (solid
square) and $ = 1.4 (solid circle).



1.75. Neglecting the correction for Ri < 0 causes the evolution to be similar to
the one with no correction applied. According to this result it is clear that in
the more general case where the dynamical and thermal exchange coeffi-
cients are not equal, the atmospheric unstable part of the flow can play a ma-
jor role in the development of the vertical diffusion scheme’s instability.

5. Conclusions

We investigated here the problems leading to time-instabilities in the
current physics package of ARPÈGE NWP model. The occurrence of these in-
stabilities appears to be the limiting factor for enlarging the time-step in the
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Figure 10. a) Evaluation of
temperature during 24
hours time integration on
level 26 in 1-D version of
ARPÈGE (�t = 1200s) with

 = 1 always (thin) and the
new scheme but with 
 = 1
for Ri < 0 (thick). Damping
factor is: $ = 1.75, b) The
same for zonal wind
component, u.



current operational version. In the first part, the shallow convection correc-
tion (CSC) is identified as a major source of temporal oscillations, and some
simple modifications are proposed to eliminate the intermittence of the
scheme bearing in mind that solving definitely the problem would probably
need to use a separate, more sophisticated parameterization scheme for this
particular process. In the second part, another source of oscillations is shown
to find its source in the vertical diffusion scheme, in spite of the application of
a correction scheme directly based on Girard and Delage (1990) proposal.

This study shows that:

– Fibrillations occur with the operational scheme already with time-steps
of 600 s and that their amplitude increase with increasing time-step.

– Operational scheme acts on a very large number of grid points (but only
with positive Ri) up to 
max % 1.2.

– Using a less restrictive stability analysis, a new scheme can be derived,
with a degree of freedom based on the maximum tolerated numerical growth
rate, and taking the optimal 
 parameter for correction at each grid point.

– Some points lead to complex numerical growth rate, but with a real
part too small to trigger instability. These points are currently ignored by the
new AFS, apparently with no detrimental impact.

– A stable and more accurate integration evolution can be obtained since
the scheme is more selective: it acts only on small number of grid points
(typically 5%).

– Neglecting the correction for negative Ri only leads to a partial damp-
ing of the fibrillations, and this phenomenon is expected to appear as soon as
the dynamical and thermal exchange coefficients are different.

Considering these results, the implementation of the new anti-
fibrillation scheme could be of big practical importance, since the operational
time-step could then be significantly increased while the integrations could
even exhibit less oscillations.
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Appendix A

The coupled system represented by Eqs. (6) and (7) discretized in time
with anti-fibrillation scheme becomes (Courtier et al., 1991):
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and after rearranging:
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where � denotes u or �, and � �z = �/�z. The right hand side (RHS) can be re-
written as:
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where Ku, K� and Ri are defined by Eqs. (3), (4) and (5).
Vertical derivative of the Ri is defined by:
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where �u and �� are defined by Eqs. (9) and (10).
Finally the coupled system becomes:
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where & = (��/�z)/(�u/�z) .
Linearization is made away a stationary state noted with bars. For the

basic state to be stationary, it is required that both terms on the RHS are
equal to zero in the basic state, which means that:
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The linearized form of the equations for the perturbations (u', �') is the (bars
are left out for clarity):
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Oscillating solutions are sought in the form:

u' = u0 exp(imz + 't)

�' = �0 exp(imz + �t)

where ' is the growth rate. We assume the following discretized form for the
vertical Laplacian operator:
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and we note x = exp('�t). The coupled system then becomes:
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Eliminating the perturbations then give the characteristic equation (8)
for � = x – 1:
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Appendix B

Depending on the damping parameter $, it is possible that the scheme
with 
= 1 gives complex roots of Eq. (12) for very few grid points (about 1% of
all). Their characteristics are:

1) slightly positive atmospheric stability (0 < Ri < 0.4 – 0.5) and

2) small values for terms with exchange coefficients (� Ku, � K�) of the or-
der of 10–2.

To keep the scheme numerically stable, the module of the numerical am-
plification, x, has to satisfy the condition of stability given by Eq. (17). The
condition can be simplified by putting $ = 2:

�(1+�real)2 + �imag
2�0.5 < 1. (B1)

Inserting terms (16a), (16b) with a general value of 
 for coefficients A, B

and C, the following relation is obtained after some algebra:

B(
) – C(
) > 0. (B2)

The goal is to find 
which would satisfy (B2). Inserting terms for B(
) and
C(
) and separating 
 the following relation is obtained:
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In our particular case, the first term on the RHS of (B3) is always posi-
tive and of order 10–1. Because of �2 Ku K�<< 1 in the denominator, the second
term becomes dominant and since its nominator is positive, 
 has to be
greater then some negative number of the order of 101–102, in order to fulfill
the numerical stability condition. According to this, 
 = 1 is sufficient for this
purpose.
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SA@ETAK

Pobolj{anje sheme vertikalne difuzije u
ARPÈGE/ALADIN modelu

Maja Teli{man Prtenjak, Antun Marki i Pierre Bénard

U~inkovite numeri~ko-dinami~ke sheme u atmosferskim numeri~kim progno-
sti~kim modelima dozvoljavaju uporabu duljeg vremenskog koraka prilikom nume-
ri~ke integracije, ali ~esto dolazi do ne`eljenih oscilacija uzrokovanih parametrizaci-
jom fizikalnog dijela. Tipi~an primjer je pojava oscilacija povezanih s pojednostavlje-
nim parametrizacijskim shemama za vertikalnu difuziju ili plitku konvekciju, koje se
uobi~ajeno koriste u numeri~koj prognozi vremena.

Oscilacije koje se generiraju shemama vertikalne difuzije K-tipa do sada su de-
taljno razmatrane, i nazvane su fibrilacijama. Visoke prostorne i vremenske frekven-
cije karakteristike su fibrilacija. Zbog njihove povezanosti s velikom vertikalnom re-
zolucijom, ove la`ne oscilacije se op}enito uo~avaju na ni`im nivoima domene modela.

U prognosti~kim poljima ARPÈGE-a (numeri~kom prognosti~kom globalom mo-
delu u MÉTÉO-FRANCE) i ALADIN-a (njegovoj verziji modela za ograni~eno po-
dru~je razvijenom u suradnji sa zemljama isto~ne Europe) neke oscilacije su se i dalje
zadr`ale unato~ ~injenici da je uklju~ena prva anti-fibrilacijska shema (AFS). Ovaj
rad prikazuje provedena ispitivanja mogu}ih izvora fibrilacija pomo}u 1-D (vertikal-
ne) verzije ovih modela.

Ispitivanja su dala slijede}e rezultate: 1. znatan izvor oscilacija je prona|en u pa-
rametrizaciji plitke konvekcije ({to je u stvari dio sheme vertikalne difuzije) te su
predlo`ena neka rije{enja za njihovo uklanjanje, 2. pokazalo se da po~etna AFS ne
mo`e u potpunosti sprije~iti generiranje fibrilacija te je izvedena uspje{nija formulacija.

Jednad`be vertikalne difuzije prikazane u numeri~kom vremenskom raspisu
prvog reda, zadr`avaju}i eksplicitnu formu samog koeficijenta izmjene, u osnovi
sadr`e AFS. Stoga, korekcija AFS-om uvijek pobolj{ava stabilnost na ra~un to~nosti.
S novom anti-fibrilacijskom shemom, broj to~aka mre`e u kojima je potrebno izvr{iti
korekciju smanjen je s gotovo 90% na pribli`no 5%, ~ime je shema dobila na to~nosti.
Za razliku od predlo`enih AFS iz literature, korekcija se mora primjenjivati ne samo
na to~ke mre`e sa stabilnim atmosferskim uvijetima (Richardsonov broj, Ri > 0) ve} i
na one to~ke u kojima je atmosfera blago nestabilna (Ri < 0).
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