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Abstract

Two essential tasks in managing Description Logic (DL) on-
tologies are eliminating problematic axioms and incorporat-
ing newly formed axioms. Such elimination and incorpora-
tion are formalised as the operations of contraction and revi-
sion in belief change. In this paper, we deal with contraction
and revision for the DL-Lite family through a model-theoretic
approach. Standard DL semantics yields infinite numbers of
models for DL-Lite TBoxes, thus it is not practical to develop
algorithms for contraction and revision that involve DL mod-
els. The key to our approach is the introduction of an alterna-
tive semantics called type semantics which is more succinct
than DL semantics. More importantly, with a finite signature,
type semantics always yields finite humber of models. We
then define model-based contraction and revision for DL-Lite
TBoxes under type semantics and provide representation the-
orems for them. Finally, the succinctness of type semantics
allows us to develop tractable algorithms for both operations.

1 Introduction
Ontology, together with its underlying logical formalism,
Description Logics (DLs) (Baader et al. 2003), is becom-
ing a prominent knowledge sharing technique in e-Health,
bioinformatics and the semantic web. Although DLs are not
designed to represent evolving knowledge, the engineering
and maintenance of ontologies are a dynamic process. Two
essential tasks in managing DL ontologies are the elimina-
tion of problematic axioms and the incorporation of newly
formed axioms. Such changes are formalised as the opera-
tions of contraction and revision in the area of belief change
(Gärdenfors 1988).

The dominant approach in belief change is the so called
AGM framework (Alchourrón, Gärdenfors, and Makinson
1985; Gärdenfors 1988) which assumes an underlying logic
that includes propositional logic. The main strategies for
studying contraction and revision are to articulate princi-
ples called rationality postulates capturing the intuitions be-
hind rational contraction and revision and to specify change
mechanisms called construction methods for the operations.
It is commonly accepted that the AGM framework provides
the best set of postulates and well motivated construction
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methods. Over the years, many have attempted defining con-
traction and revision for DL ontologies by using techniques
in belief change (Flouris, Plexousakis, and Antoniou 2004;
Flouris et al. 2006; Qi and Du 2009; Wang, Wang, and
Topor 2010; Ribeiro and Wassermann 2006; Qi et al. 2008;
Ribeiro and Wassermann 2009).

In this paper, we will define contraction and revision
functions over logically closed DL-Litecore TBoxes. DL-
Litecore is the core language of the DL-Lite family (Cal-
vanese et al. 2007) which underlies the OWL 2 QL profile
of OWL 2 and gains its popularity through its efficient query
answering. In defining such functions we will take a model-
based approach similar to (Katsuno and Mendelzon 1992).
Instead of DL models the functions are based on models of a
newly defined semantics for DL-Litecore called type seman-
tics.

Type semantics closely resembles the semantics for
propositional logic. Provided that type semantics is equiv-
alent to DL semantics with respect to major DL-Litecore
TBox reasoning tasks, models of type semantics (i.e., type
models) are more succinct than DL models. More impor-
tantly, given a finite signature, any DL-Litecore TBox has
a finite number of type models, whereas it usually has infi-
nite many DL models. Hence it is easier to work with type
models than with DL models in defining and implementing
model-based contraction and revision functions.

We will provide representation theorems for our model-
based contraction and revision functions which characterise
properties of the functions by a set of rationality postulates.
One difficult in proving such theorems is that DL revision
has to deal with both inconsistency and incoherence whereas
AGM revision only have to deal with inconsistency. As
a first step for applying the operation in practice, we also
provide tractable algorithms for the contraction and revision
functions.

2 DL-Lite
DL-Litecore is the core of the family of DL-Lite languages.
It has the following syntax:

B → A | ∃R C → B | ¬B R→ P | P−

where A denotes an atomic concept, P an atomic role, P−
the inverse of the atomic role P . B denotes a basic concept
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which can be either an atomic concept or an unqualified ex-
istential quantification. C denotes a general concept which
can be either an basic concept or its negation. We also in-
clude ⊥ denoting the empty set and > denoting the whole
domain. We use B to represent the universal set of basic
concepts andR as the universal set of atomic roles and their
inverses. For an inverse role R = P−, we write R− to rep-
resent P for the convenience of presentation. In this paper,
we assume B andR are finite.

A DL-Litecore knowledge base consists of a TBox and an
ABox. A TBox is a finite set of concept inclusion axioms of
the form B v C, B v ⊥, and > v C. That is only basic
concept or > can appear on the left-hand side of a concept
inclusion. An ABox is a finite set of assertions of the form
A(a) or P (a, b).

The semantics of DL-Litecore is given in terms of inter-
pretations. An interpretation I = (∆I , ·I) consists of a
nonempty domain ∆I and an interpretation function ·I that
assigns to each atomic concept A a subset AI of ∆I , and
to each atomic role P a binary relation P I over ∆I , and
to each individual name a an element aI of ∆I . The inter-
pretation function is extended to general concept and spe-
cial symbols as follows: ⊥I = ∅, >I = ∆I , (P−)I =
{(o2, o1) | (o1, o2) ∈ P I}, (∃R)I = {o | ∃o′.(o, o′) ∈ RI},
and (¬B)I = ∆I \BI . An interpretation I satisfies a con-
cept inclusionB v C ifBI ⊆ CI , a concept assertionA(a)
if aI ∈ AI , and a role assertion P (a, b) if (aI , bI) ∈ P I .
I satisfies a TBox T (or ABox A) if I satisfies each axiom
in T (resp., each assertion in A). I is a model of a TBox T
(a TBox axiom φ) if it satisfies T (resp., φ). A TBox or an
axiom is consistent if it has at least one model. A TBox T
logically implies an axiom φ, written T |= φ, if all models
of T are also models of φ. Two TBox axioms φ and ψ are
logically equivalent, written φ ≡ ψ, if they have identical
set of models.

The closure of a TBox T , denoted as cl(T ), is the set of
all TBox axioms φ such that T |= φ. The closure of a DL-
Lite TBox is finite. In fact, the size of the closure of a TBox
T is quadratic w.r.t. the size of T (Pan and Thomas 2007).
We use |= φ to denote that φ is a tautology such as A v A.
We use {> v ⊥} to denote the (unique) inconsistent TBox.

A basic concept B is satisfiable with respect to a TBox T
if there is a model I of T such that BI is non-empty, and B
is unsatisfiable if BI = ∅ for every model I of T . It is easy
to see that B is unsatisfiable with respect to a TBox T if and
only ifB v ⊥ ∈ cl(T ). A TBox is coherent if all basic con-
cepts are satisfiable and incoherent otherwise. Notice that,
often in DL literatures, coherence comes with the absence
of unsatisfiable atomic concepts. Since, in DL-Lite, unsatis-
fiable non-atomic concepts like ∃R are also unexpected we
use the stricter condition for coherence.

In the upcoming sections all TBoxes are assumed to be
closed DL-Litecore TBoxes and by DL-Lite we mean DL-
Litecore. We will denote TBox axioms by lower case Greek
letters (φ, ψ, . . .).

3 Type Semantics
Qualified existential and universal quantifications are not
permitted in DL-Lite, which makes DL-Lite more similar to

propositional logic than other DLs. In this section, we will
take advantage of this similarity and propose an alternative
semantics for DL-Lite that is similar to the semantics for
propositional logic (i.e., propositional semantics). Clearly,
this alternative semantics is more succinct than DL seman-
tics. The succinctness is a significant advantage when DL-
Lite TBoxes need to be represented model-theoretically and
some computational tasks involve their models. Central to
the semantics is the notion of types which is first mentioned
in (Kontchakov, Wolter, and Zakharyaschev 2008). A type
is a possibly empty set of basic concepts and we denote the
universal set of types as Ω.

If we consider basic concepts as propositional atoms, and
concept inclusion B v C as propositional formula ¬B ∨C,
then a type is nothing but a propositional interpretation rep-
resented by atoms interpreted as true for the formulas. Given
a TBox T , we use ‖T ‖ to denote the set of propositional
models of the corresponding propositional formulas of T .
Many inferences between DL-Lite axioms are propositional
in the sense that the inferences also hold when we consider
the axioms as propositional formulas, for example the infer-
ence from A v B and B v C to A v C. There is also a
group of inferences that are not propositional, for instance
the inference from ∃R v ⊥ to ∃R− v ⊥. By giving special
treatment for axioms appear in the non-propositional infer-
ences, we define a model under type semantics as follows.
Definition 1. A type model τ of a TBox T is a type such that
τ ∈ ‖T ‖ and if T |= ∃R v ⊥ then ∃R− 6∈ τ .
Firstly, a type model has to be a propositional model for
properly handling the propositional inferences. Then the
extra condition guarantees the proper handling of the non-
propositional inferences. We denote the type models of a
TBox T and an axiom φ as |T | and |φ| respectively. Type
models of the negation of φ, denoted by ¬φ, is defined
as Ω \ |φ|. The following lemma best captures the non-
propositional behaviour of type semantics.
Lemma 1. Let T be a TBox. Then there is τ ∈ |T | such
that ∃R ∈ τ iff there is τ ′ ∈ |T | such that ∃R− ∈ τ ′.
It says for any TBox T , there is a type model of T that
contains ∃R if and only if there is one that contains ∃R−.

Under type semantics, the models of stronger axioms are
a subset or equal to the models of weaker axioms, as usual.
Also a TBox is consistent if and only if it has a type model.
Theorem 1. Let T be a TBox and φ a TBox axiom. Then

1. T |= φ iff |T | ⊆ |φ|.
2. T is consistent iff |T | 6= ∅.
In comparison with DL semantics, type semantics has the

clear advantage of being more succinct. While TBox ax-
ioms usually have infinite numbers of DL models they have
at most 2N type models, for N the number of basic con-
cepts. Therefore, it is possible to develop algorithms that
work directly with type models.

A TBox T is coherent if and only if it is consistent and
T 6|= B v ⊥ for all B ∈ B. For convenience, we extend
the notion of coherence to single TBox axioms and sets of
types. An axiom φ (a set of types M ) is coherent if and only
if {φ} 6|= B v ⊥ (resp. M 6⊆ |B v ⊥|) for all B ∈ B.



Most DLs have the inexpressibility problem that some
sets of DL models have no syntactic representations. It is
no exception for DL-Lite under type semantics. Given a set
of types M there may not be a TBox T whose set of type
models is M . In such cases, a corresponding TBox for M is
a TBox that has the minimal set of type models that includes
M .

Definition 2. A corresponding TBox T for a set of types M
is a TBox such that M ⊆ |T | and there is no TBox T ′

such
that M ⊆ |T ′ | ⊂ |T |.

Let B = {∃R,∃R−, A} and a set of types M =
{{A}, {∅}, {∃R}}. Notice that there is a type in M that
contains ∃R but there is no one containing ∃R−. By
Lemma 1, any TBox whose set of type models includes
M must also has a type model that contains ∃R−. Under
the current B, there are four types containing ∃R− which
are {∃R−}, {∃R−, A}, {∃R−,∃R}, and {∃R−, A,∃R}.
Thus we have four corresponding TBoxes for M that are
{A v ¬∃R,A v ¬∃R−,∃R v ¬∃R−}, {A v ¬∃R,∃R v
¬∃R−,∃R− v A}, {A v ¬∃R,∃R− v ∃R,A v ¬∃R−},
and {∃R− v ∃R,∃R− v A}. Although The correspond-
ing TBoxes are not unique in general, it is straight forward
to identify a condition from Lemma 1 that guarantees the
uniqueness.

Theorem 2. LetM be a set of types. Then there is an unique
corresponding TBox for M iff there is τ ∈ M such that
∃R ∈ τ implies there is τ ′ ∈M such that ∃R− ∈ τ ′, for all
R ∈ R.

Obviously, any coherent set of types satisfies the condi-
tion for uniqueness. In fact, the sets of types we will en-
counter in defining contraction and revision functions for
DL-Litecore are always coherent which means there is al-
ways a unique corresponding TBox. In the upcoming sec-
tions, for any coherent set of types M , we use Tcore(M) to
denote the unique TBox that corresponds to M .

4 Contraction
In this section, we define contraction functions for DL-Lite
TBoxes. The approach is inspired by (Katsuno and Mendel-
zon 1992). Different from (Katsuno and Mendelzon 1992),
we take a more generalised approach such that no explicit
ordering over models is assumed. Further, instead of propo-
sitional models we work with type models. Since a meaning-
ful TBox is required to be consistent and coherent, we only
consider contractions for consistent and coherent TBoxes.
Also we have to consider contractions by conjunctions of
axioms as such contractions are needed when we find out
two or more axioms in a TBox can not hold together but
there is no further information on which ones of them do
not hold. Let φ1, . . . , φn be TBox axioms, their conjunc-
tion is denoted as φ1 ∧ · · · ∧ φn. As expected we define
|φ1 ∧ · · · ∧ φn| = |{φ1, . . . , φn}|.

We first adapt the AGM contraction postulates and some
of their alternatives to DL-Lite.

(T
.−1) T

.−φ = cl(T
.−φ)

(T
.−2) T

.−φ ⊆ T

(T
.−3) If T 6|= φ, then T .−φ = T

(T
.−4) If 6|= φ, then T .−φ 6|= φ

(T
.−5) T ⊆ cl((T .−φ) ∪ {φ})

(T
.−6) If φ ≡ ψ, then T .−φ = T

.−ψ
(T

.−r) If ψ ∈ T \ T .−φ, then there is some T
′

such that
T

.−φ ⊆ T ′ ⊆ T , T
′ 6|= φ, and T

′ ∪ {ψ} |= φ

(T
.−de) If ψ ∈ T and |T .−φ| ⊆ |φ| ∪ |ψ| then ψ ∈ T .−φ

(T
.−1)–(T

.−6) are adaptations of their AGM origins (i.e.,
(K

.−1)–(K
.−6)) by considering a belief set as a logically

closed TBox and formulas as TBox axioms or conjunctions
of them. The principle of minimal change is paramount to all
change operations (Gärdenfors 1988). (K

.−5), often called
Recovery, is the main postulate for formalising the principle
for contraction. It requires the information loss during con-
traction to be minimal such that the original belief set can
be recovered by expanding the contracting formula. Recov-
ery has been criticised by many researchers among which
Hansson (Hansson 1991) argued that it is an emerging prop-
erty rather than a fundamental postulate for contraction. One
evidence is that other than the contraction itself, its satisfac-
tion relies also on properties of the underlying logic (Ribeiro
et al. 2013). In particular most of the DLs including DL-
Lite are incompatible with Recovery. Due to the controversy
of Recovery, many have proposed alternative postulates. A
well known one is Relevance (Hansson 1991) which can re-
place Recovery in characterising AGM contractions. (T

.−r)
is DL-Litecore version of Relevance. As noticed in (Fermé,
Krevneris, and Reis 2008), Recovery can also be replaced
by the following postulate of Disjunctive Elimination:

If ψ ∈ K and φ ∨ ψ ∈ K .−φ then ψ ∈ K .−φ.

Disjunctive Elimination captures the principle of minimal
change by stating the condition for retaining a formula dur-
ing a contraction. That is if a formula is in the original belief
set and its disjunction with the contacting formula is retained
during the contraction then the formula is retained. Since
disjunction of axioms is not permitted in DL-Lite, in adapt-
ing the postulate to DL-Lite we describe the disjunction in
terms of their type models, thus the postulate (T

.−de).
Next we give the intuition behind our contraction func-

tions. Clearly, if the set of models of a TBox contains some
counter models of an axiom φ (i.e, models of ¬φ) then the
TBox does not imply φ. Thus, to remove an axiom φ from a
TBox T we can first add some counter models of φ to those
of T to form an intermediate model set then obtain the cor-
responding TBox of the model set1. Therefore a decision
has to be made on which counter models to add.

The extralogical information required for making the de-
cision could be provided by a domain expert of the ontology
or through some rankings over the models 2. To study the

1Since T is coherent, the intermediate model set which includes
models of T is also coherent. Thus by Theorem 2 there is an unique
corresponding TBox for the model set.

2Kalyanpur et al. (Kalyanpur et al. 2006) explored several
strategies for ranking axioms in the context of debugging unsat-
isfiable concepts. Similar ideas could be used here.



theoretical properties we assume there is a selection func-
tion that plays the role of decision making. A limiting case
is when the set of counter models is empty which means the
contracting axiom is a tautology. As it is not possible to
cease a TBox from implying a tautology, a convenient way
is to do nothing and return the original TBox. In line with
this intuition a selection function should return the empty set
in such cases. Formally, γ is a selection function if and only
if for any set of types M , γ(M) is a non-empty subset of M
unless M is empty. Essentially, the function picks from the
set of counter models the “best” ones which are later added
to the model set of the TBox for forming the contraction
outcome.

A special case is when T does not imply φ which means
the model set of T contains counter models of φ. Intuitively,
if asked to remove an axiom that is not implied by the TBox
then nothing has to be done and the original TBox should
be returned as the outcome. In line with this intuition, a
selection function is required to be faithful such that if the
intersection of models of T and those of ¬φ is not empty
then the selection function picks the intersecting models and
no others. Formally, a selection function γ is faithful with
respect to a TBox T if for any set of typesM , if |T |∩M 6= ∅
then γ(M) = |T | ∩M .

With the above intuitions, model-based contraction func-
tion is defined as follows:

Definition 3. A function .− is a model-based contraction
function for a TBox T iff for all conjunctions of TBox ax-
ioms φ

T .−φ = Tcore(|T | ∪ γ(|¬φ|))
where γ is a faithful selection function for T .

Regarding its behaviour, a model-based contraction func-
tions can be characterised by (T

.−1)–(T
.−4), (T

.−de), and
(T

.−6).

Theorem 3. A function .− is a model-based contraction
function iff .− satisfies (T

.−1)–(T
.−4), (T

.−de), and (T
.−6).

Theorem 3 guarantees that a model-based contraction func-
tion satisfies (T

.−1)–(T
.−4), (T

.−de), and (T
.−6) and all

functions satisfying these postulates are model-based con-
traction functions.

In addition to the characterisation we provide a non-
deterministic algorithm CONT for computing the contrac-
tion outcomes. CONT first checks if the contracting axiom
is a tautology or not implied by T (line 1) in which cases T
is returned (line 2). Otherwise it picks a counter model τ of
φ (line 3) and check it against each axiom in T (line 4). If
an axiom is not satisfiable under τ (line 5) then the axiom is
removed from T (line 6). Finally, what ever is left of T is
returned (line 7).

It can be verified that, given a TBox T and an axiom
φ, CONT returns the outcome of the contraction of T by
φ where the contraction carried out through a model-based
contraction function.

Proposition 1. Let .− be a contraction function for a TBox
T such that T .−φ = CONT (T , φ) then .− is a model-based
contraction function for T .

Algorithm 1: CONT
Input: TBox T and conjunction of TBox axioms φ
Output: TBox T −φ

1 if φ is a tautology or T 6|= φ then
2 return T −φ := T ;

3 Let τ ∈ |¬φ|;
4 foreach ψ ∈ T do
5 if τ 6∈ |ψ| then
6 T := T \ {ψ};

7 return T −φ := T ;

Algorithm CONT runs in polynomial time (if we consider
the cardinality of B linear) with respect to the size of the
TBox. In particular, checking if T entails φ takes polyno-
mial time (line 1), obtaining a type model of ¬φ (line 3) is
linear, which can be achieved by simply constructing, e.g.,
a type containing A but not B for φ = A v B, and each
satisfiability check (line 5) runs in linear time.

5 Revision
In this section, we define revision functions for DL-Lite
TBoxes. As for contraction, we only consider revisions
for consistent and coherent TBoxes. In the AGM frame-
work, revision can be constructed directly as in (Katsuno
and Mendelzon 1992) or indirectly through contraction via
the Levi identity (Levi 1991). Formally, let .− be a contrac-
tion function for a belief set K, a revision function ∗ for
K can be defined as K ∗ φ = Cn((K

.−¬φ) ∪ {φ}) for all
formulas φ. Since the syntax of DL-Lite does not permit ax-
iom negation the approach is not applicable for DL-Lite. We
will define revision functions directly in a model-theoretic
approach. As for contraction the approach which is inspired
by (Katsuno and Mendelzon 1992) is based on type models.

We first clarify a fundamental difference between AGM
revision and DL revision. AGM revision aims to incorpo-
rate a new formula to a belief set while resolving any incon-
sistency caused. DL revision goes beyond inconsistency re-
solving. In addition to consistency, meaningful DL TBoxes
have to be coherent, thus DL revision has to resolve both the
inconsistency and the incoherence caused in incorporating
new axioms 3. For this reason the revision mechanism for
DL is more involved than the AGM one.

Since AGM revision deals with inconsistency, AGM re-
vision postulates are formulated to capture the rationale be-
hind the inconsistency resolving process. DL revision also
deals with incoherence, thus the postulates for DL revision
have to capture the rationale behind not only inconsistency
but also incoherence resolving. By replacing conditions on
consistency with coherence, AGM revision postulates are re-
formulated as follows for revision over DL-Lite TBoxes.

3In fact we can concentrate on incoherence resolving when
ABox is not considered. By its definition, a coherent TBox must
be consistent. Inconsistency resolving is thus part of incoherence
resolving.



(T ∗ 1) T ∗ φ = cl(T ∗ φ)

(T ∗ 2) φ ∈ T ∗ φ
(T ∗ 3) If φ is coherent then T ∗ φ ⊆ cl(T ∪ {φ})
(T ∗ 4) If T ∪ {φ} is coherent then cl(T ∪ {φ}) ⊆ T ∗ φ
(T ∗ 5) If φ is coherent then T ∗ φ is coherent
(T ∗ 6) If φ ≡ ψ then T ∗ φ = T ∗ ψ
(T ∗ f) If φ is incoherent then T ∗ φ = {> v ⊥}
(T ∗ 1)–(T ∗ 6) correspond to the six AGM revision pos-

tulates. The failure postulate (T ∗ f) is dedicated to the
limiting case when the revising axiom is incoherent. Since
(T ∗ 2) requires that the revising axiom is in the revised
TBox, if the revising axiom is itself incoherent then the re-
vised TBox must also be incoherent. (T ∗ f) requires that
in such cases we simply return the inconsistent TBox. Its
AGM origin, which states if the revising formula is incon-
sistent then we return the inconsistent belief set, is deducible
from other AGM postulates (i.e., (K ∗ 2)) thus is not postu-
lated explicitly.

Next we present the intuitions behind our revision func-
tion. If the model set of a TBox T is the subset of that of
an axiom φ then T implies φ. Thus to incorporate an axiom
φ to a TBox T , we can pick some models of φ to form an
intermediate model set then obtain its corresponding TBox.
Therefore a decision has to be made on which models of φ
to pick. As for contraction, a selection function is assumed.

Previously, for contraction, a selection function returns
empty set if the input is empty which represents the limit-
ing case when the contracting axiom is a tautology (thus its
negation is inconsistent and has an empty model set). Now
the limiting case is when the revising axiom is incoherent.
Since in such cases there is no way to return a coherent TBox
that implies the revising axiom, a convenient way is to return
the inconsistent TBox. Formally, a function γ is a selection
function if γ(M) is a non-empty subset of M unless M is
incoherent.

The faithfulness condition also has to be modified from
the contraction case. A selection function γ is faithful with
respect to a TBox T if it satisfies

1. if M is coherent then |T | ∩M ⊆ γ(M), and
2. if |T | ∩M is coherent then γ(M) = |T | ∩M .
In revising T by φ, condition 1 deals with the case when
models of T overlaps with those of φ which means T ∪ {φ}
is consistent. In line with the principle of minimal change,
in this case, the selection function has to pick all the over-
lapping models to preserve as much as possible the original
TBox axioms. Condition 2 deals with the case that not only
the overlapping exists but also it is coherent. Since there is
no incoherence to resolve, the revision boils down to a set
union operation (i.e., cl(T ∪ {φ})). The selection function
therefore picks all the overlapping models and no others.

Central to the revision, the selection function has to guar-
antee the type models picked are coherent, thus the follow-
ing condition. A selection function γ is coherent preserving
if for all B ∈ B there is τ ∈ γ(M) such that B ∈ τ .

With the above intuition, a model-based revision function
is defined as follows.

Definition 4. A function ∗ is a model-based revision func-
tion for a TBox T iff for all TBox axioms φ

T ∗ φ = Tcore(γ(|φ|))

where γ is a selection function that is coherent preserving
and faithful with respect to T .

Model-based revision functions can be characterised by
(T ∗ 1)–(T ∗ 6) and (T ∗ f).
Theorem 4. A function ∗ is a model-based revision function
iff ∗ satisfies (T ∗ 1)–(T ∗ 6) and (T ∗ f).

Algorithm 2: REVI
Input: TBox T and TBox axiom φ
Output: TBox T ∗φ

1 if φ is B v ⊥ for some B ∈ B then
2 return T ∗φ := {> v ⊥};
3 foreach B ∈ B do
4 if T ∪ {φ} |= B v ⊥ then
5 Let τ ∈ |φ| such that B ∈ τ ;
6 foreach ψ ∈ T do
7 if τ 6∈ |ψ| then
8 T := T \ {ψ};

9 return T ∗φ := cl(T ∪ {φ});

As for contraction we also provide a non-deterministic al-
gorithm REVI for computing the revision outcomes. REVI
starts by checking whether φ is incoherent (line 1), and if
so it returns the inconsistent TBox (line 2). Otherwise, it
checks for each basic concept if it is unsatisfiable under the
union of T with φ (line 3–4). For each unsatisfiable concept
B, it picks a model τ of φ satisfying B (line 5) and check it
against each axiom in T (line 6). If an axiom is not satisfi-
able under τ (line 7) then the axiom is removed from T (line
8). Finally, the closure of the union of whatever are left of T
and φ is returned (line 9).

It can be verified that, given a TBox T and an axiom φ,
REVI returns the outcome of the revision of T by φ where
the revision is carried out through a model-based revision
function.
Proposition 2. Let ∗ be a revision function for a TBox T
such that T ∗ φ = REV I(T , φ) then ∗ is a model-based
revision function for T .

Algorithm REVI runs in polynomial time (again consid-
ering the cardinality of B linear) in the size of the TBox. In
particular, concept satisfiability check (line 4) is in polyno-
mial time for DL-Litecore, and obtaining a type model of
φ satisfying B (line 5) is linear, which can be achieved by
simply constructing, e.g., a type containing A, B and C for
φ = A v C, and each satisfiability check (line 7) runs in
linear time.

A group of works usual referred to as ontology debug-
ging (e.g., (Kalyanpur et al. 2006)) also deal with unsat-
isfiable concepts. The method they used are based on the
notion of Minimal Unsatisfiability Preserving Sub-TBoxes



(MUPS). For each unsatisfiable concept C, the MUPS based
method first computes all the MUPS for C, then it com-
putes a minimal hitting set for the MUPS. The incoherence
is then resolved by removing axioms in the minimal hitting
set. REVI deals with the same problem in a more efficient
way. Roughly speaking each type model formed in line 5 of
REVI corresponds to a minimal hitting set for the MUPS,
thus we can avoid the computations of the MUPS and their
minimal hitting sets which is a significant saving in compu-
tational power.

6 Related Work
In managing changes over DL ontologies, many (Flouris,
Plexousakis, and Antoniou 2004; Flouris et al. 2006; Qi
and Du 2009; Wang, Wang, and Topor 2010; Ribeiro and
Wassermann 2006; Qi et al. 2008; Ribeiro and Wassermann
2009) have taken the same strategy as ours by considering it
as a belief change problem.

(Qi and Du 2009; Wang, Wang, and Topor 2010) de-
fined specific revision operators however their postulates
are not formulated appropriately to capture the rationales of
incoherence resolving. Moreover, the revision operator in
(Wang, Wang, and Topor 2010) cannot guarantee coherence
in general. (Ribeiro and Wassermann 2006; Qi et al. 2008;
Ribeiro and Wassermann 2009) studied contraction and revi-
sion over TBoxes and knowledge bases that are not necessar-
ily closed. This means only the axioms explicitly presented
in the TBox or knowledge base are considered. The implicit
axioms which logically follow from the explicit ones but are
not presented are discarded during the operation. Thus the
logical contents are not maximally preserved. Axiom nega-
tion is not supported by most DLs but is required in defining
some change operations. (Flouris et al. 2006) proposed sev-
eral notions of negated axioms for DLs. They also explored
the notions of inconsistent and incoherent TBoxes and em-
phasised the importance of resolving incoherence in addition
to inconsistency.

In a more general setting, (Flouris, Plexousakis, and An-
toniou 2004; Ribeiro et al. 2013) identified properties of a
monotonic logic under which a contraction function can be
defined that satisfies Recovery and Relevance respectively.
By their results, it is possible to define contraction functions
under DL-Lite that satisfy Relevance. One way to obtain
such functions is by properly restricting the selection func-
tions for our model-based contraction functions.

(Grau et al. 2012) studied operations that contract and re-
vise at the same time. A constraint which states the set of
axioms to be incorporated and those to be eliminated is first
specified. Then the operation maps a knowledge base to an-
other that satisfies the constraint. The operation reduces to a
revision and contraction after making empty the eliminating
set and the incorporating set respectively. However, they did
not identify the postulates that characterise the contraction
and revision.

(Giacomo et al. 2009; Calvanese et al. 2010; Kharlamov
and Zheleznyakov 2011; Kharlamov, Zheleznyakov, and
Calvanese 2013) also dealt with changes over DL-Lite on-
tologies. Instead of considering it as a belief change prob-

lem, they focus on issues with expressibility of the outcomes
for model-based change operations.

7 Conclusion
Due to the diversity of DLs, it is difficult if not impossible to
come up with generalised contraction and revision functions
that work for all DLs. Each DL is unique that they deserve to
be treated individually to make the most out of their unique-
ness. A distinguishing feature of DL-Lite is its close resem-
blance to propositional logic. By taking advantage of this
feature, we developed type semantics for DL-Litecore that
resembles the underlying semantics for propositional logic.
Due to the succinctness and finiteness of type semantics it
is easier to work with type models than DL models. We
defined and implemented contraction and revision functions
for DL-Litecore TBoxes whose outcomes are obtained by
manipulating type models of the TBoxes and the contracting
and revising axioms. The functions are shown to be sound
and complete to sets of commonly accepted postulates. Cru-
cial in obtaining the soundness and completeness result for
the revision function is to reformulate AGM revision postu-
lates from inconsistency centred to incoherence centred. As
DL revision deals not only with inconsistency but also in-
coherence, unlike postulates for AGM revision, postulates
for DL revision must capture the intuitions of incoherence
resolving.

For future work, we plan to study contraction and revision
for more expressive DLs. Some preliminary results are ob-
tained for DL-LiteR, an extension of DL-Litecore with role
inclusion axioms. The definition of a type in DL-LiteR in-
volves not only concepts but also roles. A more challenging
task is to extend our results to DLs allowing quantified ex-
istential or universal quantifiers. Since concepts of infinite
length can be formed in these DLs through unbound nesting
of quantifies, their semantic characterisation through type
semantics may not be possible. We need some other tech-
niques that are tailored to these DLs.
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