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ABSTRACT

Human respiratory syncytial virus (RSV) is a major cause of morbidity and severe lower respiratory tract disease in the elderly
and very young, with some infants developing bronchiolitis, recurrent wheezing, and asthma following infection. Previous stud-
ies in humans and animal models have shown that vaccination with formalin-inactivated RSV (FI-RSV) leads to prominent air-
way eosinophilic inflammation following RSV challenge; however, the roles of pulmonary eosinophilia in the antiviral response
and in disease pathogenesis are inadequately understood. In vivo studies in mice with eotaxin and/or interleukin 5 (IL-5) defi-
ciency showed that FI-RSV vaccination did not lead to enhanced pulmonary disease, where following challenge there were re-
duced pulmonary eosinophilia, inflammation, Th2-type cytokine responses, and altered chemokine (TARC and CCL17) re-
sponses. In contrast to wild-type mice, RSV was recovered at high titers from the lungs of eotaxin- and/or IL-5-deficient mice.
Adoptive transfer of eosinophils to FI-RSV-immunized eotaxin- and IL-5-deficient (double-deficient) mice challenged with RSV
was associated with potent viral clearance that was mediated at least partly through nitric oxide. These studies show that pulmo-
nary eosinophilia has dual outcomes: one linked to RSV-induced airway inflammation and pulmonary pathology and one with
innate features that contribute to a reduction in the viral load.

IMPORTANCE

This study is critical to understanding the mechanisms attributable to RSV vaccine-enhanced disease. This study addresses the
hypothesis that IL-5 and eotaxin are critical in pulmonary eosinophil response related to FI-RSV vaccine-enhanced disease.
The findings suggest that in addition to mediating tissue pathology, eosinophils within a Th2 environment also have anti-
viral activity.

Respiratory syncytial virus (RSV) is a serious lower respiratory
tract infection in infants, the elderly, and the immunocom-

promised (1–4), resulting in �130,000 hospitalizations in the
United States each year (5, 6). Children who experience acute RSV
infection of the lower respiratory tract have an increased likeli-
hood of developing childhood asthma (7). To date, there is no safe
and effective RSV vaccine available. This is in part linked to the
negative outcome of a 1960s clinical trial using a formalin-inacti-
vated alum-precipitated RSV (FI-RSV) vaccine (8). Children im-
munized with the FI-RSV vaccine experienced more severe disease
following subsequent natural exposure to RSV, with one study
showing 69% of immunized children developing pneumonia
compared to only 9% of children in the unimmunized control
group (9). In a second study, 80% of FI-RSV-immunized infants
were hospitalized and two died, compared with only 5% hospital-
ization and no death in the control group (10). FI-RSV vaccine-
enhanced illness was clinically characterized as severe primary
RSV infection, with bronchiolitis, hypoxemia, and pneumonia.
However, in contrast to the neutrophilic inflammation observed
during primary RSV infection, the more severe and fatal vaccine
cases exhibited extensive mononuclear cell infiltration with con-
current pulmonary eosinophilia (9–11). Although it has been gen-
erally assumed that eosinophil infiltration contributed to clinical

disease in the vaccinated individuals, this assumption has been
difficult to formally test and conflicts with data that have emerged
recently supporting an antiviral role for eosinophils (12).

Mouse models of FI-RSV vaccine-enhanced disease have
shown that pulmonary eosinophilia is a hallmark of disease and is
linked to prominent production of Th2 cytokines, including in-
terleukin 4 (IL-4), IL-5, and IL-13 (13–16). IL-4 and IL-5 play
major roles in pathogenesis in the mouse models of FI-RSV vac-
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cine-enhanced disease, since interfering with the functions of
these cytokines markedly decreases the severity of disease (14, 17).
Studies involving immunization of mice with a recombinant vac-
cinia virus expressing the secreted form of RSV G protein followed
by RSV challenge have also shown significant pulmonary eosino-
philia accompanied by the production of IL-5 and eotaxin 1 (18).

The roles of eosinophils in the antiviral response and RSV dis-
ease pathogenesis were examined in this study. As IL-5 and eo-
taxin synergize in the induction of airway hyperresponsiveness
(AHR), pulmonary eosinophilia has become the hallmark of RSV
vaccine-enhanced disease (13, 18, 19). The results suggest that
eotaxin and IL-5 are involved in regulating eosinophilic lung pa-
thology. The findings also suggest that, in addition to their proin-
flammatory role in FI-RSV vaccine-enhanced disease, eosinophils
can contribute to virus clearance. These findings contribute to a
growing awareness of the potential for eosinophils to contribute
to antiviral defense.

MATERIALS AND METHODS
Viruses. The A2 strain of RSV was used in all experiments and propagated
in Vero E6 cells as previously described (20). Viral titers were determined
by 50% tissue culture infective dose (TCID50) assay. Briefly, 1 � 106

Hep-2 (human laryngeal epithelial) cells/ml were resuspended in Dulbec-
co’s modified Eagle’s medium (DMEM) (Gibco Invitrogen) with 10%
fetal calf serum (FCS) (Gibco Invitrogen), and 100 �l of cell suspension
was added to each well of a 96-well plate. The cells were incubated at
37°C/5% CO2 in air until 80% confluent. Virus was serially diluted across
the 96-well plate of Hep-2 cells in DMEM supplemented with 0.5% pen-
icillin-streptomycin antibiotics (Sigma). The cells and virus were left to
incubate for 1.5 h to allow virus adsorption. Then, DMEM-10%FCS was
added, and the plates were incubated at 37°C/5% CO2. After 5 days, the
medium in the plate was aspirated, and the cells were fixed with acetone-
methanol (Sigma), stained with 0.02% crystal violet, and scored for the
presence of syncytia. The TCID50 was calculated using the Reed-Muench
formula of viral titer and presented as log10 TCID50/ml.

Mice. Eotaxin (Eot�/�) (21) and IL-5 (IL-5�/�) (22) gene single-
knockout mice and IL-5-transgenic (IL-5Tg) (23, 24) mice were back-
crossed to a BALB/c background for 10 generations; double-knockout
(EotIL-5�/�) mice were generated by intercrossing BALB/c Eot�/� and
IL-5�/� mice to the F2 generation (25). Transgenic mice were provided by
the Gene Targeting Laboratory, The John Curtin School of Medical Re-
search, Australian National University, Australia, and Laboratory Animal
Services, University of Adelaide, Adelaide, Australia. BALB/c wild-type
(WT) mice were purchased from the Animal Resource Centre, Perth, WA,
Australia. All the mice were housed in the pathogen-free animal facility at
the University of Canberra, Canberra, ACT, Australia. All procedures
were approved by the University of Canberra Animal Ethics Committee,
the Griffith University Animal Ethics Committee, and the Australian Na-
tional University Animal Experimentation Ethics Committee and con-
ducted according to the Animal Welfare Guidelines of the National
Health and Medical Research Council of Australia.

In vivo infection. Six- to 8-week-old female BALB/c WT, IL-5Tg,
Eot�/�, IL-5�/�, and EotIL-5�/� mice were immunized intramuscularly
in the hind limb with 0.1 ml of FI-RSV diluted 1:10 in phosphate-buffered
saline (PBS) at day 0 and day 7. FI-RSV vaccine was prepared as described
previously (26). Unimmunized WT, IL-5Tg, Eot�/�, IL-5�/�, and EotIL-
5�/� mice were similarly injected with 0.1 ml of PBS on day 0 and day 7.
On day 21, the mice were intratracheally challenged with 106 PFU of live
RSV in 0.1 ml of Dulbecco’s PBS (Gibco, Invitrogen). Two additional
control groups, unimmunized/PBS challenged and FI-RSV immunized/
PBS challenged, were also included. The mice were sacrificed by carbon
dioxide asphyxiation on day 27, and lung tissue was removed for in vitro
study.

RNI assay. The reactive nitrogen intermediate (RNI) assay was per-
formed as previously described (27). Briefly, nitrite was measured by the
addition of 100 �l of Griess reagent [5% phosphoric acid, 1% sulfanilic
acid, and 0.1% N(1-napthyl-7)ethylene diamine dihydrochloride] to 30
�l of control or RSV-treated eosinophil culture supernatants. Protein was
precipitated and removed by adding 100 �l of 10% trichloroacetic acid
before centrifugation. A volume of 200 �l of each supernatant was trans-
ferred to a 96-well flat-bottom plate, and the absorbance was read using a
Bio-Rad microplate reader (Hercules, CA, USA).

RT-PCR. RNA was extracted from eosinophils and lung tissues with
TRIzol reagent (Invitrogen Life Technologies, Carlsbad, CA, USA),
DNase treated using RNase-free DNase I (Qiagen, Clifton Hill, Victoria,
Australia), and purified using an RNeasy minikit (Qiagen) according to
the manufacturer’s protocol. Reverse transcription (RT) for cDNA syn-
thesis and PCR amplification of cytokine mRNA were performed as pre-
viously described (28). Primer sequences for the hypoxanthine guanine
phosphoribosyltransferase (HPRT) and eosinophil-associated RNase
(Ear1 and Ear2) housekeeping genes have been published previously (12,
29, 30). The cycle numbers used for amplification of each gene product
were as follows: Ear1 and Ear2, 30 cycles, and HPRT, 25 cycles.

Real-time PCR. RNA extraction was performed as outlined above,
and samples were purified using RNase-free DNase I (Qiagen, Clifton
Hill, Australia) and passed through RNeasy minikits (Qiagen). RNA
quantification was performed with a NanoDrop ND-1000 spectropho-
tometer (Wilmington, DE, USA). Real-time PCR analysis was performed
using a Rotor-Gene 3000 four-channel multiplexing system (Corbett Re-
search, Sydney, Australia) for �-actin, IL-4, IL-5, gamma interferon (IFN-
�), RANTES/CCL5, and CCR3 as previously reported (31, 32). All prim-
ers were purchased from Geneworks. Primer sequences for IL-13 and
TARC are as follows: IL-13, forward, 5= CCC ATC CCA TCC CTA CAG
AA 3=, and reverse, 5= TGC CTC AGT TGC CCT GTG T 3=; TARC,
forward, 5= TTG TGT TCG CCT GTA GTG CAT A 3=, and reverse, 5=
CAG GAA GTT GGT GAG CTG GTA TA 3=.

BAL and cytospin. Bronchoalveolar lavage (BAL) fluid collection and
cytospin were performed as described previously (28). Briefly, BAL fluid
was centrifuged at room temperature, and the cell pellets were resus-
pended in PBS. The cells were centrifuged onto glass slides using a cytos-
pin (Rotofix 32 Hettich, Tuttlingen, Germany). The slides were fixed in
methanol and stained with modified May-Grünwald and Giemsa stain.
Differential cell counts were undertaken by light microscopy, and total
BAL fluid cells were counted using a hemocytometer to determine abso-
lute numbers of eosinophils, neutrophils, lymphocytes, and macro-
phages.

Histological analysis. The lower lobes of the nonlavaged lung were
fixed in 10% formalin (Sigma) and embedded in paraffin, and 3-mm
sections were stained with hematoxylin and eosin (H&E) or periodic acid-
Schiff (PAS) stain. An observer blinded to the treatment groups scored all
the slides. Severity of inflammation was quantified on a scale of 0 to 3, with
untreated control mice defined as 0 and 3 being the maximum inflamma-
tion score. For airway mucus occlusion, 0 signified no occlusion, 1 was
small areas of luminal accumulation of mucus, 2 was partial occlusion of
at least one small airway, and 3 was complete occlusion of at least one
small airway. For epithelial thickness, 0 signified a thickness the same as
that seen in control mice, 1 was 1 to 1.5 times the thickness seen in control
mice, 2 was 1.5 to 2 times the thickness seen in control mice, and 3 was �2
times the thickness seen in control mice. For leukocytes around the bron-
chi and vessels, a score of 0 signified no leukocytes; 1 was occasional
leukocytes; 2 was moderate numbers of leukocytes, including some adja-
cent to each other; and 3 was large areas of predominantly leukocytes
(31, 32).

Adoptive transfer of eosinophils and macrophages. Unimmunized
WT and FI-RSV-immunized EotIL-5�/� mice challenged with RSV were
anesthetized with Alfaxan by tail vein injection 3 days after infection. This
was followed by intratracheal administration of 106 eosinophils in a 40-�l
volume or of vehicle only (PBS-2% FCS). Three days after adoptive trans-
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fer of eosinophils, the mice were sacrificed, and lung tissues were obtained
for determination of viral titers and RT-PCR. Adoptive transfer of mac-
rophages (106 cells) was included as an additional control. Macrophages
were isolated from uninfected mouse spleens by incubation of splenocytes
with a biotin-conjugated anti-F4/80 antibody and anti-biotin microbeads
(Miltenyi Biotech), followed by magnetic bead separation (Miltenyi Bio-
tech).

Intratracheal instillation of eotaxin. FI-RSV-immunized Eot�/�

mice challenged with RSV were anesthetized with Alfaxan by tail vein
injection 3 days after infection. Murine recombinant eotaxin (PeproTech;
3 �g dissolved in 20 �l vehicle, 0.1% bovine serum albumin [BSA]-PBS)
or control vehicle (0.1% BSA-PBS) was instilled into the airways. Admin-
istration of cytokine via the intratracheal route is effective in the delivery
of cytokine to the lung (33, 34). Three days later, the mice were sacrificed,
and lung tissues were obtained for determination of viral titers and pul-
monary eosinophil numbers and for RT-PCR.

Eosinophils in peripheral blood. Whole-blood samples were col-
lected by heart puncture and treated with the anticoagulant EDTA
(Sigma). Five milliliters of blood was mixed with 95 ml of acetic acid-
methylene blue for 10 min to lyse red blood cells (RBC), and total nucle-
ated-cell counts were determined using a hemocytometer. Blood smears
were stained with modified May-Grünwald and Giemsa stains, and a dif-
ferential cell count was undertaken to determine the total number of
peripheral blood eosinophils.

Cytokine assays. Mouse IL-5, IFN-� (from OptEIA and BD Biosci-
ences), and IFN-� (PBL Biomedical Laboratories) cytokine concentra-
tions were determined by enzyme-linked immunosorbent assay (ELISA)
according to the manufacturer’s instructions.

Determination of lung RSV titers. On day 27 (6 days post-RSV chal-
lenge), the mice were sacrificed by carbon dioxide asphyxiation, and one
lobe of the lung was taken for determining RSV titers. The lung tissues
were homogenized and clarified by centrifugation before being serially
diluted and assayed for the TCID50 as described above.

Nitric oxide synthase inhibition in vivo. N-Methyl-L-arginine (L-
NMA) (Sigma) or its inactive D-enantiomer (D-NMA) was administered
(5 mg/200 �l PBS) via intraperitoneal (i.p.) injection on days 1 and 2
post-RSV infection.

Statistical analysis. Data are presented as means and standard errors
of the mean (SEM). The two-tailed unpaired Student’s t test was used to
determine statistical significance. Data were analyzed using StatView sta-
tistical software (version 5.0; Abacus Concepts, Berkeley, CA, USA). A P
value of less than 0.05 was considered statistically significant.

RESULTS
Deficiency in IL-5 and eotaxin reduces immunohistopathology
in lungs in a mouse model of FI-RSV vaccine-enhanced disease.
The importance of IL-5 or eotaxin in eosinophil maturation and
migration was explored further using eotaxin and IL-5 knockout
(Eot�/�, IL-5�/�, and EotIL-5�/�) mice and IL-5 transgenic (IL-
5Tg) mice in an FI-RSV vaccine-enhanced disease model in which
pulmonary eosinophilia is a hallmark of disease. FI-RSV-immu-
nized WT and IL-5Tg mice had prominent cellular infiltration in
both the perivascular and peribronchial areas of the lung at day 6
post-RSV challenge, together with considerable tissue consolida-
tion and a reduction in air space (Fig. 1B and D). Although some
cellular infiltration was observed in the lungs of Eot�/�, and IL-
5�/� mice (Fig. 1F and H), the severity of inflammation was re-
duced compared to WT and IL-5Tg mice. EotIL-5�/� mice
showed very mild airway inflammation with reduced cellular in-
filtration in the perivascular and peribronchial areas, as well as
intact air spaces (Fig. 1J), features similar to those seen for unim-
munized WT mice with subsequent RSV challenge (PBS-RSV)
(Fig. 1A). The severity of inflammation was substantially reduced
in unimmunized Eot�/�, IL-5�/�, and EotIL-5�/� mice with sub-

sequent RSV challenge compared to unimmunized WT mice with
subsequent RSV challenge (Fig. 1E, G, and I). Additional control
groups, unimmunized and FI-RSV-immunized mice challenged
with PBS, showed no inflammation (data not shown).

Cellular recruitment, inflammation, and mucus production
are dependent on IL-5 and eotaxin. Consistent with the known
roles of IL-5 and eotaxin in eosinophil recruitment (35), eosino-
phils were detected in the lungs of FI-RSV WT and IL-5Tg mice
and unimmunized IL-5Tg mice, but not in unimmunized RSV-
infected WT mice or in immunized or unimmunized Eot�/� and
IL-5�/� single- and double-deficient mice (Fig. 2A).

Airway mucus production, epithelial thickness, and perivascu-
lar and peribronchial leukocyte numbers were significantly re-
duced in Eot�/�, IL-5�/�, and EotIL-5�/� mice compared to WT
and IL-5Tg mice (Fig. 2B to E). No substantial inflammation was
observed in unimmunized RSV-infected WT, Eot�/�, IL-5�/�,
and EotIL-5�/� mice (Fig. 2B to E). Quantification of bronchial
goblet cells, as determined by counting goblet cells in six high-
power fields, revealed significantly reduced numbers in the air-
ways of FI-RSV Eot�/�, IL-5�/�, and EotIL-5�/� mice compared
to FI-RSV WT and IL-5Tg mice (Fig. 2F). Examination of mucus
production, determined by PAS staining, revealed substantial
amounts of mucus in the airway epithelium and the airway lumen
in WT and IL-5Tg mice, whereas no mucus was detected in
Eot�/�, IL-5�/�, and EotIL-5�/� mice (Fig. 3). These findings
suggest that IL-5 and eotaxin are important mediators of FI-RSV-
induced inflammation, leukocyte recruitment, and mucus pro-
duction in the lung. Unimmunized RSV-infected mice had no
significant mucus levels (Fig. 3).

Eotaxin contributes to the migration of eosinophils from the
periphery to the airway. To compare the BAL cell responses in
unimmunized RSV-infected mice, the BAL cellular infiltrates
from FI-RSV WT, IL-5Tg, Eot�/�, IL-5�/�, and EotIL-5�/� mice
were evaluated at day 6 post-RSV infection (Fig. 4A to D). The
BAL fluid from WT and IL-5Tg mice predominantly consisted of
macrophages (Fig. 4A) and lymphocytes (Fig. 4B), with substan-
tial numbers of neutrophils (Fig. 4C) and eosinophils (Fig. 4D),
whereas no eosinophil infiltration was observed in the lungs of
Eot�/�, IL-5�/�, or EotIL-5�/� mice (Fig. 4D). The lack of eosin-
ophil infiltration was supported by differential cell counts of the
peripheral blood, in which no eosinophils were detected in the
IL-5�/� or EotIL-5�/� mice (Fig. 4E). Substantially reduced num-
bers of macrophages, lymphocytes, and neutrophils were ob-
served in unimmunized RSV-infected WT, Eot�/�, IL-5�/�, and
EotIL-5�/� mice (Fig. 4A to C). As expected, no eosinophils were
detected in the BAL fluid of unimmunized WT, Eot�/�, IL-5�/�,
and EotIL-5�/� mice (Fig. 4D).

To determine if IL-5 and/or eotaxin expression was linked to
peripheral blood eosinophilia in FI-RSV vaccine-enhanced dis-
ease, the numbers of peripheral blood eosinophils were deter-
mined in WT, IL-5Tg, Eot�/�, IL-5�/�, and EotIL-5�/� FI-RSV-
immunized mice at day 6 post-RSV challenge (Fig. 4E).
Approximately three times the number of eosinophils were de-
tected in the peripheral blood of FI-RSV-immunized WT mice
(7.6 � 104 cells/ml) as in unimmunized RSV-infected WT mice
(2.9 � 104 cells/ml), an observation consistent with previous stud-
ies (36). No eosinophils were detected in the peripheral blood of
FI-RSV-immunized IL-5�/� or EotIL-5�/� mice challenged with
RSV, while substantially higher levels of circulating eosinophils
were detected in FI-RSV-immunized IL-5Tg mice challenged with
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RSV (Fig. 4E). Interestingly, the number of eosinophils in the
peripheral blood of FI-RSV-immunized Eot�/� mice challenged
with RSV was significantly increased compared to FI-RSV-immu-
nized WT mice challenged with RSV (Fig. 4E), and unimmunized
Eot�/� mice challenged with RSV showed peripheral eosinophil
numbers similar to those of unimmunized WT mice challenged
with RSV (Fig. 4E). No eosinophils were detected in the peripheral
blood of unimmunized RSV-infected IL-5�/�, and EotIL-5�/�

mice (Fig. 4E). Taken together, these data reinforce the role of IL-5
as a key mediator of pulmonary eosinophilia and suggest eotaxin
has a role in eosinophil migration from the blood into the airway.

Cytokine and chemokine expression is affected by eosino-
phil maturation and migration in FI-RSV-immunized mice
challenged with RSV. To better understand the roles of the Th2

cytokines IL-4, IL-5, and IL-13 in pulmonary eosinophilia associ-
ated with FI-RSV vaccine enhancement, mRNA expression levels
were evaluated in the lung tissues of FI-RSV-immunized WT,
Eot�/�, IL-5�/�, IL-5Tg, and EotIL-5�/� mice challenged with
RSV and in unimmunized WT, Eot�/�, IL-5�/�, IL-5Tg, and
EotIL-5�/� mice challenged with RSV only (Fig. 5). The mRNA
levels of IL-4 and IL-13 were significantly reduced in FI-RSV-
immunized Eot�/�, IL-5�/�, and EotIL-5�/� mice compared to
FI-RSV-immunized WT and IL-5Tg mice challenged with RSV
(Fig. 5A and B). No difference in IL-13 mRNA expression was
detected in FI-RSV-immunized IL-5Tg mice challenged with RSV
(Fig. 5B); however, expression of IL-4 mRNA was significantly
increased compared to WT mice (Fig. 5A).

The expression of IL-5 in the lung was also examined, as its

FIG 1 Immunohistopathology in the lungs of WT, IL-5Tg, Eot�/�, IL-5�/�, and EotIL-5�/� mice with FI-RSV vaccine-enhanced disease. The images are
representative of lungs from each of the different groups of mice. Sections were stained with H&E and are shown at �400 and �100 magnifications. Eosinophils
are indicated by arrows. The data shown are representative of two separate experiments.
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FIG 2 Pulmonary inflammation, mucus production, and eosinophil numbers in lungs with FI-RSV vaccine-enhanced disease. (A) Eosinophil numbers in the
airway. HPF, high-power field. (B to E) Semiquantitation of histology. (F) Goblet cell numbers in the airways. Quantitation of peribronchial eosinophils and
airway goblet cells was determined by the eosinophil- and PAS-positive goblet cell number per 250 mm of epithelium. Unimmunized WT, Eot�/�, IL-5�/�,
EotIL-5�/�, and IL-5Tg mice challenged with RSV were included as controls. The data are shown as means and SEM; n � 6. *, P 	 0.05 compared with WT
FI-RSV vaccine-immunized and RSV-infected mice; **, P 	 0.05 compared with IL-5Tg FI-RSV vaccine-immunized and RSV-infected mice; #, P 	 0.05
compared with WT unimmunized and RSV-infected mice; ##, P 	 0.05 compared with IL-5Tg unimmunized and RSV-infected mice. The data shown are
representative of two separate experiments.
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expression has been correlated with the degree of pulmonary
eosinophil infiltration (37). As expected, no IL-5 mRNA was de-
tected in either the IL-5�/� or EotIL-5�/� mice, whereas a signif-
icant increase in expression was seen in immunized RSV-chal-
lenged IL-5Tg mice compared to immunized RSV-challenged WT
mice (Fig. 5C). No IL-5 protein was detected in the BAL fluid of
IL-5�/� or EotIL-5�/� mice, and there was a significant increase
in protein in the immunized RSV-challenged IL-5Tg mice com-
pared to the immunized RSV-challenged WT mice (Fig. 5D). IL-5
mRNA expression in the lung and IL-5 protein levels in the BAL
fluid of Eot�/� mice were significantly decreased compared with
WT and IL-5Tg mice (Fig. 5C and D), suggesting that IL-5 expres-
sion may also be affected by eotaxin deficiency following FI-RSV
vaccine-enhanced RSV infection. IL-4 and IL-13 were detected at
very low levels in unimmunized RSV-challenged Eot�/�, IL-5�/�,
and EotIL-5�/� mice, while IL-5 was detected at very low levels in
unimmunized RSV-challenged Eot�/� mice (Fig. 5A to D).

IFN-�, a Th1-type cytokine that counterbalances Th2-type cy-
tokine expression (38), was examined in FI-RSV-immunized and
-challenged mouse groups. IFN-� mRNA expression was signifi-
cantly (P 	 0.05) increased in the lungs of all FI-RSV-immunized
knockout mice compared to FI-RSV-immunized WT and IL-5Tg
mice challenged with RSV (Fig. 5E). This trend was replicated in
the BAL fluid from all immunized knockout mice, showing sub-
stantially higher levels of IFN-� protein than that of the immu-
nized WT and IL-5Tg mice challenged with RSV (Fig. 5F). The
increased IFN-� mRNA levels correlated with a reduction in Th2-
type cytokine expression in the immunized and RSV-challenged
knockout mice; however, IFN-� expression did not appear to play
a substantial role in counterbalancing Th2 cytokine expression in

FI-RSV-immunized IL-5Tg mice challenged with RSV. A possible
explanation could be that excessive production of IL-5 in FI-RSV-
immunized IL-5Tg mice challenged with RSV may induce more
IFN-� for immune homeostasis (39). At the protein level, unim-
munized RSV-infected WT mice had IFN-� levels similar to those
of the unimmunized knockout mouse groups challenged with
RSV (Fig. 5F).

The importance of the chemokine network previously associ-
ated with FI-RSV vaccine-enhanced disease, i.e., CCR3, RANTES,
and TARC (40, 41), was also examined in the context of IL-5
and/or eotaxin deficiency. CCR3 is highly expressed by eosino-
phils and is thought to be the major eosinophil chemokine recep-
tor (42). The mRNA levels of CCR3 were determined in unimmu-
nized and FI-RSV-immunized mouse groups challenged with
RSV (Fig. 6A). CCR3 mRNA expression was significantly in-
creased in FI-RSV-immunized IL-5Tg mice challenged with RSV
and significantly decreased in all FI-RSV-immunized knockout
mice challenged with RSV compared to FI-RSV-immunized WT
mice challenged with RSV (Fig. 6A). Unimmunized RSV-chal-
lenged WT mice had levels similar to those seen in the unimmu-
nized and FI-RSV-immunized knockout mice (Fig. 6A). The
CCR3 mRNA expression profile is consistent with the prominent
eosinophilia detected in the lungs and airways of FI-RSV-immu-
nized WT and IL-5Tg mice challenged with RSV and the absence
of pulmonary eosinophils in FI-RSV-immunized Eot�/�, IL-
5�/�, and EotIL-5�/� mice challenged with RSV. A more substan-
tial increase in CCR3 mRNA expression (Fig. 6A) was detected in
FI-RSV-immunized IL-5Tg mice challenged with RSV than there
was pulmonary eosinophilia (Fig. 4D). A substantial increase in
CCR3 mRNA expression (Fig. 6A) was detected in FI-RSV-immu-

FIG 3 Lung histology with PAS stain. Mucus production in the lungs of WT, IL-5Tg, Eot�/�, IL-5�/�, and EotIL-5�/� mice with FI-RSV vaccine-enhanced
disease. The images are representative of lungs from each of the different groups of mice. Sections were stained with H&E and are shown at �100 magnification.
The data shown are representative of two separate experiments.
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nized IL-5Tg mice challenged with RSV, similar to the results for
pulmonary eosinophilia (Fig. 4D).

RANTES (CCL5) is a chemokine that, like eotaxin, induces
eosinophil recruitment through binding and activation of CCR3
on the eosinophil surface. RANTES mRNA levels in the lung were
significantly reduced in FI-RSV-immunized Eot�/�, IL-5�/�, and

EotIL-5�/� mice challenged with RSV compared to FI-RSV-im-
munized WT and IL-5Tg mice challenged with RSV (Fig. 6B).
Unimmunized RSV-infected control mice all had RANTES
mRNA levels similar to those of the unimmunized and FI-RSV-
immunized knockout mouse groups challenged with RSV (Fig.
6B). These results show that FI-RSV vaccine-enhanced disease is

FIG 4 Quantitation of cell subpopulations in BAL fluid and eosinophils in peripheral blood in mice with FI-RSV vaccine-enhanced disease. (A to D) Cell
subpopulations in BAL fluid. (E) Eosinophil numbers in peripheral blood. Unimmunized WT, Eot�/�, IL-5�/�, EotIL-5�/�, and IL-5Tg mice challenged with
RSV were included as controls. The data are shown as means and SEM; n � 6. *, P 	 0.05 compared with WT FI-RSV-immunized mice challenged with RSV; **,
P 	 0.05 compared with IL-5Tg FI-RSV-immunized mice challenged with RSV; #, P 	 0.05 compared with WT unimmunized and RSV-infected mice; ##, P 	
0.05 compared with IL-5Tg unimmunized and RSV-infected mice. The data shown are representative of two separate experiments.
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associated with the expression of RANTES through a process that
requires both eotaxin and IL-5.

TARC (CCL17) regulates the recruitment of Th2 cells in aller-
gic responses (29, 43) and can be expressed on pulmonary epithe-

lial cells (44). In FI-RSV-immunized WT and IL-5Tg mice chal-
lenged with RSV, TARC mRNA levels in the lung were
significantly higher than in FI-RSV-immunized IL-5�/�, Eot�/�,
and EotIL-5�/� mice challenged with RSV (Fig. 6C). Unimmu-

FIG 5 Expression of cytokines in the lung. (A to C and E) Cytokine mRNA levels. The data are expressed as fold change, with values from control untreated
(unimmunized and uninfected) WT mice defined as 1, as indicated by the dashed lines. (D and F) Cytokine protein concentrations. Cytokine mRNA levels were
determined by quantitative RT-PCR, and the data were normalized with �-actin. Detection limits for the cytokines are indicated by the dashed lines. Unimmu-
nized WT, Eot�/�, IL-5�/�, EotIL-5�/�, and IL-5Tg mice challenged with RSV were included as controls. The data are shown as means and SEM; n � 6. *, P 	
0.05 compared with WT FI-RSV-immunized mice challenged with RSV; **, P 	 0.05 compared with IL-5Tg FI-RSV-immunized mice challenged with RSV; #,
P 	 0.05 compared with WT unimmunized and RSV-infected mice; ##, P 	 0.05 compared with IL-5Tg unimmunized and RSV-infected mice. The data shown
are representative of two separate experiments.
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nized, RSV-infected control mice all had TARC mRNA levels sim-
ilar to those of the unimmunized and FI-RSV-immunized knock-
out mouse groups challenged with RSV (Fig. 6C). These results
suggest the possibility that CCL17/TARC plays a role in mediating
Th2-driven FI-RSV vaccine-enhanced disease.

Eotaxin expression is linked to enhanced virus clearance
during FI-RSV vaccine-enhanced disease. To determine whether
eosinophils contributed to virus clearance, lung RSV titers were
determined in RSV-infected unimmunized and FI-RSV-immu-
nized WT, IL-5�/�, Eot�/�, EotIL-5�/�, and IL-5Tg mice. In the
unimmunized group, RSV titers in IL-5�/�, Eot�/�, and EotIL-
5�/� mice were similar to those in WT mice (Fig. 7A). In addition,
virus titers from RSV-challenged unimmunized IL-5Tg mice were
significantly (P 	 0.05) lower than those from RSV-challenged
unimmunized WT mice (Fig. 7A and B). In the FI-RSV-immu-
nized group, significantly (P 	 0.05) higher lung RSV titers were
detected in IL-5�/�, Eot�/�, and EotIL-5�/� mice than in WT and
IL-5Tg mice (Fig. 7A). Lung virus titers in immunized RSV-chal-

lenged IL-5Tg mice, which have high eosinophil levels in the
lungs, airways, and peripheral blood, were significantly lower at
day 3 postinfection (Fig. 7B). At day 6 postinfection, virus titers
were lower, albeit not significantly, than those of the WT mice
(Fig. 7A and B). These data suggest that a reduction of eosinophils
in the lungs and airways can affect viral clearance, bolstering the
notion that eosinophils have an antiviral function in vaccine-en-
hanced RSV infection.

To further demonstrate the role of eosinophils in antiviral de-
fense, we delivered recombinant eotaxin intratracheally to FI-
RSV-immunized Eot�/� mice challenged with RSV. Eosinophils
were detected in the lungs of immunized RSV-infected Eot�/�

mice treated with recombinant eotaxin, but not in untreated, im-
munized RSV-infected Eot�/� mice (Fig. 8A). The presence of
eosinophils was associated with lower lung virus titers (1-log-unit
difference in virus titers between the two groups) and higher Ear1
and Ear2 mRNA expression levels than the untreated group (Fig.
8B and C).

FIG 6 Expression of chemokine and chemokine receptor mRNA in the lungs of mice with FI-RSV vaccine-enhanced disease. Shown are CCR3 (A), RANTES (B),
and TARC (C) mRNA levels. Cytokine mRNA levels were determined by quantitative RT-PCR, and the data were normalized with �-actin. The data are expressed
as fold change, with values from control untreated (unimmunized and uninfected) WT mice defined as 1, as indicated by the dashed lines. Unimmunized WT,
Eot�/�, IL-5�/�, EotIL-5�/�, and IL-5Tg mice challenged with RSV were included as controls. The data are shown as means and SEM; n � 6. *, P 	 0.05
compared with WT FI-RSV-immunized mice challenged with RSV; **, P 	 0.05 compared with IL-5Tg FI-RSV-immunized mice challenged with RSV; #, P 	
0.05 compared with WT unimmunized and RSV-infected mice; ##, P 	 0.05 compared with IL-5Tg unimmunized and RSV-infected mice. The data shown are
representative of two separate experiments.
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In a separate experiment, we intratracheally transferred eosin-
ophils from IL-5Tg mice to FI-RSV-immunized RSV-infected
EotIL-5�/� mice 3 days after infection. The transfer of eosinophils
to EotIL-5�/� mice resulted in a reduction of lung virus titers to
below the limit of detection, which contrasts with the substantial
virus titers recovered from the lung in the control group (FI-RSV-
immunized RSV-infected EotIL-5�/� mice without eosinophil
transfer) (Fig. 9A). As an additional control, we included the
transfer of macrophages in the adoptive-transfer experiments to
demonstrate that the enhanced clearance is mediated by eosino-
phils and not due to the increase in the local concentration of

immune cells. The data show that the virus titer was significantly
(P 	 0.05) reduced as a result of macrophage transfer compared to
the control group (Fig. 9A). However, transfer of eosinophils
showed complete clearance of RSV compared to the control
group. In addition, expression of a number of antiviral mediators,
such as RNI, IFN-�, Ear-1, and Ear-2, was markedly higher (RNI,
3-fold; IFN-�, 1.5-fold) in the lungs of immunized RSV-infected
EotIL-5�/� mice that received eosinophil transfer than in immu-
nized RSV-infected EotIL-5�/� mice without eosinophil transfer
(Fig. 9B, C, and D).

FIG 7 Virus titers in the lungs of mice with FI-RSV vaccine-enhanced disease.
(A) RSV titers in unimmunized and immunized and RSV-infected WT, IL-
5Tg, IL-5�/�, Eot�/�, and EotIL-5�/� mice at day 6 p.i. The data are shown as
means and SEM; n � 3. (B) RSV titers in unimmunized and immunized
RSV-infected WT and IL-5Tg mice at days 3 and 6 p.i. The data are shown as
means and SEM; n � 3. *, P 	 0.05 compared with WT FI-RSV vaccine-
immunized and RSV-infected mice; **, P 	 0.05 compared with IL-5Tg FI-
RSV vaccine-immunized and RSV-infected mice; #, P 	 0.05 compared with
WT unimmunized and RSV-infected mice; ##, P 	 0.05 compared with IL-
5Tg unimmunized and RSV-infected mice. The data shown are representative
of two separate experiments.

FIG 8 Virus titers in the lung and expression of antiviral mediators following
eotaxin treatment. FI-RSV-immunized RSV-infected Eot�/� mice were intra-
tracheally treated with recombinant eotaxin at day 3 postinfection. Control
mice were treated with vehicle alone. Three days after eotaxin treatment, mice
were sacrificed, and lung eosinophil numbers (A), virus titers (B), and expres-
sion of antiviral mediators (C) in the lungs were determined. The data are
shown as means and SEM; n � 3. *, P 	 0.05. The data shown are representa-
tive of two separate experiments.
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Nitric oxide plays a key role in the antiviral activity of eosin-
ophils. To define the potential role of eosinophil-derived NO in
viral clearance observed in immunized RSV-infected EotIL-5�/�

mice that received eosinophil transfer, the mice were treated with
the NOS-2 inhibitor L-NMA on days 1 and 2 after eosinophil
transfer. In addition, we also transferred eosinophils to unimmu-
nized RSV-infected WT mice (an experimental group with no
eosinophils) and treated them with L-NMA. Control groups were
given the inactive D-enantiomer (D-NMA). L-NMA treatment
substantially enhanced RSV titers in mice and partially reversed
the protection conferred by eosinophil transfer (Fig. 10A and B).

In a separate experiment, we showed that RNI was detected at
high levels in immunized RSV-challenged WT and IL-5Tg mice
compared to unimmunized RSV-challenged mice (data not
shown). To further address the role of NO in viral clearance, un-
immunized and immunized RSV-infected WT mice (an experi-

mental group exhibiting high levels of eosinophils) were treated
with L-NMA or D-NMA. L-NMA treatment significantly enhanced
viral titers in unimmunized and immunized RSV-infected WT
and IL-5Tg mice (Fig. 10C and D). The results clearly demonstrate
the importance of NO as an antiviral molecule in this model of
enhanced eosinophilic disease.

DISCUSSION

FI-RSV vaccine-enhanced disease following RSV challenge has
been associated with a substantial accumulation of eosinophils in
the lungs of mice, and it has been proposed that this cell type is a
hallmark of disease and a major contributor to disease pathology
(13, 17, 45). Our research described here is highly significant be-
cause it models the disastrous early attempts at RSV vaccination
that resulted in enhanced disease. In this study, we focused on the
potential antiviral functions of eosinophils and the development

FIG 9 Virus titers in the lung and expression of antiviral mediators following eosinophil treatment. FI-RSV-immunized RSV-infected EotIL-5�/� mice were
intratracheally treated with eosinophils at day 3 postinfection. Control mice were treated with medium alone. The transfer of macrophages in the adoptive-
transfer experiments was included as an additional control. Three days after eosinophil treatment, the mice were sacrificed and virus titers (A) and expression of
antiviral mediators (B to D) in the lungs were determined. The data are shown as means and SEM; n � 3. *, P 	 0.05. The data shown are representative of two
separate experiments.
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of eosinophilic inflammation in the lung during vaccine-en-
hanced RSV disease. In a model of vaccine-enhanced RSV disease,
the accumulation of eosinophils in the lung was markedly reduced
in IL-5- and eotaxin-double-deficient mice, with a corresponding
increase in the virus titer. Intratracheal treatment of Eot�/� mice
with recombinant eotaxin resulted in reduced virus titers recov-
ered from the lung. Adoptive transfer of eosinophils to IL-5- and
eotaxin-double-deficient mice resulted in rapid clearance of RSV
via antiviral mediators produced by the eosinophils. These results
suggest dual antiviral and proinflammatory functions for eosino-
phils during vaccine-enhanced RSV disease.

We sought to establish a mouse model of FI-RSV vaccine-en-
hanced RSV disease to evaluate the antiviral activity associated
with eosinophilic inflammation. In these studies, mice deficient in
IL-5 and/or eotaxin were evaluated, since these molecules play
critical roles in the development of eosinophilic inflammation
(25, 46, 47). In addition, eotaxin and IL-5 have been previously
shown to govern aspects of eosinophilic inflammation using a
different model of vaccine-enhanced RSV disease involving initial

sensitization with vaccinia virus expressing RSV G glycoprotein
(vvG), followed by RSV challenge (18). As an additional model in
which to study the importance of eosinophils, we also used IL-5Tg
mice, which have high levels of circulating eosinophils and exhibit
enhanced eosinophilic inflammation in some disease models (25).
The prominent airway eosinophilia in vaccine-enhanced RSV dis-
ease was markedly reduced in eotaxin- and/or IL-5-deficient mice.
Circulating eosinophils were largely absent in IL-5�/� mice, sug-
gesting that the reduced eosinophilic inflammation in the lungs of
these mice was due to the known effects of IL-5 on eosinophilo-
poiesis. In contrast, circulating eosinophil numbers were unaf-
fected by eotaxin deficiency, and it is likely that the reduced eosi-
nophilic inflammation in Eot�/� mice was due to impaired
migration into the lung. Our results are consistent with earlier
studies in mouse models of allergic airway inflammation showing
that both eotaxin and IL-5 are required for eosinophil migration
in the airway and periphery (28, 46, 48–50).

Th2 cytokines are increased in the FI-RSV vaccine-enhanced
disease model following RSV infection (51). In this study, the

FIG 10 Role of eosinophil-derived NO in viral clearance. (A and B) Effects of treatment with L-NMA on RSV replication in immunized RSV-infected EotIL-5�/�

mice treated with eosinophils (A) and unimmunized RSV-infected WT mice treated with eosinophils (B). Immunized RSV-infected EotIL-5�/� mice and
unimmunized RSV-infected WT mice were intratracheally treated with eosinophils on day 3 postinfection. The mice were treated with L-NMA or D-NMA on
days 1 and 2 after eosinophil treatment. Three days after eosinophil treatment, the mice were killed and virus titers in the lung were determined. (C and D) Effects
of treatment with L-NMA on RSV replication in unimmunized and FI-RSV-immunized RSV-infected WT and IL-5Tg mice. The mice were treated with L-NMA
or D-NMA on days 1 and 2 after infection. The data are shown as means and SEM; n � 3. *, P 	 0.05; ns, not significant. The data shown are representative of
two separate experiments.
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expression of Th2 cytokines, IL-4, IL-5, and IL-13, were markedly
reduced or absent in eotaxin- and/or IL-5-deficient mice com-
pared to WT mice. The reduced level of Th2 cytokine expression
in the lungs of eotaxin-deficient mice likely reflects impaired mi-
gration of Th2-type cells into the lung (52). Similarly, IL-4 and
IL-13 were reduced in FI-RSV-vaccinated IL-5�/� mice chal-
lenged with RSV, a feature proposed to affect coordination of their
regulation (53). In IL-4- and IL-5-deficient mice, abrogation of
allergic airway inflammation with eosinophil infiltration and lung
damage has been reported (52, 54), which is consistent with our
findings. Our study reveals that IL-5 deficiency not only affects
eosinophil growth and migration, but also hampers IL-4 and
IL-13 production in the airway. The increased production of the
Th1 cytokine IFN-� may have an additional protective effect by
counterbalancing detrimental effects of Th2 cytokines (55, 56).
The chemokine RANTES is important in controlling eosinophil
migration (57) and airway hyperresponsiveness in an ovalbumin-
sensitized murine model (58), and the reduced RANTES expres-
sion in the lungs of eotaxin- and/or IL-5-deficient cohorts may
contribute to protection from pathology in these mice. Another
chemokine, TARC, has recently been reported to be highly in-
creased in acute RSV infection (41). In our study, TARC was as-
sociated with vaccine-induced airway inflammation, since its ex-
pression was increased in IL-5Tg mice with severe eosinophilic
inflammation and reduced in eotaxin- and/or IL-5-deficient mice.
Similar to Th2 cytokines, RANTES is important for eosinophil
migration and strongly associated with eosinophil-driven disease.
Our findings and those of others suggest that blockade of RANTES
may be a potential therapeutic approach for the treatment of al-
lergy-like disease and RSV-induced airway eosinophilic inflam-
mation (59).

Eosinophils have previously been reported to have an antiviral
role during RSV infection (12, 60–62). In the vaccine-enhanced
model of RSV disease, viral titers in the lung were significantly
increased in IL-5�/�, Eot�/�, and EotIL-5�/� mice, all of which
had markedly reduced eosinophilic inflammation in the lung.
Conversely, virus titers were lower in WT and IL-5Tg mice, which
featured enhanced eosinophil numbers in the lung. Transfer of
eosinophils from IL-5Tg mice accelerated viral clearance in unim-
munized WT and immunized EotIL-5�/� mice, which might be
explained by direct production of antiviral mediators by eosino-
phils (e.g., RNI, ribonucleases, and IFN-�). Indeed, using L-NMA
to block NO production, we demonstrated that eosinophils me-
diate antiviral effects in the RSV vaccine-enhanced disease model
partly through NO production. A recent study showed that eo-
taxin 1 triggers the secretion of ribonucleases (Ears) from mouse
eosinophils and their cell-free granules (63). In this regard, intra-
tracheal delivery of recombinant eotaxin to FI-RSV-immunized
Eot�/� mice challenged with RSV was associated with lower lung
virus titers and higher Ear1 and Ear2 expression, and we speculate
that ribonucleases might also exert antiviral activity in the vac-
cine-enhanced model.

Eosinophil degranulation in the lung has been documented
during RSV infection (64, 65). Several studies have suggested that
eosinophil degranulation can cause significant lung tissue damage
(66, 67). It will be important to determine the mechanisms of
eosinophil activation during RSV infection. Our own in vitro
studies have indicated that eosinophils can degranulate on direct
exposure to RSV virions (unpublished data), while other studies

have suggested that interaction between eosinophils and infected
airway epithelial cells is required for activation (68, 69).

Taken together, our findings indicate that in the vaccine-en-
hanced RSV disease model (a Th2-polarized inflammatory re-
sponse), the influx of eosinophils and their subsequent activation
in the lung have both inflammatory and antiviral activities. These
findings, which have been previously unrecognized, provide
mechanistic insights into the role of eosinophils in vaccine-en-
hanced disease. The significance of our work is further supported
by a recent study by Percopo et al. showing that, while eosinophils
within a Th2-polarized inflammatory response may have patho-
physiologic features, they promote survival in response to a lethal
infection with pneumonia virus of mice (PVM) (70). Our results
support and extend these findings by showing a dual proinflam-
matory and antiviral role of eosinophils in a strong Th2 model of
infection with the human pathogen RSV. Based on the failed early
RSV vaccine clinical trials, it has been generally assumed that the
eosinophilic inflammation in the lung contributed substantially
to pathology. However, our studies suggest a more complex role
for eosinophils in vaccine-enhanced RSV disease, with both path-
ological and protective components.
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